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Abstract

Public leaderboards for large language mod-
els often rely on aggregate scores that conceal
critical information about model behaviour. In
this paper, we present a methodology for task-
aware evaluation that combines (i) correctness
metrics aligned with task semantics compliance
checks for measuring instruction-following and
numeric equivalence for mathematics with (ii)
pairwise error-overlap analysis for identify-
ing complementary model pairs. We apply
this methodology to 17 outputs of recent state
of the art and frontier LLMs across multiple-
choice QA, instruction-following, and mathe-
matical reasoning tasks. Our analysis shows
that task-aware metrics can reorder model rank-
ings relative to generic lexical metrics, and that
error-overlap patterns vary substantially across
model pairs and scenarios. We finally conclude
by discussing implications for model selection,
routing strategies, and using LLMs in the con-
text of judging and measuring outputs.

1 Introduction

Large language models (LLMs) are increasingly
embedded in high-stakes pipelines (Tamkin et al.,
2021), such as from triaging safety incidents and
assessing student work (for e.g., Liu et al., 2023) to
screening resumes and serving as automatic judges
in evaluation (Zheng et al., 2023). While pub-
lic leaderboards usually present a certain order-
ing of models (Liang et al., 2023; Hugging Face,
2023), real world deployments usually hinge on
a set of different questions: what types of mis-
takes do models make, how often do models share
those mistakes, and which metrics faithfully cap-
ture correctness for the task at hand? Previous
research has observed that reported headline (ag-
gregated) scores can conceal substantial error cor-
relation across models (see for instance Kim et al.,
2025), and that generic text similarity metrics are
often ill-suited to instruction-following or mathe-
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matical reasoning (Zheng et al., 2023; Liang et al.,
2023).

These questions have significant operational (or
contextual utilisation) relevance. When models ap-
pear similar on aggregate leaderboards but diverge
on specific scenarios, practitioners (or the users
of the models) may need finer-grained diagnostics
to inform deployment choices. Previous research
has documented substantial error correlation across
models, particularly on multiple-choice tasks (Kim
et al., 2025), and has shown that model outputs can
be more similar to each other than to human re-
sponses (Jain et al., 2025). Correlated errors have
implications, especially, for effectiveness of en-
sembling(Chen et al., 2025), or for LLM-as-judge
reliability when judges share blind spots with candi-
dates (Zheng et al., 2023; Panickssery et al., 2024),
and broader concerns about algorithmic monocul-
ture in decision-making systems (Kleinberg and
Raghavan, 2021; Bommasani et al., 2023b). In
this paper, we argue that combining task-aligned
correctness criteria with per-scenario error-overlap
analysis can provide complementary signals for
model selection and evaluation design though val-
idating the operational impact of these methods
remains an important direction for future work.

A growing body of recent research in this di-
rection quantifies correlated errors across LLMs
and their downstream effects. Kim et al. (2025)
demonstrate substantial error agreement across hun-
dreds of models on multiple-choice QA (e.g., on
MMLU (Hendrycks et al., 2021) within HELM
in (Liang et al., 2023)) and show that correlation
increases with individual accuracy and shared lin-
eage (provider/architecture), with notable impacts
on LLM-as-judge and hiring-market simulations.
? propose accuracy adjusted similarity metrics
that treat different wrong answers as disagreement
and leverage predictive distributions when avail-
able. Other works analyse algorithmic monocul-
ture and systemic exclusion in markets (Klein-
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berg and Raghavan, 2021; Creel et al., 2022), self-
preferencing in judging, and ecosystem structure
including component sharing across models (Bom-
masani et al., 2023b). Surveys of LL.M-as-judge
practices document both strengths and limitations,
including bias when judges share error modes with
candidates (Zheng et al., 2023; Xu et al., 2025).
Broadly, these studies emphasize the prevalence
and consequences of the inherent correlations.
Our contribution in this work is complementary
to these directions. We extend correlation analysis
beyond multiple-choice into instruction-following
and mathematics with examples of task-aware scor-
ing; introduce alignment-aware, per-scenario error
overlap that localizes co-failures. Specifically, we:

* propose structured correctness checks for
instruction-following (compliance with con-
straints on format, length, and content) and
mathematics (numeric equivalence with tol-
erance for common representations), as alter-
natives to lexical overlap metrics where those
may be misaligned with task semantics.

* compute per-scenario pairwise error overlap
under explicit alignment modes, providing a
basis for identifying where models fail on the
same versus different instances.

e implement robust answer extraction for
multiple-choice tasks and surface per-class
confusion matrices to expose distribution-
specific patterns.

* demonstrate how structured checks can serve
as audit tools for LLM-as-judge pipelines,
complementing rather than replacing human
evaluation.

We present initial evidence that these methods
reveal ranking differences and error patterns not
visible in aggregate scores, and discuss their poten-
tial applications in model portfolios and evaluation
design. Our analysis code and per-instance out-
puts are made available to support replication and
extension.

2 Related work

Recent work has documented that different LLMs
frequently share their mistakes. Kim et al. (2025)
measure agreement when both models err across
hundreds of systems on multiple-choice (MC)
benchmarks (e.g., MMLU (Hendrycks et al., 2021)

within HELM (Liang et al., 2023)), showing sub-
stantial correlation that increases with individual ac-
curacy and with shared lineage (based on provider
and architectures). Complementary analyses pro-
pose accuracy-adjusted similarity metrics that treat
different wrong answers as disagreement and, when
available, leverage predictive distributions (?); oth-
ers find that on creative tasks, LLM outputs are
more similar to each other than human responses
are to one another (Xu et al., 2025). Our work
builds directly on these findings by extending cor-
relation analysis beyond multiple-choice tasks and
by introducing per-scenario overlap measurement
to localize patterns of agreement and complemen-
tarity.

While using LLMs to evaluate other LLMs is
appealing but, this process has been shown to in-
troduces bias when judges share blind spots with
candidates. Zheng et al. (2023) provide evidence
and guidance for LLM-as-judge pipelines; subse-
quent surveys catalogue strengths and limitations of
judges in practice (Chang et al., 2024). Empirically,
judges can over-inflate models with which they
share error modes, including models from the same
provider or family (see more focussed discussion in
Kim et al., 2025), connecting to self-preferencing
concerns (Panickssery et al., 2024). In this paper,
we complement this direction of work by highlight-
ing calibration of judges with non-LLM, structured
checks (compliance and numeric equivalence), po-
tentially helping reduction in over-rewarding of
plausible but wrong outputs. Our work contributes
towards a practical approach for using rule-based
checks to audit judge outputs, acknowledging that
such checks capture only certain dimensions of cor-
rectness and should complement rather than replace
human judgment.

A parallel direction of literature examines the
societal and market-level implications of model
homogeneity. Theoretically, algorithmic monocul-
ture can reduce firm performance and increase sys-
temic exclusion, wherein applicants are rejected
across many decision-makers using similar sys-
tems (Kleinberg and Raghavan, 2021; Creel et al.,
2022). Follow-up work analyses trade offs be-
tween individual accuracy and diversity, show-
ing contexts where diversity can yield wisdom-of-
crowds gains and settings where monoculture af-
fects applicant and firm welfare (Peng and Garg,
2024a,b). Our per-scenario error-overlap analy-
sis operationalises diversity by identifying comple-
mentary model pairs that minimise co-failures in



specific scenarios.

The inherent correlation is plausibly driven by
shared components (data, architectures, training
regimes). Ecosystem studies map component shar-
ing across models, supporting a component-sharing
hypothesis (Bommasani et al., 2023b,a). Such
structural commonalities help explain why mod-
els converge not only in accuracy but also in error
(Kim et al., 2025). Mechanistic evidence of repre-
sentational homogeneity (e.g., aligned embeddings
or layered activations across networks) provides
further context (Lin et al., 2025).

Within-model generative diversity remains an
open concern (Chang et al., 2024; Panickssery et al.,
2024). Empirical studies report reduced variance
relative to training corpora and limited gains from
inference-time perturbations. Our focus is com-
plementary: we study cross-model error similarity
and how to exploit residual diversity (low-overlap
pairs) for routing and ensembling.

Holistic evaluation efforts (Liang et al., 2023)
and widely used benchmarks such as MMLU
(Hendrycks et al., 2021) have enabled broad cross-
model comparisons. However, generic lexical met-
rics are poorly aligned with instruction-following
correctness and mathematical validity. We there-
fore adopt task-aware measures: compliance scor-
ing for instruction-following (e.g., highlight counts,
punctuation constraints, word limits, checklist cov-
erage) and numeric equivalence for mathematics
(fractions and square-root forms). These measures
reveal ranking reversals that headline scores ob-
scure, and they localise failure modes when com-
bined with per-scenario error overlap.

3 Methodology

We present a methodology for task-specific evalu-
ation and error-overlap analysis designed to com-
plement existing benchmark scores. Our approach
is motivated by the observation that generic lexi-
cal metrics (token overlap, BLEU) may not align
well with the semantic requirements of specialized
tasks. However, we emphasize that the correctness
criteria we propose compliance checks and numeric
equivalence are proxy measures that capture certain
aspects of task success but do not replace human
evaluation or task-specific ground truth when avail-
able. Our goal is to provide additional diagnostic
signals that can inform model selection and high-
light areas for deeper investigation.

Data and scope. Our analysis covers three
task families with distinct correctness notions:
(i) multiple-choice MC) QA (e.g., MMLU
(Hendrycks et al., 2021) within HELM (Liang
et al., 2023)); (ii) instruction-following (e.g., IFE-
val and WildBench type prompts); and (iii) mathe-
matical problem solving (e.g., Omni-MATH-type
items). We source scenario-state JSONs from
HELM benchmark output files (Liang et al., 2023),
which include per-instance model completions, in-
puts, and, when available, reference outputs and
option mappings.

Instance alignment. For cross-model error-
overlap, instances must be aligned across systems.
We support multiple alignment keys: (a) scenario-
instance (scenario identifier + instance id); (b)
prompt-hash (hash of normalised input text) for
robustness to id drift; and (c) instance-id alone for
datasets with stable identifiers. All per-instance
outputs include the chosen alignment key to ensure
reproducibility.

3.1 Task-aware correctness metrics

Multiple-choice (MC). We detect MC via
adapter specifications or the presence of an
output_mapping. Predicted answers are extracted
using contextual patterns (e.g., “Final answer: (C)”,
“Option A”), falling back to isolated-letter detec-
tion, and finally to mapping by option-text men-
tions, with all predictions filtered to the set of valid
options. Gold answers are recovered from refer-
ences tagged correct or from the mapping. We
report:

* Accuracy: fraction of instances where the
predicted letter set equals the gold set (single-
label by default).

* Confusion matrices: counts over gold vs.
predicted letters to expose distractor-specific
errors and class imbalance.

* Macro PRF: per-class precision/recall/F1 av-
eraged across labels (reported only with suffi-
cient sample size to avoid instability).

Rationale: MC tasks require robust extraction and
class-sensitive diagnostics; macro PRF comple-
ments accuracy under imbalance.

Instruction-following (compliance). Generic
lexical metrics (e.g., BLEU, token F1) may poorly
reflect adherence to explicit constraints when ref-
erence outputs are unavailable or when the task



requires specific formatting. We therefore com-
pute compliance scores from structured rules that
check for: (i) punctuation constraints, (ii) format
constraints, (iii) length constraints, and (iv) check-
list coverage. These checks capture surface-level
adherence to instructions and may serve as a com-
plement to human judgment of overall response
quality, though they do not guarantee semantic cor-
rectness or utility.

Mathematics (numeric equivalence). For prob-
lems where answers are numeric expressions, ex-
act string matching is overly strict while general
text similarity is insufficiently precise. We parse
predicted and reference answers into numeric val-
ues, handling common representations (fractions,
square roots), and compute equivalence within a
small tolerance. This approach aims to recognize
mathematically equivalent answers while remain-
ing conservative where some valid reformulations
may not be detected, leading to underestimation of
correctness in cases requiring symbolic manipula-
tion.

3.2 Formal definitions

Let D denote a set of aligned instances and M a

set of models. For ¢ € D, let y; be the gold label
(MC) or reference text (free-form), and g)i(m) the

prediction of model m € M. We write A; for the
alignment key.

MC accuracy and macro PRF. For single-label
MC with label set £,
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using a small € > 0 for numerical stability when
reporting.

Token overlap (free-form). Let ¢(-) tokenise text
at the word level. Define corpus-level precision,
recall, and F1 as
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We report these for completeness and ablation;
they are not treated as correctness for instruction-
following or mathematics.

BLEU (/N-gram) (based on Papineni et al., 2002).
With clipped n-gram precisions p,, and uniform
weights w,, = 1/N, the BLEU score to order N is

N
BLEUy = BP - exp (Z wy, log pn>, )
n=1
BP = min (1, ' 77/¢), (10)
where c is the candidate length and r is the effective
reference length.

Numeric equivalence. When both y; and Ql(m)
can be parsed into reals by a normaliser v(+) sup-
porting forms such as a/b, kv/n/d, and \/n,

NumMatch =1{|v(y (m)) —v(y)| <71}
(1D
NumRate(m) = Z NumMatch( ™)
| | 1€D,
(12)
with tolerance 7 and D, = {i € D
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Compliance rate. Given instance-level con-

straints {c;} with Boolean checks gj(gji(m)) €
{0, 1} and recognised set C;, define
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We also report per-instance
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compliance



Error-overlap (Jaccard). Let F,, C {A;:i €
D} be the set of alignment keys where model m
errs under the relevant criterion. The pairwise Jac-
card similarity is

_ By 0 By

= ; (14)
[ By U B |

J(ml, TTLQ)

reported both globally and per-scenario by restrict-
ing D.

3.3 Error-overlap and complementarity

We quantify shared failures using pairwise Jac-
card similarity over error sets, where each error is
identified by the alignment key of an instance mis-
predicted (for MC) or failing the task-aware crite-
rion (for free-form when applicable). We compute
global Jaccard across all scenarios and per-scenario
Jaccard to localise co-failures. Low-overlap pairs
are candidates for routing or ensembling, while
high-overlap pairs indicate similar failure modes.

3.4 LLM-as-judge calibration

Because judges can share blind spots with candi-
dates (Zheng et al., 2023; Kim et al., 2025), we
calibrate or audit judging pipelines with structured,
non-LLM checks: compliance for instruction-
following and numeric equivalence for mathemat-
ics. When judges are used to grade free-form gener-
ation, we report agreement with structured checks
and surface cases of plausible-but-wrong outputs re-
ceiving undue credit. This mitigates inflation from
correlated errors and supports fairer cross-model
comparisons.

3.5 Reporting and reproducibility

For each system we report: (i) per-instance
CSVs with predictions, rationales when avail-
able, alignment keys, and task-aware met-
rics; (ii) per-scenario summaries including accu-
racy/compliance/numeric rates; (iii) MC confusion
matrices; and (iv) global and per-scenario Jaccard
matrices. These artefacts are intended to support
downstream decisions (model selection, routing,
and guardrail design) and to facilitate replication.

3.6 Scope and Design Choices

Our pipeline operates on scenario-state JSONs
from HELM benchmark outputs, which include
per-instance requests, completions, and when avail-
able, reference outputs and option mappings. We
make the following design choices:

a) We extract predicted answers using contex-
tual patterns (e.g., "Answer: (C)"), falling back
to isolated letter detection and option-text match-
ing. Predictions are filtered to valid options only.
This approach handles most common response for-
mats but may miss edge cases with non-standard
phrasing.

b) Compliance rules are derived from instance
metadata when available (constraint identifiers and
arguments from IFEval-style annotations). When
such metadata are absent, we report lexical metrics
for reference but do not interpret them as correct-
ness scores.

¢) Our numeric parser supports common rep-
resentations: plain numbers, fractions (a/b), and
square roots (kv/n/d, \/n). We apply unicode
normalization and use a small absolute tolerance
(1 = 1075). We do not perform general symbolic
manipulation, so expressions requiring algebraic
simplification may not be recognized as equivalent.

d) We compute Jaccard similarity over error sets,
where errors are identified by instance alignment
keys. We support scenario—instance and prompt-
hash alignment; hash collisions are unlikely but
theoretically possible. For free-form tasks, overlap
is computed only when a binary criterion (compli-
ance or numeric match) is defined.

f) All metrics are deterministic and rule-based;
no additional LLLMs are invoked during scoring.
We emit per-instance CSVs and per-scenario sum-
maries with intermediate values (alignment keys,
extracted predictions) to enable independent verifi-
cation.

4 Experiments

Our goal is to demonstrate the methodology in
practice and provide initial evidence regarding:
(i) whether task-aware metrics produce different
rankings than lexical metrics, (ii) whether error-
overlap patterns vary meaningfully across model
pairs, and (iii) what per-scenario diagnostics reveal
about model behaviour. We emphasize that our
results are descriptive and exploratory establishing
causal relationships or operational impact would
require controlled deployment studies beyond our
current scope.

4.1 Setup

We evaluate across three task families with dis-
tinct correctness notions: (i) multiple-choice
MC) QA (e.g., MMLU within HELM); (ii)



System Parameters Architecture  Context
GPT Family
GPT-5 Undisclosed MoE 400K/128K
GPT-5 Mini Undisclosed MoE 400K/128K
GPT-5 Nano Undisclosed MoE 400K/128K
GPT-OSS (120B) 117B (5.1B active) MoE 128K
GPT-OSS (20B) ~20B MoE 128K
Other Frontier Models
Grok 4 ~1.7T MoE 256K
Kimi K2 1T (32B active) MoE 256K
Qwen3 (235B) 235B MoE 32K
GLM 4.5 Air 106B (12B active) MoE 128K
Nova Premier Undisclosed MoE M
Gemini 2.5 Flash Lite  Undisclosed Sparse MoE IM
OLMo Family
OLMo 2 (32B) 32B Dense 4K
OLMo 2 (13B) 13B Dense 4K
OLMo 2 (7B) 7B Dense 4K
OLMOoE (7B) 7B (1B active) MoE 4K
Small Open Models
Granite 3.3 (8B) 8B Dense 128K
Marin (8B) 8B Dense 4K

Table 1: Technical specifications of the 17 evaluated systems. For MoE models, active parameters per forward pass
are shown in parentheses. Context shows maximum input token length (input/output when specified separately).

instruction-following (e.g., IFEval and WildBench
style prompts); and (iii) mathematics (e.g., Omni-
MATH-style items). Scenario-state JSON files
are sourced from HELM outputs and include per-
instance inputs, completions, references, and MC
option mappings when applicable. We adopt the
alignment and metrics defined in Section §3.

Systems. We compare a representative set of sys-
tems spanning open and closed families and ca-
pacities. We apply our methodology to 17 systems
spanning multiple model families and scales, across
three task types. We briefly summarise the systems
in Table 1 based on the openly available details for
the models'.

Implementation. Our analyser produces per-
instance CSVs, per-scenario summaries, MC confu-
sion matrices, and pairwise error-overlap (Jaccard)
matrices. For instruction-following, we evaluate
compliance via structured rules (punctuation, high-
lights, word-count, checklist). For mathematics, we
compute numeric equivalence with a tolerance 7
after normalising fractions and square-root forms.

Protocol. For each task family, we report the
task-appropriate correctness metric and include lex-
ical metrics as secondary references. We compute

'"We refer the reader to https://crfm.stanford.edu/
helm/lite/latest/ for more details and the full extent of
the outputs

global and per-scenario error-overlap to surface
complementary pairs. Scores are aggregated over
aligned instances only.

4.2 Results

4.2.1 Overall summary across models

We report MC accuracy and macro F1, compliance
(IF), numeric equivalence (Math), and token F1
(free-form; secondary). Columns are organized
by task family, each measuring a different aspect
of model capability. MC Acc and Macro F1 cap-
ture multiple-choice performance and per-class bal-
ance; Compliance measures adherence to explicit
constraints (punctuation, format, length, checklist
items) as a proxy for instruction-following; Nu-
meric Eq. measures mathematical answer correct-
ness via numeric normalization; and Token F1 pro-
vides lexical overlap for reference. We emphasize
that Compliance and Numeric Eq. are rule-based
proxies that capture certain dimensions of correct-
ness but do not substitute for human evaluation of
response quality or task success.

Three patterns emerge from these results. First,
task-aware metrics can produce different rankings
than lexical metrics. For instance, Compliance
scores range from ~69% to ~86% across sys-
tems, differentiating instruction-following capabil-
ity even when Token F1 values are uniformly low
(often below ~5%) due to absent references or min-
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Multiple-Choice ~ Instruction Math Reference
System Acec MacroF1 Compliance Num. Eq. Token F1
GPT Family
GPT-5 59.7 86.5 84.5 79.4 3.7
GPT-5 Mini 57.7 834 81.8 70.5 32
GPT-5 Nano 53.9 78.2 82.3 76.7 33
GPT-0OSS (120B) 55.0 79.5 82.7 62.9 2.0
GPT-0SS (20B) 51.2 74.1 75.8 67.1 4.0
Other Frontier Models
Grok 4 58.9 88.9 86.2 81.8 6.1
Kimi K2 56.6 82.4 85.1 64.5 0.7
Qwen3 (235B) 57.6 84.7 86.2 63.4 0.5
GLM 4.5 Air 53.5 83.3 84.4 80.0 1.6
Nova Premier 50.2 72.6 81.8 37.5 1.6
Gemini 2.5 Flash Lite ~ 36.3 80.0 84.5 48.9 0.4
OLMo Family
OLMo 2 (32B) 38.2 414 84.0 20.7 1.9
OLMo 2 (13B) 324 333 82.9 19.5 1.8
OLMo 2 (7B) 30.6 30.8 74.6 15.6 1.6
OLMOoE (7B) 23.2 204 69.7 13.7 3.5
Small Open Models
Granite 3.3 (8B) 24.6 36.5 77.3 23.6 14
Marin (8B) 26.6 27.7 71.8 18.8 1.6

Table 2: Overall performance across 17 systems, organized by model family. Metrics are aggregated over aligned
instances across all tasks. MC Acc and Macro F1 measure multiple-choice performance; Compliance measures
instruction-following constraint adherence; Numeric Eq. measures mathematical correctness; Token F1 provides
lexical overlap as reference. Metrics measure different aspects of capability and are not directly comparable across

columns. All values are percentages.

imal lexical overlap with valid responses. Similarly,
Numeric Eq. scores span ~13% to ~81%, and sys-
tems with similar Token F1 can differ substantially
in numeric correctness. These divergences sug-
gest that task-aligned metrics may reveal capability
differences that generic lexical measures obscure,
though validating whether these differences predict
real-world task success remains important future
work.

Second, MC Macro F1 provides a complement
to accuracy by accounting for per-class precision
and recall. Systems with similar MC Acc scores
can show notable differences in Macro F1 (e.g.,
Kimi K2 at 56.6%/82.4% versus Nova Premier at
50.2%/72.6%), potentially indicating different pat-
terns of distractor sensitivity or class imbalance
handling. Whether these differences are opera-
tionally significant depends on the downstream ap-
plication and class distribution.

Third, no single system dominates across all
task types. Some models score highly on Compli-
ance but lower on Numeric Equations, while others
show the reverse pattern. This variation suggests
that model selection might benefit from consider-
ing workload composition though implementing
task-specific routing or portfolios introduces engi-

neering complexity (infrastructure, latency, cost)
beyond the scope of our current analysis.

When interpreting these results for model se-
lection, we recommend: (i) prioritizing the met-
ric(s) most aligned with your task requirements
(Compliance for instruction-following, Numeric
Equations for math tasks, MC Acc/Macro F1 for
multiple-choice); (ii) treating Token F1 as contex-
tual information rather than a correctness criterion
for instruction-following or mathematics; and (iii)
considering both aggregate performance and error-
overlap complementarity (discussed below) as in-
puts to selection decisions. However, we empha-
size that these metrics provide diagnostic signals
rather than definitive guidance which operational
deployment requires broader consideration of cost,
latency, safety, and task-specific validation.

4.2.2 Error-overlap patterns.

Table 3 shows pairwise Jaccard similarity of error
sets for four OLMo variants on GPQA (multiple-
choice). Error overlap for the proportion of in-
stances where both models fail ranges from ~56%
to ~62% within this model family. These moderate
overlap values suggest that even architecturally re-
lated models exhibit some diversity in their failure



OLMo2 OLMo2 OLMo2 OLMOoE
(32B) (13B) (7B) (7B)
OLMo 2 (32B) - 59.7 61.0 62.0
OLMo2 (13B)  59.7 - 56.8 57.1
OLMo 2 (7B) 61.0 56.8 - 60.3
OLMOoE (7B) 62.0 57.1 60.3 -

Table 3: Pairwise error overlap (Jaccard similarity, %)
on GPQA (multiple-choice) among four OLMo fam-
ily models. Values indicate the proportion of instances
where both models fail out of all instances where at
least one model fails. Lower values suggest more com-
plementary error patterns. For brevity, we show one
representative model family.

patterns, though whether this diversity translates
to practical gains in ensemble or routing scenarios
would require explicit validation.

We note that this analysis is limited to one
model family on a single multiple-choice bench-
mark. Cross-family patterns and behaviour on
instruction-following or mathematical tasks may
differ. Moreover, error overlap is a descriptive mea-
sure of co-failure frequency as it does not establish
causality (e.g., whether shared errors result from
common training data, architectural similarities,
or inherent task difficulty) nor does it guarantee
that low-overlap pairs will yield superior ensemble
performance without empirical testing.

Across our full analysis, we observe three pat-
terns. First, task-aware metrics can reorder systems
relative to lexical metrics on instruction-following
and mathematics. Second, error-overlap values
vary across model pairs and scenarios some pairs
exhibit higher overlap (potentially indicating redun-
dant coverage), while others show lower overlap
(potentially indicating complementarity), though
the operational significance of these differences
remains to be validated. Third, multiple-choice
confusion matrices reveal per-class error patterns
that aggregate accuracy obscures, such as system-
atic biases toward particular distractors.

These patterns suggest that combining task-
aligned metrics with instance-level error analysis
may provide diagnostic signals that complement
aggregate benchmark scores. However, translating
these signals into deployment decisions, such as
constructing model portfolios, implementing rout-
ing strategies, or calibrating ensemble methods,
requires additional work and empirical validation
beyond the scope of our current analysis.

4.2.3 IFEval (Instruction-Following)

We compute pairwise error overlap (Jaccard sim-
ilarity) separately for each task type to examine
whether complementarity patterns differ across do-
mains. For brevity, we present 4-system subsets.
Table 4 shows error overlap on IFEval, where errors
are instances failing compliance checks (punctua-
tion, format, length, checklist constraints). Over-
lap ranges from ~67% to 82%, indicating substan-
tial but incomplete co-failure among these high-
performing systems.

Grok-4 Kimi K2 Qwen3 GPT-5
(235B)
Grok-4 - 82.6 78.3 73.1
Kimi K2 82.6 - 79.2 67.9
Qwen3 (235B) 78.3 79.2 - 76.9
GPT-5 73.1 67.9 76.9 -

Table 4: IFEval error overlap (Jaccard, %). Values
indicate proportion of instances where both models fail
compliance checks, out of instances where at least one
fails. High overlap (68-83%) suggests these systems
struggle with similar constraint types.

4.2.4 Omni-MATH (Mathematics)

Table 5 shows overlap on Omni-MATH, where
errors are instances failing numeric equivalence
checks. Overlap ranges from 54.5% to 62.5%,
lower than IFEval but more stable than WildBench.
This suggests moderate complementarity: these
systems share roughly half their mathematical fail-
ures while differing on the remainder.

Grok-4 GLM4.5 GPT-5 GPT-OSS
Air (120B)
Grok-4 - 62.5 60.6 61.8
GLM 4.5 Air 62.5 - 55.6 54.5
GPT-5 60.6 55.6 - 61.8
GPT-OSS (120B)  61.8 54.5 61.8 -

Table 5: Omni-MATH error overlap (Jaccard, %). Mod-
erate overlap (55-63%) suggests partial complementar-
ity on mathematical reasoning.

Overlap values differ across tasks, for e.g., IFE-
val shows consistently high overlap (=68-83%),
suggesting convergent failure modes on instruction-
following constraints; Omni-MATH shows mod-
erate overlap (=55-63%), suggesting partial com-
plementarity on mathematical reasoning. These
patterns suggest that complementarity is task-
dependent, i.e., model pairs that are redundant on
one task type may be complementary on another.



Jaccard similarity is most reliable when both mod-
els have sufficient error samples (e.g., >10 failures
each). When high-accuracy models make only 1-3
errors, overlap estimates become unstable: perfect
overlap (100%) or zero overlap (0%) can occur by
chance. IFEval and Omni-MATH typically have
larger error sets and thus more stable estimates. In-
terpreting overlap for high-accuracy pairs requires
caution.

5 Discussion

We have presented a methodology that combines
task-aligned correctness criteria with per-scenario
error overlap analysis. Our initial application sug-
gests that: (i) task-specific metrics can reveal rank-
ing differences not visible in generic scores, (ii)
error patterns vary across model pairs and scenar-
ios, and (iii) structured checks can serve as audit
tools for LLM-as-judge pipelines.

Several important validation steps remain. First,
we have not established that compliance checks or
numeric equivalence correlate with human judg-
ments of response quality, whether they are proxy
measures that capture specific facets of correctness.
Second, we have not tested whether low-overlap
model pairs actually yield gains when combined
in ensembles or routing systems. Third, our anal-
ysis is descriptive; we cannot make causal claims
about why errors are shared. Fourth, our coverage
is limited to three task types and 17 systems; gen-
eralization to other domains would require further
study.

For practitioners, our methodology offers a com-
plementary lens for model evaluation: task-aligned
metrics may highlight capabilities that aggregate
scores obscure, and error-overlap analysis may
identify where models offer redundant versus com-
plementary coverage. However, we emphasize that
these tools should inform rather than dictate deploy-
ment decisions, which must account for numerous
factors including cost, latency, safety requirements,
and operational constraints.

Key next steps include: validating metrics
against human judgments and task outcomes, test-
ing ensemble and routing strategies informed by
overlap analysis, extending coverage to additional
task types and model families, and conducting de-
ployment studies to assess operational impact. We
will release our analysis code to support these ef-
forts.

6 Conclusion

In this work, we have demonstrated some of the
important limitations of evaluating large language
models using aggregate scores and generic lexical
metrics. We have argued that such an approach
can obscure critical differences in model behaviour
and fail to capture true task-specific capabilities.
Our proposed methodology, which combines task-
aware correctness checks with a detailed analysis
of error overlap, provides a more granular and oper-
ationally relevant view of model performance. The
evidence presented indicates that this approach not
only re-ranks models according to criteria better
aligned with task semantics but also identifies pairs
of models with complementary strengths.

Limitations

Our compliance and numeric equivalence metrics
are rule-based proxies for correctness. We have not
validated them against human judgments or demon-
strated that they predict downstream task success.
They capture certain aspects of response quality
(constraint adherence, mathematical accuracy) but
not others (coherence, helpfulness, safety). Our
evaluation covers 17 systems and three task types.
Findings may not generalize to other model fami-
lies, task domains, or evaluation setups. We have
not performed statistical significance testing; ob-
served differences could reflect sampling variation.

Moreover, we have not tested whether our meth-
ods improve real-world outcomes. Claims about
routing, ensembling, or judge calibration are based
on analysis of evaluation data, not deployment ex-
perience. Implementing such strategies introduces
engineering challenges we do not address. Our
error-overlap analysis is descriptive. We cannot de-
termine whether shared errors result from common
training data, architectural similarities, or task dif-
ficulty. Low overlap does not guarantee ensemble
gains; high overlap does not prove causal depen-
dence.

Some implementation details (tolerance values,
parsing heuristics) were tuned based on observed
data characteristics. Results may be sensitive to
these choices. We will provide code and per-
instance outputs to support investigation of robust-
ness.
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