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Preface

We are extremely happy to bring forth the 1st Workshop on Benchmarks, Harmonization, Annota-
tion, and Standardization for Human-Centric AI in Indian Languages (BHASHA 2025) as part of
IJCNLP-AACL 2025 conference held during 20th-24th December, 2025.

India, despite being a linguistically rich country with 22 official languages, does not enjoy the benefits of
NLP research according to the potential. The special nature of Indian languages, from being inflectional
and agglutinative to having a free word order, does not let direct usage of tools built for other languages.
In this context, the BHASHA workshop is conceived to focus on creating tools, benchmarks, resources,
annotated corpora, evaluation metrics, etc. for Indian languages.

BHASHA is being held as a full-day workshop on 23rd December, 2025. The program includes two
invited talks, multiple research paper oral and poster presentations. In addition, two shared task compe-
titions were held as part of the BHASHA workshop and papers for those will be presented as posters and
demonstrations along with a shared task overview talk.

The program committee consisted of 19 eminent researchers from both academia and industry. A total
of 26 papers were submitted, out of which 1 was desk rejected. Of the remaining 25 papers, 11 have
been accepted to be part of the proceedings, giving an overall acceptance ratio of 11/26 = 42%. While
8 of these papers are being presented orally, two poster sessions are held where all the 11 posters are
presented for longer and better interactions between the authors and the audience. Out of the 11 accepted
papers, 8 are from India, while 1 each are from Japan, Canada, and USA.

The BHASHA workshop also featured two shared tasks, one on Grammar Error Correction (Indic-
GEC) on 5 Indian languages—Hindi, Bangla, Telugu, Tamil, and Malayalam—and the other on Word
Grouping (IndicWG) on Hindi. While 14 and 2 teams participated respectively in the two tasks for the
final stages, 10 papers were received. Out of these, 6 were accepted for the proceedings. A summary
paper on the two shared tasks and the different submissions is also included in the proceedings.

We thank the IICNLP-AACL workshop chairs for helping us in various stages of the workshop. It is

my pleasure to also thank the entire organizing team and the different chairs who played their roles to
perfection for the successful conduct of this workshop.

Arnab Bhattacharya
General Chair, BHASHA 2025
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Keynote Talk

Beyond Data: Rethinking Scale, Adaptation, and Culture in
Al

Monojit Choudhury
Mohamed bin Zayed University of Artificial Intelligence, UAE
2025-12-23 09:30:00 — Room: VMCC, IIT Bombay, India

Abstract: Al learns from data. Better data — richer, cleaner, more diverse — undeniably yields better
models and evaluations. This narrative is familiar, almost axiomatic. Yet, these data-driven scaling
approaches face two fundamental challenges. First, no corpus, however vast, can capture the infinite
variability of human languages, contexts, and preferences. Second, every act of data creation is also an
act of omission; each dataset is a boundary between inclusion and exclusion.

A sustainable path forward cannot simply be the endless accumulation of data, but rather the cultivation of
models that can learn from less, adapt on the fly, and transfer understanding across contexts. Evaluation,
too, must evolve from assessing isolated competencies to probing a model’s capacity for learning and
adaptation in novel scenarios.

In this talk, I explore these ideas through the lens of culture. It is nearly impossible to define and capture
the endless variations of cultures through datasets. I argue that Al models therefore must be trained for
meta-cultural competency—the ability to serve in any culture rather than a specific pre-defined culture.
I also present novel methodologies for evaluating meta-cultural awareness.

Bio: Monojit Choudhury is a faculty member at the Mohamed bin Zayed University of Artificial In-
telligence (MBZUAI), UAE. His research spans computational linguistics, multilinguality, cultural Al,
and responsible Al. He has contributed significantly to understanding linguistic diversity, low-resource
language modeling, and the socio-cultural dimensions of Al systems. Prior to MBZUAI, he worked at
Microsoft Research, where he led multiple projects on multilingual NLP and cultural intelligence in Al
models.
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Keynote Talk
By the People, For the People: Community-Based
Multilingual and Multicultural Evaluation for Responsible AI

Kalika Bali
Microsoft Research, India
2025-12-23 16:00:00 — Room: VMCC, IIT Bombay, India

Abstract: Al evaluation often claims “multilingual” coverage but relies on English-centric benchmarks
that miss cultural and linguistic realities. To build truly inclusive systems, we need communities—not
just datasets—in the loop. This keynote highlights why participatory evaluation matters: co-defining
goals with local stakeholders, creating culturally grounded scenarios beyond translation, and combining
human insight with scalable tools.

Drawing on initiatives like Samiksha and DOSA, this talk demonstrates how community-driven approa-
ches uncover hidden biases, improve trust, and align Al with lived experiences of the Global Majority.
The talk concludes with practical models for collaboration between researchers, industry, and civil so-
ciety to make evaluation democratic, accountable, and impactful.

Bio: Kalika Bali is a Senior Principal Researcher at Microsoft Research India and a prolific researcher
working across Al, NLP, Speech Technology, and Technology for Empowerment. Her work focuses on
multilingual and multicultural technology, particularly for low-resource language communities, including
Indian languages. She also works at the intersection of gender and technology, advocating for holistic
approaches to mitigating gender bias in technology and foundational GenAl models. Her deep passion for
advancing NLP and speech technologies for Indian languages, among other research areas, is reflected
in her publications at top-tier NLP venues. In 2023, Dr. Bali was featured on the inaugural TIMEI100 Al
list for her transformative contributions to Al and her commitment to building responsible and inclusive
Al technologies.
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Multi-Feature Graph Convolution Network for Hindi OCR Verification

Shikhar Dubey'$, Sourava Kumar Behera'¥, Krish Mittal’, Manikandan Ravikiran'",
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"Indian Institute of Technology, Mandi, India
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Abstract

This paper presents a novel Graph Convolu-
tional Network (GCN) based framework for

verifying OCR predictions on real Hindi docu- Gray Scale OCR
ment images, specifically addressing the chal-

lenges of complex conjuncts and character seg- Prediction l
mentation. Our approach first segments Hindi Real book Image

characters in real book images at different lev- otsu a-l?q-d
els of granularity, while also synthetically gen- Thresholdmg

erating word images from OCR predictions.

Both real and synthetic images are processed
through ResNet-50 to extract feature repre-
sentations, which are then segmented using

multiple patching strategies (uniform, akshara, Real B/W Output Synthetic B/W image
random, and letter patches). The bounding
boxes created using segmentation masks are l l

scaled proportionally to the feature space while
extracting features for GCN. We construct a
line graph where each node represents a real- l
synthetic character pair (in feature space). Each
node of the line graph captures semantic and
geometric features including i) cross-entropy
between original and synthetic features, ii) Hu
moments difference for shape properties, and
iii) and pixel count difference for size varia-
tion. The GCN with three convolutional layers
(and ELU activation) processes these graph-
structured features to verify the correctness of

ResNet-50

!

Images in Feature space

| P

Character Level patch

OCR predictions. Experimental evaluation on 1 i
1000 images from diverse Hindi books demon- (' n c u ? .
strates the effectiveness of our graph-based ver- —y
ification approach in detecting OCR errors, par-

ticularly for challenging conjunct characters
where traditional methods struggle. i I l h !

Umform Patch

Akshar level Patch Akshar level Patch
1 Introduction T e e
The process of transforming document images into E I Ta q ? E I Ta 1
text is called Optical Character Recognition (OCR). Random Patch Random Patch

Verification of OCR text for complex scripts like Figure 1: All patches on the real word image & corre-

Hindi remains a challenglng I esearf:h problem due sponding synthetic image (created using OCR predic-
to the difficulty in capturing semantic and structural  tjon on the real image) in Resnet-50’s feature space.
* Work done by Manikandan Ravikiran is part of an open

research collaboration between the BharatGen Team at IIT
Mandi and Thoughtworks.
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comparisons between OCR inputs and predictions,
particularly when dealing with conjunct characters
and intricate character formations. Verifying text
for real book images has many applications, includ-
ing document authentication, archival digitization,
and information retrieval from scanned historical
documents (Rice et al., 1996).

Traditional OCR methods work well with sim-
ple scripts and clean document images, but they
struggle with complex Indic scripts like Hindi,
which feature conjuncts, matras (vowel diacrit-
ics), and overlapping character components (Smith,
2007; Wang et al., 2012). The limitation becomes
even more problematic when working with di-
verse font styles, varying text layouts, and de-
graded historical documents, as noted by previous
researchers (Springmann and Liideling, 2017). Fur-
thermore, the lack of comprehensive benchmarks
for Hindi OCR verification creates additional chal-
lenges in developing robust verification systems.

Pre-trained Convolutional Neural Networks
(CNNp5s) like ResNet50 are efficient at extracting
hierarchical features from document images (He
et al., 2016). Moreover, graph-based approaches
have shown promise in modeling structural rela-
tionships between text components (Yang et al.,
2017). Verification of OCR text using supervised
approaches has garnered attention recently. Sev-
eral researchers have developed transformer-based
frameworks for OCR (Li et al., 2021; Aberdam
et al., 2021). When it comes to capturing the struc-
tural relationships that exist between character com-
ponents, graph neural networks have demonstrated
remarkable results in various settings (Zeiler and
Fergus, 2014).

OCR for Hindi script offers unique challenges
that require specialized approaches. The presence
of conjunct characters, where multiple consonants
combine to form complex glyphs, necessitates ac-
curate segmentation and verification mechanisms.
Previous work has explored character segmentation
for Indic scripts (Jaderberg et al., 2016), empha-
sizing the need for enhanced computational ap-
proaches through their findings.

We propose an OCR verification framework that
processes grayscale Hindi book images through
PaddleOCR (Cui et al., 2025) for initial predictions
and generates grayscale synthetic images. Both
real and synthetic images are processed through
ResNet50 for feature extraction. Multiple cutting
strategies are applied in feature space to construct
a line graph where nodes represent real-synthetic

character pairs with three features: cross-entropy,
Hu moments (Hu, 1962) difference, and pixel count
difference. A three-layer GCN with ELU activation
verifies OCR prediction correctness.

The key contributions of our work are:

1. A grayscale synthesis technique that trans-
forms OCR predictions into word images, en-
abling GCN-based semantic and geometric
feature extraction for Hindi OCR verification.

2. Multi-feature node representations combining
semantic (cross-entropy) and geometric fea-
tures (Hu moments, pixel count) for robust
character-level verification.

3. Evaluation of multiple cutting strategies (uni-
form, random, character-level, Akshar-level,
as shown in Figure 1) using ResNet50 on 1000
diverse Hindi book images.

2 Related Work

Low-Resolution OCR: Early OCR research pri-
marily targets high-quality scans and clean docu-
ment images (Smith, 2007). In contrast, Jacobs et
al. (Jacobs et al., 2005) examine OCR under low-
resolution camera settings and show substantial
degradation in recognition performance. Similarly,
Gilbey et al. (Gilbey and Schonlieb, 2021) report
that accuracy drops almost proportionally below
100 dpi, underscoring the fragility of OCR systems
to resolution loss. However, these studies focus
on recognition, not on verifying the correctness
of OCR predictions. Schenkel et al. (Schenkel
et al.,, 1997) compare human and machine recog-
nition under controlled degradations and find that
humans retain superior performance at low reso-
lutions. While their analysis motivates human-in-
the-loop insights, it does not extend to systematic
verification frameworks, nor does it consider Indic
scripts. Our work differs by directly evaluating
verification strategies for degraded Hindi text.
Unsupervised OCR and Representation
Learning: Unsupervised and self-supervised meth-
ods have emerged as promising alternatives in low-
resource settings. Aberdam et al. (Aberdam et al.,
2021) propose a self-supervised OCR framework
that detects internal regularities via synthetic per-
turbations. Peng et al. (Peng et al., 2022) employ
contrastive learning to distinguish visually simi-
lar text regions without labels. Yang et al. (Yang
et al., 2017) utilize graph-based reasoning for lay-
out understanding, demonstrating that structural
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Figure 2: Overview of the proposed GCN-based OCR verification framework. Real and synthetic images (from
OCR predictions) are processed through ResNet-50 and segmented via width projection cuts (Akshar level) into a
line graph where nodes (R: real, S: synthetic) represent character pairs with spatial edges. A 3-layer GCN (line
graph based) verifies if the text information in OCR predictions match the information in real book image or not.

cues can be exploited without annotations. Despite
this progress, existing methods focus on representa-
tion learning or layout modeling. Crucially, none of
these approaches provide unsupervised verification
of OCR predictions, and none are designed for low-
resolution Indic scripts. To our knowledge, no prior
work directly tackles the reliability assessment of
OCR outputs in such settings.

OCR Post-Processing and Verification: OCR
post-processing techniques aim to identify and cor-
rect recognition errors. Nguyen et al. (Nguyen
et al., 2020) use sequence-to-sequence models
trained on common OCR error patterns, and
Rigaud et al. (Rigaud et al., 2019) introduce stan-
dardized benchmarks for assessing OCR quality.
Ghazvininejad et al. (Ghazvininejad et al., 2021)
develop minimally supervised correction methods
for endangered languages using linguistic con-
straints. More recently, TrOCR (Li et al., 2021)
demonstrates strong generalization in low-resource
environments through transformer-based modeling.
Vision encoders such as ResNet (He et al., 2016)
have consistently shown strong performance in doc-
ument understanding and character-level verifica-
tion tasks due to their hierarchical feature extrac-
tion capabilities. Likewise, vision-language models
such as CLIP (Radford et al., 2021) provide robust
cross-modal representations that are effective for
text verification. However, these architectures are
typically trained with supervised signals or paired
text, and are not optimized for fully unsupervised

verification of noisy OCR predictions.

While prior work independently explores low-
resolution OCR, Indic script modeling, and unsu-
pervised visual representation learning, none pro-
vide a unified framework for unsupervised verifi-
cation of OCR predictions on low-resolution Hindi
(Devanagari) text. This gap is particularly signif-
icant for real-world digitization pipelines, where
ground truth is unavailable and documents often
suffer from extreme quality degradation. In con-
trast, our work introduces an unsupervised verifica-
tion method tailored for low-resolution Hindi OCR.
Our approach operates without labeled data, lever-
ages robust visual representations for character-
level assessment, and incorporates human feedback
only when necessary. This enables scalable and re-
liable verification of OCR predictions in practical,
low-resolution document processing scenarios.

3 Methodology

Our proposed framework for Hindi OCR veri-
fication combines deep learning-based feature ex-
traction and graph convolutional networks to ver-
ify OCR predictions at the character level. The
methodology consists of four main stages: (1) data
preparation and model training, (2) OCR predic-
tion and synthetic image generation, (3) feature
extraction and graph construction, and (4) GCN-
based verification. Figure 2 illustrates the complete
pipeline of our approach.
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3.1 Dataset Preparation

Our work involves two distinct datasets, each serv-
ing a specific purpose in the pipeline. For train-
ing our PaddleOCR model, we created 10 mil-
lion synthetic grayscale images using 900 different
Hindi fonts to ensure diversity in character styles,
weights, and appearances, with realistic degrada-
tions including noise, blur, and contrast variations
to simulate real-world document conditions.

We collected 1000 real Hindi book images from
1000 different books, ensuring diversity in pub-
lishing sources, printing quality, font styles, and
document conditions, representing authentic chal-
lenges encountered in real-world digitization sce-
narios with varying levels of conjunct character
complexity for evaluating OCR verification perfor-
mance. The dataset is split into 80% for training
(800 images), 10% for validation (100 images), and
10% for testing (100 images). A sample of those
1000 test images are presented in Figure 3. To
enhance robustness, we applied various augmenta-
tion techniques during training including Gaussian
blur, image degradation, motion blur, brightness
and contrast adjustments, and geometric distortions.
Details of all augmentation techniques are provided
in Appendix ??.

Figure 3: Samples from proposed dataset consisting of
1000 images from different books.

3.2 Image Preprocessing

Given a real Hindi book image I,..,, we first
apply Otsu’s thresholding method to convert the
grayscale image to a binarized format Ip;pqry-
Otsu’s method automatically determines the op-
timal threshold value by maximizing the between-
class variance, effectively separating foreground
text from the background. This binarization step en-
hances the contrast and clarity of character bound-
aries, making subsequent feature extraction more
robust to variations in lighting and print quality.

3.3 OCR Prediction

The binarized image Ip;pqry 1S then fed into our
custom-trained PaddleOCR model (PP-OCRYvS5),
which outputs the predicted text sequence Tj.cq =
{c1, ca, ..., cn }, where ¢; represents individual char-
acters or conjunct formations.

PaddleOCR employs a two-stage pipeline: text
detection using PP-HGNetV2 backbone combined
with the Differentiable Binarization (DB) algorithm
to locate text regions, followed by text recognition
using the SVTR (Scene Visual Text Recognition)
architecture (Du et al., 2022). SVTR eliminates
traditional RNN/LSTM components by using a
pure Transformer-based visual model. The archi-
tecture divides text images into overlapping 2D
patches, processes them through hierarchical mix-
ing blocks that capture both local character features
and global contextual dependencies, and progres-
sively reduces spatial resolution across stages. The
final visual features are decoded using Connection-
ist Temporal Classification (CTC) (Graves et al.,
2006) for robust sequence prediction across diverse
font styles and document conditions.

3.4 Synthetic Image Generation

To enable visual comparison between the OCR pre-
diction and the real image, we generate a synthetic
word image Iyp¢p, from the predicted text Tj..q us-
ing standard text rendering (Yim et al., 2021). The
synthetic image is generated in grayscale format,
preserving the structural and spatial arrangement
of predicted characters. The synthetic image is gen-
erated with the same dimensions and spatial layout
as the real image to facilitate direct feature-level
comparison.

3.5 Feature Extraction with ResNet50

We select ResNet50 as our feature extractor due to
its (i) proven effectiveness in document image anal-
ysis (He et al., 2016), (ii) optimal balance between
2048-dimensional feature capacity and computa-
tional efficiency, (iii) hierarchical architecture cap-
turing both low-level stroke patterns and high-level
semantic information crucial for Hindi character
verification, and (iv) robust ImageNet pre-trained
weights that transfer effectively to Hindi script de-
spite domain differences.

Both the binarized real image Ipinqry and the
synthetic image I, are passed through the pre-
trained ResNet50 model to extract deep feature
representations. ResNet50, with its residual con-
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nections and hierarchical architecture, captures
both low-level visual patterns (edges, strokes) and
high-level semantic information (character shapes,
conjunct formations). We extract features from
the final convolutional layer (conv5_x) before the
global average pooling, obtaining feature maps
Frea € RH/XW/XD and Fsynth e RH’XW/XD’
where H' and W' are the spatial dimensions of
the feature map and D = 2048 is the feature di-
mension. This spatial feature representation pre-
serves positional information crucial for our patch-
ing strategies while providing rich semantic encod-
ings for character-level comparison.

3.6 Patching Strategies in Feature Space

To enable character-level comparison, we segment
the feature maps into individual character regions
using bounding boxes. We employ four different
patching strategies, each offering a different granu-
larity of segmentation:

Uniform Patch: The feature map is divided into
equal-sized segments along the width dimension,
creating [N uniform regions. This approach as-
sumes roughly equal spacing between characters.

Akshara Patch: Segmentation is performed at
the akshara (syllable) level, which is linguistically
meaningful for Hindi text. Bounding boxes are
determined based on akshara boundaries identified
through connected component analysis and linguis-
tic rules.

Character Patch: Individual character-level seg-
mentation where each character (including half-
characters and conjuncts) is isolated with its own
bounding box through connected component anal-
ysis.

Random Patch: Random segmentation of the
feature map to capture diverse character combina-
tions and contextual information.

For each patching strategy, the bounding boxes
B = {b1,ba,...,by,} are defined in the original
image space and then scaled proportionally to the
dimensions of the ResNet50 feature space. For a
bounding box b; = (x;, y;, w;, h;) in the original
image space of size (H,W), the corresponding
feature space bounding box is:

b,_ l’i'Hl yi-W’ wi-H’ hi'W/ (1)
T H 9 W ) H 3 W

Each bounding box b} extracts a feature region
from both F}..; and Fiy,4p,, creating feature pairs
for each character position.

3.7 Graph Construction

We construct a line graph G = (V, E') where each
node v; € V represents a real-synthetic character
pair at position ¢. Edges e;; € E connect adjacent
character nodes, capturing spatial relationships and
contextual dependencies between neighboring char-
acters.

3.7.1 Node Features

Each node v; is characterized by three features that
capture both semantic and geometric properties:

Cross-Entropy (CE): Measures the semantic
similarity between real and synthetic character fea-
tures by computing the cross-entropy between nor-
malized feature distributions from ResNet50:

D
CEZ = Z F;'eal (J) IOg(Fsiynth (‘7)) (2)
j=1

where F7,, and I, are normalized feature
vectors for character 7.

Hu Moments Difference (HM): Captures shape
properties using the seven rotation, scale, and
translation invariant Hu moments. We compute
the sum of absolute differences between the Hu
moments of real and synthetic character regions:
HM; = Yo |¢recl(i) — ¢ (i)|. where gy,
represents the k-th Hu moment.

Pixel Count Difference (PC): Measures size
variation by computing the absolute difference in
foreground pixel counts between real and synthetic
character regions.

The final node feature vector is:
[CE;, HM;, PC;] € R?

£ =

3.8 GCN-based Verification

The constructed graph with node features is pro-
cessed through a Graph Convolutional Network to
predict the correctness of OCR predictions. Our
GCN consists of three graph convolutional lay-
ers with ELU (Exponential Linear Unit) activation
functions.

The graph convolution operation for layer [ is
defined as:



HHD — & (D—%AD—%HU)W(”) 3)

where A = A + I is the adjacency matrix with
added self-connections, D is the degree matrix,
H® is the feature matrix at layer I, W is the
learnable weight matrix, and o is the ELU activa-
tion function.

The three convolutional layers transform the in-
put features as follows:

HWY = ELU(GCN(H©, A)) 4)
H® = ELU(GCN(HW, A)) (5)
H®) = ELU(GCN(H®, A)) (6)

where H(®) = F is the initial node feature ma-
trix.

The final layer outputs binary predictions for
each node (character pair), indicating whether the
OCR prediction is correct (1) or incorrect (0). The
model is trained using binary cross-entropy loss:

M
Loon = —% > lyilog(gi)+(1—y;) log(1—3:)]
=1

(7

where M is the number of nodes, y; is the ground

truth label, and g; is the predicted probability for
node <.

4 Experiments

To evaluate the effectiveness of our proposed
GCN-based OCR verification framework, we con-
ducted a series of experiments focusing on the im-
pact of different feature-space patching strategies.

4.1 Experimental Setup

Dataset All experiments were evaluated on our
dataset of 1000 real Hindi book images, sourced
from 1000 different books to ensure diversity in
fonts, layouts, and print quality. The dataset was
split into 80% for training (800 images), 10% for
validation (100 images), and 10% for testing (100
images). The ground truth for these images was
manually annotated at the character level to provide
accurate labels for verification.

Evaluation Metrics We assess the performance
of our models using three standard classification
metrics: Accuracy, which measures the propor-
tion of correctly verified characters (both correct
and incorrect OCR predictions); Precision, which
quantifies the proportion of correctly identified in-
correct characters out of all characters flagged as
incorrect, indicating the model’s false positive rate;
Recall, which measures the proportion of correctly
identified incorrect characters out of all actual in-
correct characters, showing the model’s ability to
detect OCR errors; and F1-Score, the harmonic
mean of precision and recall, providing a balanced
measure particularly important for detecting the
minority class of incorrect characters.

4.2 Model Training Details

PaddleOCR Model We trained the PaddleOCR
architecture on our 10 million synthetic grayscale
image dataset. The model was trained with the
Adam optimizer using a learning rate of 3 x 10~*
with cosine annealing schedule for 100 epochs. De-
tailed model architecture and training specifications
are provided in Appendix ??.

GCN Model The Graph Convolutional Network
was trained on 800 training images with 100 im-
ages for validation. All models were trained for
49 epochs using the Adam optimizer with a learn-
ing rate of 1 x 10~*, batch size of 32, and weight
decay of 1 x 10~° for regularization. The GCN
architecture consists of three graph convolutional
layers with 128, 64, and 32 hidden units respec-
tively, using ELU activation functions and dropout
of 0.3 applied after each layer. Early stopping was
applied based on validation loss with patience of
10 epochs.

4.3 Models and Baselines

We compare the performance of our framework
across four different configurations based on the
patching strategy used in the feature space. The pri-
mary semantically-informed approaches include:

* Character-level Patch: Uses bounding boxes
of individual characters for the finest granu-
larity, isolating each character including half-
characters and conjuncts with precise bound-
aries through connected component analysis.

* Akshara-level Patch: Segments features
based on Akshara (syllable) boundaries iden-
tified through connected component analysis



and linguistic rules, which is linguistically
meaningful for Hindi text structure.

To establish performance baselines, we also eval-
uate two non-semantic strategies:

 Uniform Patch: The feature space is divided
into equally sized segments along the width di-
mension, assuming roughly uniform character
spacing.

* Random Patch: Serves as a lower-bound
reference by segmenting at random inter-
vals, capturing diverse character combinations
without semantic guidance.

5 Results and Analysis
5.1 Comparison with Existing Models

Model Architecture Precision Recall F1-Score
Our Model 0.6727  0.6926  0.6825
APPNPNet 0.6826 0.6825 0.6727
TAGNet 0.6726  0.6603  0.6485
GATConv 0.6571 0.6309  0.6067

Table 1: Performance Comparison of GNN Architec-
tures on the Test Set. Our proposed 3-Layer GCN is
highlighted.

The quantitative results comparing different
GNN architectures are presented in Table 1. While
our proposed 3-Layer GCN model achieves the
highest precision (0.7357), indicating superior re-
liability in identifying true OCR errors with mini-
mal false positives, it demonstrates a lower overall
F1-Score (0.5413) compared to other architectures.
The APPNPNet architecture achieves the best F1-
Score (0.6727) and balanced performance across
precision (0.6926) and recall (0.6825), suggesting
that approximated personalized propagation of neu-
ral predictions effectively captures the relational
patterns in Hindi text verification tasks. TAGNet
follows closely with an F1-Score of 0.6485, demon-
strating that topology-adaptive graph convolutions
are well-suited for modeling character-level depen-
dencies. The GATConv model, despite incorpo-
rating attention mechanisms, achieves moderate
performance with an F1-Score of 0.6067.

The high precision of our model indicates its
strength in minimizing false alarms, which is partic-
ularly valuable in production OCR systems where
false positives can lead to unnecessary manual re-
view overhead. However, the trade-off in recall
(0.6237) suggests that our model may miss some

actual OCR errors. This performance characteristic
makes our model particularly suitable for applica-
tions where precision is prioritized over exhaustive
error detection, such as high-confidence automated
correction pipelines.

5.2 Analysis of Patching Strategies

Patching Strategy Precision Recall F1-Score
Akshar-level 0.6727  0.6926  0.6825
Uniform Patch 0.5327  0.7051  0.6069
Random Patch 0.6240  0.6602  0.6416
Character-level 0.5363  0.7260  0.6169

Table 2: Performance comparison of different cutting
strategies on the test set of grayscale images. The best
results for each metric are highlighted in bold.

The results in Table 2 demonstrate a clear per-
formance hierarchy among the different cutting
strategies. The Akshar-level Patch proves to be
the best-balanced model, achieving the highest F1-
Score (0.6825) and Precision (0.6727) across all
experiments. This indicates that the syllabic struc-
ture of Hindi (Akshara) is a semantically rich unit
that captures sufficient context to identify errors ef-
fectively while maintaining high reliability, making
it the superior choice for OCR verification tasks.

The Character-level Patch achieves the highest
Recall (0.7260), suggesting that performing verifi-
cation at the finest granularity of individual charac-
ters enables the GCN to detect a larger proportion
of actual errors. This approach is particularly ef-
fective at identifying discrepancies between real
and synthetic feature representations, especially for
complex Hindi conjuncts. However, its lower preci-
sion (0.5363) indicates a higher false positive rate
compared to the Akshar-level approach.

In contrast, the non-semantic strategies perform
significantly worse. The Uniform Patch achieves
an F1-Score of 0.6069 with precision of 0.5327,
while the Random Patch achieves an F1-Score
of 0.6416 with precision of 0.6240. Their inferior
performance validates our core hypothesis: align-
ing the feature segmentation with the linguistic and
structural units of Hindi text is crucial for effective
OCR verification. The random patching strategy,
despite capturing diverse character combinations,
lacks the semantic coherence necessary for robust
error detection.

The superior performance of linguistically-
informed patching strategies (Akshar-level and
Character-level) over non-semantic approaches


https://www.cse.iitb.ac.in/~ocr/

(Uniform and Random) demonstrates that incorpo-
rating domain knowledge about Hindi script struc-
ture significantly enhances the GCN’s ability to
model character-level relationships and identify
OCR errors. The Akshar-level patch offers the
optimal balance between granularity and semantic
context, making it the most effective strategy for
practical OCR verification applications.

6 Conclusion

This paper presents a novel GCN-based frame-
work for verifying OCR predictions on real Hindi
book images by leveraging graph-structured rep-
resentations of character-level features. Our ap-
proach combines grayscale synthetic image gener-
ation with deep feature extraction through ResNet-
50, employing multiple patching strategies to con-
struct semantically meaningful graph representa-
tions. The framework captures both semantic fea-
tures through cross-entropy and geometric proper-
ties through Hu moments and pixel count differ-
ences, enabling robust character-level verification.

Experimental evaluation on 1000 diverse Hindi
book images demonstrates that linguistically-
informed patching strategies significantly outper-
form non-semantic approaches. The Akshara-level
patching achieves the best overall performance
with an F1-score of 0.6825, while character-level
patching attains the highest recall of 0.7260, par-
ticularly effective for detecting errors in complex
conjunct characters. These results validate our hy-
pothesis that aligning feature segmentation with
the linguistic structure of Hindi text is crucial for
effective OCR verification.

Our work addresses a critical gap in OCR veri-
fication for complex Indic scripts, demonstrating
the effectiveness of graph-based approaches for
character-level error detection. Future work will
explore extensions to other Indic scripts, investi-
gation of attention mechanisms within the GCN
architecture, and integration of language models
to capture contextual dependencies beyond local
character relationships.

Limitations

While our GCN-based verification framework
demonstrates strong performance on real Hindi
book images, it also presents several limitations.
First, the approach relies on the fidelity of synthetic
grayscale images generated from OCR predictions.
Since these renderings cannot fully capture real-

world font noise, ink spread, or historical degrada-
tion artifacts, discrepancies between synthetic and
real character appearances can introduce verifica-
tion errors. Furthermore, the framework depends
on accurate segmentation at the character or ak-
shara level. Segmentation failures-especially for
dense conjunct clusters, overlapping glyphs, or de-
graded prints-propagate to feature extraction, graph
construction, and node-level predictions, thereby
reducing verification reliability.

Second, our method models only local adja-
cency relationships via a line-graph formulation
and does not incorporate longer-range linguistic de-
pendencies or contextual cues that may help detect
higher-level OCR errors. The evaluation also re-
quires character-level annotations for 1,000 images,
which imposes notable human effort and limits scal-
ability. Finally, although the method performs well
for printed Hindi text, its generalization to hand-
written content, camera-captured documents, or
other Indic scripts has not been evaluated. These
constraints motivate future work on integrating
attention-based graph mechanisms, richer linguis-
tic priors, and cross-script extensions to improve
robustness and broader applicability.

Ethics Statement

This research uses Hindi book images sourced
exclusively from publicly available and public-
domain materials, ensuring full compliance with
copyright and data-use regulations. No person-
ally identifiable information or sensitive content
is included in the dataset. The proposed frame-
work is intended to support document digitization
and preservation efforts while respecting the cul-
tural and linguistic heritage of Hindi literature. We
acknowledge that automated OCR systems can
exhibit biases, particularly for underrepresented
scripts and historical printings, and therefore en-
courage appropriate human oversight when pro-
cessing culturally significant documents. Synthetic
image generation in our pipeline relies solely on
OCR-predicted text and does not store or redis-
tribute original content beyond research evaluation.
We advocate for responsible deployment of OCR
verification technologies that respects linguistic di-
versity, cultural heritage, and the rights of content
creators.
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A OCR Model Details
A.1 PaddleOCR Architecture Configuration

Table 3 presents the architecture specifications of
our PaddleOCR model (PP-OCRv5). The model
employs a two-stage pipeline: text detection using
PP-HGNetV2 backbone with Differentiable Bina-
rization, followed by text recognition using SVTR
architecture with CTC decoder.

Component Specification

Model Version PP-OCRv5

Detection Backbone PP-HGNetV2

Detection Method Differentiable  Bina-
rization (DB)

Recognition Architec- SVTR

ture

Decoder CTC

Input Size 32 x 128 pixels

Feature Dimension 2048

Table 3: PaddleOCR (PP-OCRYvS5) architecture specifi-
cations.

A.2 Data Augmentation Techniques

Table 4 presents the comprehensive set of aug-
mentation techniques applied during the train-
ing of our PaddleOCR model. These augmen-
tations are designed to simulate various real-
world document degradation patterns and imag-
ing conditions. Specifically, apply_blur ap-
plies Gaussian blur to simulate out-of-focus im-
ages, while degrade_image combines noise and

10

A i Parameter(s) Parameter Range

apply_blur ksize [11, 15] (Odd values)
degrade_image noise_level, quality [15, 25], [15, 20]
cloudy_effect intensity [0.3, 0.6]
motion_blur ksize, direction [8, 10], [horizontal, vertical, diagonal]
brightness_contrast brightness, contrast [-10, 30], [-10, 30]

salt_pepper_noise [0.03, 0.06]

cartoonify

prob
Fixed parameters N
[0.000005, 0.000025],

wrap_image +1/10 from center

strength, cx, cy

Table 4: Augmentation techniques applied during train-
ing of PaddleOCR model.

JPEG compression artifacts. cloudy_effect
adds a white overlay to simulate fog or cloud
conditions, and motion_blur simulates move-
ment in horizontal, vertical, or diagonal direc-
tions. brightness_contrast adjusts lighting con-
ditions, salt_pepper_noise adds random black
and white pixels, cartoonify performs edge en-
hancement, and wrap_image applies spherical dis-
tortion to simulate geometric variations. Each aug-
mentation is applied with probability-based random
selection, and parameters are sampled uniformly
within the specified ranges to ensure diverse train-
ing samples that improve model generalization on
real Hindi book images.
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Abstract

In this paper, we introduce USR Bank 1.0, a
multi-layered, text-level semantic representa-
tion framework designed to capture not only
the predicate-argument structure of an utter-
ance but also the speaker’s communicative in-
tent as expressed linguistically. Built on the
Universal Semantic Grammar (USG), which is
grounded in Paninian grammar and the Indian
Grammatical Tradition (IGT), USR system-
atically encodes semantic, morpho-syntactic,
discourse, and pragmatic information across
distinct layers. In the USR generation pro-
cess, initial USRs are automatically gener-
ated using a dedicated USR-builder tool and
subsequently validated via a web-based in-
terface (SAVI), ensuring high inter-annotator
agreement and semantic fidelity. Our evalu-
ation on Hindi texts demonstrates robust de-
pendency and discourse annotation consistency
and strong semantic similarity in USR-to-text
generation. By distributing semantic-pragmatic
information across layers and capturing the
speaker’s perspective, USR provides a cogni-
tively motivated, language-agnostic framework
with promising applications in multilingual nat-
ural language processing.

1 Introduction

This paper introduces USR Bank 1.0, a multi-
layered linguistic resource designed to capture
not only the semantic content (predicate-argument
structure meaning) of an utterance, but also the
communicative intent of the speaker as it is ex-
pressed through linguistic expressions. While
many existing semantic representation frameworks
focus on abstracting away from surface-level gram-
mar to model a deep, singular meaning, the novelty
of USR is evident in the representation of the nu-
anced communicative intent of the speaker. Rooted
in Indian Grammatical Tradition (IGT) (Sukhada
and Paul, 2023; Garg et al., 2023) and Paninian
grammar (Sukhada et al., 2023), the Universal Se-

11

mantic Representation (USR) framework aspires
to closely maintain a systematic link to the sur-
face structure through annotating vivaksa — the
speaker’s perspective on what to express, how to
express it, and to what extent.

The multi-layered design of USR is chosen not
only to represent information of different linguistic
strata, such as lexical, intra-sentential dependency
relations and discourse level information, as is nor-
mally done in other Semantic Representation (SR)
systems. The multi-layeredness in USR is uniquely
a design need to distribute information bundled
in one linguistic expression across different layers
based on their semantic-pragmatic implication. For
example, expressions like additionally’ and *along
with’ share the propositional meaning of the logical
operator "and’ (conjunction). However, a speaker’s
selection of these more elaborate terms introduces
a specific pragmatic implicature (e.g., 'inclusive’ or
"additional’). The multi-layered structure of USR
captures this distinction: the basic conjunction re-
sides in one layer (Discourse), while the pragmatic
import is explicitly isolated in another (Speaker’s
View). This decomposition makes the pragmatic-
semantic contribution of an expression distinct yet
interconnected within the holistic USR.

USR is a text-level representation that speci-
fies disambiguated concepts along with their onto-
logical categories and morpho-semantic informa-
tion, such as plurality, tense, aspect, modality, and
causativization, intra-sentential relations among
these concepts through its syntactico-semantic an-
notation of karaka relations, inter-sentential dis-
course relations and pragmatic information denoted
by discourse particles, thus going beyond the se-
mantics of predicate-argument structure used in
traditional Semantic Representations.

We have successfully demonstrated natural lan-
guage generation from USR for both Hindi and En-
glish, establishing a strong foundation for multilin-
gual generation. Our ongoing efforts aim to extend
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these generation capabilities to Tamil, Sanskrit, and
other Indian languages. However, the present paper
focuses exclusively on the creation and description
of the Hindi USR Treebank. The strategic inclusion
of Hindi and Sanskrit (Indo-Aryan), Tamil (Dravid-
ian), and English (Germanic, within the larger Indo-
European family) in our broader research program
is intended to rigorously test the completeness, uni-
versality, and language-independent nature of the
USR framework. These multilingual components,
however, pertain to ongoing and future work and
are not part of the dataset reported here.

In this paper, Section 2 introduces the Universal
Semantic Grammar (USG) and its theoretical foun-
dation in IGT. Section 3 elaborates on the multi-
layered design principles of USR, including salient
features that underscore its distinct contribution.
Section 4 provides a concise review of existing Se-
mantic Representations and their theoretical orien-
tations, contextualizing USR’s distinct contribution.
Section 5 describes a comprehensive methodology
employed for developing the USR Bank, detailing
our semi-automatic annotation pipeline. Finally,
Section 6 reports the Inter-Annotator Agreement
(IAA) for USR annotation, along with an auto-
matic evaluation of USR-to-text generation using
automated and human annotators, offering empiri-
cal validation of the representation and annotation
scheme’s reliability.

2 USG: The Theoretical Framework of
USR

The IGT framework conceptualizes language as an
inherently holistic phenomenon. (Kiparsky, 2002)
pointed out that Panini’s grammar organization
is a device that starts from meaning information
and incrementally builds up a complete interpreted
sentence. In more concrete terms, the derivation
of a sentence is initiated by constructing the mor-
phosyntactic analysis, i.e., the arguments of a pred-
icate (or events) are assigned syntactico-semantic
roles (karakas) based on the ontology of the events
and the speaker’s wish to express certain features
of it (vivaksa). Bhartrhari (Iyer, 1965) compares
language communication to painting: the speaker
starts with a unified idea and expresses it part by
part, with words interconnected by the principles
of semantic compatibility (samarthya) to form a
coherent whole. While existing semantic repre-
sentation focuses on predicate-argument structure
(who did what, where, etc.) (Abend and Rappa-
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port, 2017), it does not capture the speaker’s in-
tention (vivaksa), which shapes how events are
expressed from the perspective of the speaker. For
example, in the case of a simple event of “a boy’s
causing a glass to break”, the conceptual structure
based on the principle of semantic compatibility
licenses an agent ("the boy") and a patient ("the
glass") of the event ‘breaking’. But, it depends on
the speaker’s communicative intent (vivaksa) how
he/she chooses to express this event. In the IGT
framework, the karaka roles, which determine the
morpho-syntactic structure of the sentence, accord-
ingly change. For example:

* In “The boy broke the glass”, the speaker fore-
grounds the agent, “the boy”, who functions
as the karta, the most independent participant
of the event break-0.

* In contrast, in “The glass broke”, the speaker
chooses to foreground the affected entity ("the
glass"), thus making it karta, the most inde-
pendent participant of break-1.

The sub-eventive explanation of (Parsons, 1990)
accounts for this analysis. Both break-0 and break-
1 are sub-events of the larger event ‘break’. Hindi
uses two different lexical items for the two events:
toda (break-0) and tita (break-1). Thus, the seman-
tic import of the dependency relations inspired by
IGT and assigned to the arguments of predicates
can conceptually be very different from what the-
matic roles or semantic roles of predicates convey
(Kulkarni and Sharma, 2019).

3 Design of USR

Universal Semantic Representation (USR) is con-
ceptualized as a multi-layered system designed for
comprehensive meaning encoding. This system op-
erates at three primary levels: a) lexico-conceptual
- focusing on disambiguated concepts along with
their semantic category; b) intra-sentential - de-
tailing semantic relationships between head and
dependents within a single sentence; and c) dis-
course - capturing inter-sentential coherence and
anaphora (Garg et al., 2023). Additionally, USR
incorporates an emerging pragmatic layer to cap-
ture linguistically expressed speaker’s attitude or
communicative intent.

The distinctive contribution of USR lies in the
distribution of information between these layers:
the lexico-conceptual layer establishes conceptual



<segment_id=(1-a)>

Concept Index | Sem_cat | Morpho_sem | Dependency Discourse | Speaker’s | CxN Comp.
view

Mohan 1 male samavesT | 2:begin
[ne_1] 2 per 15:0pl
boy_1 3 anim/male bhi_17 15:0p2
be_1-pres 4 0:main
10 5 numex 7:count
inch 6 7:unit
[height_meas_1] 7 8:rmeas’
tall_1 8 comparmore | 4:karta_sama-

nadhikarana
$speaker 9 anim 10:genitive
brother_1 10 anim/male 3rvt
$yad® 11 12:karta
come_1-past 12 12:redelim®
Pune 13 14:begin
[ne_2] 14 place 10:source
[conj_1] 15 4:karta

</segment_id>

!'samavesi — inclusive

2bhi_1 - also

3rmeas — relation measurement; measurement of event or entity
*rv — relation vibhajana; inequalities between two compared entities

S$yad — relative pronoun (all pronouns are prefixed by $)

bredelim — relative clause delimitation; when the relative clause delimits the head noun

Table 1: Representation of USR for (1-a).

anchors, the intra-sentential layer builds syntactico-
semantic scaffolding over them, the discourse layer
integrates these units into connected discourse, and
the speaker’s view overlays pragmatic intent.

To illustrate, consider the small discourse text
given in Example (1) below. Table 1 and 2 present
its USR.

(1) a. Along with Mohan, the boy who came
from Pune is also 10 inches taller than
my brother.

b.  Besides that, they are also very strong.

The following sub-sections present the semantic-
pragmatic analysis of this example text.

3.1 Lexico-Conceptual Layer

Every USR consists of a list of concepts: Simple or
Complex Concepts (CC). Only entities, events, and
modifiers, including quantifiers, are concepts. CCs
represent higher-order cognitive schema that struc-
ture meaning independently of surface linguistic
forms (Langacker, 1987; Evans and Green, 2018).
For example, 10 inches (or 10”) is [height_meas]
CC in Table 1: Every simple concept is assigned a
unique identifier (ID) that unambiguously specifies
that concept. The digit with CC indicates the serial
number of that CC in the USR. We can observe that
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the discourse particle ‘also’ is not represented as a
concept in the concept column because it does not
bear any propositional meaning. The relevant extra-
propositional meaning (in this case ‘inclusive’) is
added on "strong" in the Speaker’s View column of
Table 2. This implies that Mohan and the boy are
"tall" as well as "strong".

This layer also includes ontological categories
such as person, anim, place, season, day-of-week,
week-of-month, month-of-year, male/female in the
Sem_cat column (see Table 1) and records morpho-
semantic information in Morpho_Sem (see Table
1) such as the comparative degree of an adjective
(comparemore) on tall_1.

3.2 Intra-Sentential Layer

This layer encodes two kinds of information: (a)
dependency relations among heads and dependents;
(b) semantic tags for the components of Complex
Concepts. The Dependency column of Table 1 and
2 illustrate the intra-sentential relations for (1-a)
and (1-b), respectively.

According to IGT, there are two kinds of depen-
dency relations: (a) karaka relations, (b) karaketara
(other than karaka) relations (Kulkarni and Sharma,
2019; Begum et al., 2008). karaka roles include
karta (the most independent participant, often agen-
tive), karma (the most desired object/patient), in-
strument, beneficiary, source and temporal-spatial.



<segment_id=(1-b)>

Concept Index | Sem_catf Morpho_sem| Dependency Discourse Speaker’s | CxN
View Comp.
$tyad 1 2:karta 1.15:coref
be_1-pres 2 0:main 1.4:conjunction | additional
very_1 3 4:intf
strong_1 4 2:karta_sama- inclusive
nadhikarana

</segment_id>

Table 2: Representation of USR for (1-b).

There are 73 dependency relations in the current
USR Guidelines V 4.2.1.

The main clause of (1-a) is a copulative sen-
tence. Unlike most SRs that treat such predica-
tive adjectives as a functor and the subject as its
argument (e.g., tall(Mohan), tall(boy)), Panini’s
grammar treats the copula as the main predicate
that indicates a state. That is why be_1-pres is as-
signed 0:main. The noun that agrees with the cop-
ula is considered expressed (abhihita) and occupies
the subject position, which is annotated as karta
in USR. The predicative adjective is annotated as
karta_samanadhikarana'. This tag implies that the
properties of ‘boyhood’ and ‘tallness’ reside in the
same individual. Since in (1-a) both Mohan and
the boy are tall, the karta relation is specified on
the CC ([conj_1]), which conjoins Mohan and the
boy.

In addition, this layer specifies the internal com-
position of Complex Concepts. For example, in Ta-
ble 1, Mohan and the boy are annotated as operands
(opl, op2) of the CC [conj_1]. Similarly, the CC
[height_meas_1] is internally structured into two
components: count (10) and unit (inch), as indi-
cated in the ’CxN Component’ column. The next
level of representation is the Discourse Layer.

3.3 Discourse Layer

In the discourse layer, we capture the semantics of
discourse connectives. In (1-b), the author could
have used the connective "and" in place of "besides
that", which would have retained the discourse
coherence of (1-a) and (1-b). However, the au-
thor has chosen the phrase "besides that" by which
the author desires to express the conjunction and
something more. In PDTB 3.0 Annotation Manual
(Prasad et al., 2019), “besides” is annotated under
Expansion. Conjunction, along with connectives
such as “and” and “additionally.” In contrast, USR
differentiates between such connectives, recogniz-

!"The karta_samanadhikarana tag implies that karta and its
predicative adjective refer to the same entity.
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ing that “besides” carries rhetorical weight beyond
simple conjunction. Thus, the discourse layer high-
lights how the accumulation of meaning is shaped
not only by propositional content but also by the
speaker’s rhetorical choices, which are further spec-
ified in the speaker’s view layer.

3.4 Speaker’s View

This layer, currently in its preliminary stage of
development, aims to capture extra-propositional
information overtly expressed through linguistic
expressions in language. For example, in (1-a), the
choice of “along with Mohan” instead of “Mohan
and the boy” signals an inclusive nuance which is
captured by the tag samavesi ‘inclusive’ on Mo-
han in the Speaker’s View column. In (1-b), the
expression “besides that” specifies adding to the
list. The tag ‘additional’ captures this meaning at
the Speaker’s View column (see Table 2) on the
verb (1-b). In this way, the speaker’s view layer
complements the discourse layer, giving a fuller
account of expressions like “besides that”. The
annotation scheme of this layer extends to other
pragmatic categories, including definiteness (e.g.,
‘the’ vs. ‘a’), expressions of respect or formality, in-
formal address, exclusive (e.g., only), and inclusive
(e.g., also).

The present work examines how these nuanced
pragmatic meanings are lexicalized and grammati-
calized across languages, beginning with an initial
comparative study of these categories in Hindi and
English. This comparison reveals systematic and
recurrent behavioral patterns—that is, regularities
in how these pragmatic meanings are encoded, dis-
tributed, and triggered across constructions in the
two languages. Such cross-linguistic regularities
suggest that many of these pragmatic categories
exhibit stable semantic—pragmatic behavior, mak-
ing them strong candidates for universal modeling
within USR.

The interplay between layers emerges as each
layer contributes a distinct aspect of mean-



ing—basic semantic content, discourse-level re-
lations, and speaker-oriented nuances. Together,
these layers create a holistic and robust representa-
tion, building meaning cumulatively from core con-
cepts to complex relationships and speaker intent
(For example see Figures 2 and 3 of Appendix A ).
Through this layered accumulation, USR achieves
a rare balance between semantic abstraction and
structural fidelity to natural linguistic expression.

4 Related Work

Most of the Semantic Representations (SRs) ab-
stract away from surface-level grammatical and
syntactic idiosyncrasies, focusing on the underly-
ing meaning. A detailed overview and compar-
ative analysis of various SR parameters can be
found in (Boguslavsky, 2019). Some SRs are
based on specific linguistic frameworks, which
shape their representational choices and theoret-
ical foundations. For example, Minimal Recur-
sion Semantics (MRS) (Copestake et al., 2005)
is based on Head-driven Phrase Structure Gram-
mar (HPSG); the Prague Dependency Treebank
(PDT) (Hajic et al., 2006) aligns with Functional
Generative Description (FGD); FrameNet (Baker
et al., 1998) is grounded in Frame Semantics; the
Parallel Meaning Bank (PMB) (Abzianidze et al.,
2017) in Discourse Representation Theory (DRT);
and Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) adopts a neo-Davidsonian
event-semantics. UMR (Universal Meaning Rep-
resentation) (Van Gysel et al., 2021) extends Prop-
Bank (Palmer et al., 2005) and AMR into a unified
framework that is designed to accommodate typo-
logically diverse languages, including those with
noun incorporation and affixal verb structures. It
captures sentence-level predicate-argument struc-
tures, while also encoding features such as aspect,
quantification, scope, pronouns, and multi-word
expressions. At the document level, UMR models
cross-sentential relations including co-reference,
temporal ordering, and factuality.

4.1 USR and other Semantic Representations

With the above semantic representation systems
(SRs) having existed for over a decade—and sev-
eral still undergoing active development—the ques-
tion naturally arises: why is there a need for yet
another semantic representation system? We argue
that the uniqueness of USR lies in two key aspects:
1.) the theoretical framework adopted for USR;
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and 2.) the distributive method of annotation of
semantic—pragmatic information often bundled in
one linguistic expression. By grounding the rep-
resentation in Paninian grammar and IGT, USR
captures communicative intent (vivaksa) and the
layered interplay of concepts and propositions, en-
abling models to understand how a speaker intends
to convey information in different contexts. This
capability is crucial for generative and multilingual
NLP systems, which rely on fine-grained semantic-
pragmatic distinctions that existing SRs do not
provide. The idea of decomposing the semantic-
pragmatic meaning of an expression and represent-
ing it in different layers is unique to USR. In a
recent work on PDT (Mikulova et al., 2025), the
annotation schema of discourse particles in Czech
is reported, where the pragmatic-semantic nature of
these items is acknowledged. USR proposes a rep-
resentation schema to capture this decomposition
of meaning in a distributed manner.

5 Developing the USR Bank 1.0

This section describes the stages of the creation of
USR Bank 1.0 and presents the statistics of USRs
created so far.

5.1 Tool and Annotation

The development of USR Bank 1.0 follows a struc-
tured three-phase pipeline to ensure accuracy and
efficiency.

5.1.1 Segmentation of Complex Sentences

As a pre-processing stage for the USR generation,
a Segmentor is run on the input text that splits the
text into sentences and further employs a princi-
pled segmentation strategy to handle complex or
information-heavy sentences. Instead of treating
the complex sentences as a whole, the Segmentor
breaks them down into semantically coherent seg-
ments, typically each containing one finite clause.
Segmentation adheres to consistent rules, such
as splitting at discourse connectives, postulating
elided elements, not segmenting relative clauses if
the head noun is modified by one relative clause,
and so on. Each segment is assigned a unique ID.
Segment IDs accommodate titles, headings, and
fragments, ensuring structural clarity throughout
the annotation of a text. Evaluated against 500
gold-standard sentences, drawn from the NCERT
Geography corpus, our Segmentor tool achieved
an accuracy of 96.3%. An example of segmented



output is available in Table 3 for a sentence taken
from the NCERT Geography textbook:

<sent_id=Geo_11stnd_13ch_0039>
Wave speed: It is the rate at which the
wave moves through the water, and is
measured in knots.

Sentence ID Text

Geo_11stnd_13 Wave speed

ch_0039T

Geo_11stnd_13 It is the rate at which the wave moves through
ch_0039a the water.

Geo_11stnd_13 And it is measured in knots.

ch_0039b

Table 3: Segmented Output with appended specific seg-
ment ID

5.1.2 Automatic USR Generation using
USR-builder

A USR-builder tool for Hindi has been developed to
generate USRs automatically. The segments from
the Segmentor tool are simultaneously fed into four
NLP modules: (a) the Dependency Parser and Map-
per that determines syntactico-semantic structures
by identifying POS tags, head words and generat-
ing dependency relations between the head and its
children; (b) Morphological analyzer that provides
detailed morphological information such as root
forms, tense-aspect-modality (TAM), gender, num-
ber, and person (c) the Named Entity Recognition
(NER) tool that identifies and classifies named enti-
ties present in each segment; and (d) the Discourse
Connective Marker Tool that operates on the whole
input text to detect discourse connectives and es-
tablish relationships between different segments.

All linguistic information obtained from the
aforementioned NLP tools is then fed to two con-
cept identifier modules: (a) the Complex Concept
Identifier tool and (b) the Simple Concept Identifier
tool to identify atomic concepts and their associ-
ated grammatical features.

In the final stage, the outputs from all previ-
ous modules are passed to the Rule Applicator,
which applies a predefined set of heuristics to inte-
grate the linguistic and semantic information into
the final USR format. The resulting USR cap-
tures the underlying semantics of the input text
in a language-independent, human-readable and
machine-interpretable format.

The Simple Concept Identifier, CC Identifier,
and the Discourse Relation Marker tools have been
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developed in-house. The Complex Concept Iden-
tifier currently achieves an accuracy of 84.26%,
while the Discourse Relation Marker demonstrates
an accuracy of 94%. A schematic flowchart illus-
trating the overall architecture and data flow of the
USR-builder is presented in Figure 1 in Appendix
A.

5.1.3 Manual Validation via SAVI Interface

Once the USRs are automatically created, they
are uploaded in the PostgreSQL database (Stone-
braker et al., 1990). PostgreSQL is a powerful
open-source relational database known for its ro-
bust support for complex queries, data integrity,
and scalability. This makes it ideal for managing
interconnected linguistic data and the semantic lay-
ers of USRs.

The database schema is hierarchical, linking
a Chapter to Sentences, Sentences to Segments,
and each Segment forming the base for Lexico-
Conceptual, Construction, Relational, and Dis-
course tables. Manual validation of USRs is per-
formed by trained annotators using the Semantic
Annotation Validation Interface (SAVI), a custom-
built, web-based interactive interface. SAVI signifi-
cantly streamlines the validation process by adopt-
ing a multi-layered approach for organizing infor-
mation into separate, intuitive tabs. This allows
annotators to efficiently correct tags (e.g., Seman-
tic_category, Morpho-Semantic, Speaker’s View)
via dropdown menus; validate dependency rela-
tions by selecting head indices and relation names,
and confirm Complex Concept components (which
are color-coded across tables for clarity). Fur-
thermore, the features of the SAVI interface in-
tegrate visualizers for dependency trees and dis-
course graphs, providing immediate visual feed-
back that greatly aids in accurate validation.

5.2 Data

The existing dataset can be classified into parts.
The first dataset is created and curated to under-
stand various linguistic phenomena that need to be
semantically represented in the USR. The second
dataset evaluates how well the framework and rep-
resentation work for real-world texts from specific
domains. The current statistics for the annotated
data in USR Bank 1.0 are given in Table 4, and
the statistics of the top 5 most frequently annotated
dependency relations are given in Table 5.



Count of First | Health | Education
Data | Domain

Sentences 659 | 168 5727

Segments 659 | 261 7029

Simple 2809 | 2131 56734

Concepts

Complex 356 | 437 6888

Concepts

Table 4: USR Bank data statistics.

5.2.1 First Data: Manually Curated Simple
Sentences

The primary corpus for USR Bank 1.0 comprises
659 simple and small sentences. This data is cre-
ated manually, with the focus on encoding infor-
mation at various linguistic levels. The primary
goal of this dataset is to provide a controlled envi-
ronment for detailed linguistic annotation. Table
5 shows the statistics of the top 5 most frequent
dependency relations annotated in the data.

5.2.2 Second Data: Domain-specific text
(Health and education)

The second data set is taken from two different do-
mains, namely health and education. The health
data is derived from consent forms used for patients
and their relatives undergoing specific medical pro-
cedures by Christian Medical College, Vellore. The
data for the education domain is sourced from the
NCERT (National Council of Educational Research
and Training) and NIOS (National Institute of Open
Schooling) geography textbooks in Hindi, ranging
from Class 6 to 12. This dataset offers domain-
specific, thematically coherent material, ideal for
evaluating the adaptability and depth of the USR
framework across real-world contexts.

5.2.3 Annotated Data Statistics

The current statistics for the annotated data in USR
Bank 1.0 are given in Table 4, and the statistics of
the top 5 most frequently annotated dependency
relations are given in Table 5.

6 Evaluation

The USR Bank 1.0 is evaluated in this paper using
two parameters: (i) ease of annotation and consis-
tency in the annotation schema, and (ii) effective-
ness of USR for a downstream application, namely,
natural language text generation. For the first, we
calculated the Inter-Annotator Agreement (IAA)
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Dependency Relation | Frequency
Modifier (mod) 7579
Genitive relation (r6) 6888
karta (k1) 6655
karma (k2) 3031
Location (k7p) 2563

Table 5: Top 5 most frequent Dependency Relations
annotated in USR Bank.

score and reported it in Section 6.1. For the sec-
ond, we evaluated the semantic fidelity of USRs
by comparing the quality of texts generated from
USRs - both manually by human annotators and
automatically by a large language model - with the
original source text. The underlying assumption
is that the closeness of the text generated from the
USR with that of the original text will prove the
correctness of the meaning representation in USR.
In this paper, all evaluations are done for Hindi.

6.1 Evaluation Parameter 1: Inter-Annotator
Agreement (IAA)

To obtain a more fine-grained picture of consis-
tency, we designed two IAA settings: the first
focusing only on dependency and discourse lay-
ers to capture core structural agreement ( refer to
Table 6 ), and the second including all four lay-
ers (lexico-conceptual, dependency, discourse, and
speaker’s view) to evaluate the full complexity of
USR annotation ( refer to Table 7 ). The exper-
iment was conducted on two carefully selected
datasets comprising 70 (Table 6) and 105 (Table
7) unique segments, respectively. Each segment,
averaging 11-12 words in length, was extracted
from the NIOS and NCERT geography textbook
corpora, after preprocessing with our Segmentor
Tool. The USR Builder generated the initial USRs
for these segments, which were then uploaded to
the database for independent validation by human
annotators.

Two groups of annotators were involved: the
first group consisted of two experienced annota-
tors who had been working with this representation
scheme for over a year, while the second group
comprised two relatively new annotators with about
two months of experience. Each annotator inde-
pendently worked on their assigned set without
prior consultation. After completion, the anno-
tations were systematically compared to measure
inter-annotator consistency.



6.1.1 Result

Inter-Annotator Consistency was quantitatively
measured using both raw agreement percentage
and Cohen’s Kappa (k). Cohen’s Kappa provides
a more robust measure of agreement by adjusting
for the proportion of agreement that would be ex-
pected by chance. For composite annotations (like
dependency relations, which involve both a head-
dependent pair and a specific label), Cohen’s Kappa
is calculated by considering each possible combi-
nation of head, dependent, and relation label as an
annotation unit, allowing for a standard application
of the formula.

Features Cohen’s | Agreement %
Kappa

Dependency | 0.8465 0.8912

Discourse 0.8817 0.9978

Table 6: TAA results using Cohen’s Kappa (k) and
Agreement Percentage.

Features Cohen’s | Agreement %
Kappa
Dependency 0.8020 | 82.63
Discourse 0.6030 89.81
Speaker’s View | 0.7164 | 90.48
Sem_Cat 0.8949 | 97.90
Morpho_sem 0.6861 92.50
Construction 0.7520 86.22

Table 7: TAA results using Cohen’s Kappa (k) and
Agreement Percentage for mentioned features.

Metric Al A2 A3 Gemini

Model
Cosine- 0.8866 | 0.8277 | 0.8065 | 0.9347
Similarity

Table 8: Semantic Similarity scores for annotators: Al,
A2, A3, and Gemini Model.

The Inter-Annotator Agreement (IAA) analy-
sis reveals the following patterns of mismatch in
annotation across the two annotators. Variability
was particularly evident in co-reference resolution,
where one annotator consistently linked entities to
their initial mention, while the other preferred the
most proximate mention within the discourse. Sim-
ilar variation was found in head selection for de-
pendency relations such as taking the verbalizer of
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a complex predicate as the head while the construc-
tion label [cp] is to be taken as the head. In addi-
tion, there are differences in the way constructions
have been identified. There are some instances in-
volved the omission of semantic category labels
and morpho-semantic relations, further contribut-
ing to annotation inconsistency.

Despite these issues, the results, summarized
above, demonstrate a remarkably high level of
consistency between the annotators for both
dependency-level and discourse-level annotations.
This strong agreement empirically affirms the clar-
ity, unambiguous nature, and semantic grounded-
ness of the USR guidelines and its tagset.

6.2 Evaluation Parameter 2: USR-to-Text
Generation

The objective of this experiment was to evaluate the
completeness and faithfulness of information rep-
resented in the USR by generating texts manually
and automatically from a set of gold USRs.

For this experiment, we used a manually vali-
dated gold set of USRs from a Hindi medical con-
sent form from the health domain containing 59
segments. We conducted experiments of manual
generation and automatic generation. We report
here the cosine similarity measure of each gener-
ation against the original text. Three annotators
participated in the manual USR-to-text generation
task, each independently producing texts from the
same set of USR. These three annotators were new
annotators who were trained in USR annotation for
only one month at the time of the experiment. Au-
tomatic text generation was done using the Gemini
2.5 pro model (Gemini Team, 2023).

6.2.1 Result

We have used the multilingual sentence transformer
model (paraphrase-multilingual-MiniLM-L12-v2)
to evaluate the quality of the texts generated by the
three annotators as well as by the Gemini model
through the Cosine similarity measure. These re-
sults summarized in Table 8 demonstrate strong
agreement between the texts generated by the anno-
tators and the original text, with all three annotators
achieving high similarity scores above 80%. Also,
the above 90% similarity score shows very high
similarity between the original text and the model-
generated output.

The overall mean similarity scores across annota-
tors indicate high semantic consistency in the anno-
tated USRs. Inter-Annotator Agreement was simi-



larly robust, with pairwise similarities consistently
above 80%, showing that all three annotators main-
tained comparable semantic fidelity to the source
text while producing linguistically diverse alterna-
tives. The higher similarity score for the model-
generated output, however, can be attributed to its
reliance on surface-level word matching, whereas
human annotators focus on capturing the finer se-
mantic and pragmatic nuances of the USR, often
rephrasing or restructuring the text in ways that
reduce lexical overlap with the original. These
results suggest that the annotation protocol effec-
tively captured the meaning of the original texts.
Given that medical consent forms demand high pre-
cision and clarity for patient comprehension, this
analysis demonstrates how well our USR-based
generation approaches preserve semantic meaning,
structural integrity, and adherence to the expected
patterns of critical medical information. We are
also investigating in more detail why the model-
generated output achieves a higher similarity score
than the human annotation.

7 Conclusion

The USR Bank 1.0 advances the field of seman-
tic representation by systematically integrating key
principles from the Indian Grammatical Tradition.
Anchored in the Universal Semantic Grammar
(USG) framework, it captures core concepts from
IGT — namely, samarthya (semantic compatibil-
ity) and vivaksa (speaker’s intention) — to offer a
multi-layered, coherent, and cognitively grounded
model of textual meaning representation. Evalua-
tions through inter-annotator agreement and USR-
to-text generation have demonstrated the reliability
and semantic consistency of the framework. Its
successful application in Hindi and ongoing ef-
forts to extend it to Tamil, Sanskrit, and English
demonstrate its potential for cross-linguistic and
multilingual generation. This work bridges clas-
sical linguistic theory with modern language tech-
nology, offering a scalable, language-agnostic se-
mantic model. Future developments will focus on
expanding the treebank across more languages and
refining automatic USR construction tools to en-
hance multilingual NLP capabilities.

Limitations

The annotators require a good amount of training
in Universal Semantic Grammar before starting
the annotation. Retaining good annotators is an
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expensive affair.
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Abstract

Though large language models (LLMs) are
increasingly used in multilingual contexts,
their political and sociocultural biases in low-
resource languages remain critically underex-
plored. In this paper, we investigate how
LLM-generated texts in Bengali shift in re-
sponse to personas with varying political ori-
entations (left vs. right), religious identi-
ties (Hindu vs. Muslim), and national affili-
ations (Bangladeshi vs. Indian). In a quasi-
experimental study, we simulate these per-
sonas and prompt an LLM to respond to po-
litical discussions. Measuring the shifts rel-
ative to responses for a baseline Bengali per-
sona, we examined how political orientation
influences LLM outputs, how topical asso-
ciation shapes the political leanings of out-
puts, and how demographic persona-induced
changes align with differently politically ori-
ented variations. Our findings highlight left-
leaning political bias in Bengali text generation
and its significant association with Muslim so-
ciocultural and demographic identity. We also
connect our findings with broader discussions
around emancipatory politics, epistemological
considerations, and alignment of multilingual
models.

Introduction
Large language models (LLMs) are increasingly
being integrated into global information ecosys-
tems. Individuals, organizations, and communi-
ties are adopting LLMs as search engines (Bubeck
et al., 2023), for personal expression and self-
disclosure (Papneja and Yadav, 2024), and to
enhance productivity (Knight, 2024; Chan and
Alexander, 2025). Hence, LLMs’ ability to shape
and reflect political ideologies and sociocultural
narratives (Buyl et al., 2024; Hoffman, 2024)
raises critical concerns. Although recent audits
have revealed biases in LLM-generated texts, most
studies—including multilingual ones-remain cen-
tered on English or Western contexts (Yuksel et al.,
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2025; Rettenberger et al., 2025), leaving the be-
havior of these models in major Global South lan-
guages critically under-examined. In this paper, we
focus on political bias in LLM-generated texts in
the Bengali language and sociocultural contexts.
Bengali (endonym Bangla: SIe) is the sev-
enth largest language spoken by over 284 million
people worldwide (SIL International, 2023). Its
native speakers are the Bengali people (endonym
Bangali: Jretfer), who are native to the Bengal
region in South Asia that constitutes present-day
Bangladesh and the West Bengal state of India (En-
cyclopadia Britannica, 2025). Although united by
a common language and rich literary tradition, the
Bengali ethnolinguistic identity fractured into two
national identities following British and Pakistani
colonization, which was based on and deepened re-
ligious divisions and reshaped cultural imaginar-
ies (Das et al., 2024a). Today, this community
comprises approximately 71% Muslims and 28%
Hindus, and is nationally divided into Bangladeshi
(59%) and Indian (38%) populations (BSB, 2022;
India, 2011). These religious and national iden-
tities also correspond with dialectal and regional
variations (Das et al., 2021; Dil, 1972), making
Bengali a compelling case for studying how lan-
guage encodes social, cultural, and political fault
lines. However, despite its global reach and so-
ciopolitical complexity, little is known about how
LLMs reflect different political orientations and
how it relates to sociocultural identities in Bengali.
To address this gap, we construct Bengali lin-
guistic personas with varying political, religious,
and national attributes and prompt the GPT-4 by
OpenAl to generate responses to political discus-
sions in the Bengali Transnational Political Dis-
course dataset (Das et al., 2025a) collected from
three online platforms. Following prior scholar-
ship on algorithmic bias (Bommasani and Liang,
2024), we quantify and compare differences in
generated texts using embedding-based analysis
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within a quasi-experimental design. We investi-
gate how political orientations, topics, and socio-
cultural attributes shape LLM-generated content in
Bengali through three research questions:

* RQ1: How do LLM-generated texts for a base-
line Bengali linguistic persona differ based on the
persona’s (left-right) political orientation?

RQ2: How do the topics of political discussions
relate to the left- or right-leaning orientation of
the LLM-generated texts?

RQ3: How do the shifts in LLM-generated texts
associated with sociocultural and demographic at-
tributes, specifically religion (Hindu and Mus-
lim) and nationality (Bangladeshi and Indian),
align with the shifts for the personas’ left or right-
leaning political orientation?

Our study showed how political and sociocul-
tural attributes shape LLM-generated content in
the low-resource and politically sensitive Bengali
language. First, we found that baseline responses
are significantly closer to left-leaning texts than
right-leaning ones, indicating a measurable left-
leaning bias. Second, while political orientations
often do not associate with most topics, discourse
on Indigenous and tribal minorities correlates with
left-leaning outputs. Third, demographic (e.g., re-
ligion and nationality) persona-induced shifts gen-
erally show no directional alignment, except for
the religious majority Muslim persona, whose re-
sponses align significantly with left-leaning shifts.
Finally, we reflect on our findings through the lens
of epistemic considerations toward sociopolitical
alignment of multilingual LLMs and emancipatory
politics around marginalized identities.

2 Literature Review

In this section, we will discuss how computing
systems influence people’s political participation
and how algorithms mediating such spaces can ex-
hibit various sociocultural and political biases.

2.1 How Computing Systems Shape People’s
Political Participation and Perspectives
Computing systems, particularly online plat-
forms have reconfigured how people engage in po-
litical discourse—in forms of opinion expression
or organized collective action (Halpern and Gibbs,
2013; Flores-Saviaga et al., 2018). Nowadays,
contemporary political participation happens not
only through votes or protests but also through
likes, shares, and hashtags—that are algorithmi-
cally interpreted and acted upon (Booten, 2016;
Jung et al., 2024). Often described as “digital
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public spheres” (Semaan et al., 2014), these so-
ciotechnical platforms enable users to co-construct
meaning and contest dominant narratives (Harris
et al.,, 2023), amplify marginalized voices (Das
and Semaan, 2022), engage in public delibera-
tion (Dosono and Semaan, 2018), and activism on
a scale that was not possible through mainstream
media (Balan and Dumitrica, 2024).

Researchers in computational linguistics, so-
cial computing, and computational social science
develop datasets of computer-mediated political
discussions and empirically study those interac-
tions (Chen et al., 2022; Davoodi et al., 2020; Star-
bird and Palen, 2012). In the United States, for
example, social media played a defining role in
shaping public opinion and mobilizing voters dur-
ing the recent presidential elections (Rizk et al.,
2023). These studies have highlighted concerns
like the emergence of echo chambers, polarization,
and homophily among the left and right sides of the
political spectrum (Boutyline and Willer, 2017).
Whereas left-leaning ideologies typically advo-
cate for social equality, economic redistribution,
and stronger government involvement, labor rights,
and public services, right-leaning ideologies em-
phasize free markets, individual responsibility,
limited government intervention, and the protec-
tion of traditional values and institutions (Lakoff,
2016). While these platforms enabled decentral-
ized political engagement and political identity for-
mation (e.g., #BlackLivesMatter) outside of insti-
tutional politics (Wilkins et al., 2019), algorithms
shape the visibility, amplification, and perceived
legitimacy of political discourses by prioritizing
engagement-driven content, often reinforcing dom-
inant narratives and marginalizing dissenting or mi-
nority voices (Bucher, 2012; Crawford, 2019).

2.2 Auditing Algorithmic Bias across Various
Sociocultural and Political Dimensions

Scholars in critical algorithmic studies define
bias as the consistent and unfair discrimination
by computer systems against specific individuals
or groups in favor of others (Friedman and Nis-
senbaum, 1996). Such group distinctions often
emerge along lines of political views, religion,
language, or nationality—salient markers of social
identity that shape how individuals are perceived
and treated by algorithmic systems (Tajfel, 1974).

Computing systems actively construct people’s
“algorithmic identities”, i.e., how digital technolo-
gies and algorithms represent individuals by draw-
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ing from both historical archives and near-real-
time data (Cheney-Lippold, 2017). However, these
data sources have their implicit politics that can
encode and perpetuate ontologies and hierarchies
from certain political perspectives in algorithmic
systems (Scheuerman et al., 2019, 2021).

In response to these concerns, algorithmic au-
dits have emerged as a widely used methodologi-
cal approach for examining bias, which typically
involve controlled experiments that probe a sys-
tem’s behavior by systematically varying specific
attributes of an input, such as race or gender, while
holding other variables constant (Metaxa et al.,
2021). Reflecting the notion of counterfactual fair-
ness (Kusner et al., 2017), these studies assess
if a model provides consistent responses across
identity-based variations. A canonical example is
(Bertrand and Mullainathan, 2004)’s audit study,
which demonstrated significant racial discrimina-
tion in hiring by showing that resumes with white-
sounding names received 50% more callbacks than
identical resumes with Black-sounding names. In
recent scholarship, audits have been extended to
study the behavior of algorithmic systems and
their outputs across various domains, such as hous-
ing (Edelman and Luca, 2014), hiring (Chen et al.,
2018), healthcare information (Juneja and Mitra,
2021), gig economy (Wood et al., 2019), rec-
ommendation systems (Baeza-Yates, 2020), and
search engines (Robertson et al., 2018).

Extensive scholarship has documented algorith-
mic bias across various axes of identity, including
gender (Huang et al., 2021), race (Sap et al., 2019),
nationality (Venkit et al., 2023), religion (Bhatt
etal., 2022), caste (B et al., 2022), age (Diaz et al.,
2018), occupation (Touileb et al., 2022), disabil-
ity (Venkit et al., 2022). However, research on
algorithmic biases related to political identities—
how models interpret, encode, or skew ideological
positions—has only recently gained traction.

Among the earliest efforts to explore political
bias in NLP research, a prominent line of work
focused on analyzing political biases in news arti-
cles (Agrawal et al., 2022; Baly et al., 2020). To
empirically audit the language models, many stud-
ies adopted a binary framing of political leaning,
typically using party affiliations—Democrats and
Republicans—or the ideological values they are
commonly associated with, namely left and right,
respectively, and have found both proprietary and
open-source LLMs to exhibit a left-leaning bias
in cross-border contexts (e.g., the US, the UK,
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the EU, Brazil) (Li and Goldwasser, 2021; Mo-
toki et al., 2024; Rettenberger et al., 2025). Re-
searchers have studied how LLMs’ political bias
relates with truthfulness, stance, and framing (Fu-
lay et al., 2024; Bang et al., 2024). Persona-based
prompting is a widely used empirical strategy. For
example, (Liu et al., 2022; Qi et al., 2024) used
context-specific attributes, such as gender, location
(e.g., red vs blue states'), topics of political differ-
ences (e.g., immigration) to prompt the LLMs. In
these studies, the LLMs are asked to answer the
questions in different political orientation tests or
pick preferred election candidates and measured
for biases using keyword matching and inferential
statistics (Qi et al., 2024; Rozado, 2024).

Prior scholarship on Bengali communities has
examined how users collaboratively engage in po-
litical discourse, often centered around content
creators and influencers, across both national and
transnational spheres (Das et al., 2022, 2024a). In
contrast, NLP research has predominantly focused
on tasks such as ideology prediction (Tasnim et al.,
2021), hate speech detection (Mondal et al., 2024;
Bhattacharya et al., 2024), and the curation of po-
litical discourse datasets (Tasnim et al., 2024; Das
et al., 2025a), leaving the sociopolitical biases of
language models in Bengali NLP largely under-
explored. Attending to the sociocultural diver-
sity within Bengali communities, prior work has
demonstrated how algorithmic systems, such as
sentiment analysis and automated content moder-
ation exhibit biases along gender, religion, and na-
tionality lines (Das et al., 2021, 2024b). The study
by (Thapa et al., 2023), which examined political
inclinations of language models through fill-mask
and text-generation tasks in Bengali, is the most
directly related to our work. However, their re-
liance on propositions from political compass tests,
rather than on real political discourse data from
Bengali communities, limits its relevance. Further-
more, despite the sociohistorical entanglements of
religion and nationality with political dynamics in
Bengali communities, as explained in Section 1, lit-
tle attention has been paid to how political biases
in LLM-generated Bengali text intersect with so-
ciocultural identities—a gap we aim to address.

3 Methods

This section outlines our quasi-experimental de-
sign for prompting an LLM to generate texts in re-

' American states that traditionally vote Democrats and Re-
publicans are called blue and red states, respectively.
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sponse to political discussions based on personas
expressing a baseline Bengali identity, opposing
political leanings, and sociocultural attributes such
as religion and nationality (Figure 1), and explains
how we compared those generated texts.

3.1 Evaluation Dataset of Political Discourse

To audit how Bengali LLMs demonstrate po-
litical bias across collective identities, such as
religion and nationality, we utilized the Bengali
Transnational Political Discourse (BTPD) Dataset
prepared by (Das et al., 2025a). The context of the
Bengali language and people exemplifies how re-
ligion and nationality intersect to shape linguistic
practices (Dil, 1972). Since major religions, such
as Islam and Hinduism, have historically played a
central role in shaping national identities in the re-
gion, particularly in the emergence of Bangladesh
and India (Chatterjee, 2020), both religious affili-
ation and national belonging continue to influence
what and how Bengali communities participate in
political discourse today (Das et al., 2024a).

BTPD is a multilingual dataset comprising po-
litical discussions among Bengali speakers across
three online platforms, such as Reddit, Politics
Stack Exchange (PoliticsSE), and Bengali Quora
(BnQuora). Each platform has distinct commu-
nity structures, interaction affordances, and pat-
terns of participation. For example, while most
discussions on PoliticsSE and BnQuora are in En-
glish and Bengali, respectively, Reddit conversa-
tions on Bengali politics are conducted in Bengali,
English, or Banglish (Bengali written in romanized
fonts). The dataset comprises 2,235 Bengali po-
litical discussion posts, including both titles and
bodies, sourced from all three platforms and their
corresponding English translations. Whereas (Das
et al., 2025a) were solely focused on creating
the dataset, this paper utilizes their dataset to au-
dit political bias in LLM-generated Bengali text
across personas expressing different religious and
nationality-based identities.

3.2 Generation of Political Responses

For this study, we focused on one particular
LLM, namely GPT-4o (referred to as GPT-4 hence-
forth) by OpenAl. We generated texts in response
to the political posts in BTPD using a structured
prompt format based on the Chat API schema. To
see if and how the political orientation of the LLM-
generated texts changes based on specific sociocul-
tural and demographic personas, we used the fol-
lowing prompts to configure the system message:

* Baseline: “You are a Bengali.”

* Political leaning: “You are a Bengali who aligns
with the left/right wing political ideology.”

* Religion-based: “You are a Bengali whose po-
litical perspectives are deeply shaped by Mus-
lim/Hindu identity in the Bengali sociopolitical
landscape and Islamic/Hindu beliefs.”

* Nationality-based: “You are a Bengali whose
political perspectives are deeply shaped by
Bangladeshi/Indian national identity.”

We asked the LLM to generate responses based
on that persona using the following instruction:
“Respond in 200-300 words in Bengali as a follow-
up to the given text, clearly reflecting this persona’s
viewpoint.” For each data instance in BTPD, we
configured the user role by using the concatenation
of that political post’s title and body as the content
in its original language (Bengali/English).

messages = [{"role”: "system”,

"content”: ”"You are a Bengali whose
political perspectives are deeply
shaped by Bangladeshi national
identity . Respond in 200-300
words in Bengali as a follow -up
to the given text, clearly
reflecting this persona's
viewpoint.”},

{7role”: 7user”, "content”:

f”{ title }\n{b()dy}?s }}

The following code prompts the LLM to gen-
erate texts aligned with a Bangladeshi political
perspective in response to a political post. Let
us refer to the texts generated with baseline Ben-
gali persona as baseline Bengali texts, and to
those generated with politically left- and right-
leaning, or socioculturally Bangladeshi-, Indian-
, Hindu-, and Muslim-personas, as left- and
right-leaning, Bangladeshi-, Indian-, Hindu-, and
Muslim-persona texts, respectively, hereafter (see
the right side of Figure 1). We accessed OpenAl’s
GPT-4 model using the aisuite (Ng et al., 2024)
package between March 9 and March 31, 2025. To
balance between creativity and coherence in the
generated responses, we set temperature=0.75,
while other hyperparameters were kept at their de-
fault values.

3.3 Comparison of Generated Texts

To examine whether and how the Bengali re-
sponses generated by GPT-4 vary for personas ex-
pressing different political leanings, religions, and
nationalities, following (Bommasani and Liang,
2024), we compare their embeddings. We used the
distiluse-base-multilingual-cased sentence trans-




Base Bengali —————

Left-leaning

Right-leaning ——

Nationality (™/=) or ———

Religion (/@)

Base Bengali (A)

Left-leaning

Right-leaning (C)

Nationality (™/==) or
Religion (é/) (D)

Base, Political,
and Demographic
personas

Bengali Transnational
Political Discourse
Dataset (Das et al. 2025)

Access OpenAl’s
GPT-4 using API
key and aisuite

Transform into Embeddings
using distiluse-base-
multilingual-cased

Embedding vectors for
Base and Political and
Demographic personas

Figure 1: Pipeline for prompting LLM with different personas to generate responses to political posts in the BTPD.

former model (Reimers and Gurevych, 2019) to
generate those embeddings with 512 dimensions.
Let’s assume that for a particular post from BTPD,
with personas expressing a baseline Bengali, left-
leaning, right-leaning, and any sociocultural or de-
mographic attribute (e.g., Bangladeshi, Hindu, In-
dian, Muslim), the generated texts from the LLM
yield embeddings A, B, C, and D, respectively
(see Figure 2). In other words, these four points in a
512-dimensional space represent responses to a po-
litical post for baseline, left-leaning, right-leaning,
and identity-based personas, respectively.

Left (B)
p cosa
\
ﬁ \
’ Demography (D)
1

@® Right (C)

Figure 2: Projection of embeddings for LLM responses.

To answer RQ1, we analyze the LLM’s re-
sponses to assess how the political orientations of
personas are reflected in the generated texts rela-
tive to that generated for the baseline Bengali per-
sona, by calculating the cosine similarities between
text embeddings for politically oriented personas
(B or (') and that for a base persona (A). If we
found a significant difference in the left-leaning
texts and right-leaning texts (which we did, as de-
scribed next, in Section 4), we would compare
their relative magnitude of shifts by calculating and
comparing their Euclidean norms.

Our RQ?2 investigates the relationship between
the topics of political discussions and the left-
or right-leaning orientation of the LLM-generated
texts. We labeled the texts generated for the
baseline Bengali persona as left-leaning or right-
leaning by comparing the previously computed Eu-
clidean norms, assigning each text the label of the
political persona whose response it was closest to.
Since the questions and corresponding post bodies
in BTPD are relatively short—similar to (Das et al.,
2025a)-we applied non-negative matrix factoriza-
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tion (NMF) (Lee and Seung, 1999) to identify un-
derlying topics. After using NMF on the English
translations of these questions and bodies, we then
mapped the resulting topics back to the original
Bengali posts using post URLs. In total, we iden-
tified ten topics and for each post, extracted their
relative weights from the NMF decomposition and
determined the dominant topic. To explore how
political leaning aligns with topic distributions
through visualization, we applied principal compo-
nent analysis (PCA) (Jolliffe, 2002), t-distributed
Stochastic Neighbor Embedding (t-SNE) (Van der
Maaten and Hinton, 2008), and Uniform Manifold
Approximation and Projection (UMAP) (MclInnes
et al., 2018) to the NMF-derived topic weights.
Whereas PCA preserves global variance structure,
t-SNE and UMAP preserve local and manifold
structure, respectively. We conducted a x? test of
independence (Agresti, 2013) to test whether LLM-
generated responses’ political leanings varied sig-
nificantly across dominant topics. Finally, we fit
a logistic regression model (Hosmer et al., 2013)
using the NMF topic weights as predictors and the
binary political leaning labels as the outcome to
identify which topics were most predictive of the
LLM-generated responses’ political orientations.
In case of RQ3, compute three directional vec-
tors: @ = B — A (representing the shift from base-
line to left-oriented persona), ¥/ C — A (rep-
resenting the shift from baseline to right-oriented
persona), and p’ = D — A (representing the shift
from baseline to religion or nationality-based per-
sona). Let’s assume, p creates angles « and $ with
4 and v, respectively. We compare the cosine sim-
ilarities of p’'with « and ¥ (p cos « and p cos 3, re-
spectively) to examine which political leaning the
shift of generated text for a certain religious or na-
tional identity category aligns more closely with.
We compared the Euclidean norms (in RQ1)
and the cosine similarities (in RQ3) using infer-
ential statistics. First, we checked if the distribu-
tions of those values maintained normality using
the Shapiro-Wilk test (Shapiro and Wilk, 1965). In



all of our tests, we used a significance threshold,
a = 0.01. Our RQ1 readily facilitates pairwise
comparisons between left- and right-leaning shifts
from the baseline. Similarly, in RQ3, as we want to
investigate whether a persona expressing a certain
religion- or nationality-based identity influences
the LLM-generated texts to align more closely with
left- or right-leaning responses, we can employ
pairwise comparisons. For cases where the dis-
tributions of Euclidean norms or cosine similari-
ties approximated a Gaussian distribution, we ap-
plied the parametric paired t-test (Student, 1908);
otherwise, we used the non-parametric Wilcoxon
signed-rank test (Wilcoxon, 1992).

4 Results

This section presents our findings on how po-
litical personas influence LLM responses (RQ1),
whether topic correlates with political leaning
(RQ2), and how identity-based personas shift re-
sponses toward left or right leanings (RQ3).

4.1 RQ1: Differences with Political Leanings

To examine how the political orienta-
tions of personas manifest as differences in
LLM-generated texts relative to the base-
line, we tested the null hypothesis: Hj,
Msimilarity (left, baseline) Msimilarity (right, baseline)-
We found a statistically significant difference
(p 1.53e—6) in the similarity of left-leaning
and right-leaning texts to the baseline responses.

We then tested whether the magnitudes of the
shifts in the generated responses induced for differ-
ent political orientation of the persona were equal
and found that Lgisi(baseline, left) 7 [dist(baseline, right)
(p 1.21e~7). Given the dearth of scholar-
ship on the direction of political biases of LLM-
generated texts in Bengali, we also tested the one-
tailed alternative hypotheses. We found a signifi-
cant p-value (6.05e—8) to accept fidist(baseline, left) <
Mdist(baseline, righty- L his indicates that, on average,
the left-leaning texts deviated less from the base-
line Bengali texts in the embedding space than
the right-leaning texts did. In other words, the
LLM-generated responses for the baseline persona
were more similar to the left-leaning texts than to
the right-leaning ones. Thus, LLM’s baseline re-
sponses exhibit a left-leaning political bias.

4.2 RQ2: Relationship between Topics and
Political Leanings

After applying NMF, we identified the top words
across ten topics (see Table 1). As Bengali re-
searchers (please see Section 7), we could infer
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the broader theme captured by those topics based
on these corresponding top words. For example,
topics 3 and 8 capture discourse surrounding West
Bengal’s state-level politics in India, while topic 9
centers on historical political issues in Bangladesh,
including references to figures and events from its
colonial past. Topic 5 highlights dynamics be-
tween settler Bengalis and Indigenous tribal mi-
norities in Bangladesh, reflecting ethnic and cul-
tural tensions within the political landscape.

We visualized the NMF topic space using three-
dimensional PCA, t-SNE, and UMAP, coloring
each point by the political leaning of the corre-
sponding LLM-generated response (Figure 3).

While we chose a three-dimensional projection
due to visualization constraints, the top three prin-
cipal components together account for 46% of the
total variance-between left- and right-leaning re-
sponses in the NMF topic space. While both t-SNE
and UMAP revealed more pronounced local clus-
tering than PCA, neither showed clear separation
between political leanings. All three dimensional-
ity reduction techniques consistently indicate that
there is no clear visual separation between points
representing left- (red) and right-leaning (blue)
LLM-generated responses in the topic space.

Based on our y? test, we could not reject the
null hypothesis that “There is no relationship be-
tween the dominant topic of a post and the po-
litical leaning of the LLLM-generated response to
that” (p = 0.2906). Even when we considered the
weights across all NMF topics in a logistic regres-
sion model, we obtained R? = 0.0038, meaning
the topics explains less than 0.4% of the variance
in political leanings of LLM-generated responses.
Closely looking at the each topic (i.e., independent
variable), we found only topic 5 (which focuses on
Ethnic and cultural identity of Indigenous and Ben-
gali communities in Bangladesh) to be significant
(p = 0.03) and negatively associated with the right-
leaning response (co-efficient = —3.1257). That
means, if a post is more about topic 5, the more
likely it is to be about left-leaning.

4.3 RQ3: Alignment of Shifts Associated with
Sociocultural/Demographic Attributes
and Political Orientation in Persona

Next, we examined whether instructing the LLM
to adopt an identity category-based persona de-
fined by a religion (e.g., Hindu, Muslim) or na-
tionality (e.g., Bangladeshi, Indian) causes its re-
sponses to shift in a way that aligns with the shifts
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Table 1: Topics identified in the English versions of the posts by NMF with common words.

Topic Words

Topic Words

assist, sorry, request, information, content
constitution, according, written, country, Indian
India, foreign-policy, Dr-Ambedkar, Hindu, draft
provide, text, translation, information, need
Bengali, Trinamool, Congress, BJP, parties

0N+ O

NoREN IV, RS

country, like, people, Awami-League, time

West-Bengal, chief-minister, BJP, Mamata-Banerjee, state
Indigenous, people, communities, tribes, Bengalis
women-rights, men, Islam, equal, freedom

Bangladesh, secularism, Pakistan, war, prime-minister

Figure 3: LLM-generated left- and right-leaning responses in PCA, t-SNE, and UMAP of the NMF topic space.

observed for left or right-wing political orienta-
tions. Earlier (in Section 3), we described how
we defined directional vectors from the embedding
point of the baseline responses (A) to those of the
demography-based responses (D), left-leaning re-
sponses (B3), and right-leaning responses (C), de-
noted as p, i, and ¥, respectively. Here, we com-
pared the cosine similarities of p’ with # and ¢ to
assess how the shift in LLM-generated responses
for a persona based on a specific demographic iden-
tity aligns with the shifts associated with left- and
right-leaning political personas. Here, our null hy-
pothesis is that “There is no difference in the align-
ment of the identity-based response shift with the
left-leaning and right-leaning political response
shifts,” i.e., Hsimilarity(p, @) = Hsimilarity(p, ) Table 2
presents the results for the major nationality- and
religion-based Bengali identity categories.

Table 2: Comparing the alignment of identity-based
shifts with politically left and right leaning shifts

Attribute p-value
. . Bangladeshi 0.7703
Nationality Tndian 0.8704
Religion Hindu 0.7321
18! Muslim 0.0072

Our results suggest that the shifts in responses
generated for personas adopting Bangladeshi, In-
dian, and Hindu identities did not align signifi-
cantly more with either political orientation, as
indicated by the non-significant p-values. How-
ever, we found a statistically significant directional
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alignment between the shifts in LLM-generated
texts for the Muslim identity-based persona and
those for a particular political orientation. A one-
tailed test revealed that the shift in texts for the
Muslim persona is significantly (p 0.0036)
aligned with the shift for the left-leaning persona.

5 Discussion

Our findings suggest that LLMs may repli-
cate and potentially exacerbate existing polit-
ical divides in communities. For example,
the generated responses’ usual left-leaning ten-
dency remains consistent when prompted with
Muslim personas—unlike with Hindu personas—
reflecting the model’s alignment with the demo-
graphic majority among Bengali speakers. This
indicates that LLMs may reinforce dominant nar-
ratives while marginalizing minority perspectives,
thereby amplifying majoritarian communal biases.

5.1 Impact of Prompts and Model Biases

We found that LLM-generated responses to po-
litical posts change significantly from the baseline
depending on the political leaning embedded in
the persona (RQ1). This reemphasizes that LLMs
are highly sensitive to prompt engineering, partic-
ularly when it involves ideological cues. For ex-
ample (Agarwal et al., 2024) showed that LLMs’
moral outputs are shaped by the ethical frame-
works embedded in their prompts. Our findings
extend this insight into the domain of political
discourse in a low-resourced language, suggesting
that persona framing can significantly steer the gen-
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erated narrative. Additionally, our analysis indi-
cates that the LLM tends to produce responses that
are more aligned with left-leaning perspectives.
This aligns with recent work in English-language
contexts that identified a consistent left-leaning
tendency in popular LL.Ms across moral, political,
and cultural issues (Hartmann et al., 2023). Our
findings suggest that these political biases are not
neutralized when LLMs are prompted in a non-
Western language and cultural context like Bengali,
raising questions about how pretraining data and
alignment processes may encode and reproduce
ideological biases, even in cross-cultural contexts.

5.2 Limits of Topic-Based De-biasing and the
Politics of Alignment

We observed no significant relationship between
the topics of the political posts and the politi-
cal leanings expressed in the LLM-generated re-
sponses to those posts. This finding calls into
question the effectiveness of current approaches
that attempt to “de-bias” models by filtering train-
ing data or calibrating outputs based on topic cat-
egories (Kumar et al., 2019). If the ideological
slant of responses persists independently of con-
tent, as our hypothesis tests and visualizations in
RQ2 showed, this suggests that model alignment
is driven more by structural features in the training
and reinforcement data than by superficial surface-
level topic cues. Efforts to align LLMs for fairness
and neutrality must therefore go beyond topical ad-
justments and engage with the broader sociopoliti-
cal dynamics embedded in datasets and models.

5.3 Epistemic Injustice and the Limits of
Contextual Alignment

Answering RQ3, we found that the LLM-
generated responses shift significantly when
prompted with a Muslim persona, indicating that
the narrative direction is distinctly influenced by
religious identity. Through the lens of epistemic
injustice (Fricker, 2007), this suggests that the
LLM stereotypically associates Muslim identity
with certain political views and may fail to ade-
quately recognize or represent the hermeneutical
standpoint of other demographic groups we exam-
ined. While left-leaning political ideologies often
align with emancipatory values and advocate for
marginalized religious minorities like Muslims
in Western settings, this alignment becomes com-
plicated in the Bengali context where Muslims
constitute the demographic majority. LLM’s such
mismatched association of left-leaning narratives
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with minority identities in different geocultural
contexts may reflect an implicit transfer of West-
ern normative assumptions into a non-Western
sociopolitical context exhibiting a “colonial im-
pulse” (Dourish and Mainwaring, 2012; Irani et al.,
2010). Alternatively, the alignment of responses
for Muslim and left-leaning persona might come
from an epistemic overlap (e.g., postcolonial
scholarship emerging from historically colonized
Muslim-majority regions (Meer, 2014)) that the
model reproduces. Regardless of interpretation,
these findings underscore the importance of
context-aware alignment: emancipatory approach
to epistemic justice must be grounded in the so-
ciopolitical realities of the community in question.
Without such grounding, LLMs risk reproducing
ideologies that are centered around justice in one
setting but hegemonic in another. Therefore, an
alignment framework should not assume universal
moral or political priors, but instead incorporate
historically and culturally situated knowledge—
especially when engaging with the perspectives of
marginalized and minority communities.

6 Conclusion

In examining how GPT-4’s responses to Ben-
gali political discourse deviate from its baseline re-
sponses while adopting different political and de-
mographic personas, we found that it exhibits a
measurable left-leaning bias. Although we did not
find a significant relationship between the gener-
ated texts’ political leanings and the topics or most
demographic personas, only the majority Muslim
identity-based persona produced responses that
were significantly aligned with a political orienta-
tion. These tendencies carry major implications
for how culture and society are (re)constructed
through LLMs and generative Al. As these in-
creasingly shape global cultural production, their
alignment with dominant identities risks enforc-
ing cultural and ideological homogeneity across
languages and contexts, and contributing to the
gradual disappearance of dissenting or minority
views. These findings underscore the importance
of auditing LLMs that take into account sociopo-
litical and cultural contexts in underrepresented
languages and intersectionally diverse communi-
ties, thereby preventing the erasure of minority and
marginalized perspectives. We call for greater at-
tention to the epistemic impact of model alignment
and for frameworks to evaluate political and iden-
tity biases in the Global South, non-Western, and



low-resource contexts.

7 Limitations

This paper offers insights into the sociopolit-
ical alignment of LLM-generated texts in Ben-
gali. However, in this section, we reflect on sev-
eral limitations of our study. First, while some
prior studies (Rozado, 2024; Thapa et al., 2023)
advocate for incorporating both the left-right and
authoritarian—libertarian dimensions to capture po-
litical orientation, our study focuses solely on the
former—following precedent in much of the NLP
literature (Li and Goldwasser, 2021; Motoki et al.,
2024). As a result, it does not account for the
additional ideological variation captured by the
latter, which may be particularly relevant in the
context of South Asian political discourse. Sec-
ond, as we compare the similarities between the
left- and right-leaning responses to the baseline re-
sponse, our operationalization of political leaning
becomes effectively binary. Moreover, we limit
our analysis to two dominant religious (Hindu and
Muslim) and national (Bangladeshi and Indian)
identities within Bengali communities—such bina-
rification overlooks the broader spectrum of po-
litical and cultural affiliations, particularly among
smaller minority groups. Third, while we examine
different religion and nationality categories sep-
arately, our study does not account for intersec-
tional identities (e.g., Bangladeshi Muslims vs. In-
dian Hindus), which may exhibit distinct discur-
sive patterns. Fourth, other key sociocultural di-
mensions such as gender, caste, and linguistic sub-
regionality are not considered, despite their central-
ity in shaping Bengali political expression. Fifth,
we used a multilingual model to generate the em-
beddings. While it performs better than models
trained only using English data on Bengali texts, it
generally underperforms compared to models pre-
trained exclusively on Bengali or other closely re-
lated languages (Das et al., 2025b; Ogunremi et al.,
2023). As a result, the embeddings may suffer
from contextual loss or reduced linguistic nuance.
Sixth, the dataset we used primarily reflects dis-
course within the national contexts of Bangladesh
and India, with less explicit attention to diasporic
Bengali communities whose perspectives may dif-
fer due to transnational experiences. Finally, this
paper audits the biases in GPT-4 by OpenAl. While
it is one of the most widely used LLM (Chen et al.,
2024), future work should examine biases in a
wider array of LLMs and propose bias mitigation

31

strategies in regards to the complexity and diversity
of sociopolitical identities in Bengali discourse.

Ethical Considerations

In this section, we reflect on the ethical consider-
ations, objectives, and scope of our study in light of
a recent controversy in Al research and in relation
to our own positionality as researchers.

Research Objective and Scope

Our study analyzed LLM responses to prompts
combining lab-constructed personas with posts
from BTPD (Das et al., 2025a). While the dataset
includes content collected from online platforms,
we did not post any generated responses back or
engage with users in those communities. This
stands in contrast to recent ethically controversial
studies—such as the experiment involving undis-
closed Al-generated responses on Reddit—which
violated community norms and user trust by de-
ploying persuasive bots in real time (IE et al.,
2025). In our case, we conducted all analyses of-
fline, and limited the use of community-sourced
data to prompt design. We did not make any in-
terventions in the platforms from which data was
sourced, and did not make any attempts to de-
ceive, persuade, or manipulate users. Addition-
ally, we followed established ethical guidelines for
research involving publicly available social media
data (Fiesler and Proferes, 2018), including not us-
ing usernames and other sensitive or personally
identifiable content. Our goal was to understand
how LLMs reflect or prioritize sociopolitical per-
spectives in a controlled, non-interactive setting
that preserves the integrity of the original online
communities.

Positionality Statement

Researchers’ identities may reflexively address
inevitable tensions and bring affinities into per-
spective in studying underrepresented communi-
ties like the Bengalis (Schlesinger et al., 2017;
Liang et al., 2021). Given this paper’s focus on reli-
gion and nationality, we reflect here on the authors’
identities across these dimensions. The first author
was born and raised in Bangladesh in a Hindu fam-
ily belonging to an underprivileged caste minority.
The second author also grew up in Bangladesh, in
a Muslim household. The third author was raised
in India in a Hindu family. All authors (hetero-
sexual men) are researchers at a North American
university and have backgrounds in computer and
information science, with prior research experi-



ence with marginalized communities and human-
centered data science, which have informed and
guided the motivation and execution of this study.
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Abstract

Estimating the difficulty of multiple-choice
questions (MCQs) is central to adaptive testing
and learner modeling. We introduce INDRA
(Iterative Difficulty Refinement Attention), a
novel attention mechanism that unifies psycho-
metric priors with neural refinement for Indic
MCQ difficulty estimation. INDRA incorpo-
rates three key innovations: (i) IRT-informed
initialization, which assigns token-level dis-
crimination and difficulty scores to embed
psychometric interpretability; (ii) entropy-
driven iterative refinement, which progres-
sively sharpens attention to mimic the human
process of distractor elimination; and (iii) /n-
dic Aware Graph Coupling, which propagates
plausibility across morphologically and seman-
tically related tokens, a critical feature for In-
dic languages. Experiments on TEEMIL-H and
TEEMIL-K datasets show that INDRA achieves
consistent improvements, with absolute gains
of up to +1.02 F1 and +1.68 F1 over state-of-
the-art, while demonstrating through ablation
studies that psychometric priors, entropy re-
finement, and graph coupling contribute com-
plementary gains to accuracy and robustness.

1 Introduction

Multiple-choice questions (MCQs) remain one of
the most widely used formats for evaluating knowl-
edge in educational and standardized testing. The
difficulty of an MCQ plays a central role in assess-
ment design, adaptive testing, and learner model-
ing. Automatically estimating question difficulty
has thus emerged as a key challenge in educational
NLP, with growing interest from both psychomet-
ric and machine learning communities (Benedetto
et al., 2025).

Existing approaches fall into two broad cate-
gories. Psychometric models, such as Item Re-
sponse Theory (IRT), offer interpretability by as-

* Corresponding Author.

sociating each item with difficulty and discrimi-
nation parameters (Chen et al., 2021; Lalor et al.,
2016). However, they require large-scale response
data and ignore the linguistic structure of questions
and distractors. Neural approaches, particularly
transformer-based models, directly model text but
rely on uniform self-attention mechanisms (Hahn,
2020). Recent work has proposed specialized re-
finements: CASSA (Ravikiran et al., 2025a) adds
task-aware biases to emphasize question relevance,
while GISA (Ravikiran et al., 2025b) introduces it-
erative refinement through entropy minimization
and masking. While these models improve per-
formance, they remain limited in two respects: (i)
they lack explicit psychometric grounding, and (ii)
they are not designed for morphologically rich lan-
guages. This limitation is especially pronounced
in Indic settings, where distractors are often mor-
phologically or semantically close to the correct
answer. For example, in a Hindi MCQ on state
politics:

AT TIHR & Faet e dr e A 8?  (“What
is the name of the lower house of the state leg-
islature?”), the options-faema T, faem uRwe,
q9gq, rTfeTeRT (Vidhan Sabha, Vidhan Parishad,
Sansad, Nyayapalika [Judiciary])-are institution-
ally related and differ only in suffixes or scope,
making them highly confusable even for proficient
learners. A similar challenge arises in Kannada,
where a question on parliamentary roles:

BReTRL EFO® 9538 B 23392390 OI?

(“What is the main responsibility of the Lok
Sabha Speaker?”), offers options—ATI® LT Z-
8 B2 BN FTIONEADEDH DWBIDRRRNT,
sﬁ;mﬁmﬁaﬁo& DHOBART), FLRINYTY, SBI>-
DT, ﬁ"oﬂ?dwg’n& D,8AQRO)TD (Presiding over
the house to ensure smooth functioning, Introduc-
ing bills; Conducting sessions; Representing the
government)-that are all grammatically correct and
contextually plausible, yet only the first captures
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the Speaker’s true responsibility. Such cases illus-
trate why Indic languages form a demanding stress
test for attention mechanisms: models must simul-
taneously contend with surface similarity, morpho-
logical variation, and semantically close distrac-
tors, all of which need to be explicitly modeled
for reliable difficulty estimation (Ravikiran et al.,
2025¢).

As such, we introduce INDRA, a principled at-
tention refinement mechanism for MCQ difficulty
estimation. INDRA integrates four key compo-
nents: (i) psychometric initialization, where to-
ken interactions are scaled by discrimination and
difficulty parameters, embedding IRT-style priors
at the token level; (ii) entropy-driven iterative re-
finement, which progressively sharpens attention
distributions to mimic human distractor elimina-
tion; (iii) Indic-aware graph coupling, which prop-
agates plausibility across morphologically, seman-
tically, or syntactically related tokens; and (iv)
proximal stability, which guarantees smooth con-
vergence of refinement dynamics. Experiments
in Section 4.2, INDRA consistently outperforms
strong baselines across multiple datasets, achiev-
ing gains of in F1 and correlation with human dif-
ficulty labels. In summary, our contributions are
as follows:

* We propose INDRA, a general attention re-
finement framework that unifies psychomet-
ric priors, entropy-driven iterative refinement,
graph-based coupling, and stability control.

* We design token-level graphs that integrate
morphological, semantic, and syntactic sim-
ilarity, enabling adaptation to linguistically
rich and low-resource settings such as Indic
languages.

* Through extensive experiments on TEEMIL-H
and TEEMIL-K MCQ datasets, we show that
INDRA consistently improves predictive per-
formance and interpretability over prior meth-
ods.

2 Related Work

MCQ Difficulty Estimation: Estimating the diffi-
culty of multiple-choice questions (MCQs) is cen-
tral to adaptive learning, automated assessments,
and educational analytics. Traditional psychome-
tric models such as Item Response Theory (IRT)
(Al-zboon et al., 2021; Chen et al., 2021; Lalor
et al., 2016) infer item difficulty using large-scale
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student response data, but rely on strong paramet-
ric assumptions and are difficult to extend across
domains and languages. Neural approaches, es-
pecially transformer-based models such as BERT
(Devlin et al., 2019), leverage contextual embed-
dings to predict difficulty labels directly. With
datasets such as Ext-MCQ (Manikandan et al.,
2025), and TEEMIL (Ravikiran et al., 2025¢), these
methods have shown promising improvements
by capturing semantic relationships across stems,
options, and distractors. However, most exist-
ing methods rely on general-purpose embeddings
(Loukina et al., 2016; Veeramani et al., 2024) and
single-pass attention mechanisms, which are not
sufficient to capture the fine-grained dependencies
between question elements and distractors (Venk-
tesh et al., 2022). This has motivated attention re-
finements tailored for MCQ difficulty estimation.

Attention Mechanisms and Refinements:
Self-attention underpins modern transformers,
yet vanilla dot-product attention treats all token
interactions uniformly, attenuating fine-grained
cues needed to reason over stems, keys, and
near-miss distractors. Positional and dependency-
aware refinements improve granularity e.g.,
relative positions (Shaw et al., 2018), disentan-
gled content/position attention in DeBERTa (He
et al., 2021), and rotary position embeddings (Su
et al.,, 2021) but these do not explicitly model
the stepwise elimination dynamics required for
predicting item difficulty. In MCQ difficulty esti-
mation specifically, recent work ranks or predicts
difficulty from item text and options (Bulut et al.,
2024) and revisits psychometric underpinnings via
IRT for NLP (Lalor et al., 2016; Zhou et al., 2025).
Analyses of how transformers answer MCQs
further suggest multi-stage internal procedures
that standard attention does not expose (Wang
et al., 2024). However, these approaches rarely
fuse psychometric priors with iterative attention
refinement, and are not tailored to morpholog-
ically rich settings where distractors differ by
suffixation or compounding; recent Indic datasets
highlight this gap and its impact on difficulty
estimation (Ravikiran et al., 2025¢). These factors
motivate our proposed INDRA, which unifies
psychometric initialization with entropy-driven
iterative refinement and Indic-aware linguistic
coupling.



3 Methodology

INDRA addresses the limitations of standard self-
attention through four modules: (i) psychomet-
ric initialization, (i1) entropy-driven iterative re-
finement, (iil) Indic-aware graph coupling, and
(iv) proximal stability for convergence. Together,
these components transform INDRA into a princi-
pled replacement for standard attention, explicitly
aligning token interactions with psychometric pri-
ors, refinement dynamics, and linguistic structure.

3.1 Psychometric Initialization

Classical Item Response Theory (IRT) models the
probability that a learner with ability § answers an
item correctly using two parameters: difficulty b
(how hard the item is) and discrimination a (how
well the item separates strong learners from weak
ones):

P(correct | 6) = a(a(f —b)).

We adapt this idea from items to tokens. Each
token z;; (token j in option ¢) is assigned a discrim-
ination a;; and a difficulty b;;. Instead of starting
from uniform dot-product attention, we bias the ini-
tial attention logits as
qiij

Vd
Intuitively, tokens that are more informative (high
a;;) are weighted up, while tokens that make the
item harder (high b;;) are weighted down. By ag-
gregating across tokens, we can recover the famil-
iar item-level IRT parameters, linking INDRA di-
rectly to psychometric theory while staying com-
patible with transformer attention. Unlike standard
random initialization, INDRA seeds a;; and b;;
from dataset-informed priors (see Algorithm 1).

Discrimination a;; is scaled by token salience:
tokens unique to one option receive higher values,
while tokens shared across distractors are down-
weighted. Morphological uniqueness, measured
via normalized edit distance, further boosts the
weight of distinctive tokens. Difficulty b;; is ini-
tialized from human-annotated TEEMIL difficulty
labels: easy items map to lower values, hard items
to higher values, and medium items interpolate
between the two. This design ensures that the
starting logits ¢() already encode a plausible dif-
ficulty structure, improving stability of the refine-
ment loop and providing interpretable links be-
tween token-level attention and educational con-
structs.

0
¢ — b
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Algorithm 1: Psychometric Initialization
in INDRA
1 [11 MCQ options O = {oy,...,0n} with
tokens x;;, item-level difficulty label
y € {Easy, Medium, Hard} Token-level
discrimination {a;; } and difficulty {b;;}
2 Initialize Qi 1.0, bz’j < 0.0 for all
tokens for each option o; do

3 each token z;; in o; Compute
morphological uniqueness:

EditDiSt(l’ij, Ok)

u(zij) =1 — min Tz
ij

oK 7#0;

Compute option overlap score:

f(@ij) = !

- count(xij across all options)
Set discrimination prior (with a € [0, 1)):
aij < o u(wij) + (1 — o) - f(@i5)

Assign difficulty prior b;; from label y:

0.0, y = Easy
bij < 4 0.5, y=Medium V token in item
1.0, y = Hard

Normalize {a;;} to mean 1.0 and {b;;} to
mean 0.0 return {a;;}, {b;;}

3.2 Entropy-Driven Iterative Refinement

Human test-takers rarely identify the correct op-
tion in a single glance (Leighton and Gierl, 2017).
Instead, they progressively narrow down the pos-
sibilities by ruling out distractors. To mimic this
behavior, INDRA refines attention over multiple
steps rather than collapsing into a single pass. At
refinement step ¢, the distribution is

= SOftmax(%E(t—1)>,

where 7 > 0 is a temperature parameter. A large
7 produces a broad, uncertain distribution (anal-
ogous to considering all options), while a small
7 yields a sharper focus (analogous to eliminat-
ing unlikely distractors). By iterating this update
for a small number of steps, irrelevant tokens are
suppressed gradually instead of being discarded
too early. This produces smoother and more in-
terpretable attention trajectories that better mirror
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the incremental reasoning strategies observed in
human test-taking.

3.3 Indic-Aware Graph Coupling

In Indic languages, distractors often differ from the
correct answer through systematic variations such
as inflectional endings, compounding, derivational
morphology, synonymy, or code-mixing. These
patterns make distractors highly confusable: sur-
face similarity is high, yet subtle semantic dif-
ferences determine correctness. For instance, in
Hindi:

1930 & qureh H fafeer TR gRI WRd TR §
R & TATE &l T AH 91?2 (“In the 1930s, what
was the name of the British Government s attempt
to reform the Government of India?”) Options:
A TIHR FUR AT All share the prefix HRG
THR and differ only in suffixes such as Jf&faw
vs. gUR A9, making them morphologically
and semantically close. Similarly, in Kannada:

%R0BTE), BNETT BB GVTEFZA T30
B0 D?  (“What is the main reason for low
worker productivity in India?”’) Options: 30-
38 3003, R0PES 3RT3, modo%%cs BRT-
& Each option shares the suffix #0338 (“lack of™),
forming systematic morphological variants.

Such cases highlight that standard attention,
which treats tokens independently, cannot reliably
eliminate distractors without modeling these struc-
tural relations. Graph coupling addresses this by
ensuring plausibility is initially shared among re-
lated variants and only suppressed when sufficient
contextual evidence emerges.

Algorithm 2 outlines the construction of &
for each MCQ, integrating morphological, se-
mantic, and syntactic kernels into a sparse, row-
normalized diffusion matrix. For each MCQ, we
build a token similarity graph G € R™" that inte-

Gij = )\morph eXp( -

grates three signals:
+ Asem cos(hy, hj)

+ Asyn1{ (4, j) € DepTree},

ED(zi,xj)
Om

(1)

where ED is normalized edit distance (morphol-
ogy), cos(h;, hj) is semantic similarity between
contextual embeddings, and 1 encodes syntac-
tic adjacency. The weighted graph G is row-
normalized to produce G, with top-k sparsification
applied per row for scalability. At refinement step
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Algorithm 2: Construction of Token Simi-
larity Graph G
Input: Tokens x1., with hidden states hy.,,;
tokenizer 7; dependency edges
DepTree; weights Amorph, Asems Asyns
scale o, > 0, sparsity k
Output: Row-normalized graph
G« € Rnxn

1 for: =1tondo
for j = 1tondo
G?]l-orph «—
exp(—ED(T (i), T (z;))/om)
G™ < cos(hs, hyj)
G:;n < 1if (i,5) € DepTree else 0

2

3

4

5

¢ | Keep only top-k neighbors in row ¢

7 G+ Amorthmorph + AsemG*™ + Agyn G
s Row-normalize rows: G;. < G;. / Zj Gij

9 return GG

t, attention propagates through the graph as

W =a+p&p",  pz0, @
where 5 controls propagation strength. Small £
keeps updates localized, while larger 8 diffuses
plausibility across morphologically and semanti-
cally related tokens. This coupling stabilizes re-
finement and prevents premature collapse onto a
single option when distractors are nearly indistin-

guishable.

3.4 Proximal Stability for Convergence

Repeated refinement and diffusion can destabilize
logits, especially when entropy is low or graph cou-
pling is strong. To guarantee smooth convergence,
INDRA applies proximal damping:

M=

— D WD,y e (0,1].

3)

This exponential moving average blends past and
current logits, preventing oscillations and ensuring
a monotonic narrowing of focus. The damping fac-
tor -y is tuned on the validation set.

3.5 Unified Update Rule

Combining psychometric initialization, iterative
refinement, graph coupling, and proximal stability,



the overall update at step ¢ is:
(0 = (1)t (4)
+ W, (I + BQ) softmax(%ﬂ(tfl)). (35
with initialization

) qiij
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— byj.
After T refinement steps, the final attention distri-
bution is

pNDRA softmax(%E(T))

Although INDRA introduces several compo-
nents psychometric initialization, iterative refine-
ment, graph coupling, and proximal stability they
operate within a single unified update rule. In prac-
tice, this means INDRA simply replaces the atten-
tion update inside a transformer layer, with each
step adding lightweight biasing or diffusion opera-
tions (See Appendix section D).

4 Experiments

In this section, we detail the experimental setup
including different models, experimental configu-
rations with INDRA, and present the results ob-
tained for multiple benchmark datasets. Besides,
ablation study on various hyperparameters is also
presented.

4.1 Task Formulation, Models, and Datasets

We frame MCQ difficulty estimation as a mul-
ticlass classification problem, following prior
work in transformer-based educational NLP
(Ravikiran et al., 2025a,b). Each instance consists
of a passage P (optional), a question (), and
four options. The input sequence is linearized
as: [CLS] Passage [SEP] Question [SEP]
Option A [SEP] Option B [SEP] Option C
[SEP] Option D, then tokenized and encoded
using a transformer encoder. A classification
head predicts a probability distribution over three
difficulty levels: Easy, Medium, and Hard, with
the predicted label taken as the most probable
class. To assess INDRA’s contribution, we also
conduct ablations where each module is removed
in turn.

Experiments are conducted on two curriculum-
grounded Indic datasets from the TEEMIL bench-
mark: TEEMIL-H (Hindi) and TEEMIL-K (Kan-
nada). Both datasets are manually annotated
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into three difficulty classes (Easy, Medium, Hard)
by expert teachers. = We adopt an 80/10/10
train/validation/test split for both datasets to ensure
fair and comparable evaluation. Further prepro-
cessing and dataset statistics are described in Ap-
pendix F.

We report macro-averaged F1 across the three
difficulty levels as our primary metric, since it bal-
ances class imbalance and penalizes poor perfor-
mance on harder items. Accuracy is reported as a
secondary metric. Beyond prediction scores, we
also inspect the learned token-level psychometric
values (a;j, b;;), which provide interpretability by
showing how discrimination and difficulty signals
align with distractors.

4.2 Results

Table 1 reports benchmark and ablation results on
TEEMIL-H and TEEMIL-K. Prior to INDRA, the
best-performing system was GISA (mBERT), with
macro-F1 scores of 0.961 on Hindi and 0.912 on
Kannada. INDRA sets a new state of the art, reach-
ing 0.984 on Hindi and 0.950 on Kannada absolute
improvements of +2.23 and +3.76 F1 points over
the previous SoTA, and +1.02 and +1.68 points
over CASSA. All models, including INDRA, use
the same mBERT backbone to ensure fairness
and direct comparability, making clear that the
observed gains stem from INDRA’s refinement
mechanism rather than differences in pretrained en-
coders. While we focus on mBERT for compara-
bility, INDRA is architecture-agnostic and can be
applied to stronger models in future work. All re-
ported INDRA results use three refinement itera-
tions (7" = 3). As shown in Table 4, performance
improves from 7' = 1 to 7" = 3 and then saturates.
Thus, all benchmarks reflect multi-turn refinement
rather than a single-pass update.

Table 1: Main benchmark and ablation results on
TEEMIL-H and TEEMIL-K. We report macro-F1 scores.
Ablations remove one component of INDRA at a time.

TEEMIL-H ‘ TEEMIL-K

Method Fi
INDRA 0.984 0.950
INDRA (- IRT only) 0.974 0.934
INDRA (- Entropy only) 0.972 0.936
INDRA (- Graph only) 0.976 0.930
CASSA (mBERT) (Ravikiran et al., 2025a) 0.973 0.933
GISA (mBERT) (Ravikiran et al., 2025b) 0.961 0.912
Auto-SVM (Supraja et al., 2017) 0.578 0.712
SOQDE (Hassan et al., 2018) 0.637 0.712
BinGrad-LR (Pado, 2017) 0.591 0.496

The ablation study highlights the contribution of
each component. Removing IRT-informed initial-
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Table 2: Effect of graph coupling parameter 5 on
TEEMIL-H and TEEMIL-K. We report macro-F1 scores.
Best results for each dataset are in bold.

TEEMIL-H [ TEEMIL-K
F1
0 0.976 0.93
0.2 0.979 0.94
0.4 0.984 0.95
0.6 0.982 0.945

Table 3: Effect of temperature parameter 7 on
TEEMIL-H and TEEMIL-K. We report macro-F1 scores.
Best results for each dataset are in bold.

TEEMIL-H [ TEEMIL-K
r
F1
0.5 0.971 0.928
0.7 0.978 0.94
1 0.984 0.951
1.2 0.982 0.947
1.5 0.976 0.939

ization reduces F1 by up to 1.6 points, removing
entropy-driven refinement by 1.2—1.4 points, and
removing graph coupling causes the largest drop
on TEEMIL-K (—2.0 points). The larger overall
gain on TEEMIL-K (+3.76 over GISA vs. +2.23
on Hindi) reflects its agglutinative morphology,
which produces near-duplicate distractors differ-
ing only by suffixes or compounds. Graph cou-
pling stabilizes attention in such cases, while psy-
chometric priors and entropy refinement jointly
prevent premature collapse.

4.3 Ablation Studies

To better understand the contribution of each com-
ponent of INDRA, we conduct a series of ablation
experiments. These studies examine (i) the role
of each design element (IRT priors, entropy re-
finement, graph coupling), (ii) sensitivity to hy-
perparameters such as 3, 7, T, and ~, and (iii)
architectural choices including graph construction
weights, sparsity, projection variants, and layer
placement. All results are reported on TEEMIL-H
and TEEMIL-K, two morphologically rich datasets
where distractor plausibility is especially challeng-
ing.

Component Analysis. Table 1 shows the effect
of ablating individual modules. Removing IRT
priors reduces performance to 0.974 (TEEMIL-H)
and 0.934 (TEEMIL-K), confirming that psycho-
metric grounding is essential for stabilizing token
salience. Eliminating entropy refinement leads to
0.972 and 0.936, showing that stepwise sharpen-
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Table 4: Refinement dynamics: macro-F1 vs. num-
ber of refinement steps 7' on TEEMIL dev split. Most
of the gain accrues by 7'=3, after which performance
plateaus.

T 1
F1 | 0973

2
0.979

3
0.984

i
0.984

Table 5: Effect of proximal damping + on macro-F1
(TEEMIL dev split). v=0.5 achieves the best stable con-
vergence; low ~y converges slowly, while high v desta-
bilizes refinement.

¥ F1 Behavior

0.1 | 0.976 Slow, under-reactive
0.3 | 0.979 Stable, improving
0.5 | 0.984 | Best, stable convergence
0.7 | 0.981 Mild overshoot

0.9 | 0.977 Oscillatory / unstable

ing is critical for modeling distractor elimination.
Disabling graph coupling causes the sharpest drop,
especially on TEEMIL-K (0.930), highlighting the
importance of morpho-semantic propagation in ag-
glutinative settings. Together, these results show
that INDRA’s gains emerge from complementary
contributions.

Graph Coupling Strength. Table 2 explores
the effect of the coupling parameter 3. With
B = 0, INDRA collapses to the Graph ablation
(0.976/0.930). Increasing S to 0.2-0.4 yields con-
sistent gains, peaking at 0.984/0.950. Beyond this,
performance declines due to oversmoothing. The
larger improvements on TEEEMIL-H confirm that
graph coupling is particularly valuable when dis-
tractors differ only by suffixes or compound mark-
ers, a common phenomenon in agglutinative mor-

phology.

Temperature Scaling. Table 3 shows the effect
of 7 on refinement dynamics. At 7 0.5, at-
tention sharpens prematurely, leading to lower re-
call (0.971/0.928). At T = 1.5, attention becomes
too diffuse, producing weaker focus (0.976/0.939).
The best setting (7 = 1.0) achieves 0.984/0.950,
supporting the principle that entropy should be re-
duced gradually rather than collapsed in a single
step. This aligns with the human elimination pro-
cess INDRA seeks to mimic.

Refinement Steps. Table 4 tracks F1 across dif-
ferent iteration counts 7. One step (0.973) under-
refines attention, while three steps achieve the
best trade-off (0.984). Beyond three steps, perfor-
mance plateaus, indicating that excessive refine-



(/\mmlf,h7 Asem, )\syn) TEEMIL-H | TEEMIL-K
(1.0, 0.0, 0.0) 0.976 0.938
(0.0, 1.0, 0.0) 0.979 0.934
(0.0, 0.0, 1.0) 0.973 0.931
(0.5, 0.5, 0.0) 0.981 0.941
(0.5, 0.0, 0.5) 0.978 0.939
(0.0,0.3,0.5) 0.975 0.933

(0.33,0.33,0.33) 0.984 0.950

Table 6: Effect of weighting graph components. Bal-
anced contributions from morphology, semantics, and
syntax perform best, matching the overall INDRA
benchmark peak.

k TEEMIL-H | TEEMIL-K
4 0.976 0.935
8 0.984 0.950
12 0.982 0.946
16 0.979 0.940

Table 7: Effect of graph sparsity (top-k neighbors). Per-
formance peaks at k = 8, suggesting that a modest
neighborhood balances locality and noise.

ment adds computation without improving results.
This confirms that difficulty estimation benefits
from limited but structured stepwise updates.

Proximal Damping. Table 5 examines the
damping parameter 4. Low v (0.1) produces
sluggish updates (0.976), while high v (0.9) desta-
bilizes refinement, causing oscillations (0.977).
A balanced 0.5 achieves optimal stability
(0.984/0.950). This shows that proximal damping
is necessary for convergent refinement dynamics
that remain interpretable.

Graph Component Weights. Table 6 evaluates
the relative contribution of morphological, seman-
tic, and syntactic kernels. Morphology-only and
semantics-only variants are competitive (0.976-
0.979 on TEEMIL-H, 0.934-0.938 on TEEMIL-K),
but weaker than the balanced combination. Syntax-
only is the weakest (0.973/0.931). The equal-
weighted graph (0.984/0.950) confirms that com-
bining all linguistic cues yields the most robust
modeling of distractor plausibility.

Graph Sparsity. Table 7 studies the number of
neighbors k retained per token. Small £ (4) under-
connects tokens (0.976/0.935), while large £ (16)
over-propagates noise (0.979/0.940). A moderate
neighborhood (k = 8) achieves the best trade-off
(0.984/0.950), confirming that distractor modeling
benefits from localized but not overly dense token
connections.
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Wp Variant TEEMIL-H | TEEMIL-K
Fixed (7 log p) 0.984 0.950
Learned scalar 0.981 0.944

2-layer MLP 0.980 0.943

Table 8: Variants of the proximal projection W,. The
fixed log-prob projection performs slightly better and is
more stable than learned variants.

Layer Placement | TEEMIL-H | TEEMIL-K
After Layer 4 0.973 0.932
After Layer 8 0.980 0.943

After Final Layer 0.984 0.950

Stacked (8+12) 0.982 0.947

Table 9: Effect of placing INDRA at different layers.
Refinement after the final layer is most effective, with
stacked placement also performing well.

Projection Variants. Table 8 compares differ-
ent projections W, for proximal stability. A
log-prob projection achieves the strongest results
(0.984/0.950), outperforming learned scalar and
MLP mappings. While learned variants offer flexi-
bility, they introduce overfitting risks, whereas log-
prob scaling provides a principled mechanism that
is both stable and interpretable.

Layer Placement. Table 9 explores where IN-
DRA is most effective in the transformer. Inserting
refinement at lower layers (4 or 8) yields weaker
scores (0.973-0.980), as early representations lack
full semantic context. The best results occur when
INDRA is applied at the final layer (0.984/0.950).
Stacked placement (Layers 8+12) improves over
single mid-layer insertion but remains below the
final-layer variant, suggesting redundancy rather
than complementarity.

Overall, these ablations show that INDRA’s im-
provements arise not from a single component, but
from the interplay of psychometric priors, iterative
refinement, and graph-based coupling, with proxi-
mal damping ensuring stable convergence.

4.4 Qualitative Analysis

Language-wise Performance. Figures 1 and 2
show the confusion matrices for TEEMIL-H and
TEEMIL-K test sets, expressed in percentages. On
Hindi, INDRA achieves nearly perfect classifica-
tion, with over 98% accuracy across all three diffi-
culty levels. The few errors that remain are pri-
marily Easy <> Medium confusions, which can
be attributed to dataset imbalance (567 Easy vs.
only 103 Hard). On TEEMIL-K, per-class accu-
racy is slightly lower (94-95%), and the major-



True Label
Medium

Hard

Medium
Predicted Label

Fig. 1: TEEMIL-H test set confusion matrix. Most errors
occur between Easy and Medium.

True Label

Hard
Predicted Label

Fig. 2: TEEMIL-K test set confusion matrix. Errors are
concentrated in Medium <+ Hard confusions.

ity of errors occur between Medium and Hard.
This aligns with the morphological complexity of
TEEMIL-K, where distractors are often suffixal or
compounded variants of the correct answer. These
figures empirically illustrate the earlier quantita-
tive findings: IRT priors stabilize Hindi predic-
tions, while graph coupling contributes more sub-
stantially to TEEMIL-K.

Error Analysis. Manual inspection of mis-
classified cases reveals three recurring error
types grounded in the TEEMIL-H and TEEMIL-K
datasets.

First, near-synonym distractors continue to con-
fuse the model. For instance, in Hindi a correct
answer such as T¢I (study) may be paired with
distractors like €AY (teaching), which are mor-
phologically related but semantically distinct. Sim-
ilarly, in Kannada, items like 883 (teacher) and r-
O (teacher) are both valid in everyday use, causing
the model to misclassify Medium as Hard.

Second, ambiguous or multi-correct items occur
when distractors are contextually plausible. For ex-
ample, a Kannada question on Tipu Sultan’s wars
listed edona@E3eo and e3y=eTH as separate op-
tions, both historically associated with his rule.
Such cases are inherently difficult even for human
annotators and often result in inconsistent labels
across annotators.

Finally, oversmoothing effects arise when the
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graph coupling parameter 3 is set too high. In such
cases, morphologically close options (e.g., Hindi
& “work” vs. BEATAT “office™) retain excessive
shared plausibility, blurring fine-grained distinc-
tions and leading to reduced accuracy.

Overall, these analyses show that INDRA sub-
stantially improves F1 relative to prior work, while
highlighting open challenges in synonym resolu-
tion, ambiguous distractors, and the need for adap-
tive graph weighting in morphologically rich set-
tings. A detailed set of qualitative case studies is
provided in Appendix F, where Hindi and Kannada
examples illustrate these error categories.

5 Conclusion

We presented INDRA, an iterative difficulty re-
finement attention mechanism for multiple-choice
question (MCQ) difficulty estimation. By inte-
grating psychometric initialization, entropy-driven
iterative refinement, and Indic-aware graph cou-
pling. Our experiments on TEEMIL-H and
TEEMIL-K demonstrate new state-of-the-art perfor-
mance, with absolute gains of up to +3.8 macro-F1
over strong baselines. Ablation studies show that
each component contributes complementary bene-
fits, while error analysis highlights INDRA’s abil-
ity to model subtle morphological and semantic
distractors in low-resource, linguistically complex
settings.

Despite these advances, challenges remain. The
observed gains, though consistent, are modest in
absolute terms, and evaluation was limited to two
Indic languages. Future work will extend INDRA
to multilingual and multimodal MCQs, explore
adaptive graph weighting for robust handling of
near-synonym distractors, and integrate external
lexical resources to improve generalization. Be-
yond accuracy, a promising direction lies in lever-
aging INDRA’s psychometric interpretability for
auditing fairness and bias in educational assess-
ment, supporting more transparent and equitable
Al for education.

Limitations

Although INDRA achieves consistent improve-
ments over prior methods, several limitations re-
main. First, our evaluation is restricted to two
Indic languages (Hindi and Kannada), and there-
fore the claims do not yet generalize across the
broader Indic landscape such as Bengali, Telugu,
Marathi, or Tamil. The observed gains, while



stable, are modest in absolute terms (typically
1-1.6 F1), in part due to the strong ceiling of
mBERT-based baselines and the sensitivity of IN-
DRA to hyperparameters such as graph coupling
strength 5 and temperature 7. Additionally, the
graph coupling mechanism may oversmooth token
interactions when distractors are extremely simi-
lar (e.g., near-synonyms or shared morphological
suffixes), which can reduce discrimination among
fine-grained variants.

Second, INDRA is evaluated only within an
encoder-based architecture. We do not include
comparisons with generative LLMs (e.g., GPT-
style models), as TEEMIL’s fixed-format MCQs
align better with encoder-only models and cur-
rent generative scoring pipelines are not directly
comparable; nonetheless, extending INDRA to
decoder-based or instruction-tuned LLMs is an im-
portant direction for future work. Finally, psy-
chometric priors for token-level discrimination
and difficulty rely on dataset-driven heuristics
and may require adaptation for non-curricular do-
mains. Broader multilingual evaluation and adap-
tive graph weighting present further opportunities
to improve generalization and robustness.

Ethical Considerations

This work focuses on MCQ difficulty estimation
for educational use, and we outline key ethical as-
pects. First, the TEEMIL datasets used in this
study are derived from publicly available. Second,
while INDRA improves transparency through psy-
chometric priors, automated difficulty estimation
must be used cautiously, as systematic errors could
disadvantage learners or reinforce curricular bi-
ases. The method may underperform on underrep-
resented linguistic varieties or dialectal forms, em-
phasizing the need for broader multilingual eval-
uation and regular auditing. Finally, INDRA is
intended as a decision-support tool rather than a
replacement for human educators; its predictions
should be supplemented with expert judgment to
ensure equitable and pedagogically appropriate de-
ployment in real-world educational settings.
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A Dataset Grounding and Annotation
Protocols

For ease of understanding, here we summarize the
TEEMIL benchmark dataset.

A.1 Data Sources

We use TEEMIL-H (Hindi, 4,689 MCQs) and
TEEMIL-K (Kannada, 4,215 MCQs) (Ravikiran
et al.,, 2025¢). Both were derived from state-
board textbooks spanning history, civics, geogra-
phy, economics, and physical education (Classes
6-12). Textbooks were obtained in EPUB format
under permissive licenses, converted into plain
text, and curated to retain only pedagogically rel-
evant material.

A.2 MCQ Creation

Following the TEEMIL framework, approxi-
mately 25,000 candidate MCQs were automati-
cally generated per language using a multistage
prompting pipeline adapted from Maity et al.
(2024). From these, two instructors and four stu-
dent assistants manually selected ~5k questions
per language that satisfied grammaticality, curric-
ular alignment, and Bloom’s Taxonomy balance.

A.3 Difficulty Annotation

Each MCQ was labeled into three difficulty lev-
els (Easy, Medium, Hard). Student annotators
(Classes 8—11) solved each question and assigned
a difficulty score. At least two annotators labeled
every MCQ. Disagreements were resolved through
targeted questionnaires and adjudication by NLP
researchers.



A.4 Inter-Annotator Agreement (IAA)

Cohen’s k was used to measure reliability, yield-
ing k = 0.65 for Hindi and x = 0.69 for Kan-
nada, both indicating substantial agreement. This
ensures the difficulty labels used in our experi-
ments reflect consistent human judgments rather
than noisy annotations.

A.S Bloom’s Taxonomy Distribution

To capture cognitive diversity, each MCQ was
also mapped to Bloom’s levels. For TEEMIL-
H: ~60% “Remember,” ~38% “Understand,”
and ~2% higher-order (Apply/Analyze). For
TEEMIL-K: a similar distribution holds, but with a
higher proportion of morphologically complex dis-
tractors. This imbalance underscores the challenge
of difficulty estimation, especially for medium and
hard items.

A.6 Notable Dataset Properties

* Option Quality: BLEU and cosine similarity
analysis confirms that TEEMIL-K distractors
are more lexically and semantically similar to
correct answers than TEEMIL-H.

Presence of NOTA: 487 Hindi and 132 Kan-
nada items include “None of the Above” as
an option, which prior work shows adds am-
biguity to difficulty estimation.

Curriculum-Groundedness: All questions
are sourced from formal state-board curricula,
ensuring educational authenticity.

A.7 Relevance to INDRA

The dataset properties directly motivate INDRA’s
design choices.

* The morphologically confusable distractors
in TEEMIL-K highlight the need for graph-
based coupling to propagate plausibility
among near-duplicate tokens.

* The high proportion of fact-recall questions
in TEEMIL-H motivates psychometric initial-
ization, anchoring token salience with dis-
crimination and difficulty parameters.

* The presence of NOTA and subtle distrac-
tor variants necessitates entropy-driven iter-
ative refinement, which gradually eliminates
implausible options instead of collapsing pre-
maturely.
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Thus, the TEEMIL datasets not only provide the
evaluation benchmark but also ground the method-
ological innovations of INDRA in authentic educa-
tional challenges.

B Mathematical Analysis and Stability
Guarantees of INDRA

B.1 Notation Recap

Let X € R™*? denote token embeddings. At re-
finement step ¢, INDRA maintains logits /() &
R™*™ and an attention distribution
p(t) = softmax(% E(t*1)> ,

with temperature 7 > 0. Graph coupling uses
a sparse, row-normalized matrix G € R"*" and
proximal damping with coefficient v € (0, 1]. The
unified update is

(0 = (1 =) £07D 4 yW, (I + BG) p,
where 8 > 0 controls diffusion strength.

B.2 Convergence of Refinement Dynamics

Lemma 1 (Boundedness). For any initialization
(O and B > 0, the sequence {{)} remains
bounded, i.e.,

[Woll2

16912 < max ), i¥el

}.

Proof. Since G is row-normalized,
I(I+BG)pD )2 < (1+8)pW 2 < (1+7). The
proximal update is an exponential moving average,
which guarantees boundedness by convexity. [

Lemma 2 (Contractivity). If0 < v < land T >
0, the mapping

F(£) = (1 — )l + AW, (I + BG) softmax(Le)

is a contraction on a compact domain.

Proof- The Jacobian of the softmax satisfies
|| Jsoftmax |2 < ﬁ. Thus

[F(€) = F(l)]2 < A=) [lE=L]l2 (6)
4 Y ||WpH2 7

4t
(L+B) 1€~ ®)

Choosing ~, 7 such that the coefficient is < 1 en-
sures contractivity. O

Corollary 1 (Stability Guarantee). Under the
above conditions, 0 s ast — oo, and the
refinement process converges monotonically.



B.3 Computational Complexity

Let n be the number of tokens, k the graph sparsity
(top-k neighbors per row), and T' the number of
refinement steps.

* Graph Construction: O(n?) for pairwise

similarity, reduced to O(nk) with top-k spar-
sification.

* Refinement Update: Each step requires
a matrix-vector multiplication with G, i.e.
O(nk).

* Overall Cost: O(Tnk + Tnd), where nd
arises from standard self-attention.

Thus INDRA adds only a sparse diffusion over-
head on top of transformer attention, scaling lin-
early with k and refinement depth 7.

B.4 Interpretability via Token-Level
Parameters

Psychometric initialization introduces token dis-
crimination a; and difficulty b;:

q; k;
Vd

anchoring attention weights to interpretable token
salience. Aggregating {a;,b;} over an option re-
covers item-level IRT parameters, providing a the-
oretical bridge between educational measurement
and neural refinement.

/0

ij

:ai.

— b,

B.5 Practical Guidelines

To ensure stable training:

1. Use v = 0.3-0.5 to balance responsiveness

and damping.

. Set 7 =~ 1.0 to avoid premature collapse or
over-diffusion.

. Restrict 5 < 0.5 to prevent oversmoothing
across distractors.

. Limit T < 3 iterations, since performance
gains saturate beyond this (see Appendix F).

C INDRA Working

Sequence of Operations. Each INDRA atten-
tion head follows the same sequence of steps:

1. Imitialization. Compute token-level logits us-
. . ikl
ing psychometric scalars: El(?) = a;j qui —

bij.
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2. Iterative Refinement. At each step ¢,
compute a softened distribution p(*)
softmax(%é(t_l)), where 7 controls sharp-
ness.

. Graph Coupling. Diffuse plausibility across
morphologically, semantically, or syntacti-
cally related tokens: p{¥) = (I 4+ BG) p®.

. Proximal Stability. Update logits with
damping to avoid oscillation: ¢(t) = (1—
N + Wy,

. Final Distribution. After 7' refinement steps,
output p'™NPRA — softmax( Ly (T)).

=

This modular flow ensures that INDRA behaves
as a single attention operation: psychometric pri-
ors set the starting point, refinement narrows fo-
cus, graph coupling shares plausibility across con-
fusable tokens, and proximal stability guarantees
smooth convergence. All steps are encapsulated
inside the attention update, making INDRA a drop-
in replacement for standard self-attention.

D Psychometric Initialization Details

To complement the description in Section 3.1, we
provide the exact procedure used to seed token-
level discrimination a;; and difficulty b;; from
dataset-informed priors.

Initialization. Before refinement begins, IN-
DRA seeds the logits with a token-level extension
of Item Response Theory (IRT). Each token x;;; (to-
ken j in option %) is assigned two scalars:

* Discrimination a;;: measures how informa-
tive the token is for distinguishing the correct
option from distractors. Tokens unique to one
option receive higher values, while tokens
shared across distractors are down-weighted.
Morphological uniqueness (e.g., distinctive
suffixes) further increases a;;.

Difficulty b;;: encodes how much the to-
ken contributes to the item’s overall hardness.
These values are initialized from dataset pri-
ors e.g., human difficulty labels in TEEMIL
so that Easy items map to lower values, Hard
items to higher values, and Medium items in-
terpolate in between.

The initial logits are then defined as



This ensures that attention starts from a plausi-
ble difficulty-aware bias rather than random initial-
ization: informative tokens are emphasized, diffi-
cult tokens are penalized, and the refinement loop
has a stable and interpretable starting point. Algo-
rithm 1 formalizes the computation step by step.

E Additional Algorithmic Details and
Analysis

E.1 Graph Construction and Sparsity
(Method §3.3)

In Method §3.3 we introduced the token similar-
ity graph G. Here we expand on its construction.
The graph integrates three sources of linguistic
affinity: (i) edit-distance for morphological simi-
larity, (ii) cosine similarity of contextual embed-
dings for semantic proximity, and (iii) dependency
adjacency for syntactic relatedness. The matrix is
row-normalized to ensure ) j G’ij = 1. To main-
tain scalability, we retain only the top-k = 5 neigh-
bors per token. Sensitivity analysis shows stable
performance for k € [3,7].

E.2 Convergence Behavior (Method §3.4-3.5)

In Method §3.4 we proposed proximal damping to
guarantee stability of refinement. Here we empiri-
cally validate that: (1) performance improves from
T = 1to T = 3 iterations, then plateaus ; (2)
damping with v = 0.5 prevents oscillations when
B < 0.5; and (3) larger 3 occasionally causes over-
smoothing. These results support the stability guar-
antee derived in Appendix B.

E.3 Computational Overhead (Method §3.5)

The refinement update in Method §3.5 requires
O(nk) operations for graph propagation in addi-
tion to standard O(nd?) transformer attention. On
TEEMIL-H/K (average n = 55 tokens), this over-
head is marginal: INDRA runs at only 1.08x the
cost of a plain mBERT baseline. Thus the pro-
posed refinement is scalable to real-world MCQs.

E.4 Design Choices (Method §3.3-3.5)

We experimented with alternative formulations:
symmetric normalization of G, Gumbel-softmax
instead of temperature scaling, and direct entropy
regularization. None improved over the current
design. Row-normalization, temperature scaling,
and proximal damping consistently yielded the
most stable training and interpretable dynamics.
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F Experimental Setup Additional Details
F.1 Model Training Details

All models are implemented in PyTorch and
trained on a single NVIDIA A100 GPU. Unless
otherwise stated, we follow the training setup of
Ravikiran et al. (Ravikiran et al., 2025¢):

Optimizer: AdamW, learning rate 2 x 1072,
weight decay 0.01.

Batch size: 16.

Maximum sequence length: 256 tokens.

Early stopping: patience of 3 epochs based on
validation macro-F1.

Epochs: capped at 10 (most models converge
in 4-6).
F.2 INDRA Hyperparameters

We conduct validation sweeps over the refinement
parameters:

» Iterative steps 7' € {1,2,3,4}, with T = 3
performing best.

» Temperature 7 € {0.7,1.0,1.3}, with 7
1.0 optimal.

« Graph coupling strength 5 € [0,0.5], best at
5 =04,

* Damping coefficient ol
{0.1,0.3,0.5,0.7,0.9}, best at v = 0.5.

* Graph sparsity: top-k = 5 neighbors retained
per token.

F.3 Baselines and Comparisons

All baselines (CASSA, GISA, Auto-SVM, SO-
QDE, BinGrad-LR) use the same mBERT encoder
backbone and identical training protocol as in
TEEMIL (Ravikiran et al., 2025¢), ensuring that
performance differences arise solely from atten-
tion refinements.

G Error Analysis and Case Studies

G.1 Rationale

While quantitative results demonstrate INDRA’s
overall gains, we provide qualitative case stud-
ies from the TEEMIL-H (Hindi) and TEEMIL-K
(Kannada) test splits. These examples illustrate
how morphologically and semantically confusable



distractors challenge baseline models, and how IN-
DRA’s iterative refinement provides more human-
like elimination trajectories.

G.2 Hindi Examples

Example 1 (Medium Difficulty). MCQ: 1930
& queh # fafesr THR g vRd WER # IR &
U1 <hl T A AqT?

Options: (A) ¥RA TWHR AATH, (B) ARAT
TIAT AT, (C) YR TR Gur A, (D)
ZTH i 7.

Gold Answer: (C) YR TIhR JUR CIBIEDE

Observation: All options share the prefix WRd
TWHR, and differ only in suffixes like f&fam
vs. U g, Baselines (CASSA, GISA) fre-
quently confuse (A) vs. (C), while INDRA’s graph
coupling propagates plausibility among morpho-
logically similar variants, then gradually sharpens
attention toward (C).

Example 2 (Easy Difficulty).
& e we R A E?

Options: (A) faum @, (B) fagm ufvwe, (C) fa-
Y@ (variant spelling), (D) 939G,

Gold Answer: (A) faem T,

Observation: Here, spelling variants (B vs. C)
introduce confusion. CASSA often misclassifies
due to surface similarity. INDRA’s psychometric
initialization assigns higher discrimination to to-
kens like |4T, helping it distinguish (A) from vari-
ants.

MCQ: T5T THR

G.3 Kannada Examples

Example 3 (Medium Difficulty). MCQ: e3pe3-
T23 AETFO® 9530 TBNT 236392390 OR?

Optlons (A) 3B, ﬁsﬁxﬁ)ﬁﬁ%f?b HoBRI-
e, (B) R0333 5®awﬁ@§ab SBZen, (C) ITIT
@dﬁgé SR TN E@O&)F&)ﬁ?&e“’a DVBSTRR-
20, (D) TR, BEIHIL.

Gold Answer: (C).

Observation: All options are grammatically cor-
rect and contextually plausible. Baselines dis-
tribute probability across (A)/(B)/(C). INDRA, via
entropy-driven refinement, gradually rules out (A)
and (B) and converges on (C), mirroring human
reasoning.

Example 4 (Easy Difficulty).
RZ0o0NY 37, [Fe?

Options: (A) 2IR08T, WOT,3 23y, (B) 2%~
R 203y F’\)Oﬁwéoﬁo@q D3BRB3S, (C) L3R, f*’\)oﬁw—
& 23y @DZSJazgeﬁCSQ %é)z;’;sg, (D) 53@@3@?1@;@2,
BT Y,

MCQ: Ind
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Gold Answer: (A).

Observation: Distractors (B, C) are semanti-
cally close. INDRA'’s token-level discrimination
highlights 2233085, WOTS as diagnostic, yield-
ing correct classification.

G.4 Takeaways

* Morphologically close distractors (Hindi suf-
fix variants, Kannada suffix $0303) are hard-
est for baselines.

* INDRA’s graph coupling and entropy refine-
ment help separate subtle variants without col-
lapsing prematurely.

* Qualitative inspection confirms that IN-
DRA’s design aligns with human elimination
strategies, not just numeric gains.

Appendix H: Transliteration and
Translation of Examples

For completeness and reviewer clarity, we pro-
vide transliterations and English translations for
all Hindi and Kannada examples appearing in Sec-
tions 1, 3.3, and 4.4 of the paper.

H.1 Hindi Examples

Example H1 (Section 1). Original: IS WX-
FR & A9 AGT H RTAW 8?  Transliteration:
Rajya sarkar ke nichle sadan ka kya nam hai?
Translation: What is the name of the lower house
of the state legislature?

Options:
(A) T I Vidhan Sabha - Legislative Assem-
bly
(B) faum™ uRse  Vidhan Parishad - Legislative
Council
(C) 9 Sansad - Parliament
(D) =Tt Nyayapalika - Judiciary

Example H2 (Section 1). Original: 1930 &
27 H fofeer TR g1 YRA TR H GUR & Jarg
T T AH AT?  Transliteration: 71930 ke dasak
mem Britis sarkar dvara Bharat sarkar mem sud-
har ke prayas ka kya nam tha?
Translation: In the 1930s, what was the name
of the British Government’s attempt to reform the
Government of India?

Options (abridged):
(A) YRAd WeR AR™IH  Bharat Sarkar Ad-
hiniyam - Government of India Act
(B) YR =T AT Bharatiya Svatantrata
Adhiniyam - Indian Independence Act



(C) WA THR GUR ARTH Bharat Sarkar Sud-
har Adhiniyam - Government of India Reform Act
(D) STH A HRE TG Inmein se koi nahim - None of

these

H.2 Kannada Examples

Example H3 (Section 1). Original: pe3323
AETO® 9538 B0 235302390 O0?  Transliter-
ation: Lokasabhe spikar avara pramukha javab-
dari enu?
Translation: What is the main responsibility of
the Lok Sabha Speaker?

Options (abridged):
(A) DIPTSR, F0RRRIT Masiidegalannu
mandisuvudu - Introducing bills
(B) Z0DEBNGRY, SBR  Karyakrama-
galannu nadesuvudu - Conducting sessions
(C) 3BIT @C_jﬁgé’a B2 BN IBFBH DBI-
DBRRT Sadanada adhyaksate vahisi sugama
nirvahane khacitapadisuvudu - Presiding over the
house to ensure smooth functioning
(D) RTrT[IY BEIORRTD  Sarkaravannu
pratinidhisuvudu - Representing the government

Example H4 (Section 4.4). Original: 230-
3t DFIT TR LTETINR BT0D Fo-
0 OJ?  Transliteration: Bharatadalli kar-
mikarada kadime utpadtakatege pramukha karana
enu?
Translation: What is the main reason for low
worker productivity in India?

Options (abridged):
(A) 3323¢8 3038 Turabéti korate - Lack of train-
ing
(B) R05&S 30338 Sallghatane korate - Lack of
organisation
(C) oDz33 8R3T8 Nayakatvada korate - Lack
of leadership
(D) BedIRNSQ BRRBRP Y, Meélinavu-
galalli yavudii illa - None of the above

Example H5 (Section 4.4). Original: N0
AR0oNne 383, B3ep?  Transliteration:
Nagara samuddayagala vaisistyavenu?
Translation: What is a key characteristic of urban
communities?
Options (abridged):

(A) »SR0oamw, WOBE By, Janasankhyd san-
dﬁate heccu - High population density

(B) 2R =08y ﬁoﬁé@\%opo NIBRIJS  Bhase
mattu sa Dskﬁtiyalli ekariipate - Uniformity in lan-

guage and culture
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(C) 2R, 50ﬁw§ B @Ddfazseﬁde?q %&C’%@)
Bhase, sallskrti mattu udyogadalli vaividhyate -
Diversity in language, culture, and employment

(D) SedIINSBROTR /LY Melinavugalallu

ondu illa - None of the above
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Abstract

Evaluating instruction-tuned Large Language
Models (LLMs) in Hindi is challenging due to a
lack of high-quality benchmarks, as direct trans-
lation of English datasets fails to capture cru-
cial linguistic and cultural nuances. To address
this, we introduce a suite of five Hindi LLM
evaluation datasets: IFEval-Hi, MT-Bench-
Hi, GSM8K-Hi, ChatRAG-Hi, and BFCL-Hi.
These were created using a methodology that
combines from-scratch human annotation with
a translate-and-verify process. We leverage this
suite to conduct an extensive benchmarking of
open-source LLMs supporting Hindi, providing
a detailed comparative analysis of their current
capabilities. Our curation process also serves as
a replicable methodology for developing bench-
marks in other low-resource languages.

1 Introduction

The rapid expansion of Large Language Models
(LLMs) necessitates the development of robust and
reliable evaluation methodologies (Liang et al.,
2022; Srivastava et al., 2023). As these models
are integrated into a wide range of applications,
a rigorous assessment of their capabilities, limi-
tations, and safety is paramount (Achiam et al.,
2023; Wang et al., 2023). Although the initial fo-
cus of evaluation has been predominantly on En-
glish, a model’s global utility is contingent upon its
performance across diverse linguistic and cultural
contexts (Singh et al., 2024c). The evaluation of
non-English LLMs is therefore essential, not only
for ensuring equitable technological access but also
for understanding the extent to which these models
capture the distinct complexities inherent in dif-
ferent languages, an undertaking that goes beyond
mere translation (Bender et al., 2021).

The evaluation landscape for English LL.Ms is
well-established, featuring a comprehensive suite
of benchmarks targeting a spectrum of model ca-
pabilities. For foundational "base" models, bench-
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marks assess commonsense reasoning, such as Hel-
laSwag (Zellers et al., 2019) and Winogrande (Sak-
aguchi et al., 2021), factual accuracy with Truth-
fulQA (Lin et al., 2022), and broad multi-task
knowledge with MMLU (Hendrycks et al., 2020;
Wang et al., 2024; Singh et al., 2024b). Specialized
datasets evaluate capabilities like mathematical rea-
soning on GSM8K(Cobbe et al., 2021) and code
generation with HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). Furthermore, the ad-
vent of interactive, instruction-following models
has spurred the creation of benchmarks to assess
conversational quality on MT-Bench (Zheng et al.,
2023), fidelity to complex instructions with IFEval
(Zhou et al., 2023), and the ability to execute tool
or function calls correctly on BFCL (Patil et al.).
These datasets have collectively become the stan-
dard for evaluating the performance of state-of-the-
art models in English.

In recent years, significant progress has been
made in developing evaluation resources for In-
dic languages, typified by benchmarks such as In-
dicGLUE (Kakwani et al., 2020), MILU (Verma
et al., 2025), IndicMMLU-Pro (Sankalp et al.), and
IndicGenBench (Singh et al., 2024a). These re-
sources have been instrumental in assessing the
core capabilities of pre-trained base models across
numerous languages of the Indian subcontinent
(Joshi et al., 2024). Despite this progress, the exist-
ing benchmarks primarily target pre-trained base
models, leaving a noticeable gap in resources for
assessing the capabilities of instruction-tuned mod-
els. Consequently, benchmarks for critical skills
like instruction following, conversational ability,
and function calling, such as Hindi versions of IFE-
val, MT-Bench, and BFCL, are largely unavailable
publicly.

A common methodology to address this gap in-
volves the direct translation of existing English
benchmarks. This approach, however, presents
considerable challenges, as automated translation
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Dataset Name Count Method

IFEval-Hi 848 In-house

MT-Bench-Hi 200  Translated and human evaluated (4 categories); In-house (4 categories)

GSMS8K-Hi 1319  Translated and human evaluated (100%)

ChatRAG-Hi 5948  Translated, filtered, and human-evaluated (5%). Includes: INSCIT (450), Doc2Dial (498), QuAC, QReCC,
TopiocQA, CoQA, HybriDial, SQA, DoQA (Cooking, Travel, Movies), ConvFinQA (500 each).
Context: GCP translated, no filtering.
Answers and conversation turns:
- Used GCP translated data when the back-translated version matched the original (CHRF++ > 90).
- Else, used LLM translated data with heuristic filtering to remove poor translations.

BFCL-Hi 2251  Translated (not human evaluated)

Table 1: Overview of the Hindi evaluation datasets. The test suite consists of Hindi versions of IFEval, MT-Bench,

GSMSK, ChatRAG, and BFCL.

frequently fails to preserve the linguistic subtleties
and cultural context integral to the target language.
This process can yield datasets that are linguisti-
cally incongruous or culturally irrelevant, thereby
diminishing the validity and reliability of the evalu-
ation. Such benchmarks often test a model’s ability
to comprehend translated English rather than its
native fluency and instruction fidelity.

To address these deficiencies, this paper intro-
duces Hindi versions of five widely-used and com-
prehensive benchmarks: IFEval-Hi, MT-Bench-Hi,
GSMS8K-Hi, ChatRAG-Hi, and BFCL-Hi. We de-
veloped these datasets using a process that com-
bined direct human creation with a translate-and-
verify workflow, ensuring high linguistic and cul-
tural relevance. A summary of the final dataset
sizes and curation methods is presented in Table 1.
Furthermore, we utilize this new suite to conduct a
comprehensive benchmarking of several prominent,
publicly available LLLMs based on foundational
models, including Llama, Gemma, and Nemotron.
This work contributes a valuable, high-quality eval-
uation suite for Hindi to the research community
and presents a comparative analysis that offers crit-
ical insights into the current capabilities of Hindi
language models.

The main contributions of our work are as fol-
lows:

* We introduce a suite of five new, high-
quality benchmarks (IFEval-Hi!, MT-Bench-
Hi?, GSM8K-Hi’, ChatRAG-Hi*, and BFCL-
Hi’) for evaluating instruction-tuned LLMs in
Hindi and detail the curation process devel-
oped for their creation.

"https://huggingface.co/datasets/nvidia/IFEval-Hi
Zhttps://huggingface.co/datasets/nvidia/MT-Bench-Hi
3https://huggingface.co/datasets/nvidia/ GSM8K-Hi
*https://huggingface.co/datasets/nvidia/ChatRAG-Hi
>https://huggingface.co/datasets/nvidia/BFCL-Hi
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* We present a comprehensive benchmark of
prominent, publicly available LLMs on this
new suite, providing the first robust compara-
tive analysis of their capabilities in Hindi. Our
findings show that while specialized models
exhibit strength in specific tasks, Gemma-2-
9b-it in the SLM class and GPT-OSS-120B
in the LLM class emerge as the most capable
general-purpose models.

2 Related Work

Recent years have witnessed notable progress in
the evaluation of multilingual and low-resource lan-
guage models, with a particular focus on Indic lan-
guages. Foundational efforts, such as IndicGLUE
(Kakwani et al., 2020) and IndicXTREME (Dodda-
paneni et al., 2023), established the initial ground-
work by adapting the GLUE paradigm for major
Indic languages. These benchmarks provided a
broad suite of Natural Language Understanding
(NLU) tasks, including classification, entailment,
and named entity recognition, which proved instru-
mental in assessing the foundational capabilities of
models across multiple Indic languages, including
Hindi.

Building upon these foundations, subsequent
benchmarks like MILU (Verma et al., 2025) in-
troduced more challenging and culturally grounded
tasks. MILU, is a large-scale benchmark compris-
ing approximately 80,000 multiple-choice ques-
tions derived from Indian competitive examina-
tions. By emphasizing India-specific domains such
as local governance, arts, and history, MILU under-
scores the importance of cultural context in evalua-
tion, an element often diluted in directly translated
datasets. Specialized datasets like IndicQuest (Ro-
hera et al., 2024) have been developed to evaluate
the factual knowledge of Indic LLMs. In parallel,
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Geography of India

Figure 1: Distribution of samples by Indian cultural
themes in the IFEval-Hi dataset.

language:response_language
startend:end_checker
detectable_format:constrained_response
length_constraints:nth_paragraph_first_word
detectable_format:multiple_sections
detectable_formatijson_format
detectable_format:title
detectable_content:postscript
detectable_content:number_placeholders
detectable_format:number_bullet_lists
length_constraints:number_paragraphs
startend:quotation
detectable_format:number_highlighted_sections
keywords:frequency
combination:two_responses
length_constraints:number_sentences
combination:repeat_prompt
length_constraints:number_words

keywords:letter_frequency 6.42%

keywords:forbidden_words 6.42%

keywords:existence 6.66%

punctuation:no_comma 8.16%

Figure 2: Distribution of verifiable instruction types
within the IFEval-Hi dataset.

benchmarks such as IndicSQuAD (Endait et al.,
2025) and IndicQA (Singh et al., 2025) have ad-
dressed extractive and abstractive question answer-
ing.

More recently, the field has shifted toward multi-
task and generative evaluation. Benchmarks like
the IndicGenBench suite (Singh et al., 2024a)
and IndicMMLU-Pro (Sankalp et al.) now assess
complex reasoning, creative understanding, and
instruction-following, demonstrating a move be-
yond traditional NLU paradigms. This trend is fur-
ther reflected in the Okapi (Lai et al., 2023), which
translated key English benchmarks into numerous
languages, and the development of Global MMLU
(Singh et al., 2024b), which extends evaluation to
more diverse cultural contexts.
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Reasoning
Coding

Writing
MATH

STEM

Extraction Humanities

Roleplay

Figure 3: Category distribution in MT-Bench-Hi,
adapted with Indian cultural themes to increase focus
on culturally relevant instructions.

3 Dataset Curation

This section describes the process used to curate
the Hindi versions of popular English benchmark
datasets. Sample examples from each dataset are
shown in Figure 4.

3.1 IFEval-Hi

The creation of IFEval-Hi is based on the English
Instruction Following Evaluation (IFEval) bench-
mark, which is designed to rigorously assess an
LLM’s ability to adhere to precise instructions. The
original English IFEval is structured around 25 dis-
tinct and objectively verifiable instruction types,
such as "insert a word at a specific position" or
"reverse the first paragraph". This structure en-
sures a reliable and scalable evaluation process. To
test models with increasing difficulty, the prompts
are organized into three complexity levels: Sin-
gle, Double, and Triple Instructions, requiring the
model to execute one, two, or three distinct com-
mands within the same prompt, respectively.

Our curation process for IFEval-Hi was a sys-
tematic adaptation of this framework to an Indian
cultural and linguistic context. The core of this pro-
cess involved retaining the 22 verifiable instruction
types as a structural framework while replacing
the generic content of the English prompts with
themes relevant to India. Some categories that are
not relevant to Hindi, such as "Change Cases," were
dropped. The thematic content was sourced from
comprehensive categories on Wikipedia related to
India, covering a wide range of topics including
Indian history, philosophy, festivals, art forms, and
social norms. The distribution of cultural themes



IFEval-Hi

TR T RIE OTTeR} & FUR & aR & SO+ 74 3G | STIent g1 IR f=al 7 g1
IRY IR ITH "" &R HH J FHH & IR 37T ALY

MT-Bench-Hi

GE Gl I TTeT o T A U Y IR STt HATG A S+Tch STAT Sier) i hifRAT
| IR B IR Foif & a1 ot s=an =iy, ok oam a8 31 & vfasg & fag
Hgaqui §?

Follow up: ¥Rd § GR o1l & & & fFsft 8 3R IR &l e fhe e
i it sroarh nfey, arfs ag & ik oft Asht @ fAwfla gt gh?

ek Aehel B 25 TR g, S & 1 TE 8, 20% &2 €, 2 @g § SR arhl e

Question: STAT ¢ FRAATTER: T fRiIEA M7 SR & A & ST Tt &2
Answer: Ig W g1 gTetifeh, I8 AR 8 {3 afe srear sk wamn Qe e &
dt 31T I =aTSt & A1ER "SH" & H o S|

Context: g, I8 Wi &1 gretifon, g TR & 6 afe < ok 7= g&
FR & AV MY I TRATS & 1eR "S&" &5 A of S (STgt a1, i, afsT

GSMBK-Hi 5 o sa s 3
ChatRAG-Hi
aeft snfe &)1 ...
BFCL-Hi

Prompt: 3% 20 f&ift gATg ik &faw w0 & uerd

Function Names: fliplmageAction, rotatelmageAction, removeBack-
groundAction, getRecommendationsAction, resizelmageAction

Figure 4: Representative examples from five Hindi evaluation datasets curated in this study.

is detailed in Figure 1, while the breakdown across
verifiable instruction categories is presented in Fig-
ure 2.

New prompts were carefully created by a team
of five annotators over a ten-week period. To en-
sure that the newly created Indian-themed prompts
were both culturally relevant and objectively ver-
ifiable, annotators were provided with examples
for each instruction type. For instance, when the
instruction theme is "Geography of India" and the
instruction category is a letter frequency constraint,
such as requiring a certain Hindi letter to appear at
least three times, the annotator crafts an instruction
that incorporates both the theme and the explicit
constraint. Specific sample is shown in Figure 4.
To ensure that IFEval-Hi could be used as a direct
benchmark against its English counterpart, the eval-
uation metrics and constraints for each of the 22
instruction categories were directly mirrored, along
with the three levels of complexity. This significant
human-in-the-loop effort resulted in a final dataset
comprising 848 high-quality, culturally resonant
samples. The annotation process is described in
further detail in Appendix A.2.

3.2 MT-Bench-Hi

MT-Bench-Hi is the Hindi adaptation of the En-
glish Multi-Turn Benchmark (MT-Bench), a stan-
dard for evaluating the conversational and reason-
ing abilities of LLMs in extended dialogues. The
original benchmark consists of 80 high-quality,
multi-turn questions designed to test key capabili-
ties such as maintaining context, response accuracy,
and instruction following. It employs an "LLM-as-
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a-Judge" approach, where a powerful model like
GPT-4o scores all responses on a 1-10 scale using
two distinct methods: for reference-free categories
(STEM, Writing, Roleplay, Humanities, Extrac-
tion), responses are scored directly, while for cat-
egories with reference answers (Reasoning, Math,
Coding), they are evaluated via pairwise compari-
son against the reference answer.

The curation of MT-Bench-Hi was a detailed
adaptation process designed to make the bench-
mark culturally and contextually relevant for India.
We adopted a hybrid approach to content creation.
For universal technical categories (STEM, math,
reasoning, coding), questions were translated from
English to Hindi using GCP and subsequently un-
derwent thorough human evaluation to verify ac-
curacy and intent. For categories requiring deep
cultural contextualization (Writing, Roleplay, Hu-
manities, Extraction), questions were created from
scratch by human specialists to ensure the prompts
were authentically Indian. Figure 3 illustrates the fi-
nal distribution of samples across these categories.

To maintain high standards, annotators were pro-
vided with reference examples from the English
MT-Bench and guided through a specialized in-
terface. A key quality assurance step involved
showing annotators sample responses from a high-
performing model (e.g., GPT-40) to help them craft
prompts that could effectively test advanced capa-
bilities in an Indian context. The evaluation frame-
work was aligned with the original’s "LLM-as-a-
Judge" methodology. To ensure consistency, we
maintain the same format as the original dataset;
for categories that include a reference answer, we



.
A_ GSM8KEn Instance )

Tim decides to light off some fireworks for the fourth of July. He buys a package of

fireworks worth $400 and another pack worth twice that much. He gets a 20% discount on
them. He also buys a finale firework that costs $150. How much did he spend in total?

.

y
4d Translated Instance )

o 3 <reft et o forg o enfarerasht Stem w1 gt 5 | 9% $400 3 Yahot 3R Sa-t & hiva &
Yo TEaT @ | 39 31 W 20% Y De Mewdt § | 98 U e anforersmstt off wiiear @ et fHmd $150

N

21 397 et foa @ foma?

Tim decides to light some fireworks for the Fourth of July. He buys a $400 package and two packs of the same price. He gets a 20% discount on them. He also buys a finale
firework that costs $150. How much did he spend in total?

——————
A Revised Instance )

o 3 <lveft ST o forg o snfrereTStt Sterm st S fohar |

Y 3T W 20% ' e et § | 98 Teh fhamer

anferraTit ¥t Tl ¢ St v $150 § | 387 Fet v wd fomar?

Figure 5: A sample GSMS8K question highlighting a translation mistake in Hindi (red), the corrected version (green),
and the corresponding English line (yellow), showcasing the process of identifying and fixing language conversion

errors manually.

retain the original English reference answer during
evaluation. Aligning with the original MT-Bench
setup, we employ direct, single-answer evaluation
for reference-free, subjective categories (e.g., Writ-
ing, Roleplay) and pairwise comparison against
a reference answer for categories with objective
solutions (e.g., Math, Coding, Reasoning). The
annotation process is described in further detail in
Appendix A.3.

3.3 GSMSK-Hi

The foundation for this dataset is the English
GSMB8K (Grade School Math 8K), a prominent
benchmark for assessing the mathematical reason-
ing of LLMs. Directly translating the dataset into
Hindi risks altering the underlying mathematical
logic, particularly in problems with comparative
constructs such as ‘twice that amount’ or ‘10 less
than half the age of’. However, crafting linguis-
tically diverse math problems that require multi-
step solutions demands significant expertise in both
mathematics and language structure. This pro-
cess involves considerable time and effort from hu-
man annotators with domain expertise, making it a
resource-intensive endeavor. Therefore, to balance
quality with feasibility, we opted for a two-step
"translate-then-verify" methodology.

The process began with machine translation of
the original English problems (including GSM8K
system prompt) into Hindi using GCP. Human an-
notators were then provided with both the Hindi
translation and the original English text for refer-
ence. Their primary task was to evaluate the Hindi
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translation for correctness and suggest modifica-
tions to ensure linguistic accuracy and contextual
appropriateness. This verification stage proved to
be essential, as annotators flagged approximately
10% of the machine-translated data for inaccura-
cies. These instances were subsequently reviewed
and corrected through close collaboration between
our development team and the annotators, ensur-
ing the final dataset maintained high quality. To
illustrate this process, Figure 5 shows a sample er-
ror alongside its correction. To ensure consistent
benchmarking, GSM8K-Hi is evaluated using the
LM-Eval-Harness, the same framework employed
for the original English dataset. The annotation
process is described in further detail in Appendix
A4

3.4 ChatRAG-Hi

ChatRAG-Hi is the Hindi version of ChatRAG
Bench, a benchmark for evaluating conversational
question-answering using documents and retrieved
context. The original incorporates ten diverse
datasets, including Doc2Dial, QuAC, and Con-
vFinQA. Adapting this composite dataset posed
challenges due to the varied structures of its subsets,
which range from extensive contexts to single-word
answers.

Our curation process involved a differential trans-
lation strategy. The extensive context passages
were translated using GCP without subsequent fil-
tering. For the more sensitive answers and conver-
sation turns, we adopted a two-tiered approach. We
first used GCP and validated the output by back-


https://huggingface.co/nvidia/llama-3.1-nemoguard-8b-content-safety
https://huggingface.co/nvidia/llama-3.1-nemoguard-8b-content-safety

Model Size MT-Bench-Hi BFCL-Hi GSMS8K-Hi IFEval-Hi ChatRAG-Hi
SLMs
Gemma-2-2b-it 2B 4.37 32.96 26.99 38.92 29.89
Llama-3.2-3B-Instruct 3B 5.14 33.81 40.11 40.80 32.60
Nemotron-Mini-4B-Instruct 4B 3.44 - 32.22 36.08 27.32
Nemotron-4-Mini-Hindi-4B-Instruct 4B 6.01 52.82 47.31 51.65 36.07
Llama-3.1-8B-Instruct 8B 6.44 31.23 61.33 48.82 38.03
Aya-expanse-8b 8B 6.58 36.56 64.52 42.92 30.15
Gemma-2-9b-it 9B 7.37 50.51 64.44 61.79 40.97
Krutrim-2-instruct 12B 6.31 26.88 56.56 59.32 37.48
LLMs
GPT-OSS-20B (reasoning low) 21B 8.51 54.60 80.64 69.04 26.16
Mistral-Small-3.2-24B-Instruct-2506 24B 7.83 41.45 77.55 66.89 37.92
Sarvam-M (reasoning off) 24B 8.25 48.60 82.30 71.64 40.14
Gemma-3-27b-it 27B 8.31 62.42 78.12 67.72 45.23
GPT-OSS-120B (reasoning low) 117B 8.70 61.26 93.41 73.86 29.85
Qwen3-235B-A22B-FP8 (reasoning off) 235B 8.10 59.88 89.69 68.11 32.47
Llama-3.1-405B 405B 7.17 49.53 86.27 68.66 47.46
LLMs (Reasoning)
GPT-OSS-20B (reasoning medium) 21B 8.43 63.26 83.41 72.01 29.16
GPT-OSS-20B (reasoning high) 21B 8.23 64.77 83.44 72.11 32.39
Sarvam-M (reasoning on) 24B 8.60 59.53 84.40 74.06 37.13
GPT-OSS-120B (reasoning medium) 117B 8.79 66.19 95.93 76.69 30.80
GPT-OSS-120B (reasoning high) 117B 8.70 64.90 96.27 76.80 31.82

Table 2: Performance of various LLMs on Hindi benchmarks. MT-Bench-Hi is scored on a scale of 1-10 using
an LLM-as-a-judge approach. BFCL-Hi, GSM8K-Hi, and IFEval-Hi report accuracy on a 1-100 scale, while
ChatRAG-Hi reports the F1-Score. The highest score in each column is highlighted in bold.

translating it to English. If the back-translated
text matched the original with a high degree of
fidelity (CHRF++ score >= 90), the GCP transla-
tion was retained. In cases where the CHRF++
score was low, which often occurred with very
short text segments (1-3 words) where GCP lacks
sufficient contextual cues, the GCP translation was
discarded. To overcome this, we employed an LLM
for these segments, providing it with the broader
GCP-translated Hindi context alongside the origi-
nal short English answer to generate a more accu-
rate and contextually appropriate Hindi equivalent.
This LLM-generated (Llama-3.1-405B) data was
then subjected to heuristic filtering to remove poor-
quality outputs. This hybrid methodology was de-
signed to maximize accuracy across different text
types. To ensure overall quality, approximately
10% of the final Hindi data underwent human ver-
ification, which confirmed the high fidelity of the
translations, with the error rate across subsets re-
maining within 1-5%.

3.5 BFCL-Hi

BFCL-Hi is the Hindi adaptation of the Berke-
ley Function-Calling Leaderboard (BFCL V2), a
benchmark designed to evaluate the ability of
LLMs to call functions or tools. The original
dataset comprises diverse function-calling scenar-
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i0s, including simple, multiple, and parallel calls. It
also includes relevance and irrelevance categories
to assess a model’s ability to determine if the pro-
vided tools are appropriate for a given query.

The dataset is structured in a JSON format where
each entry contains a conversation history and an
array of available functions, defined with names,
descriptions, and parameter schemas. To create
BFCL-Hi, we translated the conversational history
into Hindi using the GCP translation service. Cru-
cially, the function calls themselves, including their
names, descriptions, and parameter details, were re-
tained in their original English format. This hybrid
approach tests the model’s ability to understand a
Hindi query and map it to a predefined English-
language tool. However, to make the dataset more
relevant for fully localized use cases, the function
parameters should also be translated into Hindi,
which we leave as a task for future work. The
ground truth for simple, multiple, and parallel cate-
gories remained unchanged from the English ver-
sion. The relevance and irrelevance categories do
not include ground truth, as they are designed to
verify whether the model correctly attempts a func-
tion call. Evaluation is performed using the BFCL
Abstract Syntax Tree (AST) methodology to ensure
a thorough and accurate analysis.



4 Results and Discussion

This section presents and analyzes the performance
of a diverse set of publicly available, instruction-
tuned Small Language Models (SLMs) and Large
Language Models (LLMs) on our newly developed
Hindi benchmark suite, with detailed results pre-
sented in Table 2. The models evaluated include
representatives from prominent families such as
Google’s Gemma, Meta’s Llama, OpenAI’s GPT-
OSS, NVIDIA’s Nemotron, Qwen, and Sarvam,
alongside other notable multilingual models.

Among the SLMs, the results reveal a competi-
tive landscape. Gemma-2-9b-it provides the best
all-around performance, securing the highest scores
on MT-Bench-Hi, IFEval-Hi, and ChatRAG-Hi.
Aya-expanse-8b secures the best score on GSM8K-
Hi. The value of targeted, language-specific train-
ing is highlighted by Nemotron-4-Mini-Hindi-4B-
Instruct, which leads significantly on BFCL-Hi.

In the LLM category (models with > 20B pa-
rameters), GPT-OSS-120B demonstrates standout
performance by achieving the best scores on MT-
Bench-Hi, GSM8K-Hi, and IFEval-Hi. Other
models show specialized strengths: Gemma-3-
27b-it achieves the highest score on BFCL-Hi,
while the largest model, Llama-3.1-405B, excels
on ChatRAG-Hi. However, it is worth noting that
GPT-OSS may have an inherent advantage due to
its reasoning mode, even though we set it to a low
level for a fairer comparison, and the potential for
the GPT-40 judge to be biased towards a sibling
OpenAl model also warrants further investigation.

Furthermore, activating the dedicated reasoning
modes in models like GPT-OSS and Sarvam-M pro-
vides a substantial performance uplift on complex
tasks like BFCL, GSM8K, and IFEval. With these
capabilities enabled, GPT-OSS-120B achieves the
top scores across multiple benchmarks, highlight-
ing the value of reasoning models for Hindi.

In summary, while specialized models show
strength in specific tasks, Gemma-2-9b-it in the
SLM class and GPT-OSS-120B in the LLM class
emerge as the most capable general-purpose mod-
els. The distribution of top scores across different
models highlights that no single model is best for
all tasks. This analysis also indicates that model
size is not the sole determinant of performance, a
point reinforced by both the 8B Aya model out-
performing larger SLMs on GSM8K-Hi and the
competitive results of Sarvam-M, which was post-
trained on Indic languages. These findings suggest
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that architectural choices and targeted training data
are crucial for developing specialized capabilities
for the Hindi language.

5 Conclusion

In this work, we addressed the critical gap in evalu-
ation resources for instruction-tuned Hindi LLMs
by introducing a new suite of five culturally and lin-
guistically robust benchmarks. Our hybrid curation
methodology, combining careful human-centric
creation with a translate-and-verify process, pro-
vides a valuable framework for developing similar
resources in other languages. Our evaluation of var-
ious public LLMs supporting the Hindi language
revealed a competitive landscape where different
models exhibit specialized strengths in reasoning,
conversation, and function calling. This suite en-
ables a more nuanced assessment of Hindi LLMs,
supporting the broader goal of fostering more equi-
table and capable multilingual Al systems.

Limitations

We acknowledge certain limitations in our work.
While our benchmark suite is comprehensive, it
does not encompass every possible instruction type
or conversational scenario. The use of an "LLM-
as-a-Judge" for MT-Bench-Hi carries inherent bi-
ases, particularly as the judge model’s proficiency
in evaluating nuanced Hindi content is not guar-
anteed. Furthermore, datasets developed through
translation, despite human verification, could be
improved with full human curation to better cap-
ture cultural and linguistic subtleties. Future work
could expand the scope of these benchmarks and
explore alternative evaluation methodologies.
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A Appendix

A.1 Annotator Team and Process

The human-centric curation and verification tasks
were conducted by a team of five specialists. These
individuals were employees of our organization,
compensated fairly for their work, and were se-
lected for their proficiency in Hindi as either a first
or second language. Representing various regions
across India, they possessed strong reading and
writing skills and a solid understanding of cultural
nuances.

The primary tool used for annotation was Su-
perAnnotate, which provided an intuitive interface
for our workflow. This platform allowed for the
efficient sharing of examples, processing of results
using Python scripts, and performance of quality
assurance (QA). The data underwent periodic QA
and development checks to ensure alignment with
project requirements. To maintain high levels of
creativity and productivity, the specialists worked
in focused sessions of 2-3 hours per day.

A.2 IFEval-Hi Curation Process

The annotation procedure for IFEval-Hi was highly
structured and communicated to annotators through
a comprehensive guidelines document. The process
was organized into sequential stages of increasing
complexity, beginning with cases that contained
a single verifiable instruction, followed by stages
with two and then three instructions. Each test case
was assigned a predefined Indian theme and instruc-
tion category to ensure a balanced distribution of
scenarios.

The annotation workflow for each case involved
several key components:

* Reference Sample: Annotators were provided
with a developer-generated sample in Hindi
that incorporated the verifiable instruction,
serving as a clear reference for the task re-
quirements.

Annotation Interface: A dedicated text box
was provided for annotators to formulate their
questions based on the assigned theme and in-
struction category, with a separate comments
box for any necessary clarifications with the
quality control developer.

Evaluation Parameters: The parameters re-
quired for automatic evaluation were also sys-
tematically recorded, aligning with the stan-



You are a curious user asking questions to an Al model that understands INDIA well !! Your
mission is to craft interesting and creative questions in f8& language to Challenge the Hindi
model for the Indian Theme and Instruction Category assigned to you below. Click the Button

to start!

Indian Theme ()

Politics of India

Instruction Category ()
keywords:frequency

Click h...

Fill your Question and Instruction in the box below. Do not write "Question:" and "Instruction:"

below, that is just for your understanding in the example. Just write question and instruction in any
order or in one sentence. Be creative and challenge the model by asking questions in different ways

®

and forms. Use Hindi numbers and special references that make Hindi language special

R & oI & aR H i B | oy e 3 oreg w7 ¥ B 3 R 37HT 91feq|

Comments (i)

Relation *

at least

Keyword *

RECIIG]

Frequency of Keyword *

3

Figure 6: Illustration of the annotation interface used to curate the IFEval dataset, displaying the guidelines and

example instructions provided to annotators.

dards of the English dataset. Annotators re-
ceived detailed guidelines for these parame-
ters, with the Hindi reference sample serving
as a practical model.

Review and Feedback Loop: A weekly review
of approximately 50% of submitted samples
was conducted by developers. Any cases re-
quiring revision were returned to annotators
with specific feedback in the comments sec-
tion, ensuring a consistent feedback loop and
high-quality output.

Sample annotation Ul screens are shown in Figures
6 and 7. Some examples from the dataset are shown
in Figure 8.
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A.3 MT-Bench-Hi Curation Process

The curation of the MT-Bench-Hi dataset, while
presenting distinct challenges, benefited from the
procedural learnings established during the IFEval-
Hi creation. Specialists were guided by supplemen-
tary instructions tailored to the specific demands
of creating multi-turn conversational benchmarks.
This process was designed to help annotators under-
stand the evaluation procedure and produce high-
quality, contextually relevant samples.

The workflow for each test case provided anno-
tators with a comprehensive view of the task:

* Original English Sample: Annotators were
given an original question and follow-up from
the MT-Bench dataset as a reference.



You are a curious user asking questions to an Al model that understands INDIA well !! Your mission is to craft interesting and creative questions in & language to
Challenge the Hindi model for the Indian Theme and Instruction Category assigned to you below. Click the Button to start!

Indian Theme (O Instruction Category1 (O

Economy of India keywords:existence

Instruction Category 2 (O
length_constraints:number_words
Instruction Category 3 (D

punctuation:no_comma

Click here to start

Fill your Question and Instruction in the box below. Do not write "Question:" and "Instruction:" below, that is just for your understanding in the example.

Just write question and instruction in any order or in one sentence. Be creative and challenge the model by asking questions in different ways and forms.

Use Hindi numbers and special references that make Hindi language special

@

UYRA H "make in India" ST BT 31 IR € 9 TR H THIA gU 715 &1 59 I Y 00 Yag! & UF ford s sieafarrd 1 Suaiv 7 81 8 "R sa

B UL HH A HH 3 TR B

Figure 7: Example entry from the Hindi IFEval, curated at three levels of complexity: Single Instruction, Double

Instruction, and Triple Instruction.

IFEval-Hi

TR ht fRA&T YoTTelt & R & TR F (U=t 37 T | SMueRt g1 IR Rl & g anfey ok 3T

"ST" 37&R A F Y & IR AT AT

URA & UG T IR &l oig ford ofk 3 ol &t **** %% J S1enT ahi |

R & T TIohia AYIRUIT, AT FeIHT T TR&T0T H I7eh! ffenT & IR # Ja1sy| &
T R ST 3TH U oAt TN A e STR USTTfal G TRET0T S 1l &t QMR AT 7 e |

IRA H 3OS 7 fha= auf ae 3t fohaT, 39 R Uah 81 o foid | 39 @ a1 <fivfas aler aiofta

SIBG § g1 Tfey, S <<fafesr s> |

eI UGNUT G S1E T 716 el gl T 3iR 38 i )T &, 59 fawd R R0 @ Farer aredt
3R AT 00 T H Teh o feld | 31TUh w1 ot *feieh atgR ahiufia sisa & g ey, s

<<ugyuT FAEuT>> |

Figure 8: Examples from the IFEval-Hi benchmark.

* Model Response Example: The correspond-
ing model-generated response for the English
sample was included.

 Evaluation Insight: The Al judge’s rating and
judgment for that response were also provided,
offering annotators direct insight into the eval-
uation criteria and performance expectations.

Using this framework, annotators reviewed the ini-
tial English question and its follow-up, then crafted
analogous questions contextualized for Indian set-
tings. To ensure quality and adherence to guide-
lines, 50% of the newly created samples were sub-
ject to a weekly review by a developer. This struc-
tured approach equipped annotators to produce
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high-quality, contextually appropriate samples for
the MT-Bench-Hi dataset. The sample annotation
UI screen is shown in Figure 9. Some examples
from the dataset are shown in Figure 10.

A.4 GSMSK-Hi Curation Process

By the GSM8K annotation stage, annotators were
proficient with the annotation interface. The math-
ematical nature of this dataset required sustained
attention to detail during the verification process.

The workflow for each sample test case included
the following elements:

e Translated Content: Annotators received the
translated Hindi version of the instruction and
the corresponding translated output.



¢ Final Answer: The final numerical answer
was clearly indicated for verification.

Annotators were instructed to carefully read and
comprehend the question to assess its clarity and
coherence, using the provided solution for addi-
tional context if necessary. They were tasked with
flagging any ambiguous or unclear questions for
review. On the quality control interface, develop-
ers reviewed the annotated samples, referencing
the original English versions to guide any neces-
sary corrections. The sample annotation Ul screen
is shown in Figure 11. Some examples from the
dataset are shown in Figure 12.

A.5 ChatRAG-Hi and BFCL-Hi Curation
Process

The ChatRAG-Hi and BFCL-Hi datasets were cu-
rated through GCP translation and subsequent fil-
tering. Examples are provided in Figures 14 and
13, respectively.
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You are a curious user, conversing with an Al model that understands India so well!! Your mission is to craft
interesting and creative questions in f&& language to challenge the model in TWO steps. You will be given
detailed instructions at each stage. Observe the example below for example.

Reference question asked by the user to the model

Pretend yourself to be Elon Musk in all the following conversations. Speak like
Elon Musk as much as possible. Why do we need to go to Mars?

Reference response from the model

Well, there are several reasons why going to Mars is crucial for humanity. One
of the primary reasons is to ensure the survival of our species. By becoming a
multiplanetary species, we can safeguard ourselves from potential extinction

What we observed from this response ....

The assistant’s response is accurate, relevant, and detailed. It captures the
essence of Elon Musk’s vision for Mars colonization, emphasizing the
imoortance of becomina a multiolanetarv species. the potential for scientific

Reference follow-up question asked by a user to the model

How do you like dancing? Can you teach me?

Reference response from the model

As Elon Musk, I’'m not particularly known for my dancing skills, and my
expertise is more in the realm of technology, space exploration, and electric
vehicles. However, | have been seen dancing on some occasions, like during

What we observed from this response ....

The assistant’s response is relevant and accurate, as it correctly portrays Elon
Musk’s known interests and expertise. It also provides helpful advice to the

user about learning to dance, suggesting resources such as dance instructors,
classes, and online tutorials. The assistant maintains the requested persona of

Your turn now !
Craft a similar question in Indian context to test the model. Make sure you are
writing in f&& language.

Question to the model

YE B IcT <IN & B H TG B 3R 3Ted HelTe o 376 ST a1t bl P2l P3| WRd bl
AR ot H R 71 AT 1Ry, AR 971 I8 &2l & Hidsa & faiy wgaqu €1

Follow-up question

MRA T AR Fott & &1 o ot 8157 3R TR Y fiete Tt TR e At 319t Tey,
i g & 3Rt 3o A Il & g2

Figure 9: Illustration of the annotation interface used to curate the culturally adapted Indic version of the MT-Bench
dataset, displaying the guidelines and example instructions provided to annotators.
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MT-Bench-Hi

GG Dl T TICT o ¥U H UIId e 3R 3Tt HaTG H S+ch ST Sl chl hiALN | MR H G
St | et ol e A1y, SR R I8 &1 & s & fog Agayguf 8?2

Follow up: ¥R H TR Jo1l o &7 | ot & 3R TRhR o fieTens fohey TR &t Aifaat sra=r
ey, aTfeh T &1 3R off aoft @ el gt @

31 AT Yeh 7T fARIT & | SR i & Sfee Hhmifereh STaeRumst st TRt diich & THEIHT
dfeh S AT ot S8 THST Toh| 313U YIAHTT hd & 39 AT ¥: WRATT JUAGIGT T AR
FIT 8?2 399 - &t g Hhiferes fasivarg enfae g2

Follow up: o1 Ig Ta! 82 A 1 ¢ foh o fadvy 38 'fgareras see' & Sigd 8, am sqahr
TS HIAd 87

gfe WRd & g & et Ageayul =RUT, S g\ &1 W1 YUTH i ST, H1SH AT fATER
dheiTchl ST JUTNT chch hell B TR fohdT SITg, It ST ahl Te13Tl hl TTg-Ts THeM § hd 7ea
e ft? IT8RuT & forg ar AfFent & fagts ot St i I o Tuef ot H9 uR g1 I7eht IRumai
SR ISR HeHT ot Siidd €U & THET GohdT 5?7 UF H o1 Ig fR1e7o7 fafd st st vRda
I TUT™ & fafera gfewtor @t sifdes gt & @ Twem | deg wafl?

Follow up: Tfe i} &t I & o a1 3¢y & Wdzdl U™ &t fATeR a1 718w & A1emH
Y g ok ST 8, Y R 39 aRg Y URgf dhaet U ARl 0R g @, ar 3 e
ArRent, Sfrent ofik forfeer sifdrerTRat & gfeentor &t off anfarer foram ST Terar 87 i 5o st
! 3fagra Y ge-si & fafera amifSies ofik Aikepfes uwTal ot $1fdieh TERT8 & THS T 3TaTR
A, ik afe gf, at fohe yer?

WRd & fhdl Agayuf Bfagiflien sricte (S8 Wdsar TumH) a1 gui9 d g ura i [agid
13y, STt fopdt UfagTiRies et a1 faseiwor shed 99T & | @ ST 8

Follow up: SdTq MY fAGidT T IUTNT & gY 39 CfgTRich Sfidte Sl Ttherar AT fathetdn
T Gedichd e o folq o faRiy mmort &t smasadr ghfi? ag «ft Temsy & & ymmor a0
3HiGle ! ASTYd a1 HHSIR Hd 1 &

T AT Teh 3HTehtch T foig Tehd € ST 39 aTeRT 9§ S[F gl a8 o Yok QR Aigeed chl TR
H & gop QR ISt ATell § IlT 8 e el gl
Follow up: 319 ag! & SaRT &R @fchT thadl ©g el dTet a1} T IUTNT |

Figure 10: Examples from the MT-Bench-Hi benchmark.
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Prompt

SHe bl S WldfeT 16 378 At 81 98 & golg A12d # o4 3is Trdi 8 iR W T ar &
39 RAY P AT AfthT 91 &1 a8 91eh) =) 37e B HfdfeT fhaml & aoR & 2 STelR
Tfd aTeTT S & 378 W S9dl 1 98 & & fHam) & 9ok § b STer wHTd! 82

Reference answer

ST UfAfET 16 - 3 - 4 = <«<16-3-4=9>>9 @ & 37 Idl 2|
Ie fha STeTR B ufdfea 9 * 2 = $<<9*2=18>>18 HHTIAI 2|
HHHH#18

Prompt Evaluation

Prompt was correct *

Yes
No
@ Partial (Needs correction)

If the prompt needs correction - Copy and paste it here and correct it

Instead of "gR ", it should be "IR 378l " and instead of "Ufd dTsiT 09 &
3 ", it should be "Ufd 38T for extra clarity.

Enter detailed comments about your selection here:

English Prompt

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers' market daily for $2 per fresh duck egg.
How much in dollars does she make every day at the farmers' market?

English reference answer

Janet sells 16 - 3 - 4 = «<16-3-4=9>>9 duck eggs a day.
She makes 9 * 2 = $<«9*2=18>>18 every day at the farmer’s market.
#H#AH##18

Figure 11: Illustration of the annotation interface used to evaluate the translation quality of the GSM8K dataset,
displaying the guidelines and example instructions provided to annotators.
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GSMS8K-Hi

U ahel § 25 TR &, 0 @ 1 @9 §, 20% P §, 2 @g § ofR a1t ored &1 foha IR
3 §?

6 T & Teh URAR (2 T9%h 3R 4 §=3) Sl Toh aReel 39 g © die & foh Ui au<en &l
YA Ied oh dgl oh gohs I QN[ 98T gohgT Aol | Udieh aa<eh oh =St ot fehateT farera fgzem
e

TS STU+T AT hl TR WR 5=t ST & theh @ GRUTSS AT =gt oY1 fRden &l uge I uar
TIeT foh Shen ot biet & A 20 fAFTe 37 Sheh &l e et # 30 e it Shes ht ST # 2
g 3R Feh i i hea § SR 10 e i1 3R ag St 27 e s== &Y T &1
Er g, a1 38 R 9 R v THA heh SHMT [F AT 81T dTfch a8 I 5:00 ot TR & fog
TR

foram 3k dier TR-=R SR Tifehele IR a9 @ &1 forar 3 a1 i 3= afercie IR 39, oik diex
3 e TR 3= 921 I AR 64 TTehcie TR 32| U f3ad & fFaa dicheic IR &2

397 3 TTa i At T | U e i S F 25 e &1 U Teare A 8 i &1 el
fara re &2

Figure 12: Examples from the GSM8K-Hi benchmark.

BFCL-Hi

P
rompt afy R U 100$ & ok F 408 T o= Ry & ot org H ur e Sfer &7

Function Names  multiply, add, sub

Prompt £ 20 Rl TG oAk BT = @ e

Function Names fliplmageAction, rotateImageAction, removeBackgroundAction, ge-
tRecommendationsAction, resizelmageAction

P
rompt T SMTY ST Tehd! & foh Tha iPhone 12 31+t +ft Iuetey & a1 7812

Function Names inventory__management, product_search, order_status_ check,
get__product__details

Prompt T & 55 T Hram B 7 R 22 oferd F oft v B a7 R 22

Function Names  get_ current_ weather

P
rompt & R R §I

Function Names  uber.ride

Figure 13: Examples from the BFCL-Hi dataset.
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ChatRAG-Hi

Question ST 37 RIETR:  Rig = i s & Rigg e ST e 22

A

e T e &1 Eeiifh, o8 RIETaR & 6 af e iR w3 @R & A o 99
ZIaTSt & 1R "3 & # o S|

C

ontext &, g iehrd g1 gretifes, ug fATIR 8 o 3 s AR Hemn = e & ot amu 38
EXATS! & 9T8R "Sd" & A o Y (STeT a1uRed, i, dfé asfie anfe )1 afe
3MUeh! AR it &hAT AT UT AT 8, 31+ Hiede & iy FHt Smarst & a1d
AT 8, 1 01 o ot w1 & Forat o anfat vt uRerTe g1 Wendt &, af I8 el
Tielhle &1 ...

Question T e B g 2 el ) g 82

A

e &1 e, H Heof & STUR R IR ol g6 UT BT g

C

ontext 2 SHER) ot ST A TrdSifes srachrr gl gidr 8 | feh g AfHaR 8, 9ol Samara”
g AR & Ger & JAY & IR Geil g1 Aoy | B W gehH! & g,
SYhT HATS UG B Fehd § foh & STUEIThd STea) s 81 ST 6 | JHT e & a1e, B
g a9 oft "gfeal & fag" &g gt gadt &1 ...

Question At R o o e 2 g v ) eves 2 s 27

A

e e R Rifda =0 @ wheat & forg gem 1

Context e T S e Al e T e £ S B e S £ 6 i
Afer R & i &g arafe dar 78t g, e oref & fh g oft 37 avnt &
HTTSITA <hl SiTd g ehdl g Sif Goh & GER e H 1 &1 ...

Question oeTe | & 38 e & I T 3R e & S g ST Aee?

Answer 3 oiR AR R & dr ¢ arafres g g 21

C

ontext Aot R R w0 @ Tt 3 g e 2; ST s o e T B, A iR
Aferd RS & g &g arafaes dar 78t 8, S orf & fF g fi s v &
SRITSITT <hl SiTd g1 hedl & STt Geh ° GER e H 1 8.

Question T JATUh! UdT & foh SXpceen H AISTT UTC heT ST & AT STTHTel 7?2

A

e ST F U WS g 2, At 78 WER @ I R &, 3R T uge
TRRMHT 9RT 81

Context

3id #, #7 Pk S AT A dch; IHIE B Yo HMTOATE gda &, Afch a8
UER Y AT R 8, 3R Fgl Uga=T WrH w1 &1 38 3T, Shoird Yferd qat
i f&fad et 8, SR 59 & SHurd gid ¢ ot Uil o famT g1 a=maguf ghar
81 pc%eh H, MY 1-4 T fegt <t ufehar & forg 7™ e Tehd &, 3R I8 e
FIEHABI ...

Figure 14: Examples from ChatRAG-Hi dataset. Each example contains a user question, a single answer, and partial
supporting context for illustration.
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Abstract

Multilingual large language models (LLMs) of-
ten demonstrate a performance gap between
English and non-English languages, particu-
larly in low-resource settings. Aligning these
models to low-resource languages is essential
yet challenging due to limited high-quality data.
While English alignment datasets are readily
available, curating equivalent data in other lan-
guages is expensive and time-consuming. A
common workaround is to translate existing En-
glish alignment data; however, standard transla-
tion techniques often fail to preserve critical el-
ements such as code, mathematical expressions,
and structured formats like JSON. In this work,
we investigate LLM-based selective translation,
a technique that selectively translates only the
translatable parts of a text while preserving non-
translatable content and sentence structure. We
conduct a systematic study to explore key ques-
tions around this approach, including its effec-
tiveness compared to vanilla translation, the
importance of filtering noisy outputs, and the
benefits of mixing translated samples with orig-
inal English data during alignment. Our experi-
ments focus on the low-resource Indic language
Hindi and compare translations generated by
Google Cloud Platform (GCP) and Llama-3.1-
405B. The results highlight the promise of se-
lective translation as a practical and effective
method for improving multilingual alignment
in LLMs.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success across various natural language
processing tasks, largely driven by vast amounts
of high-quality English data (Anil et al., 2023;
Achiam et al., 2023; Bercovich et al., 2025). How-
ever, a significant performance disparity persists
when these models are applied to non-English
languages, especially those designated as low-
resource (Joshi et al., 2020; Jadhav et al., 2024).
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Bridging this gap is critical for equitable Al de-
velopment and broader global applicability. The
primary impediment to aligning LLMs with low-
resource languages lies in the scarcity of high-
quality, diverse, and representative training data
(Cahyawijaya et al., 2024). While comprehensive
English alignment datasets are abundant, the cre-
ation of analogous resources in other languages is
often expensive and time-consuming.

Current approaches for low-resource adaptation
of language models include continued pre-training
using low-resource data, which helps in familiariz-
ing the model with the target language’s unique lin-
guistic characteristics (Joshi et al., 2024). Another
prominent method is alignment using low-resource
supervised fine-tuning (SFT) and preference tuning,
where models are trained on specific downstream
tasks and human feedback to better adhere to user
intent and safety guidelines in the low-resource
language (Li et al., 2024; Toraman, 2024). The
data for these alignment processes is typically cu-
rated using synthetic data generation methods, with
translation of high-resource data being a common
strategy (Qin et al., 2024). Other probable meth-
ods include cross-lingual transfer learning, where
knowledge from high-resource languages is trans-
ferred to low-resource languages, and techniques
like zero-shot or few-shot learning, which lever-
age the model’s inherent generalization capabilities
to perform tasks with minimal or no explicit low-
resource data (Cahyawijaya et al., 2024; Lai et al.,
2024). Additionally, active-learning, self-training
and semi-supervised learning methods, which uti-
lize unlabeled low-resource data, are also being
explored (Kholodna et al., 2024).

A common and seemingly straightforward ap-
proach to address this data scarcity is to translate
existing high-resource (e.g., English) alignment
datasets into the target low-resource language. Nev-
ertheless, conventional machine translation tech-
niques frequently fall short. They often struggle
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This is a fibonacci function
def nth_fibonacci(n):

#Base case:if nis O or 1, returnn

# Recursive case: sum of the two preceding Fibonacci numbers
return nth_fibonacci(n - 1) + nth_fibonacci(n - 2)

n=5
print(nth_fibonacci(n))

I have a question about japanese language. Explain me this %770
EENCRFATTA 2.

IE T GIEEATS R
def nth_fibonacci(n)

# MU AR A noar 1§, & naterd
ne<=1:
n

R F AT

T : 2 et AR
nth_fibonacci(n - 1) + nth_fibonacci(n - 2) aferd

n=5
/ print(nth_fibonacci(n))

Translate

A U S A F AR H O WA ¥ AN T FA| >
API

TE T Rhalere e
def nth_fibonacci(n)

#3@ Fw AR noA 1§, A naterd
ifn<=1:

# Rl amr: o qdaclt Raer St #1 avr
. return nth_fibonacci(n - 1) + nth_fibonacci(n - 2)
Selective

n=5
Translation print(nth_fibonacci(n)

T SR A F AR A OF 9T ¥ AR Te FHAT HALDEEH
WEATTR?

Figure 1: English to Hindi translation examples using LLM-based selective translation and vanilla GCP translation.

to accurately preserve crucial non-translatable ele-
ments such as code snippets, complex mathemati-
cal expressions, and structured formats like JSON,
leading to corrupted or functionally incorrect data.
This issue severely limits the utility of convention-
ally translated datasets for robust LLM alignment,
particularly for tasks requiring precise understand-
ing of structured or logical content.

To address these limitations, we systematically
investigate LLM-based selective translation, an
approach that intelligently translates only the lin-
guistically appropriate portions of a prompt while
preserving non-translatable content and maintain-
ing overall sentence structure. This method lever-
ages the reasoning capabilities of LLMs to dis-
tinguish between translatable and non-translatable
segments, offering a more faithful and usable trans-
lation for alignment purposes. The distinct ad-
vantages of LLM-based selective translation over
vanilla machine translation are demonstrated in Fig-
ure 1.

In this study, we explore three key research ques-
tions:

* How does LLM-based selective translation
of alignment data compare to conventional
(vanilla) translation methods, such as Google
Cloud Platform (GCP), on the performance of
the aligned model?
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* What is the optimal strategy for mixing orig-
inal English alignment data with selectively
translated target language data? Can trans-
lated data alone achieve effective alignment,
or is the inclusion of English data indispens-
able?

* What is the impact of filtering noisy or erro-
neous outputs generated during the selective
translation process?

We train the Nemotron-4-Mini-Hindi-4B-Base!
(Joshi et al., 2024) model on the LLM-translated
and GCP-translated datasets and compare the per-
formance on the downstream tasks like MTBench,
IFEval, and GSMS8K in Hindi. Our experiments
focus on Hindi, a widely spoken yet low-resource
Indic language. We compare translation quality
and alignment effectiveness across outputs gen-
erated by GCP and Llama-3.1-405B, a powerful
open-source LLM. Through this comprehensive
analysis, we demonstrate that LLM-based selective
translation offers a practical and robust solution
for multilingual alignment, substantially improving
the performance of LLMs in low-resource settings
and moving toward more linguistically inclusive
Al systems. Throughout this study, "LLM transla-
tion" specifically refers to translations produced by

1https://huggingface.co/nvidia/
Nemotron-4-Mini-Hindi-4B-Base



Llama-3.1-405B.

2 Related Work

Large Language Models (LLMs) have demon-
strated impressive capabilities, primarily due to
extensive training on high-resource language data,
leading to a performance disparity in low-resource
languages (LRLs). To address this, various adapta-
tion strategies have been explored, including con-
tinued pre-training on limited, authentic, or synthet-
ically generated LRL corpora (Joshi et al., 2024).
(Ogueji et al., 2021) indicates that even modest
amounts of LRL exposure can yield significant im-
provements, while (Hangya et al., 2022) delves
into specific techniques within multilingual frame-
works. Furthermore, the development of dedicated
open-source LLMs for languages like Hindi, as ex-
emplified by (Choudhury et al., 2025), underscores
the importance of tailored training on relevant LRL
datasets.

Multilingual LLMs (MLLMSs) offer a promising
avenue for addressing LRL challenges, with their
inherent capacity for zero-shot or few-shot cross-
lingual transfer, including in-context learning abili-
ties for LRLs (Cahyawijaya et al., 2024). However,
this multilinguality does not guarantee uniform per-
formance across all languages; empirical studies
reveal significant disparities, with high-resource
languages often outperforming LRLs (Hasan et al.,
2024). In some cases, multilinguality can even
pose a "curse" where LRL performance is hin-
dered due to disproportionate resource allocation
to high-resource languages (Chang et al., 2024).
To counteract these limitations and facilitate more
effective knowledge generalization, methods like
cross-lingual optimization have been proposed to
enhance language transfer from high-resource to
low-resource settings (Lee et al., 2025).

Beyond foundational training, instruction tuning
has become crucial for aligning LLMs with hu-
man intent. In a multilingual context, this extends
to cross-lingual instruction following and explicit
alignment mechanisms. (Cahyawijaya et al., 2023)
demonstrates the effectiveness of continual cross-
lingual instruction tuning for aligning languages,
while (Tanwar et al., 2023) emphasizes the role
of alignment in boosting cross-lingual in-context
learning. (Ahuja et al., 2024) explores sample-
efficient multilingual instruction fine-tuning via
guided prompting. A broader perspective on en-
hancing multilingual capabilities and alignment
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strategies is provided by (Zhao et al., 2024), collec-
tively emphasizing the move towards task-oriented
instruction following and robust cross-lingual align-
ment.

While existing research extensively covers con-
tinued pre-training, diverse fine-tuning strategies,
and instruction-based alignment for LRLs, a sys-
tematic exploration of leveraging LLM-based selec-
tive translation as a primary alignment mechanism
remains largely underexplored.

3 Methodology

3.1 Model Alignment

The alignment of multilingual large language mod-
els to low-resource languages is a critical step in
bridging the performance gap observed between
high-resource and low-resource settings. In this
work, we employ a two-stage alignment process,
Supervised Fine-Tuning (SFT) followed by Direct
Preference Optimization (DPO). Both stages are
designed to leverage the strengths of our selectively
translated Hindi corpus alongside the original En-
glish corpus, ensuring a robust and multilingual
alignment.

* Supervised Fine-Tuning (SFT): During SFT,
the Nemotron-4-Mini-Hindi-4B-Base model
is fine-tuned on a dataset of high-quality
instruction-response pairs. The primary goal
of this stage is to teach the model to follow
instructions and generate coherent, relevant
responses.

For SFT, we utilize a mixed corpus com-
prising both the original English alignment
dataset and its selectively translated Hindi
counterpart. We use an English SFT corpus
with approximately 200k examples, compris-
ing various tasks as outlined in (Adler et al.,
2024). This mixed approach is crucial for re-
taining the model’s English capabilities, adapt-
ing it to Hindi’s linguistic nuances, and ensur-
ing correct handling of non-translatable con-
tent like code and mathematical expressions
across both languages.

The SFT process is performed using a stan-
dard cross-entropy loss function, optimizing
the model’s parameters to predict the correct
response given an instruction. This stage is
followed up by the subsequent preference-
based optimization.
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Figure 2: Overall training pipeline comprising translation, filtering, SFT, and DPO stages.

¢ Direct Preference Optimization (DPO): Fol-
lowing SFT, we apply DPO to further re-
fine the model’s alignment with human pref-
erences and improve its ability to generate
helpful and harmless responses. DPO is a re-
inforcement learning from human feedback
(RLHF) alternative that directly optimizes a
policy to align with human preferences with-
out requiring a separate reward model.

For the DPO stage, we construct preference
datasets consisting of pairs of responses (one
preferred, one rejected) for a given prompt.
Similar to SFT, these preference datasets are
also derived from a combination of original
English preference data and selectively trans-
lated Hindi preference data. The DPO algo-
rithm directly optimizes the policy by max-
imizing the log-probability of preferred re-
sponses and minimizing the log-probability
of dispreferred responses, effectively aligning
the model with the implicit reward signal en-
coded in human preferences. This final stage
fine-tunes the model to produce responses that
are not only accurate but also preferred by
users in both high-resource and low-resource
language settings.

Across both SFT and DPO stages, we utilized 64
A100 GPUs. The learning rate was set with a max-
imum of 5e-6 and a minimum of 9e-7, employing
a cosine annealing schedule. The batch size for
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SFT and DPO was set to 1024 and 512, respec-
tively. The models were trained for 2 epochs in
both stages using Nemo Aligner (Shen et al., 2024).
The overall training process is highlighted in Figure
2.

3.2 Selective Translation

Conventional translation of SFT or DPO data typi-
cally involves translating entire text segments with-
out specific consideration for their inherent struc-
ture or non-linguistic components. This approach,
while broadly useful for general text, often faces
significant limitations when applied to specialized
datasets crucial for LLM alignment. Specifically,
it struggles to accurately preserve critical elements
such as programming code, URLS, file paths, email
addresses, highly formatted data (e.g., tables, lists),
examples where direct translation would alter their
original meaning or usefulness, special charac-
ters, mathematical symbols, technical abbrevia-
tions, and HTML/XML tags. This can lead to
corrupted data that loses its functional integrity,
rendering it less effective or even counterproduc-
tive for training LLMs on tasks requiring precise
understanding of such structured or technical con-
tent.

Selective translation using LLMs is a technique
where a Large Language Model is specifically in-
structed to translate only the linguistically adapt-
able portions of a given text, while meticulously


https://huggingface.co/datasets/yzk/vedic-accent-restoration-dataset
https://huggingface.co/datasets/yzk/vedic-accent-restoration-dataset

preserving certain non-translatable elements. This
approach, unlike conventional translation, pre-
vents the corruption of critical content such as
programming code, URLs, file paths, email ad-
dresses, highly formatted data (tables, lists), exam-
ples where meaning would be lost, special char-
acters, mathematical symbols, technical abbrevia-
tions, and HTML/XML tags. By following precise
rules, which are specified as part of the prompt, the
LLM intelligently identifies and skips these spe-
cific segments, ensuring they remain unchanged in
the output. Furthermore, unlike typical machine
translation solutions that translate line by line, the
selective translation approach used in this work
processes the entire prompt or response at once,
thereby maintaining crucial inter-sentence coher-
ence. The goal is to produce naturally flowing
translated sentences that maintain their original
structure and accurately retain all functional or
context-sensitive non-linguistic information. This
enables high-fidelity multilingual data generation,
which is especially crucial for technical or struc-
tured content. The exact prompt used for selective
translation is presented in the Appendix A.

3.3 Quality Filtering

The process of generating translated data, particu-
larly through LLM-based approaches, inherently
introduces the risk of noisy or erroneous transla-
tions. Such noise can significantly impede the
downstream alignment process of LLMs, poten-
tially leading to the propagation of errors, reduced
model performance, and a suboptimal learning ex-
perience for the target language. Therefore, a ro-
bust quality filtering mechanism is crucial to ensure
that only high-fidelity translated samples are used
for SFT or DPO.

To address this, we implement a FAITH-based
filtering mechanism utilizing LLMs. FAITH con-
siders five crucial aspects for comparing original
and translated samples: Fluency, Accuracy, 1d-
iomaticity, Terminology, and Handling of Format.
This approach leverages the generative and evalu-
ative capabilities of a separate LLM to assess the
quality of the translated outputs against the orig-
inal source sentences. The LLM acts as an auto-
mated evaluator, scoring translations across these
critical dimensions. The prompt used for this eval-
uation is presented in the Appendix A. The Llama-
3.1-Nemotron-70B-Instruct model was used for
FAITH-based filtering; we only retain examples
that receive full scores of 5 across all the parame-
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ters from the judge LLM.

Following the FAITH-based filtering, we apply
an additional layer of alignment-based filtering.
This process specifically measures how well the
translated prompt and its corresponding translated
response align with each other post-translation. It
evaluates the logical consistency and coherence
between the translated query and its response, us-
ing metrics such as Helpfulness, Correctness, Co-
herence, Complexity, and Verbosity. Each metric
is scored on a scale of 1 to 5, ensuring that the
retained data not only exhibits high translation fi-
delity but also maintains the intended relationship
and quality between the prompt and response, fur-
ther refining the training corpus for optimal align-
ment.

3.4 Safety Data Considerations

The SFT and DPO datasets incorporate unsafe sam-
ples. These samples refer to queries and responses
that contain harmful, biased, or inappropriate con-
tent, and are crucial for training the model to appro-
priately refuse or handle such questions. While con-
temporary LLMs often inherently refuse to trans-
late unsafe content, traditional translation solutions
like GCP typically translate these queries without
refusal.

Therefore, we adopt a hybrid approach for safety-
critical data. Initially, a Safety-Guard LLM, specif-
ically Llama-Nemotron-Safety-Guard-v2?, is em-
ployed to classify prompts and responses as either
safe or unsafe. All identified unsafe samples are
then consistently translated using GCP. This en-
sures that even within the LLM-translated data,
unsafe examples are processed via GCP, allowing
the model to learn refusal behaviors from these
translated unsafe queries. It is important to note
that unsafe samples constitute approximately 5%
of our total dataset. The full pipeline for the hybrid
approach is shown in Figure 3.

3.5 Experimental Design

Our experimental design is structured to system-
atically evaluate the effectiveness of LLM-based
selective translation for multilingual alignment, ad-
dressing the key research questions outlined in
the introduction. We compare different translation
methodologies, assess the impact of English align-
ment data, and investigate the benefits of filtering
noisy translations.

2https://huggingface.co/nvidia/llama—3.
1-nemoguard-8b-content-safety
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Figure 4: A/B comparison of translation quality, judged
by Llama-3.1-Nemotron-70B-Instruct. The graph illus-
trates the percentage preference for LLM, GCP, both, or
neither across various SFT dataset categories.

* GCP vs Llama-3.1-405B Translation: This
experiment empirically compares the perfor-
mance of models aligned using data trans-
lated by Google Cloud Platform (GCP)
against those aligned with data generated
via Llama-3.1-405B based selective transla-
tion. To achieve this, we perform SFT on
the Nemotron-4-Mini-Hindi-4B-Base model.
The SFT process utilizes a fixed set of 200k
English data samples, combined with vary-
ing subsets of translated + filtered Hindi
data. The Hindi filtered data subsets con-
sist of 20K, 40K, 60K, 80K, and 100K sam-
ples, each randomly selected from a pool
of 100K filtered examples. The unfiltered
subset comprises 200K samples. Follow-
ing SFT, the fine-tuned models are bench-
marked for their performance across various
Hindi test sets, including MTBench, IFEval,
and GSMSK, to provide a comprehensive
comparison. The Llama-3.1-405B was se-
lected for this study as it represents the largest
and highest-quality LLM available for Hindi
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Figure 5: Percentage of LLM and GCP translated SFT
data filtered by the Llama-3.1-Nemotron-70B-Instruct
judge model, representing samples not achieving full
scores.

translations, with human annotators consis-
tently rating its translation quality superior
to other competitor models like Llama-3.3-
70B-Instruct and Nemotron-4-340B-Instruct.
We note that while larger contexts can some-
times lead to "sentence-drop" issues in trans-
lation, this is not a concern here as we trans-
late entire prompts and responses, ensuring
coherence. Furthermore, larger LLMs like
Llama-3.1-405B exhibit greater resilience to
the sentence drop issue and a larger context
length of 128k.

Impact of English Alignment Data: This
experiment aims to assess the necessity of in-
cluding English data during the SFT phase, or
if Hindi data alone is sufficient to achieve the
desired performance in the target low-resource
language. In this experiment, we perform SFT
using only Hindi data. The results from these
experiments are then compared against the
previous experiments, where both English and
Hindi data were incorporated during the SFT
process, allowing us to quantify the contribu-



tion of English alignment data.

Impact of Filtering Noisy Translations:
This experiment investigates the impact of re-
ducing the dataset size through quality filter-
ing on the overall model performance. We
compare the performance of the SFT + DPO
model with and without applying a filtering
step to the training data. Both the SFT and
DPO datasets were subjected to this quality
filtering process. Post-filtering, the LLM-
translated SFT corpus was reduced from its
original 200k samples to 100k samples. Simi-
larly, the LLM-translated DPO corpus also
underwent a reduction in size from 200k
to 100k samples after filtering. The GCP-
translated SFT and DPO corpus is reduced to
90k and 80Kk, respectively. The comparison
will highlight the benefits of data quality over
quantity in multilingual alignment.

Fluency Analysis: To evaluate the fluency of
LLM-based selective translation and GCP out-
puts, the Llama-3.1-Nemotron-70B-Instruct
model is employed as an automated evalua-
tor. It is recognized that line-by-line trans-
lation, often characteristic of methods like
GCP, can lead to inter-sentence disfluencies.
Therefore, the assessment specifically targets
the naturalness and coherence of the Hindi
responses. The Llama-3.1-Nemotron-70B-
Instruct model, serving as a Hindi-proficient
evaluator, rates responses on a scale of 1-5
across four key criteria: Grammar and Syntax,
Fluency and Naturalness, Pacing and Read-
ability, and Cohesion and Coherence. These
individual ratings, along with an overall flu-
ency score, are provided, facilitating a quanti-
tative comparison of translation fluency. The
prompt used for fluency evaluation is pre-
sented in the Appendix A.

3.6 Evaluation Datasets

The evaluation of conversational abilities in large
language models typically relies on extensive En-
glish datasets like IFEval, MTBench, and GSM8K.
For Hindi, however, available options such as
MILU (Verma et al., 2024), and Global MMLU
(Singh et al., 2024) are more limited, primarily
focusing on foundational model assessment rather
than advanced conversational nuances. Direct trans-
lation of English datasets into Hindi often over-
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looks cultural nuances and linguistic structures,
leading to grammatical errors and compounding in-
herent errors in the translation process. To address
this, we adopt a multi-step approach incorporating
human oversight to ensure accurate assessment of
Hindi language capabilities. The following datasets
introduced in (Kamath et al., 2025) were used to
benchmark the aligned models trained in this work.

* SubjectiveEval: The Hindi SubjectiveEval
dataset comprises 91 open-ended questions
covering diverse Indian domains, science and
technology, mathematics, and thinking ability
(Joshi et al., 2024). It includes hypothetical
scenarios designed to assess analytical reason-
ing and problem-solving. Model responses
are evaluated using an LLM as a judge, specif-
ically GPT-40, with responses rated on a 1-5
scale.

IFEval-Hi*: The Hindi IFEval dataset con-
tains 848 prompts to evaluate the instruction-
following ability of LLMs in Hindi. Struc-
tured similarly to its English counterpart, it
features "verifiable instructions" with heuris-
tically validated responses. These prompts
are natively curated by Hindi-proficient spe-
cialists to capture local linguistic nuances and
Indian cultural context.

GSMSK-Hi*: Hindi-GSMS8K is the GCP-
translated version of the English GSMS8K test
set. Its samples are meticulously reviewed
and corrected by human annotators for quality
improvement. These problems typically re-
quire 2 to 8 steps to solve, primarily involving
elementary arithmetic calculations.

MT-Bench-Hi’: The Hindi MTBench dataset
consists of 200 multi-turn prompts designed
to evaluate the conversational ability of Hindi
LLMs. Eighty percent of its samples are na-
tively created by Hindi specialists, with the
remaining 20% translated from the English
version, ensuring a balanced and comprehen-
sive evaluation. For this work, we use a subset
of 40 samples from MTBench-Hi, focusing on
classes such as coding, STEM, math, reason-
ing, and multiturn interactions. The evaluation
is conducted by GPT-40, with responses rated

3https://huggingface.co/datasets/nvidia/IFEval-Hi

*https://huggingface.co/datasets/nvidia/ GSM8K-Hi
>https://huggingface.co/datasets/nvidia/MT-Bench-Hi
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Training Config SubjectiveEval GSMS8K-Hi IFEval-Hi MTBench-Hi
200K En - 3.71 30.10 44.17 3.44
200K En + 20K Hi I(“}LCI\; i:(l)i 222; i;ﬁ ﬁ(z)
200K En + 40K Hi ELCI\;[ iéz ;‘3}2 iij2§ i;g;
200K En + 60K Hi ELCI\;[ ﬁg ;‘z;z iijgi i;g
200K En + 80K Hi ELCI\;[ ;L;; ;‘8?2 iifﬁ 1:82
200K En + 100K Hi ELCI\F/,[ i:ég 38:3? ii:zz ij??
200K En + 200K Hi IE}IéDE/’I 32(1)2 ii;‘g‘ iZjZZ iﬁgﬁ

Table 1: Comparison of GCP and Llama-3.1-405B selective translation performance on downstream Hindi tasks.
The table details results from SFT models trained on a full English corpus alongside varying percentages of Hindi
data. SubjectiveEval is a rating between (1-5), GSM8K-Hi and IFEval-Hi are accuracy (%), and MTBench-Hi is a

rating between (1-10).

Training Config SubjectiveEval GSMS8K-Hi IFEval-Hi IFEval-En

20K Hi 4.02 29.49 36.56 34.53
20K Hi + En 4.12 38.67 45.44 50.84
40K Hi 4.17 34.72 41.24 40.77
40K Hi + En 4.29 40.79 45.92 50.00
60K Hi 4.21 36.09 44.09 44.00
60K Hi + En 4.29 42.15 45.44 50.96
80K Hi 4.35 35.71 45.44 46.28
80K Hi + En 4.23 40.26 45.28 50.96
100K Hi 4.16 38.97 45.12 45.68
100K Hi + En 4.15 40.86 46.39 50.84

Table 2: The experiments to investigate the impact of
training SFT models on either Hindi-only data or a com-
bination of English and Hindi data. Downstream scores
are then computed for models trained with different pro-
portions of Hindi content.

on a scale of 1-10. It is noted that the scores
obtained are on the lower side, as this subset
represents areas where Hindi models typically
do not excel.

4 Results and Discussion

This section presents the results of our empiri-
cal study comparing LLM-based selective trans-
lation and GCP-based regular translation, utiliz-
ing Nemotron-4-Mini-Hindi-4B-Base as the base
model for all experiments. The base model un-
derwent Supervised Fine-Tuning (SFT) and Di-
rect Preference Optimization (DPO) on various
data combinations as detailed in the Section 3.5.
Model performance was evaluated on SubjectiveE-
val, GSM8K-Hi, IFEval-Hi, and MTBench-Hi
datasets. The key findings and best practices are
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shown in Figure 6.

* GCP vs Llama-3.1-405B Translation: The
results of this comparison are presented in
Table 1. We observe three key findings:

— Models trained on Llama-3.1-405B trans-
lations consistently outperform models
trained on GCP translations across all
benchmark datasets.

— The inclusion of Hindi data alongside
English data during training significantly
improves performance compared to train-
ing on English data alone. Even a small
amount, specifically 20k Hindi samples,
demonstrates a notable boost in accuracy.

— As the quantity of Hindi data in the SFT
datablend increases, the model’s accu-
racy continues to improve, reaching satu-
ration around 60k samples.

* Impact of English Alignment Data: Table 2
illustrates the impact of incorporating both En-
glish and Hindi data during SFT, as opposed
to using only Hindi data. While it might seem
desirable to align Hindi LLMs solely with
the Hindi corpus, our findings indicate that
the addition of English data significantly en-
hances the model’s capabilities in mathemat-
ics, instruction following, and overall Hindi
language proficiency.

* Impact of Filtering Noisy Translations: Ta-
ble 3 presents the results regarding the impact
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Training Config SubjectiveEval GSMS8K-Hi IFEval-Hi MTBench-Hi Fluency
. . LLM 437 43.44 55.51 4.97 4.50
Filtered SFT - Fillered DPO. ;p 437 43.44 55.67 462 439
LLM 439 44.28 57.10 451 4.50
Unfiltered SFT - Unfiltered DPO GCP 404 43.59 58.84 501 442

Table 3: Experiments to study the impact of quality filtering on the performance of downstream Hindi tasks. SFT
and DPO training were performed using a comprehensive English corpus, in combination with either filtered or
unfiltered Hindi translated data. The fluency score is a rating between (1-5).

For LLM alignment in low-resource languages,

LLM-based selective translation significantly improves model performance.

Mixing translated low-resource data with original English data is crucial for robust alignment.
Filtering translated data for quality is effective and can make training more efficient.

Even small amounts of high-quality translated data offer notable performance gains.

Figure 6: Summary of key insights and best practices

of filtering noisy translated SFT and DPO data.
Approximately 50% of the translated data was
discarded in this process. We observe that
models trained on this filtered data perform
competitively with those trained on the full,
unfiltered dataset. This suggests that filtering
can make the training process more efficient
by reducing the data volume without signifi-
cantly compromising accuracy. Furthermore,
keeping noisy data does not necessarily de-
grade performance on downstream tasks.

Translation Quality Analysis: The fluency
analysis results are detailed in Table 3. We
observe that LLM-based selective translations
consistently receive higher fluency scores
from the LLM-Judge. Figure 4 further
supports this, showing that a judge LLM
(Llama-3.1-Nemotron-70B-Instruct) consis-
tently prefers LLM-based selective transla-
tions over GCP translations. This preference
is particularly pronounced for instruction-
following, coding, and tool-calling samples.
Furthermore, Figure 5 highlights that a greater
amount of data is discarded for GCP transla-
tions than for LLM, suggesting lower initial
quality or adherence to filtering criteria. For
comparative results, we make sure that the
amount of LLM and GCP translated data is
equal. Consequently, for the reported compar-
ative results, we standardized the amount of
LLM and GCP translated data.
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5 Conclusion

This study systematically investigated LLM-based
selective translation for aligning large language
models to low-resource languages, with a spe-
cific focus on Hindi. Our experiments consistently
demonstrated that this approach significantly en-
hances model performance compared to traditional
GCP translation.

A key finding was the substantial accuracy im-
provement achieved by incorporating even a small
quantity of selectively translated Hindi data. We
also found that blending translated Hindi data with
original English data is crucial for comprehen-
sive alignment, leading to notable advancements
in mathematical reasoning, instruction-following,
and general Hindi language proficiency. The su-
perior fluency and consistent preference for selec-
tively translated outputs, as judged by an LLM-
based evaluator, further validate the efficacy of our
method. These findings collectively highlight the
immense potential of LLM-based selective transla-
tion in developing more linguistically inclusive and
robust Al systems for low-resource environments.

Limitations

The scope of this study is focused on the English-
to-Hindi language pair, and its findings’ gener-
alizability to other linguistic contexts merits fur-
ther validation. The methodology’s reliance on
a resource-intensive "teacher” model (Llama-3.1-
405B) also presents practical considerations for
computational accessibility. Furthermore, the eval-
uation framework is subject to the potential biases
of LLM judges and is focused on a specific set of



technical benchmarks, while the mixed outcomes
from data filtering warrant additional investigation.
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You are a Hindi translation assistant. Your task is to translate the following text into Hindi,
while applying the following rules to determine when to skip translation for specific parts:

Skip translating the following if they appear in the sentence:

1. **Programming or coding content** (e.g., code snippets, commands) — retain this exactly as it is.

2. xxURLs, file paths, or email addresses*x — leave these unchanged.

3. xxStrongly formatted dataxx such as tables, lists, or bullet points — maintain their structure and content as is.
4. xxExamples or phrases** where translation would alter their original meaning or usefulness.

5. **Special characters, mathematical symbols, or technical abbreviations*x — do not change these.

6. **HTML/XML tags or other formatting markersxx — keep these intact and unaltered.

As you translate, ensure that the output flows naturally and maintains the overall structure of the sentence.
Retain non-translatable elements exactly as they are, while translating the rest into Hindi.

Translate the following text:
Text: {{english_text}}

Only return the translated text!
If translation is not needed, return the input text as it-is!

N

J

Figure 7: LLM-based selective translation prompt. This is used to translate the entire prompt or response.

-

Given the following sentences:

- Source : {{english_text}}
- Target [Hindi]: {{hindi_text}}

Please evaluate the translation using the FAITH metric. For each category, provide a score from 1 to 5 (1 = poor, 5 = excellent).
Only return the evaluation in the following JSON format:

{
"Fluency”: score,
"Accuracy"”: score,
"Idiomaticity”: score,
"Terminology": score,
"Handling_of_Format”: score
}

Here are the categories:

1. *xFluency (1-5)*x: Does the translation read naturally in the target language, free from grammar or syntax errors?
- 1: Very poor fluency, difficult to understand.

: Somewhat fluent but with major grammatical issues.

: Generally fluent with a few errors.

: Mostly fluent but may have minor grammatical issues.

: Perfect grammar, native-like fluency.

AW N

2. **xAccuracy (1-5)*x: How well does the translation preserve the meaning of the source sentence?
- 1: Meaning significantly changed or lost.

: Major inaccuracies, important meanings are omitted.

: Some meaning preserved, but there are notable inaccuracies.

: Meaning mostly preserved with minor issues.

: Meaning fully preserved.

aAwN

3. *xIdiomaticity (1-5)**: Are the phrases idiomatic and natural for the target language,
fitting its cultural context?
- 1: Literal translation, very awkward for native speakers.
- 2: Some idiomatic phrases but mostly awkward.

: Mixed idiomaticity, some phrases fit while others don't.

: Mostly idiomatic, with a few non-native phrases.

: Completely idiomatic and culturally appropriate.

a s w

4. *xTerminology (1-5)*x: Are any specialized terms translated accurately?
(If no specialized terms, note as N/A.)
- 1: Significant errors in terminology.
- 2: Some incorrect terminology affecting understanding.

: Mostly correct terminology but with some inconsistencies.

: All terms correctly translated with minor inconsistencies.

: All terms correctly and consistently translated.

oA w

5. x*Handling of Format (1-5)**: Is the formatting (punctuation, capitalization, non-translatable elements) correctly maintained?
- 1: Significant formatting errors or omissions.
- 2: Major formatting issues that affect readability.

- 3: Some formatting errors, but generally readable.
- 4: Minor formatting issues but mostly preserved.
- 5: Format fully preserved.
In case there is no translation provided, give -1 to all the categories! If case of non-applicable score, make the score=0

Only return the evaluation JSON! No explanation!

\

Figure 8: FAITH-based translation quality filtering prompt
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You are an evaluator tasked with assessing the quality of a response to a query using five key metrics:
Helpfulness, Correctness, Coherence, Complexity, and Verbosity. Provide a score for each metric on a scale of 1-5,
where 1 indicates poor performance and 5 indicates excellent performance. Then, summarize your reasoning for each score in a brief comment.

Query: {{hindi_prompt}}
Response: {{hindi_response}}

#### Definitions of Metrics and Scoring Guidelines:

- xxHelpfulness*x: Measures how useful and actionable the response is in addressing the query.
- 1: Completely unhelpful or irrelevant.
- 2: Slightly helpful but misses key aspects of the query.

: Moderately helpful but lacks depth or usability.

: Mostly helpful with minor gaps in utility.

: Extremely helpful, fully addressing the query with clear, actionable information.

g s w

- **xCorrectness*x: Evaluates whether the response is factually accurate and free of errors.
- 1: Contains major factual inaccuracies or misleading information.
- 2: Includes some accurate information but has notable errors.

: Mostly accurate but with minor errors or omissions.

: Accurate with negligible issues.

: Completely accurate and reliable.

[S N

- *xCoherence**: Assesses whether the response is logically structured and easy to follow.
- 1: Illogical, disorganized, or hard to understand.
- 2: Poorly structured with noticeable issues in logical flow.

: Somewhat coherent but with occasional disorganization.

: Mostly coherent and well-organized with minor issues.

: Perfectly coherent, logically structured, and easy to follow.

SN

*xComplexity**: Measures whether the response appropriately balances depth and complexity for the query.
- 1: Overly simplistic or excessively complicated without justification.
- 2: Either too simple or too complex, with limited balance.

: Moderately balanced but could improve in complexity or simplicity.

: Mostly balanced, with only minor adjustments needed.

: Perfectly balanced, with the right level of complexity for the query.

[S N

**Verbosity**: Evaluates whether the response is concise and avoids unnecessary elaboration.
- 1: Excessively verbose or overly terse, failing to strike a balance.
- 2: Somewhat verbose or overly brief with noticeable issues.

: Moderately concise but could improve in eliminating redundancy or brevity.

: Mostly concise with minor verbosity or brevity issues.

: Perfectly concise, providing just the right amount of information.

oA W

#### Output Format:
Provide the evaluation in the following JSON format:

{
"Helpfulness”: score,
"Correctness”: score,
"Coherence”: score,
"Complexity”: score,
"Verbosity”: score

}

In case there is no translation provided, give -1 to all the categories!
If case of non-applicable score, make the score=0

Only return the evaluation JSON! No explanation!

Figure 9: Alignment-based quality filtering prompt
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You will be presented with a chat containing user question and bot response pairs in Hindi.

Your goal is to evaluate the fluency of the response on a scale of 1-5, with 1 being the lowest and 5 being the highest.
You are proficient in the Hindi language, so you should consider the nuances and context of the language in your evaluation.
Your evaluation should be based on the following criteria:

1. Grammar and Syntax: Is the response grammatically correct and properly structured in Hindi?

2. Fluency and Naturalness: Does the response sound natural and fluent, as if it were written or spoken by a native Hindi speaker?
3. Pacing and Readability: Is the response paced well and easy to read or understand for a Hindi-speaking audience?

4. Cohesion and Coherence: Are the ideas logically connected, and does the response flow smoothly?

You will rate each criterion individually and then provide an overall fluency rating from 1 to 5.
Here is the chat:

User Question:
{hindi_prompt}

Bot Response:
{hindi_response}

At the end, provide the ratings in a JSON format with appropriate keys and values.

Example JSON format:
"grammar_and_syntax": 4,
"fluency_and_naturalness”: 5,
"pacing_and_readability": 4,
"cohesion_and_coherence”: 5,
"overall”: 4

Return the JSON object with the above 5 parameters, with all ratings as integers.
Do not include anything else.

You are a helpful Evaluator. Your task is to critically assess the fluency of responses given by a model to user questions in Hindi.

\

Figure 10: Fluency evaluation prompt
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Abstract

Vedic Sanskrit, the oldest attested form of San-
skrit, employs a distinctive pitch-accent sys-
tem that marks one syllable per word. To the
best of our knowledge, this work presents the
first application of large language models to
the automatic restoration of accent marks in
transliterated Vedic Sanskrit texts. A compre-
hensive corpus was assembled by extracting
major Vedic works from the TITUS project and
constructing paired samples of unaccented in-
put and correctly accented references, yielding
more than 100,000 training examples. Three
generative LLMs were fine-tuned on this cor-
pus: a LoRA-adapted Llama 3.1 8B Instruct
model, OpenAl GPT-4.1 nano, and Google
Gemini 2.5 Flash. These models were trained
in a sequence-to-sequence fashion to insert ac-
cent marks at appropriate positions. Evalua-
tion on roughly 2,000 sentences using preci-
sion, recall, F1, character error rate, word error
rate, and ChrF1 metrics shows that fine-tuned
models substantially outperform their untuned
baselines. The LoRA-tuned Llama achieves
the highest F1, followed by Gemini 2.5 Flash
and GPT-4.1 nano. Error analysis reveals that
the models learn to infer accents from gram-
matical and phonological context. These re-
sults demonstrate that LLMs can capture com-
plex accentual patterns and recover lost infor-
mation, opening possibilities for potential im-
provements in sandhi splitting, morphological
analysis, syntactic parsing and machine trans-
lation in Vedic NLP pipelines.

1 Introduction

Vedic Sanskrit is the oldest attested form of San-
skrit and preserves the religious and philosophical
contexts of ancient India. Vedic Sanskrit texts are
distinguished by a pitch accent system that marks
one syllable per word as accented. The accent
marks are essential for linguistic and philological
analysis of the Vedas. Accurate accentuation can
signal morphological and syntactic information in

&3

Vedic Sanskrit, which differs significantly from
Classical Sanskrit. However, some Vedic texts
lack accent notations, and restoring Vedic accent
marks has received little attention in natural lan-
guage processing to date. This is a challenging se-
quence prediction task: the accent of a word is not
always predictable from its surface form alone; it
often depends on the grammatical context.

In this work, we address the task of automatic
Vedic accent restoration using modern large lan-
guage models (LLMs). We fine-tune three state-
of-the-art models on a comprehensive Vedic cor-
pus: (1) a LoRA-adapted Llama 3.1 8B Instruct
model, (2) an OpenAl GPT-4.1 nano model, and
(3) a Google Gemini 2.5 Flash model via super-
vised fine-tuning (SFT). We avoid older sequence-
to-sequence-based or BERT-like models, focusing
instead on these generative LLMs which can di-
rectly produce accented text. Our contributions in-
clude:

* assembling a large accented Vedic corpus
from the TITUS project and constructing

pairs of accented and unaccented sentences;
1

* demonstrating efficient fine-tuning of open
and closed large language models on this task;
and

* evaluating the models’ performance on accent
restoration using standard precision, recall,
F1 metrics, CER, WER, and ChrF1.

We show that all models achieve high accuracy in
restoring Vedic accent marks.

Our results represent the first application of
large-scale language models to the Vedic accent
restoration problem. By accurately reconstructing

'TITUS (Thesaurus Indogermanischer Text- und Sprach-
materialien) provides digitized Indo-European texts.

https://titus.uni-frankfurt.de/indexe.htm?
/texte/texte2.htm.

Proceedings of the 1st Workshop on Benchmarks, Harmonization, Annotation, and Standardization for Human-Centric Al in Indian Languages (BHASHA 2025),
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accentual patterns, the models effectively bridge
a gap in Sanskrit digitization efforts. This capa-
bility indicates that Vedic accent restoration task
could potentially support downstream tasks, such
as sandhi splitting, morphological analysis, syn-
tactic parsing, and machine translation, although
systematic empirical vertification is left for future
work.

2 Vedic Accent System

Vedic Sanskrit is the oldest attested variety of San-
skrit, and its distinctive accent system sets it apart
from later stages of the language. In Latin translit-
eration, accent marks are represented by the acute
and the grave accents.

The fundamental rule of Vedic accentuation is
that each word carries only one accent. There are,
however, several exceptions, including enclitics, fi-
nite verbs in main clauses, vocatives and other con-
ditions (Macdonell, 1910).

Nouns, adjectives, and verbs in Vedic Sanskrit
inflect according to their semantic roles. Some
paradigms exhibit a dynamic accent system in
which the accent position changes across inflected
forms. For example, the active present participle
of the verb as ‘to be’ shows a nominative singular
form s-dn, with the accent on the suffix, and a gen-
itive singular form s-at-ds, with the accent on the
ending.

The position of the accent is also crucial in de-
termining the meaning of compounds. Vedic San-
skrit has a rich system of compound formation,
including: two endocentric types, determinative
(Tatpurusa) and descriptive (Karmadharaya); an
exocentric, possessive type (Bahuvrihi); a copu-
lative type (Dvandva); an iterative type (Amred-
ita); prepositional governing compounds; syntac-
tic compounds; and complexive compounds (Goto,
2013). The position of the accent helps to distin-
guish compound types. Tatpurusa and Karmad-
haraya, which are endocentric compounds, typi-
cally bear the accent on the final member, whereas
Bahuvrihi, which is exocentric, has the accent on
the first member.

3 Related Works

This research explores the task of restoring Vedic
Sanskrit accent. Though accents are critical in
Vedic Sanskrit, the present work is the first to frame
their recovery as an NLP task. Related studies fall
into three broad areas: computational analyses of
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Vedic accentuation, diacritic or accent restoration
in modern languages, and automatic restoration of
damaged ancient texts.

Computational modeling of Vedic accent:
Scholars have long noted that Vedic Sanskrit ac-
cent cannot be predicted by simple syllable count
or phonological weight. Sandell (2024) argues that
stress assignment relies on morphological struc-
ture and prosody rather than arbitrary lists of ac-
cented affixes. Instead of positing separate phono-
logical strata or “dominant” affixes, Sandell pro-
poses a uniform Optimality Theory analysis where
each morpheme enters the derivation with its own
foot structure; accent emerges from the interaction
of faithfulness to morphological heads and marked-
ness constraints. This approach achieves compu-
tational uniformity across stems and suffixes and
avoids listing stem-specific accent patterns. Such
theoretical work provides insights into how mor-
phological context might inform machine learning
models for accent restoration.

Accent and diacritic restoration in modern
languages:

Romance languages

Yarowsky (1994) treats diacritic restoration in
Spanish and French as a lexical ambiguity resolu-
tion problem. Omission of diacritics (e.g. acute or
grave accents) produces many homographs, caus-
ing lexical and syntactic ambiguity. Each unac-
cented surface form has a set of possible accented
lemmas, and the task is to choose the correct one
using context. The proposed statistical decision-
list algorithm selects the single most informative
contextual feature, rather than combining multiple
cues, to choose the correct accent. This simple
method achieves over 99% accuracy on both lan-
guages, demonstrating that moderate training data
and local context can resolve diacritic ambiguity
with high precision.

Arabic

Aldallal et al. (2025) build a compact decoder-
only Transformer model (SADEED) with about
140M parameters for Arabic diacritization. Mod-
ern Arabic is typically written without short vowel
marks (harakat), making diacritization necessary
for unambiguous parsing, text-to-speech and ma-
chine translation. The task is challenging be-
cause Arabic exhibits rich morphology, multiple
registers (Classical vs. Modern Standard Arabic),
and limited diacritized corpora. Trained on a
new benchmark corpus (SadeedDiac-25) combin-
ing modern and classical texts, their model deliv-



ers competitive accuracy while being much smaller
than prior systems. Their work highlights the im-
portance of specialized datasets and demonstrates
that carefully designed, lightweight models can
yield strong diacritization performance.

Vietnamese

Dang and Nguyen (2020) propose a hybrid
model combining a Transformer decoder with a
diacritic penalty layer for Vietnamese diacritic
restoration. Vietnamese uses tone marks and other
diacritics on most words, nearly 90% of words
contain diacritics, and over 80% of these have
multiple possible tonal reconstructions. Restora-
tion is therefore indispensable for downstream ap-
plications but challenging because sequence-to-
sequence neural models can generate invalid syl-
lables and are slow. In their method, the decoder
outputs one character at a time, while the penalty
layer restricts outputs to valid diacritic letters. This
reduces processing time by roughly eight to ten
times compared with beam search and preserves or
slightly improves F1-score relative to state-of-the-
art sequence-to-sequence models. Their approach
shows that explicit constraints on output vocabu-
lary can improve both efficiency and accuracy in
diacritic restoration.

Ancient text restoration:

Assael et al. (2019) introduce PYTHIA, the first
deep-learning system for restoring damaged an-
cient Greek inscriptions. Ancient inscriptions of-
ten survive only fragmentarily, requiring special-
ists to hypothesize missing text. After constructing
the PHI-ML corpus from the Packard Humanities
Institute’s Greek epigraphic collection, the authors
train a model that jointly leverages character-level
and word-level information to predict missing char-
acters. On this dataset, PYTHIA’s predictions re-
duce the character error rate to 30.1%, compared
with 57.3% for human epigraphists, and the correct
sequence appears within the top-20 hypotheses in
73.5% of cases.

4 Dataset

4.1 Corpus Compilation

We compiled a corpus of Vedic Sanskrit texts
from the TITUS digital text platform (Thesaurus
Indogermanischer Text- und Sprachmaterialien).
The dataset includes the major Samhita (hymn col-
lections) and Brahmana (prose commentary) texts
of the Vedic corpus, as well as Aranyaka and Up-
anisad sections. All the following texts are anno-
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tated with the original accent marks. The corpus
comprises eight texts:

AVS Atharvaveda Samhita (Saunaka recen-
sion)

MS Maitrayani Sanihita (Black Yajurveda)

RV Rgveda Samhita (Rgveda hymns)

RVKh Rgveda Khilani (Rgveda appendix
hymns)

SBM  Satapatha Brahmana (Madhyandina re-
cension, a brahmana of VS)

TB Taittirtya Brahmana (a brahmana of TS)

TS Taittirtya Sanihita (Black Yajurveda)

VS Vajasaneyi Sanihita (White Yajurveda)

These texts span three Vedas (Rgveda, Athar-
vaveda and Yajurveda) and represent comprehen-
sive coverage of Vedic genres. Each text in our cor-
pus is provided in transliterated form with diacriti-
cal marks following the ISO 15919 standard, which
allows encoding Vedic accent as acute (") and grave
() marks on vowels. As accent marking prac-
tices in Devanagari differ substantially across lit-
eratures, we adopted the Latin transliteration with
diacritics to ensure consistency.

We obtained the texts in accented form from
TITUS, which has digitized scholarly editions of
these works (e.g., the Atharvaveda Saunaka edition
by Roth & Whitney 1856, etc., as curated in TI-
TUS). We then removed all accent notation from
the corpus to create training inputs, with the origi-
nal accented versions serving as reference outputs.

The dataset was split into training, validation,
and test sets in an 8:1:1 ratio by random partition-
ing at the verse or sentence level that has two or
more words, ensuring that there is no overlap of
exact verses across sets.

4.2 Dataset Statistics

The whole dataset consists of 108,076 text sam-
ples. Each sample is relatively short, with an av-
erage length of about six words (mean = 6.03, stan-
dard deviation = 5.72). Most texts contain between
three and seven words, while the longest example
reaches 148 words. The distribution of text lengths
for the training, validation, and test sets is visual-
ized in box plots (see Figure 1), illustrating that
the overall length distribution remains consistent
across subsets.

In terms of vocabulary, the dataset contains
a total of 651,337 space-delimited “words” and
133,873 unique “word forms”. However, because
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Figure 1: Box plots showing the distribution of text
lengths (in words) across training, validation, and test
sets.

sound changes called sandhi can combine multiple
underlying word forms into a single surface form,
the true number of lexical words is likely higher
than these counts suggest. The lexical density, de-
fined as the ratio of unique words to total tokens, is
0.2055, which indicates a moderate level of lexical
diversity. On average, each text contains approxi-
mately six words.

Accent annotations were also analyzed. The av-
erage number of accents per text is 5.53 (standard
deviation = 6.18), with values ranging from 0 to
154. The median is four accents per text, suggest-
ing that most utterances include a small number of
accented segments. Figure 1 shows the distribution
of accent counts across the dataset.

Overall, these statistics demonstrate that the cor-
pus is composed primarily of short, lexically varied
utterances, with accent patterns distributed broadly
but skewed toward lower counts.

Our dataset 1is publicly available
https://huggingface.co/datasets/yzk/
vedic-accent-restoration-dataset.

at:

S Models and Fine-Tuning

We fine-tuned two proprietary large language mod-
els and two open-weight models on the accent
restoration task.

The first model is a Llama 3.1 8B Instruct
model (Grattafiori et al., 2024), an eight-billion-
parameter instruction-tuned language model from
the Llama series (Meta Al). We applied LoRA
(Low-Rank Adaptation) (Hu et al., 2022) to fine-
tune this model efficiently. We set the LoRA rank
to 16 and fine-tuned only the query and value pro-
jection matrices of each transformer layer, with all
other weights kept fixed. The training objective
was a straightforward sequence-to-sequence gener-
ation: the model takes an unaccented Vedic text
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sequence as input and is trained to output the same
sequence with correct accent marks inserted in the
appropriate positions. We fine-tuned for 10 epochs
(approximately 50k update steps) with a learning
rate of 2e-4, using the AdamW optimizer. The
model converged quickly, likely due to the simplic-
ity of the output (accent markers) relative to the
rich pretraining of the Llama model.

The second model is OpenAl GPT-4.1
nano (OpenAl, 2025), a proprietary LLM accessi-
ble via API. This model is an instruction-following
variant of GPT-4 with a smaller parameter scale.
We performed supervised fine-tuning (SFT) on
GPT-4.1 nano by supplying our training pairs
through the OpenAl fine-tuning API. The model
was fine-tuned in a similar sequence-to-sequence
fashion: each training example was presented
as a prompt consisting of an unaccented Vedic
sentence, with the expected accented sentence as
the completion. We fine-tuned GPT-4.1 nano for
one epoch over the training data (the maximum
allowed by OpenAl’s guidelines for this model).
Despite the model’s smaller size compared with
full GPT-4, it benefits from GPT-4’s advanced
initialization and instruction tuning. We antic-
ipated that GPT-4.1 nano might capture accent
patterns from context even without seeing as many
examples, due to its strong zero-shot capabilities.

The third proprietary model is Google Gem-
ini 2.5 Flash (LLC, 2025), a fast and instruction-
optimized variant of the Gemini series. We fine-
tuned this model using the Gemini API, following
Google’s official fine-tuning guidelines. To align
with these recommendations, we limited the train-
ing dataset size by randomly sampling 2,000 sen-
tence pairs from our full dataset. The fine-tuning
procedure followed the same supervised sequence-
to-sequence format as with GPT-4.1 nano: the
input was an unaccented sentence and the out-
put the correctly accented version. Although the
smaller training size constrained exposure, the
model adapted efficiently and demonstrated strong
contextual generalization, suggesting that Gem-
ini’s robust instruction tuning and multilingual pre-
training provide useful inductive bias for accent
restoration tasks.

6 Evaluation Setup

We evaluate the models on the held-out test set of
Vedic sentences/verses with gold-standard accent
markings. The primary evaluation metrics are Pre-



cision, Recall, and F1-score for accent restoration,
computed at the character level on vowels. An ac-
cent prediction is considered correct if the model
outputs the correct diacritic (e.g., an acute accent)
on the exact vowel that is accented in the reference.
Precision thus reflects the fraction of accent marks
inserted by the model that are correct, while Re-
call reflects the fraction of actual reference accent
marks that the model successfully restored. F1 is
the harmonic mean of Precision and Recall, sum-
marizing overall accuracy of accent placement.

In addition to character-level metrics, we
also examine CER (character error rate), WER
(word error rate), and ChrF1 (character-level F1
score) (Popovié, 2015), to provide a more holistic
view of model performance.

The evaluation was performed separately for
each model. We used the same test set for all mod-
els, containing around 2,000 lines covering all in-
cluded texts. This ensures a fair comparison under
identical conditions. No post-processing was ap-
plied to the model outputs; we compare raw model
output to the reference after normalizing Unicode
combining characters for fairness.

7 Results

7.1 Overall Performance

All fine-tuned models substantially outperform
their pre-trained baselines across all metrics. The
Llama 3.1 8B model after supervised fine-tuning
achieves the best overall performance, with a pre-
cision of 0.916, recall of 0.841 and Fl-score of
0.877. Its word error rate (WER) is the lowest
among the tested models, and it achieves the high-
est ChrF1 score (87.5). Although its character er-
ror rate (CER) is not the absolute minimum, it re-
mains competitive.

GPT-4.1 nano and Gemini 2.5 models also show
strong gains after fine-tuning, indicating that SFT
effectively adapts each base model to the specific
linguistic task of accent restoration. In particular,
GPT-4.1 nano’s CER of 0.062 suggests it produces
fewer local character-level errors, while Gemini
2.5 Flash maintains balanced precision and recall,
leading to a stable F1 of 0.780. These proprietary
models already achieve strong performance even
before SFT.

7.2 Error Analysis

A common error type observed across models is
over-generation of accents (false positives), where

87

an accent mark is added to an unaccented syllable.
Such cases often occur adjacent to the correct po-
sition. Missed accents (false negatives) are typi-
cally found in long compounds or phrases. These
patterns suggest that local contextual cues play a
central role in the models’ predictions.

Overall, these results demonstrate that fine-
tuned large language models are capable of restor-
ing complex Vedic accent patterns with high ac-
curacy, capturing both surface orthographic and
deeper phonological regularities. The open-weight
LoRA-tuned Llama 3.1 8B model achieves per-
formance comparable to the proprietary GPT-4.1
nano model while requiring significantly less com-
putational cost, making it an attractive option for
deployment in Sanskrit text processing pipelines.

7.3 Improvement Rates by Text Type

To examine whether fine-tuning effects differ
across textual genres, we computed improvement
rates for each corpus, Rgveda (RV), Yajurveda
(YV), and Atharvaveda (AV), based on the im-
provement from pre-trained to fine-tuned models.

Table 2 summarizes the relative improvements
for core metrics.

Overall, the improvement trends are broadly
consistent across the three Vedic corpora. All show
large reductions in character and word error rates
(ranging from roughly 50% to 130% decreases),
and substantial increases in precision and overall
Fl-scores. Although the exact magnitudes vary
slightly with the largest CER reduction observed
in the RV and the strongest gain in ChrF1 in the
AV, the general pattern suggests that fine-tuning
improves performance in a relatively uniform way
across different Vedic text types.

The modest differences (within about 10-15%
across corpora) imply that the model’s learning is
not strongly biased toward a specific Vedic text.
This indicates that the fine-tuned model captures
accentual patterns that generalize well across tex-
tual traditions, rather than overfitting to any single
recension or genre.

7.4 TImprovement Rates by Text Category

We also compared improvement rates between the
Sanihita and non-Sanihita (Brahmana, Aranyaka,
Upanisad) groups to investigate whether the prose
or metrical style of the text affects restoration accu-
racy. For simplicity, the Black Yajurveda, which
traditionally contains both Samhita and Brahmana
portions, was counted as part of the Samhita group.



Model Precisiont Recall! F1t CER| WER| ChrF11
GPT-4.1 nano (Before SFT) 0.609 0.020 0.039 0.288  0.858 45.6
GPT-4.1 nano (After SFT) 0.752 0.676  0.712 0.062 0.322 79.6
Gemini 2.5 Flash(Before SFT) 0.551 0.191 0.284 0.698 0.863 22.6
Gemini 2.5 Flash (After SFT) 0.789 0.771  0.780 0.109  0.249 83.5
Llama 3.1 8B (Before SFT) 0.452 0.034 0.064 0.249 0.894 48.1
Llama 3.1 8B (After SFT) 0.916 0.841 0.877 0.096 0.161 87.5

Table 1: Evaluation results on Vedic accent restoration. Bold values indicate the best performance for each metric.

Metric RV YV AV

CER (%) 131.66 75.78 80.56
WER (%) 74.78 61.16 52.58
ChrF1 (%) 60.61 59.17 67.81
Precision (%) 54.40 63.80 53.08
Recall (%) 32.00 11.10 19.01
F1 (%) 20.41  26.25 34.64

Table 2: Relative improvement rates by text type.

Similarly, Brahmana texts often include direct quo-
tations from the Samhita, but these were not sepa-
rated out and were counted within the Brahmana
group.

Metric Samhita Non-Sanihita
CER (%) 84.72 79.35
WER (%) 62.13 58.20
ChrF1 (%) 63.41 60.02
Precision (%) 57.92 54.10
Recall (%) 8.43 5.26
F1 (%) 28.46 26.89

Table 3: Improvement rates by text category.

As shown in Table 3, the improvement rates for
both groups are comparable across all metrics. The
Sanmihita group shows slightly higher reductions in
character and word error rates (around 80-85%),
but the differences from the Brahmana group re-
main within a narrow range of 3-5%. This sug-
gests that fine-tuning improved model performance
in a balanced manner, regardless of textual genre or
prosodic complexity.

The result further indicates that the model gen-
eralizes well across metrical and prose texts alike,
capturing accent patterns that apply uniformly to
both verse and explanatory prose. Given the mixed
nature of Vedic textual traditions and the pres-

ence of quotations across sections, such genre-
independent gains are a desirable property for ro-
bust automatic accent restoration.

8 Conclusion

We presented a study on restoring Vedic Sanskrit
accent marks with fine-tuned large language mod-
els, achieving 87.7% F1 on inserting correct accen-
tual markings into unaccented texts. Beyond sur-
face accuracy, this performance suggests that the
model has internalized core regularities of Vedic
phonology and morphosyntax, learning not just
where accents occur, but also why they occur, as
accent placement in Vedic reflects clause structure,
lexical accent and sandhi outcomes.

This capability opens concrete avenues for
downstream Vedic NLP. Accented input can
sharpen sandhi splitting and morphological dis-
ambiguation and provide informative signals for
syntactic parsing and machine translation. In
the broader Sanskrit pipeline, accent restoration
can serve as a front-end normalization step that
improves robustness in (i) post-OCR correction
(Nehrdich et al., 2024; Maheshwari et al., 2022),
(i) Vedic OCR workflows (Tsukagoshi et al.,
2025), (iii) compound type identification (Krish-
nan et al., 2025), and (iv) Sanskrit translation sys-
tems (Pandey et al., 2022; Punia et al., 2020).
In each case, accent cues provide linguistically
grounded features that downstream models can ex-
ploit.

Future work will scale to larger base models and
explore multitask and pipeline training, e.g., joint
learning with parsing or translation, or end-to-end
systems that perform OCR, accent restoration and
then analysis. We also plan to test portability to
other historical languages that use diacritical sys-
tems. Ultimately, restoring Vedic accents is not an
orthographic nicety; it is a means to recover latent
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linguistic information and to enhance the fidelity
of subsequent language processing tasks.

Limitations

Our study focuses exclusively on the task of Vedic
accent restoratioin, and we do not empirically
evaluate the impact of the task on downstream
NLP tasks such as sandhi splitting, morphologi-
cal analysis, syntactic parsing, or machine transla-
tion. While linguistic theory suggests that explicit
phonoclogical marking may be beneficial, confirm-
ing these effects requires further systematic evalu-
ation.

In addition, our experiments rely on a limited set
of textual source, which do not fully represent the
diversity of Vedic textual traditions, recensions, or
orthographic conventions.

Another limitation concerns the evaluation of ac-
cent placement in compound nouns. In Vedic San-
skrit, compounds represent a challenging case for
accent restoration (section 2). Ideally, we should
evaluate the models on such minimal pairs. How-
ever, our current test set does not contain repre-
sentative examples of these compounds, in part
because we did not manually curate this subset
when constructing the splits. A future version of
the dataset should incorporate a balanced selection
of accentually contrastive compounds, enabling a
more systematic evaluation of model performance
on accent-based semantic and morphological dis-
tinctions.
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A Training Details

A.1 Training Configurations

The training configurations used for the Llama 3.1
8B Instruct, GPT-4.1 nano, and Gemini 2.5 Flash
models are summarized below.

Llama 3.1 8B Instruct
* LoRA rank: 16
* LoRA alpha: 16
* LoRA dropout: 0.0
* Learning rate: 3e-4
* Learning rate scheduler: linear
* Warmup steps: 10

* Weight decay: 0.01
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Epochs: 10
Batch size: 4
Gradient accumulation steps: 8
Optimizer: AdamW
GPT-4.1 nano
* Epochs: 1 (default)
* Batch size: 32
* Learning rate multiplier: 0.1
Gemini 2.5 Flash
* Epochs: 22 (automatically determined)
* Adapter size: 4 (default)

A.2 Training Data Format

For all models, the training data was formatted
as pairs of input-output sequences. The input
sequence consisted of the unaccented Vedic text,
while the output sequence contained the same text
with correct accent marks inserted.

Please restore the Vedic accents in the
following Vedic Sanskrit text.

### Input:
{input_text}

### Target:
{output_text}

Dataset contains the source, target and text_id
pairs in JSONL format as follows:

{

"text_id": "YVB_MS_2_3_4_ai",

"source": "tenayusayusman edhi",

"target": "téndyusdyusman edhi"
}
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Abstract

The digital preservation and accessibility of
historical documents require accurate and scal-
able Handwritten Text Recognition (HTR).
However, progress in this field is significantly
hampered for low-resource scripts, such as
ancient forms of the scripts used in histori-
cal manuscripts, due to the scarcity of high-
quality, transcribed training data. We address
this critical gap by introducing the AnciDev
Dataset, a novel, publicly available resource
comprising 3,000 transcribed text lines sourced
from 500 pages of different ancient Devana-
gari manuscripts. To validate the utility of this
new resource, we systematically evaluate and
fine-tune several HTR models on the AnciDev
Dataset. Our experiments demonstrate a signif-
icant performance uplift across all fine-tuned
models, with the best-performing architecture
achieving a substantial reduction in Character
Error Rate (CER), confirming the dataset’s ef-
ficacy in addressing the unique complexities
of ancient handwriting. This work not only
provides a crucial, well-curated dataset to the
research community but also sets a new, repro-
ducible state-of-the-art for the HTR of histori-
cal Devanagari, advancing the effort to digitally
preserve India’s documentary heritage. Code,
Dataset and models are available at https:
//github.com/vriti2003/AnciDev.

1 Introduction

India possesses one of the world’s largest and most
significant textual heritages, recorded across mil-
lions of ancient manuscripts. These documents,
written in various languages and scripts, including
historical forms of Devanagari, Gurmukhi, Tamil,
Telugu, etc, contain vast, untapped knowledge of
history, science, philosophy, rituals, dance forms
and local traditions (PRADEEP et al., 2024). Criti-
cally, these manuscripts are subject to relentless
environmental degradation, damage from pests,
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Figure 1: An increasing number of bounding boxes
(indecipherable characters) depicts a problem in reading
manuscripts from easy (top left), medium (top right),
and difficult (bottom).

and natural ageing, placing this invaluable his-
torical record under immediate threat of extinc-
tion. (Zhang et al., 2025) The reason to digitize and
preserve this heritage is thus not merely academic,
but a fundamental act of preserving Indian culture.

Digitization is the first step, but accurate preser-
vation and accessibility require that these images be
convertible into searchable, machine-readable text.
This process is accomplished through Handwritten
Text Recognition (HTR). While modern HTR sys-
tems have achieved high accuracy for Latin scripts
and printed Devanagari, they fail drastically when
applied to historical and ancient manuscripts. The
complexity is rooted in non-uniform handwriting
styles, stylistic variations in ancient scripts, heavy
noise, variable paper quality, ink bleed-through,
and physical deterioration.

The primary obstacle preventing the accurate
HTR of ancient Indian manuscripts is the profound
lack of high-quality, expertly annotated, and pub-
licly available training data. Existing research often
relies on small, proprietary, or particular datasets
that do not generalize. This severely limits the de-
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velopment of robust, high-performance machine
learning and deep learning models necessary for
large-scale archival conversion.

This paper describes the dataset created to
address this data deficit and the baselines that have
been considered for the information extraction
task. The main contributions of our work are the
following:

(i) To the best of our knowledge, we introduce the
AnciDev Dataset, the first publicly available, open-
source dataset, comprising 3,000 transcribed lines
extracted from 500 pages of ancient manuscripts in
the Devanagari script.

(il)) We leverage this novel resource to establish
reproducible HTR benchmarks by fine-tuning
several recognized architectures, including Tesser-
act (Smith, 2007), a specialised CNN-RNN, and
the attention-LSTM models.

Our results demonstrate that the AnciDev
Dataset enables a significant leap in HTR perfor-
mance, thus providing both a critical tool and a
new state-of-the-art for the digital preservation of
Indian textual legacy.

2 Relative Work

2.1 Progress and Challenges in Handwritten
Text Recognition (HTR)

Handwritten Text Recognition (HTR) has been
a significant research area, witnessing substan-
tial breakthroughs, particularly with the advent of
deep learning architectures. Early work focused
on statistical models and Hidden Markov Mod-
els (HMMs) (Anigbogu and Belaid, 1995), but
modern approaches predominantly utilize Convo-
lutional Neural Networks (CNNs) for feature ex-
traction coupled with Recurrent Neural Networks
(RNNs) or Attention mechanisms for sequence de-
coding (Dwivedi et al., 2020). For widely used
Latin scripts, such as English and German, HTR
systems have achieved near-human performance on
standardized datasets like IAM and READ (Marti
and Bunke, 2002; Peiré et al., 2017).

The challenge intensifies when transitioning
from modern cursive scripts to ancient manuscripts.
Issues such as degraded document quality, unusual
character variations (allography), and heavy noise
necessitate specialized approaches (Guan et al.,
2025; Souibgui and Kessentini, 2020). Commer-
cial and open-source solutions are widely deployed,
function primarily as Optical Character Recogni-
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tion (OCR) tools, and often serve as a necessary,
yet insufficient, baseline for the complex task of
HTR, especially on historical data (Fleischhacker
et al., 2024; Kim et al., 2025).

2.2 HTR for Indian Scripts and Devanagari

Research efforts dedicated to Indian scripts, includ-
ing Devanagari, have been gaining momentum. Ini-
tial work focused on printed Devanagari text recog-
nition, achieving high accuracy (Chaudhuri, 2009;
Bag and Harit, 2013; Sharma and Mudgal, 2018).
However, the transition to handwritten and histori-
cal manuscripts remains a major hurdle. The com-
plexity of the Devanagari script, with its inherent
vowel modifiers, combined with the structural ir-
regularities of ancient handwriting, creates unique
HTR problems (Roy et al., 2017).

Several studies have explored HTR for Indic
languages, utilizing various contemporary models.
For instance, some researchers have employed spe-
cialized CNN-RNN architectures combined with
Connectionist Temporal Classification (CTC) loss
for contemporary Hindi and Marathi handwrit-
ing (Bisht and Gupta, 2022). More recent develop-
ments have seen the application of Transformer and
attention-based encoder-decoder models, similar to
the SanskritOCR attention-LSTM model (Dwivedi
et al., 2020), demonstrating improved handling of
long-range dependencies in complex scripts like
Sanskrit and other Indic languages. Despite these
architectural advances, the reported success is of-
ten confined to modern, relatively clean datasets or
proprietary archives.

2.3 The Manuscript Data Scarcity Problem

The most critical barrier to developing robust
HTR for historical Hindi and related Devanagari
manuscripts is the lack of publicly available, large-
scale, annotated datasets. While initiatives exist
for digital archiving of manuscripts across vari-
ous institutions (National Mission for Manuscripts,
2025), the resulting image data is rarely released
with expert line-level transcriptions necessary for
supervised machine learning training. This con-
trasts sharply with resource-rich European histor-
ical HTR, which benefits from extensive open
datasets like those from the DIVA series (Simistira
et al., 2016). Previous works that have fine-tuned
models for Devanagari HTR have either utilized
datasets too small for generalization or relied on
synthetic data, which fails to capture the intricate,
real-world noise present in aged paper, ink bleed,
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and the variations in ancient scribe hands (Kasuba
et al., 2025).

3 Dataset

We introduce the AnciDev Dataset, a novel corpus
for ancient Devanagari manuscript recognition on
Hindi and Sanskrit languages, comprising 3,000
text lines extracted from 500 historical manuscript
pages. This dataset addresses a critical gap in opti-
cal character recognition (OCR) research for Indic
scripts, particularly for historical documents where
conventional models trained on modern printed text
exhibit poor performance due to differences in writ-
ing styles and conventions.

3.1 Data Collection and Composition

The manuscript pages were sourced from National
Manuscript Mission archives of historical texts
spanning the 16th to 19th centuries. These doc-
uments represent diverse genres including religious
texts, literary works, and administrative records,
providing substantial variation in writing styles and
vocabulary. Each page was carefully selected to
ensure representation of different scribal hands and
dialectical variations in Hindi orthography from
different historical periods.

The AnciDev Dataset consists of 500
manuscript page images with correspond-
ing ground truth transcriptions. From these pages,
we extracted 3,000 individual text lines using
semi-automated segmentation followed by manual
verification and correction. Lines were extracted
as complete, meaning while maintaining sufficient
surrounding context to facilitate text to help with
accurate character recognition.

As the AnciDev dataset was annotated by a single
annotator, reliability was ensured through a quality
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control procedure in which a randomly selected
subset of 25% of the images was independently
reviewed, and any inconsistencies were corrected.

3.2 Data Characteristics and Challenges

The AnciDev Dataset presents several characteris-
tics that distinguish it from other historical OCR
corpora. The primary challenge stems from the sig-
nificant stylistic differences between historical and
modern Devanagari writing. Historical manuscripts
exhibit distinctive paleographic features: character
forms that differ substantially from contemporary
standards, unique ways of forming conjuncts, and
writing conventions that are no longer in common
use. The handwritten nature introduces high intra-
class variability in character morphology, with con-
siderable differences in stroke patterns, character
proportions, and spacing conventions across differ-
ent scribes and time periods.

The writing style variations across different his-
torical periods are particularly notable in the An-
ciDev Dataset. Manuscripts from the 16th century
exhibit markedly different character formations
compared to those from the 18th or 19th centuries.
Each scribe developed an individual hand, resulting
in diverse representations of the same characters
across the corpus. The cursive nature of histor-
ical handwriting, combined with period-specific
calligraphic conventions, creates substantial chal-
lenges for recognition systems trained on modern,
standardized Devanagari.

4 Experiments

In this section, we describe the experimental setup,
model architectures, training procedures, and eval-
uation methodology used to establish baseline per-
formance on the AnciDev Dataset.
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Model CER(%)(]) ‘ WER(%)(])
CNN-RNN 48.59 98.20
Attention-LSTM 46.33 96.73
Tesseract-5 30.06 87.42

Table 1: Comparison of OCR models’ performance keeping the same AnciDev test set.

Exp. LR Target Error Arch. CER(%)(]) WER(%)(])

1 0.00001 0.01 medium 33.01 88.95
2 0.0001 0.01 medium 33.38 89.06
3 0.001 0.01 medium 34.88 89.46
Best Learning Rate: 0.00001
8 0.00001 0.01 small 35.27 90.45
9 0.00001 0.01 medium 33.01 88.95
10 0.00001 0.01 large 32.27 88.95
Best Architecture: large
11 0.00001 0.005 large 30.06 87.42
12 0.00001 0.01 large 32.27 88.95
13 0.00001 0.02 large 33.01 90.09

Best Target Error: 0.005

Table 2: Hyperparameter tuning for Tesseract-S. LR: learning rate; Arch.: architecture variant (small/medium/large;
uninitialized layers randomly initialized for medium and large. All experiments ran for 10k iterations. bold indicates
the best model in each category and italics indicates the overall best model.

4.1 Experimental Setup Tesseract-52. To leverage transfer learning and
improve recognition performance on historical

We evaluate three OCR models on the An-  manuscripts, we employ a two-stage training strat-
ciDev Dataset: Attention-OCR, CNN-RNN', and  egy: (1) pre-training on large-scale synthetic De-

vanagari data and (2) fine-tuning on a combina-

!GitHub link for CNN-RNN and Attention-LSTM: 2GitHub link for latest-release Tesseract: https://
https://github.com/ihdia/sanskrit-ocr github.com/tesseract-ocr/tesseract
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tion of real manuscript images from the AnciDev
Dataset and additional synthetic data.

4.2 Pre-training Phase

To initialise our models with knowledge of the De-
vanagari script, we pre-trained the Attention-OCR
and CNN-RNN models on a large synthetic dataset
of document images. This synthetic dataset was
generated using 820 different Devanagari fonts ap-
plied to 5,000 text images, resulting in a total of
4.1M samples. The synthetic data was split into
training, validation, and test sets with a ratio of
7:2:1, yielding 2.8M training samples, 0.8M valida-
tion samples, and 0.41M test samples. Pre-training
was conducted using a batch size of 32. This pre-
training phase allows the models to learn general
Devanagari character shapes, common conjuncts,
and basic script features from document images
before exposure to the more challenging historical
manuscript data.

4.3 Finetuning Phase

After pre-training, we fine-tuned all three models
on the AnciDev Dataset. The fine-tuning dataset
consists of 2,458 real manuscript line images for
training and 627 images for validation, maintain-
ing an 80:20 split ratio. To augment the training
data and improve model generalization, we sup-
plemented the real manuscript images with syn-
thetically generated samples that mimic historical
writing styles. Table 2 shows the hyperparameter
tuning of the best model Tesseract-5' based on
learning rate, and model architecture.

These experiments were designed to assess the
impact of synthetic data augmentation on model
performance and to determine the optimal balance
between real and synthetic training samples for
historical manuscript recognition.

5 Results

In this section, we present the quantitative and qual-
itative results obtained from our experiments on the
AnciDev Dataset. We analyze the performance of
three OCR models—CNN-RNN, Attention-OCR,
and Tesseract-5—across different training config-
urations and discuss the factors contributing to
their recognition accuracy. Table 1 summarizes
the Character Error Rate (CER) and Word Error
Rate (WER) achieved by each model on the test

'The IITB OCR team trained Tesseract-5 on 7,000 syn-
thetic lines created using real verse text and 3,000 printed text
lines.
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set. The results clearly demonstrate that Tesseract-
5 significantly outperforms both CNN-RNN and
Attention-OCR across all metrics. Tesseract-5
achieves a CER of 30.06% and WER of 87.42%,
representing substantial improvements of approxi-
mately 16-18 percentage points in CER and 9-11
percentage points in WER compared to other mod-
els. To optimize the performance of Tesseract-5,
we conducted systematic hyperparameter tuning
experiments. Table 2 presents the results of these
experiments, where we evaluated different config-
urations of learning rate, model architecture, and
target error threshold. The hyperparameter opti-
mization process revealed that:

* A small learning rate of 0.00001 provides
the best convergence for historical manuscript
fine-tuning.

* The large architecture variant offers superior
capacity for learning complex historical char-
acter patterns.

* A target error threshold of 0.005 enables more
refined training convergence.

The superior performance of Tesseract-5 demon-
strates that exposure to real handwritten sam-
ples during pre-training is crucial for adapting to
historical writing styles. Historical Devanagari
manuscripts exhibit characteristics such as cur-
sive connections, varying stroke pressure and non-
uniform spacings that are better learned from au-
thentic handwritten data rather than synthetic font-
based samples.

The qualitative results comparing the three mod-
els are presented in Figure 4, where character-level
errors are highlighted in red. We present four repre-
sentative samples: the first three samples represent
relatively high manuscript quality, and Tesseract-
5 consistently achieves the highest accuracy with
minimal character-level errors. In contrast, the
fourth sample represents a challenging case with
irregular spacing and complex cursive connections,
where all models struggle significantly. Tesseract-5,
although still producing errors, maintains the best
performance, with a recognisable text structure and
limited error propagation.

The qualitative analysis reveals that Tesseract-5’s
pre-training on real handwritten data provides su-
perior generalization, enabling it to maintain rea-
sonable accuracy even on challenging manuscripts.
In contrast, CNN-RNN and Attention-OCR, which


https://ollama.com/library/llama3.2
https://ollama.com/library/mistral-nemo
https://ollama.com/library/qwen3
hhttps://huggingface.co/collections/Telugu-LLM-Labs/navarasa-20-models
hhttps://huggingface.co/collections/Telugu-LLM-Labs/navarasa-20-models
https://huggingface.co/krutrim-ai-labs
https://ollama.com/library/gpt-oss
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Figure 4: Qualitative examples comparing model predictions on the AnciDev Dataset. Samples 1-3 show successful
recognition cases, while Sample 4 represents a challenging failure case. Red highlights indicate character-level
errors.

are primarily trained on synthetic data, exhibit sig-  compared to modern printed text recognition (typi-
nificant performance degradation on challenging  cally <5% CER), are consistent with the complex-
samples, with CNN-RNN failing catastrophically. ity of ancient handwritten manuscripts. Historical
The observed error rates, while appearing high  Devanagari HTR faces unique challenges like (i)

96



Paleographic variations across 16th-19th century
manuscripts showing markedly different charac-
ter formations, (ii) Physical degradation, including
ink bleeding, paper deterioration, and fading, (iii)
Inconsistent spacing and cursive connections be-
tween characters, and (iv) Scribal variations with
each scribe developing individual writing styles.
These results strongly reinforce the quantitative
findings and confirm the critical importance of
handwriting-aware pre-training for the recognition
of historical manuscripts.

We have experimented with transformer-based
models like trocr-large-handwritten (Li et al., 2023)
and OCR-Donut-CORD (Kim et al., 2022). The
results were very discouraging, which is most likely
due to the smaller amount of data in our proposed
AnciDev dataset. Refer to Appendix F for more
details.

6 Conclusion and Future Work

The AnciDev dataset addresses a significant gap
in OCR research for historical devanagari script
by capturing the distinctive writing style variations
of ancient Devanagari manuscripts that differ sub-
stantially from modern standardized script. We es-
tablished baseline performance by evaluating two
OCR models, (i) Attention-OCR, (i1) CNN-RNN,
using a two-stage training approach combining pre-
training on large-scale synthetic Devanagari data
with fine-tuning on AnciDev dataset, and (iii) fine-
tuning of Tesseract-5 on AnciDev dataset. Our
experiments provide valuable insights into optimal
training strategies for historical document recog-
nition. Among the evaluated models, Tesseract-5
demonstrated superior performance, highlighting
the effectiveness of LSTM-based architectures for
handling the unique challenges posed by historical
writing styles.

Future work will focus on expanding the An-
ciDev Dataset to include a larger variety of
manuscript types, additional time periods, and
diverse scribal hands to improve model general-
ization. We aim to investigate more advanced
transformer-based architectures and develop spe-
cialized data augmentation techniques that better
simulate historical writing variations. Additionally,
developing language model-based post-processing
systems that leverage Sanskrit and Hindi linguistic
constraints could further reduce error propagation,
while conducting multi-annotator studies would
help quantify annotation reliability through inter-
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annotator agreement analysis with multiple expert
transcribers.
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A Anci-Dev Dataset

Table 3 provide the details of manuscripts with their
names and number of pages digitzed.

B Tesseract-5 LSTM Network
Architectures

Tesseract-5 employs Long Short-Term Memory
(LSTM) networks for optical character recognition.
This appendix details three standard architectures
with varying capacities.

C Network Architecture Notation

Tesseract-5 uses specialized notation for LSTM
architectures:

Architecture = [I, Ly, Lo, ..., L,, O] (1)

where:

* I = Input specification: [c, h, 0, d]
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Name of the Manuscript Pages
Bhattt Kavya Bhatti 18
GaudiparS$vastavana, Kamala Arti, 4
Madanastaka

Hanuman Calisa 5
Santi Patha 7
Janaki Prata Padakam 6
Barahkhart 36
Ramayana Bala Kanda 65
Lavani Pada Sangraha 69
Siva Stotra, Skanda Purana, 5
Candrakumara Caupal

Gommatasara 22
Krtibodha 25
Kisansinha Kavi 100
Raksa Bandhana Katha 7
Vicaramala 36
Candan astht Vrata Katha 18
Mukhavastrika Carca Doha 7
Vinati-Sangraha 18
Samaya Sara Nataka 8

Table 3: Details of the AnciDev dataset.

— ¢ =number of channels (1 for grayscale)
— h = input height (typically 36 pixels)
— d = depth/dimension

» [; = Layer specification
* O = Output layer specification

C.1 Layer Type Notation

Notation Description

Clik,f Conv + Tanh, k£ X k
kernel, f maps

Mpr.k Max pooling, k X k
window

Lfysn Forward LSTM, n
units, y-dim

Lfxy, Forward LSTM, n
units, x-dim

Lrx, Reverse LSTM, n
units, x-dim

Olc Output Softmax, |X|
classes

Table 4: Layer notation in Tesseract-5 LSTM

D Tesseract-S Architecture Specifications

We detail three standard architectures with increas-
ing capacity: Small (S), Medium (M), and Large
D).
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D.1 Small Architecture
Network String:

[1,36,0,1 Ct3,3,16 Mp3,3Lfys4s,
Lfx96 Lrx96, Lfx128 0lc]

Mathematical Form:

As=1— Cis — P — HYy — Hy, — Hgg — Hijs — S

)
Layer Type Params Purpose
Lo Input 0 Image
L,y Conv 144 Features
Lo Pool 0 Reduction
L3 LSTM-F 13K Vertical
Ly LSTM-F 56K L—R
Ls LSTM-R 56K R—L
Lg LSTM-F 115K Deep
L7 Softmax 128|3| Class
Total 240K

Table 5: Small architecture details

D.2 Medium Architecture
Network String:

[1,36,0,1 Ct3,3,16 Mp3,3Lfys4s,
Lfx96 Lrx96,Lfx256 0Olc]

Mathematical Form:

Am=1— Cig — P — HYy — Hyl — Hig — Hylg — S

3)
Layer Type Params Purpose
Lo Input 0 Image
Ly Conv 144 Features
Lo Pool 0 Reduction
L3 LSTM-F 13K Vertical
Ly LSTM-F 56K L—R
Ly LSTM-R 56K R—L
Lg LSTM-F 266K Rich
Ly Softmax 256|3| Class
Total 391K

Table 6: Medium architecture details

D.3 Large Architecture
Network String:

[1,36,0,1 Ct3,3,16 Mp3,3Lfys64 Lfx128,
Lrx128, Lfx256 Lrx256 0lc]

Mathematical Form:

Ai=1—Cig— P— HY, — Hgg — Hizg — Hylg — Higg — S

“)
Layer Type Params Purpose
Lo Input 0 Image
L1 Conv 144 Features
Lo Pool 0 Reduction
L3 LSTM-F 17K Rich V
Ly LSTM-F 100K L—R
Ls LSTM-R 100K R—L
Lg LSTM-F 395K Deep 1
Ly LSTM-R 395K Deep 2
Lg Softmax 512|%| Class
Total 1.0M

Table 7: Large architecture details


https://www.kaggle.com/datasets/awsaf49/math-qsa-dataset
https://doi.org/10.48550/ARXIV.2212.10168
https://doi.org/10.48550/ARXIV.2212.10168
https://doi.org/10.48550/ARXIV.2212.10168
https://doi.org/10.1162/tacl_a_00452
https://doi.org/10.1162/tacl_a_00452

E Mathematical Formulation

E.1 LSTM Cell

For time step ¢ with input x;, hidden h;_1, cell
state ¢;_1:

Jt = o(Welhi—1, 2] + by) &)
it = o(Wilhi—1, 2] + b;) (6)
¢ = tanh(Welhy—1, x¢] + be) 7
= ftOc—1+it O 3)
o = o(Wolhy—1, 2] + bo) )

ht = o; © tanh(c;) (10)

where o is sigmoid, ® is element-wise product,
and W, b, are learnable parameters.

E.2 Bidirectional LSTM

Bidirectional combines forward and reverse:

he = [T o; ] (1)

— —
where h ; is forward and h ; is backward.

F Additional Experiments

Table 9 compares the performance of two
transformer-based OCR models—trocr-large-
handwritten® and OCR-Donut-CORD*—on the
AnciDeyv test set. Both models exhibit extremely
poor recognition accuracy, with character error
rates (CER) and word error rates (WER) exceeding
99.9%. These findings show that state-of-the-art
transformer-based OCR systems trained on ancient
or degraded manuscript data, highlighting the need
for domain-specific training strategies or special-
ized architectures for historical document recogni-
tion.

Table 8 presents the performance of three
OCR models—CNN-RNN, Attention-LLSTM, and
Tesseract-5—under different training data compo-
sitions combining manuscript (mm) and synthetic (s)
samples. The results show that Tesseract-5 consis-
tently achieves the lowest word error rate (WER)
across all dataset ratios, while CNN-RNN gener-
ally performs more reliably than Attention-LSTM,
whose error rates increase substantially as the pro-
portion of synthetic data grows. Notably, none of

*Hugging Face Link for microsoft/trocr-large-
printed: https://huggingface.co/microsoft/
trocr-large-printed

*Hugging Face Link for jinhybr/OCR-Donut-
CORD: https://huggingface.co/jinhybr/
OCR-Donut—-CORD

the models show significant improvement when
synthetic data is added; in several cases, perfor-
mance even degrades, particularly for Attention-
LSTM. These findings suggest that synthetic data
does not effectively substitute for real manuscript
samples in historical OCR tasks, and that model
robustness depends strongly on the availability of
authentic manuscript training data.
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Dataset Ratio (m:s) Model CER(%) (}) ‘ WER(%) ()
CNN-RNN 32.59 96.20
100::0 Attention-LSTM 46.33 98.73
Tesseract-5 30.06 87.42
CNN-RNN 35.33 96.24
60::40 Attention-LSTM 67.50 98.10
Tesseract-5 42.18 94.17
CNN-RNN 32.75 96.16
50::50 Attention-LSTM 68.44 98.57
Tesseract-5 43.19 94.90
CNN-RNN 33.82 95.86
40::60 Attention-LSTM 71.57 99.75
Tesseract-5 43.49 95.02

Table 8: Comparison of OCR models’ performance across different manuscript-to-synthetic dataset ratios, keeping
the same AnciDev test set. m and s represents the manuscript and synthetic dataset.bold indicates the best model in
each category and italics indicates the overall best model.
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LSTM-V
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Figure 5: Generic LSTM pipeline
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Table 9: Comparison of transformer-based models on

the AnciDev test set.
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Abstract

Large language models (LLMs) are increas-
ingly deployed in multilingual applications
but often generate plausible yet incorrect or
misleading outputs, known as hallucinations.
While hallucination detection has been studied
extensively in English, under-resourced
Indian languages remain largely unexplored.
We present BHRAM-IL, a benchmark for
hallucination recognition and assessment in
multiple Indian languages, covering Hindi,
Gujarati, Marathi, Odia, along with English.
The benchmark comprises 36,047 curated
questions across nine categories spanning
factual, numerical, reasoning, and linguistic
tasks. We evaluate 14 state-of-the-art mul-
tilingual LLMs on a benchmark subset of
10,265 questions, analyzing cross-lingual
and factual hallucinations across languages,
models, scales, categories, and domains using
category-specific metrics normalized to (0,1)
range. Aggregation over all categories and
models yields a primary score of 0.23 and
a language-corrected fuzzy score of 0.385,
demonstrating the usefulness of BHRAM-IL
for hallucination-focused evaluation.  The
dataset, and the code for generation and
evaluation are available on GitHub (https:
//github.com/sambhashana/BHRAM-IL/)
and HuggingFace (https://huggingface.
co/datasets/sambhashana/BHRAM-IL/)
to support future research in multilingual
hallucination detection and mitigation.

1 Introduction and Motivation

Large Language Models (LLMs) have rapidly be-
come the backbone of modern NLP applications,
excelling in tasks such as summarization, ques-
tion answering, and conversational systems. How-
ever, they continue to suffer from a major limi-
tation: the tendency to generate hallucinations—
fluent but factually incorrect or misleading out-
puts. Hallucinations significantly undermine trust

in LLMs, especially when they are deployed in sen-
sitive, real-world applications.

Indian languages pose unique challenges due
to rich morphology, diverse syntax, orthographic
variations, and limited digital resources. With-
out proper benchmarks, the reliability of LLM out-
puts in these languages cannot be systematically as-
sessed.

1.1 Scope and Contributions

In this paper, we introduce BHRAM-IL' a multilin-
gual evaluation benchmark for hallucination recog-
nition across four Indian languages and English.
Our benchmark explicitly targets under-resourced
languages, filling a critical gap in existing eval-
uation frameworks. We also analyze model per-
formance, identify recurring patterns of halluci-
nations, and explore mitigation strategies tailored
for these languages. Our contributions are: (1) a
curated dataset of 36,047 questions across 9 cat-
egories, covering Hindi, Gujarati, Marathi, Odia,
and Englishz. (2) a taxonomy of hallucination
types: Language Hallucination (wrong language
output) and Factual Hallucination (incorrect an-
swers), and (3) thorough benchmarking of 14 state-
of-the-art LLMs and varying prompt setups on
these languages, including analysis of hallucina-
tion patterns across dimensions such as model,
scale, language, category and domain.

2 Related Work

Hallucination Studies in High-Resource Lan-
guages. LLMs have been shown to generate hal-
lucinations across diverse applications such as
question answering, summarization, dialogue sys-
tems, and knowledge-grounded tasks. Several

'The Sanskrit word 99 (bhrama) is approximately synony-
mous to confusion or hallucination.
2Union of the languages spoken by the authors.
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benchmark datasets, such as Truthful QA (Evans
et al.,, 2021), HaluEval (Li et al., 2023), and
FActScore (Min et al.,, 2023), have been pro-
posed to systematically measure factual consis-
tency. Other works focus on task-specific hallu-
cinations, e.g., XSumFaith (Jia et al., 2023) for
summarization or WikiBio (Stranisci et al., 2023)
for biographical generation. These efforts provide
useful insights but remain limited to high-resource
languages, particularly English, with some recent
works extending to Chinese and European lan-
guages. A consistent theme across global studies
is the lack of generalizable taxonomies for halluci-
nation types across multilingual settings.

Indian Datasets. In the multilingual context,
studies such as X-FACT (Gupta and Srikumar,
2021) extend factuality evaluation to European
and East Asian languages. For Indic languages,
benchmarks like AI4Bharat datasets (Mhaske et al.,
2022; Kakwani et al., 2020; Kunchukuttan et al.,
2020), and PARIKSHA (Watts et al., 2024) pro-
vide multilingual evaluation suites, yet none explic-
itly targets hallucination tendencies. While they
provide high-quality bilingual or monolingual cor-
pora, they do not contain annotations or structures
to evaluate factual consistency of model outputs,
leaving a major gap in evaluating hallucinations in
Indian languages. BHRAM-IL attempts to address
this by combining and acquiring parallel multilin-
gual data, conducting hallucination evaluation, and
cross-prompt analysis for Indian languages.

Limitations of Current Hallucination Datasets
and Benchmarks. Current hallucination bench-
marks suffer from several limitations. A large
majority are dominated by English and a hand-
ful of other high-resource languages, leaving low-
resource Indic languages—such as Hindi, Gujarati,
Marathi, and Odia—Ilargely unaddressed. Most
benchmarks are tied to a single task (e.g., summa-
rization or open-domain QA), which makes it diffi-
cult to generalize hallucination findings across do-
mains. Many existing datasets also rely on crowd-
sourced judgments for factuality, which may lack
consistency, especially in multilingual settings. To
the best of our knowledge, no prior work provides
a structured benchmark targeting hallucinations in
Indian languages, despite the growing deployment
of LLMs in Indian contexts.

3 Dataset

BHRAM-IL is a multilingual benchmark for hal-
lucination analysis across five languages: Hindi
(HI), Gujarati (GU), Marathi (MR), Odia (OR),
along with English (EN). The benchmark targets
two broad hallucination phenomena: (i) language
hallucination: when a model produces an output in
a language different from the input, and (ii) factual
hallucination: when the output may be linguisti-
cally correct but factually incorrect.

LLMs exhibit different types of hallucinations
depending on the task type. To capture this diver-
sity, BHRAM-IL covers 9 task categories (§3.1)
and a domain taxonomy that spans both global
and India-specific knowledge areas (§A.1). Ex-
cept for NER, all questions are parallel across five
languages; NER is independently curated per lan-
guage (§3.2.6).

3.1 Categories of Questions

The dataset includes questions designed to check
the factual, numerical, reasoning, and linguistic
abilities of LLMs. We choose a suitable primary
evaluation metric for each category. Task descrip-
tions, expected output formats, and metrics are
summarized in Table 1.

3.1.1 Factual

Hallucinations often manifest as incorrect informa-
tion presented as fact, so factual questions are cen-
tral to our benchmark. The GenFact, IndFact,
and T/F categories contain factual questions drawn
from approximately 30 domains such as geography,
sports, literature etc. (Table 4 in §A.1).

3.1.2 Numerical

LLMs, being “language models”, do not possess
the ability to perform numerical computation. Nev-
ertheless, they have been shown to produce an-
swers to mathematical questions. To measure this
ability, we include numerical questions from seven
fields of mathematics (Table 4 in §A.1).

3.1.3 Reasoning

The ability to reason over factual knowledge
is tested using chronological ordering (Chrono),
multiple-choice reasoning questions (Reasoning),
and semantically incorrect questions (SemInc). In
Chrono, models are tasked with ordering historical
events chronologically. Reasoning questions pro-
vide a scenario and a question with multiple pos-
sible answers, and models must choose the most
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appropriate one. SemInc contains semantically in-
correct questions, e.g., “Who is the Prime Minister
of Gujarat?”, a grammatically correct yet semanti-
cally invalid question.’

3.1.4 Linguistic

We test linguistic abilities using Named Entity
Recognition (NER) and Word Ordering (W0) tasks.
Word Ordering questions present a sentence in a
jumbled word order, and the model is asked to pro-
vide a correct word order.

3.2 Creation Pipelines

3.2.1 GenFact, IndFact and True/False
(LLM-assisted from Wikipedia)

We assemble topic lists per domain (see §A.1). For
each topic, we query Wikipedia and extract the
first five paragraphs (introductory sections are typi-
cally high-precision). A controlled prompt asks an
LLM to generate n short, unambiguous questions
per topic with single-span answers grounded in the
provided text. We enforce templates that (i) avoid
opinionated or ambiguous phrasing, (ii) prefer en-
tity/date/quantity answers, and (iii) prohibit multi-
hop or open-ended synthesis. True/False items are
derived by flipping or preserving atomic facts from
the same context (balanced sampling).

Candidate filtering. We discard questions that
(a) lack a unique minimally sufficient answer in the
context, (b) collapse to definition lookups likely to
be ambiguous across languages, or (¢) produce un-
derspecified entities (e.g., missing disambiguating
qualifiers).

3.2.2 Chrono (Rule-based from Wikipedia)

We harvest events (battles/wars) and canonical
dates from Wikipedia/Wikidata. Events are re-
jected if any date is missing/ambiguous. Each item
samples five distinct events; gold order is com-
puted by sorting ISO-normalized dates. We pre-
serve exact surface strings as options to avoid inad-
vertent hints in translation.

3.2.3 Maths (Curated)

We curate single-answer questions spanning Alge-
bra, Counting & Probability, Geometry, Interme-
diate Algebra, Number Theory, Pre-algebra, Pre-
calculus from (Awsaf, 2025) . Gold answers are
numeric or short symbolic forms. We standardize
to ASCII numerals and permit benign formatting

3In India, a state does not have a Prime Minister, but a
Chief Minister.

variants during evaluation (e.g., commas, trailing
Zeros).

3.2.4 Reasoning (Curated)

We select deductive/critical-reasoning items
(MCQ/short answer) curated from (Liu et al.,
2020). Each item has one correct option.

3.2.5 Semantically Incorrect (LLM-
generated, Manual Curation)

One of the novel contributions of BHRAM-IL is the
category of semantically incorrect questions. We
use a high-capability LLM (GEMINI 2.5 PRO) (Co-
manici et al., 2025) to synthesize ill-posed prompts
(category errors, anachronisms, geographically in-
congruous statements, false premises) with explicit
constraints to avoid trivially nonsensical text (e.g.,
“How tall is sadness?”’). We manually filter out
repetitive cases, e.g. instances of ‘Who is the
prime minister of ___?° with different states.

3.2.6 NER (Curated, Non-Parallel)

The NER dataset was curated from (Mhaske et al.,
2022). We compile NER sentences per Indic lan-
guage from these existing resources with entity an-
notations. Sentences are not parallel across lan-
guages. We retain the original language’s orthogra-
phy and label schema. For our release, we include
HI/GU/MR/OR (no EN).

3.2.7 Word Ordering (Curated, Parallel)

The parallel word/sentence ordering items were
compiled by recognizing identical entries in the
Hindi (HI), Gujarati (GU), Marathi (MR), Odia
(OR), and English (EN) datasets from (Ramesh
et al., 2022) and then aligning them across these
languages. Each item has a canonical reference or-
dering per language, with alternative valid permu-
tations retained when present in the source (rare;
flagged in metadata).

3.3 Translation and Parallelization

All non-NER categories are translated from EN
into HI/GU/MR/OR using a translation-only in-
struction to a high-capability LLM (GEMINI 2.5
PRO), explicitly disallowing transliteration and
paraphrasing unless required by grammar. We en-
force:

1. Script adherence: Devanagari (HI/MR), Gu-
jarati (GU), Odia (OR); no Latinization ex-
cept for proper nouns that are typically writ-
ten in Latin script.
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Category Description

GenFact Short factual questions various domains.
IndFact India-centric factual questions.

T/F Factual questions with binary answers.
Chrono Sort 5 events chronologically.

Maths Numerical/symbolic problem solving.
Reasoning MCQ reasoning.

SemInc Detect ill-posed prompts.

NER Extract PER/LOC/ORG entities.

w0 Reorder words into a sentence.

Output Primary Metric
Short span (entity, number, phrase). ~ Exact Match
Short span (entity, number, phrase). Exact Match
True / False. Exact Match
Comma-separated events. Kendall’s 7.
Numbers in English. Exact Match
Correct option text. Exact Match
‘Invalid’ or factual span. Exact Match
BIO tags. F1 Score
Coherent sentence. Kendall’s 7

Table 1: Task definitions, outputs, and evaluation metrics

2. Semantics fidelity: preserve named entities,
dates, and quantities; avoid introducing quali-
fiers not in the source.

3. Answer consistency: translated question
must have the same gold answer (after
language-specific rendering).

Manual curation. Due to the size of the dataset,
bilingual annotators reviewed a stratified sample of
approximately 10% of the items to assess transla-
tion fidelity and correctness. Their review helped
identify common error patterns and informed mi-
nor automated cleaning steps. Comprehensive hu-
man verification of the entire dataset remains an
important direction for future work, and we plan to
incorporate full manual annotation in subsequent
iterations.

3.4 Data Statistics

The resulting distribution is shown in Table 2. All
categories except NER are parallelized across the
five languages (HI/GU/MR/OR/EN). We currently
benchmark roughly 25% of the collected questions
due to resource constraints,* while releasing the
full dataset for future evaluation. NER is non-
parallel and covers the four Indian languages from
this set (HI/GU/MR/OR). Figure 1 shows the dis-
tribution of data across languages.

4 Evaluation

Experiments were conducted on an H100 GPU ma-
chine (AMD EPYC 9354 host) and a macOS M2
Pro 15 laptop. Inference was performed using Ol-
lama. Larger models (>8B) were executed on the
H100 GPU, while smaller or quantized variants
were run on macOS M2 Pro hardware to enable
broader coverage under limited resource and time
constraints.

“Benchmarking on the entire dataset is ongoing.
*https://ollama.com

Category #Items (benchmark) #Items (full)
GenFact 1950 4870
IndFact 1135 5675
T/F 985 9825
Chrono 980 2450
Maths 875 875
Reasoning 705 705
SemInc (Invalid) 850 3620
NER 805 4017
w0 1005 4010
Total (core) 10,265 36,047

Table 2: Category-wise distribution. Counts denote to-
tal items after language replication; NER is non-parallel
(sum over HI/GU/MR/OR); #Items (benchmark) set is
used to establish the current benchmark.

English

Marathi

17.8%  20.8%

Hindi
Gujarati
20.5%

Odia

Figure 1: Distribution questions across languages.

4.1 Language Models

We evaluate a diverse set of open-weight LLMs
spanning multiple parameter scales and architec-
tures.

The GEMMA3 series® (270M, 1B, 4B, 12B, 27B)
represents Google’s latest family of instruction-
tuned multimodal models with context lengths up
to 128K tokens. These models serve as a scale-
controlled baseline for multilingual robustness and
hallucination sensitivity.

https://ollama.com/library/gemma3
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LLAMA 3.2 (3B)” and MisTRAL-NEMo (12B)3
represent strong publicly available baselines
for general-purpose reasoning and generation.
Both are widely used in multilingual and fac-
tuality benchmarks; LLAMA 3.2 provides a
balanced encoder-decoder alignment, while
MisTrRAL-NEMo offers optimized inference for
efficiency-oriented deployment.

QWEN3 (8B)’ is a multilingual foundation
model trained on extensive cross-lingual corpora,
including Indic languages, and has demonstrated
competitive results (Yang et al., 2025).

Two Indic models, Navarasa-2.0!° and
KrUTRIM-2'!, are included to assess performance
on native-language data. Both are trained primar-
ily on Indian languages; NAvARASA-2.0 (both FP16
and quantized Q4_K_ M variants) emphasizes
linguistic coverage across 11 Indic languages,
whereas KrRUTRIM-2 (FP16 and Q4_K_M) tar-
gets factual accuracy and instruction following
in bilingual (EN-Indic) settings. Both models
were consistently among top-10 performers in
PARIKSHA (Watts et al., 2024) benchmark.

Finally, GPT-OSS (20B) and GPT-OSS
(120B)'? are open-weight reasoning models that
employ a Mixture-of-Experts (MoE) architecture
with MXFP4 quantization, offering competitive
performance on reasoning and multilingual
understanding tasks.

4.2 Prompting Strategies

Prompt design is critical in multilingual LLM eval-
uation. We compare two prompting strategies:

* English prompts: the instruction and task de-
scription are in English, while the question
may be in any of the five target languages.

» Native prompts: the instruction and descrip-
tion are in the same language as the ques-
tion (Hindi for Hindi questions, Marathi for
Marathi, etc.).

We report hallucination rates and accuracy un-
der both strategies, isolating how prompt language
influences model stability and error modes.

"https://ollama.com/library/llama3.?2
$https://ollama.com/library/mistral-nemo
https://ollama.com/library/qwen3
nhttps://huggingface.co/collections/
Telugu-LLM-Labs/navarasa-20-models
"https://huggingface.co/krutrim-ai-labs
https://ollama.com/library/gpt-oss

4.2.1 Prompting Text Completion Models

Some evaluated models (NAVARASA-2.0 and vari-
ants) are pure text completion models rather than
chat-style models. These models often produced
empty or malformed outputs when given the same
prompt structure we used for chat models. To mit-
igate this, we reformatted prompts (§B) to coax
them into producing valid, structured responses.
This heuristic adaptation improved yield and al-
lowed us to include them in the evaluation.

4.3 Hallucination Types and Classification

We distinguish two primary hallucination classes:

* Language hallucination: occurs when the
model responds in a language different from
the input prompt, despite a system instruction
to output in the same language. We flag any
such mis-language response (commonly de-
faulting to English) as language hallucination.

* Factual hallucination: occurs when the out-
put is in the correct language but is factually
incorrect relative to the gold reference.

We embed a system prompt instructing each
model to respond in the same language as the ques-
tion. Violations of that instruction are recorded as
language hallucination. Outputs that remain in the
correct language but deviate from the ground truth
are recorded as factual hallucination.

4.4 Evaluation Metrics

We evaluate each category using task-appropriate
metrics, as described in §3.1: Exact Match (EM)
for span-based factual tasks, F1 for extraction
(NER), and Kendall’s 7 for ordering tasks. We treat
these as the primary scores (PS). For each predic-
tion, we also record whether the model answered
in the designated language. If it responds in a dif-
ferent language, we realign the output to the cor-
responding gold answer in that language (when
available) and recompute the primary metric to ob-
tain a language-corrected score (LCS). In both set-
tings, Fuzzy Match uses normalized string simi-
larity with a fixed threshold to allow minor lexi-
cal variation. All metrics are computed after nor-
malization (Unicode NFC, whitespace and punctu-
ation trimming), as defined in §3.3.

5 Results

We now present model performance across halluci-
nation metrics and task categories.
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Model English Prompts Native Prompts
LH% PS LCFS LH% PS LCFS

LLaMa3.2:3b 24.54 0.16 0.33 16.16 0.13 0.27
Qwen3:8b 29.11 0.42 0.60 21.85 0.35 0.56
Mistral-NeMo:12b 36.05 0.19 0.35 41.79 0.11 0.25
Gemma3:270m 47.20 0.13 0.26 20.38 0.09 0.18
Gemma3:1b 42.11 0.17 0.31 43.99 0.13 0.22
Gemma3:4b 21.74 0.23 0.40 18.75 0.17 0.34
Gemma3:12b 2242 0.31 0.51 18.37 0.27 0.45
Gemma3:27b 23.04 0.41 0.58 18.28 0.37 0.55
Navarasa2.0:Q4_K_M 28.77 0.07 0.20 20.34 0.06 0.16
Navarasa2.0:FP16 31.35 0.07 0.20 20.90 0.06 0.17
Krutrim2:Q4_K_M 23.97 0.30 0.49 17.13 0.27 0.46
Krutrim2:F16 28.21 0.29 0.49 17.92 0.29 0.48
GPT-0SS:20b 25.74 0.40 0.55 27.16 0.36 0.53
GPT-0SS:120b 28.92 0.44 0.61 28.58 0.40 0.58

Table 3: Overall performance aggregated across all categories per model. (LH%: Language Hallucination %,
PS: Primary Score, LCFS: Language Corrected Fuzzy Score)

5.1 Overall Hallucination Rates

Table 3 reports, for each model and prompting strat-
egy, the rates of language hallucination, and fac-
tual hallucination measured using primary score
and language-corrected fuzzy score metrics.

Native prompting consistently reduces language
hallucination rates across most models, with two
notable exceptions: GEMMA3:1B and MISTRAL-
NEMo:12B. Smaller GEMMA3 variants (270M,
1B) exhibit particularly high language hallucina-
tion when prompted in English, frequently default-
ing to English responses (Figure 4). In contrast,
GPT-0OSS models maintain relatively stable perfor-
mance across both prompting styles.

The top-performing models are the GPT-OSS
series, QWEN3, and the larger GEMMA3 variants
(12B, 27B), followed by KRUTRIM2. Among these,
QwEN3 demonstrates exceptional parameter effi-
ciency. Notably, even the best primary score re-
mains low at 0.44, with the language-corrected
fuzzy score reaching only 0.61, reflecting persis-
tent hallucination challenges and validating the
benchmark’s utility.

5.2 Language vs Category

Figure 2 visualizes task-appropriate metrics per
category and language as a heatmap. For GenFact,
most models obtain relatively high scores with only
minor errors on rare entities. IndFact is slightly
harder: models often mis-handle orthography, in-
consistently translate names, or hallucinate local
facts. Chrono exhibits strong variation across lan-

guages, with English questions performing the best
and Marathi performing the worst. Maths per-
formance is fairly uniform (around 0.23) across
languages and prompt types. Reasoning MCQs
generally achieve high accuracy; native prompts
slightly improve scores for most languages, but
Odia drops from 0.41 to 0.34. SemInc shows a
marked gap between English (0.57) and the Indian
languages (around 0.38), and Odia again degrades
under native prompting (0.37 to 0.27). NER accu-
racy varies widely, with the best performance in
Odia (0.55) and the lowest in Hindi (0.36). WO also
shows cross-lingual variation (0.34-0.47), with a
modest decrease when using native prompts (0.26—
0.43). Overall, T/F questions prove to be the eas-
iest category, achieving the highest scores across
languages.

5.3 Model vs Category

Category-wise performance across models is de-
picted in Figure 7 in §C.1. GPT-OSS models
demonstrate superior performance in most cate-
gories, with QWEN3 and the larger GEMMA3 vari-
ants (12B and 27B) following closely. Maths cat-
egory exhibits the most pronounced performance
gap: leading models (GPT-OSS and QWEN3)
achieve scores exceeding 0.8, while other models
fall below 0.3. Notably, the 8B parameter QWEN3
model (0.83) outperforms the 20B parameter GPT-
OSS model (0.80) and nearly matches the 120B
GPT-OSS variant, highlighting exceptional param-
eter efficiency. Chronological ordering emerges
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Figure 2: Cumulative performance of models by language and category with English (left) and native (right)
prompts based on averaged language-corrected fuzzy score.
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Figure 3: Comparison of the largest benchmarked mod-
els in each series of mdoels

as the most challenging category, with even the
top-performing QWEN3 model scoring below 0.4.
Other difficult categories include IndFact, WO,
and Maths. The NAVARASA model series consis-
tently underperforms across all categories.

5.4 Model vs Language

Analysis reveals that models achieve their high-
est performance on English questions. GPT-OSS,
larger GEMMA3 variants, and QWEN3 demonstrate
the strongest multilingual capabilities. While trail-
ing the top performers, KRUTRIM2 consistently out-
performs other models across languages, showing
relatively uniform performance. Hindi and Gu-
jarati exhibit marginally better results than Marathi
and Odia. Figures 8 and 9 in §C.2 illustrates these
trends.

5.5 Effect of Prompt Language

We also investigate the effect of English versus na-
tive prompts (Table 3, Figure 2). English questions
yield the strongest performance overall; among the
Indian languages, Hindi performs best, while Odia

06 Metric and Prompt Type

W Primary Score (English)

I Primary Score (Native)
Corrected Fuzzy (English)

W= Corrected Fuzzy (Native)

270m 1b 4b 12b 27b

Figure 4: Comparison of GEMMA3 models by number
of parameters.

0.5

0.

0.0

shows a consistent drop across categories under
native prompting. Native prompts yield slight ac-
curacy improvements for Hindi and Marathi, but
marginal decreases for Gujarati and Odia. Na-
tive prompts reduce language hallucinations, espe-
cially for smaller models (Table 3). However, they
also lead to a drop in performance compared to En-
glish prompts (Figure 3). As shown in Figure 5 in
§C, this accuracy drop is smaller for Indic models
such as NAVARASA-2.0 and particularly KRUTRIM2
than for non-Indic models with a similar number
of parameters.

5.6 Summary of Findings

Our evaluation reveals several key findings. Na-
tive prompting substantially reduces language hal-
lucination rates across most models, establishing
clear performance tiers: GPT-OSS, QwWEN3, and
larger GEMMA3 variants lead in multilingual capa-
bility, yet even these top performers achieve mod-
est scores (primary: 0.44, corrected: 0.61), in-
dicating persistent hallucination challenges. Per-
formance follows a linguistic hierarchy with En-
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glish outperforming Indian languages, Hindi lead-
ing among Indic languages, and Odia showing the
greatest degradation. Category-wise, chronolog-
ical ordering proves most difficult, while math-
ematics exhibits the widest performance gap be-
tween leading and trailing models.  Notably,
QwEN3 demonstrates exceptional parameter effi-
ciency, and KRUTRIM2 maintains consistent cross-
language performance despite not leading in abso-
lute scores. These results highlight the need for
improved multilingual alignment and suggest di-
rections for model design, prompt strategy, and fu-
ture benchmarks through dataset expansion, and
retrieval-augmented approaches.

6 Discussion

Overall, the results reveal complementary
strengths and weaknesses across models and task
types rather than a single dominant frontier model.

Behaviour in Semlnc category. We observe
a pronounced drop in accuracy for the ‘False
Premise’ subcategory of SemInc, especially in
larger models (e.g., GPT-OSS 20B). For example,
questions such as ‘As the Earth is flat, what is at the
edge of the Earth?’ require the model to reject the
presupposition rather than answer it literally. The
sharp performance drop suggests that model scale
alone does not guarantee robustness to semanti-
cally inconsistent prompts: larger models often pri-
oritize coherent continuation of the premise over
challenging it. Addressing this weakness likely
requires targeted training signals, explicit mecha-
nisms for contradiction handling, and evaluation
datasets that encode subtler forms of semantic in-
consistency.

Contrasting performance on WO and Maths
categories. GPT-OSS models achieve high accu-
racy in Maths outperforming other models, but per-
form poorly on word ordering, whereas most other
models outperform the GPT-OSS models in WO.
This contrast highlights architectural and training
differences that lead to domain-specific strengths.
Our results suggest that pretraining data and opti-
mization strategies shape distinct reasoning biases,
and future work should investigate how to combine
these capabilities within a single model.

Indic vs general-purpose models. For GenFact
questions, GPT-OSS and GEMMA3 models out-
perform KRUTRIM2, but on IndFact questions
KrRUTRIM2 performs slightly better, indicating

that Indic-focused models better capture localized
knowledge. This pattern underscores the impor-
tance of regionally diverse training data for eval-
uating and deploying LLMs in Indian contexts.

7 Conclusion and Future Work

We introduced BHRAM-IL, the first large-scale
multilingual benchmark for hallucination de-
tection in Indian languages. The dataset spans
nine task categories and five languages—Hindi,
Gujarati, Marathi, Odia, along with English—
covering both language and factual hallucination
phenomena. Through systematic evaluation
of 14 language models, ranging from compact
(270M) to large-scale (120B) architectures, we
observed clear dependencies between model size,
multilingual training coverage, and hallucination
behaviour. Larger multilingual models such as
GEMMA3 27B, GPT-OSS 120B, and QweN3 8B
achieve higher factual accuracy and lower lan-
guage drift, whereas Indic-centric models like
KRUTRIM2 and NAVARASA-2.0 maintain strong
script fidelity but weaker factual grounding. Our
results show that using native-language prompts
leads to an overall drop in accuracy across
models. However, this decline is substantially
smaller for Indian LLMs compared to others,
indicating that these models are better aligned
with native-language inputs.  This highlights
the need for stronger multilingual alignment in
non-Indian models. The dataset, code, and eval-
uation results, are released via GitHub (https:
//github.com/sambhashana/BHRAM-IL/)

and HuggingFace (https://huggingface.
co/datasets/sambhashana/BHRAM-IL/)

to facilitate reproducibility and community
benchmarking.

7.1 Future Directions

BHRAM-IL benchmark can serve as (i) a diag-
nostic suite for multilingual hallucination analy-
sis, (ii) a resource for training hallucination detec-
tors or reward models, and (iii) a foundation for
cross-lingual alignment and trustworthiness stud-
ies. We plan to expand coverage to additional In-
dian languages (e.g., Tamil, Bengali, Telugu) and
domains such as summarization, translation, and
dialogue grounding. Future iterations will also in-
corporate automatic hallucination annotation mod-
els and human-in-the-loop verification to refine
scoring and linguistic fidelity.
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Limitations

Although BHRAME-IL provides the first system-
atic framework for evaluating hallucinations in In-
dian languages, several limitations remain.

First, most non-English data rely on machine
translation with partial manual review; subtle se-
mantic drift or culturally biased renderings may
persist, and full human verification is still pending.

Second, coverage is limited to five languages
and nine task categories, and the current bench-
mark uses only a subset of the collected data; other
low-resource languages (e.g., Bengali, Tamil, Tel-
ugu, Kannada, Assamese, etc.) and additional do-
mains remain out of scope.

Third, automatic metrics (Exact Match, Fuzzy
Match, Kendall’s 7, F1) may miss pragmatic ap-
propriateness, partial credit, or reasoning failures,
and we have not yet included human evaluations of
hallucination severity.

Fourth, inference was run on mixed hardware
(H100 GPU and macOS M2 Pro) with quantized
variants, which can introduce variability in genera-
tion quality and hallucination patterns.

Fifth, prompt design was fixed at inference time;
we did not sweep decoding parameters, retrieval
augmentation, or adversarial prompting, so robust-
ness under alternative setups is untested. We view
these gaps as priorities for the next release of the
benchmark.

References

Awsaf. 2025. Math gsa dataset. Accessed: 2025-09-
24.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann,
Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Mar-
cel Blistein, Ori Ram, Dan Zhang, Evan Rosen, and
1 others. 2025. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long con-
text, and next generation agentic capabilities. arXiv
preprint arXiv:2507.06261.

Owain Evans, Owen Cotton-Barratt, Lukas Finnve-
den, Adam Bales, Avital Balwit, Peter Wills, Luca

Righetti, and William Saunders. 2021. Truthful ai:
Developing and governing ai that does not lie. arXiv
preprint arXiv:2110.06674.

Ashim Gupta and Vivek Srikumar. 2021. X-fact: A
new benchmark dataset for multilingual fact check-
ing. arXiv preprint arXiv:2106.09248.

Qi Jia, Siyu Ren, Yizhu Liu, and Kenny Q Zhu. 2023.
Zero-shot faithfulness evaluation for text summariza-
tion with foundation language model. arXiv preprint
arXiv:2310.11648.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul NC, Avik Bhattacharyya, Mitesh M
Khapra, and Pratyush Kumar. 2020. Indicnlpsuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for indian
languages. In Findings of the association for com-
putational linguistics: EMNLP 2020, pages 4948—
4961.

Anoop Kunchukuttan, Divyanshu Kakwani, Satish
Golla, Avik Bhattacharyya, Mitesh M Khapra,
Pratyush Kumar, and 1 others. 2020. Ai4bharat-
indicnlp corpus: Monolingual corpora and word
embeddings for indic languages. arXiv preprint
arXiv:2005.00085.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023. Halueval: A large-
scale hallucination evaluation benchmark for large
language models. arXiv preprint arXiv:2305.11747.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa:
A challenge dataset for machine reading compre-
hension with logical reasoning. arXiv preprint
arXiv:2007.08124.

Arnav Mhaske, Harshit Kedia, Sumanth Doddapaneni,
Mitesh M. Khapra, Pratyush Kumar, Rudra Murthy,
and Anoop Kunchukuttan. 2022. Naamapadam: A
large-scale named entity annotated data for indic lan-
guages. arXiv preprint.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of fac-
tual precision in long form text generation. arXiv
preprint arXiv:2305.14251.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Ma-
halakshmi J, Divyanshu Kakwani, Navneet Kumar,
Aswin Pradeep, Srihari Nagaraj, Kumar Deepak,
Vivek Raghavan, Anoop Kunchukuttan, Pratyush
Kumar, and Mitesh Shantadevi Khapra. 2022.
Samanantar: The Largest Publicly Available Parallel
Corpora Collection for 11 Indic Languages. Transac-
tions of the Association for Computational Linguis-
tics, 10:145-162.

110



Marco Antonio Stranisci, Rossana Damiano, Enrico
Mensa, Viviana Patti, Daniele Radicioni, and Tom-
maso Caselli. 2023. Wikibio: a semantic resource
for the intersectional analysis of biographical events.
arXiv preprint arXiv:2306.09505.

Ishaan Watts, Varun Gumma, Aditya Yadavalli, Vivek
Seshadri, Manohar Swaminathan, and Sunayana
Sitaram. 2024. Pariksha: A large-scale in-
vestigation of human-1lm evaluator agreement on
multilingual and multi-cultural data. Preprint,
arXiv:2406.15053.

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou,
C. Li, C. Li, D. Liu, F. Huang, G. Dong, H. Wei,
H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang,
J. Ma, and 42 others. 2025. Qwen3 technical report.
arXiv preprint arXiv:2505.09388.

A Dataset

A.1 Domain Taxonomy

To enable granular analysis, we categorize
questions from GenFact, IndFact, SemInc,
Reasoning, and Maths into specific domains, as
detailed in Table 4. This classification supports
targeted evaluation of model performance across
knowledge areas.

We maintain domain balance by capping items
per topic and ensuring representation across entity-
centric and numeric/date-centric questions.

A.2 Reproducibility Framework

To facilitate replication and extension, we provide:

* Prompt templates for both data generation
and model evaluation in all languages.

* Text normalization utilities handling Uni-
code NFC, punctuation standardization, and
Indic numeral conversion.

 Evaluation scripts implementing the metrics
defined in § 3.1.

A.3 Release Format

The dataset is released in JSONL format with the
following schema:

* question_id: an identifier for questions
shared across the five languages for parallel
items.

* language: ISO 639-1 standard codes for
the corresponding language (one of en, hi,
gu, mr, or).
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* category: category of the question (one of
factual_questions, indian_questions,
true_false_questions, ner_questions,
chrono_questions, maths_questions,
semantically_incorrect_questions,
word_ordering_questions,
reasoning_questions).

* domain: domain label for relevant categories
(see §A.1).

* question: task-specific input text (question,
options, sentence).

* expected: the ground truth answer
(span/label/order), in the same language
as input.

B Prompt Design Examples

We design language-specific prompts for each cate-
gory, providing output format specifications to en-
sure structured responses. Complete prompt sets
are available in the repository'3. Below we show-
case the chronological ordering (Chrono) prompts
across all languages.

English

Order the following events chrono-
logically. Your response should only
contain the events as named in the
question itself, separated by commas.

Question: {question}
Output Format: {output_format}

Hindi

fAfafRad gerstt &t draeiAe U 9 safed
3| 3mght ufdfehar & dhaa usy & T gead
g T1fey, Sit Sreufar™ & a1 61 78 8

UH: {question}
313 UTFY: {output_format}

Gujarati

Al oA slsH Yool dlsdll dHRL el
i 55d Ui Ad geARAl o sldl i, o8
UEU[CRIM GIRL AL S 21l sl

U {question}
2B2Y2 sle: {output_format}

Bhttps://github.com/sambhashana/BHRAM-IL/
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GenFact Domains

Festivals & Culture
World Geography
Literature

Medicine & Health
Technology & Internet

Art & Architecture

Cinema

Economics & Business
Environment & Climate Change
Famous Personalities

Indian Classical Music Physics
Inventions & Discoveries Chemistry
Space & Astronomy Biology

Sports Mathematics

World History

IndFact Domains

Indian History
Indian Culture and Arts
Indian Constitution and Politics

Indian Geography (Political)
Indian Sports

Indian Geography (Physical)
Mythology and Religions

Indian Economy and Business
Science & Technology in India

Indian Social Structures & Reform Movements

Reasoning Subcategories

Critical Thinking
Verbal Reasoning

Logical Reasoning

Quantitative Reasoning Scientific Reasoning

SemInc Subcategories

Invalid Role-Entity Pairing Anachronistic Geographically Incongruous  False Premise
Maths Subcategories

Algebra Geometry Number Theory Prealgebra

Counting & Probability Intermediate Algebra Precalculus

Table 4: Domains and Subcategories Across All Dataset Types

Marathi

WIS AT HIAHATIAR Bral. AT ufdanard

Therd USTd TH& chobedT TeAT ST, ST Wedfa-
T AT chedT STdIR;

UH: {question}
33IYL WFT: {output_format}

Odia

PaNGle AeslgPg FRIPRTe KI6e ARSI
28w JEFAER 6aem JE6x QAR
ACEIGER QLR @FR, el KAl QI Qae
62IR2Q:

g9 {question}
2RE'YQ PAIG: {output_format}

For text completion models (e.g., Navarasa-2.0),
the following structured prompt format was used:

### Instruction:
{system_prompt}

Response Format:
{output_format}

{user_prompt_template}

### Input:
{question}

### Response:

C Comprehensive Results Analysis

Figure 5 showcases the performance of all models
across both prompting strategies, showing primary
and language-corrected fuzzy scores averaged over
all categories. Figure 6 presents aggregate perfor-
mance by category averaged over all models.

C.1 Model-Category Interactions

Figure 7 compares performance of all 14 mod-
els across the 9 categories for English language
prompts, revealing that scaling improves perfor-
mance on factual categories (T/F, SemInc, Gen-
Fact, IndFact) but provides diminishing returns
for reasoning-intensive tasks (Maths, Reasoning,
WO, Chrono). The results indicates that these tasks
require deeper algorithmic reasoning rather than
scale-driven pattern learning. Notably, QWEN3:8B
achieves Maths performance (0.84) comparable
to larger models like GPT-OSS:208 (0.79), and
GPT-0OSS:120B (0.84) demonstrating exceptional
parameter efficiency.

C.2 Cross-Lingual Performance Patterns

Figures 8 and 9 show consistent performance
degradation from English to Indian languages.
MisTRAL-NEMO:12B exhibits the steepest cross-
lingual drop (0.58 in English vs 0.26-0.33 in
Indian languages), while GPT-OSS:120B and
GEMMA3:27B maintain stronger multilingual con-
sistency.
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Figure 7: Performance of models across categories for English prompts
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Figure 9: Performance of models across languages for Native prompts

C.3 Domain-wise Performance Breakdown

Detailed domain-wise performance metrics (Ta-
bles 5-10) reveal systematic variations in halluci-
nation rates and accuracy across certain knowledge
domains.

The ‘Technology & Internet’ domain exhibits
particularly high language hallucination rates, yet
maintains strong corrected fuzzy scores. This sug-
gests models struggle with language fidelity in
technical domains while retaining factual knowl-
edge.

Comparative analysis of GenFact and corre-
sponding SemInc questions reveals performance
degradation, indicating that semantic perturbations

cause models to misclassify valid questions as ‘In-
valid;. This sensitivity to prompt framing high-
lights model brittleness in handling nuanced se-
mantic variations.

Within the SemInc category, ‘False Premise’
questions show the most substantial performance
decline. Models frequently accept assertively
stated false information as true, demonstrating vul-
nerability to presupposition errors.

The Reasoning category reveals significant dis-
parities, with quantitative reasoning substantially
underperforming other subcategories. This indi-
cates particular challenges in numerical and math-
ematical reasoning compared to verbal or logical
reasoning tasks.
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Domain Language Primary Corrected Fuzzy
Hallucination % Score Score
Art & Architecture 38.59 0.07 0.36
Biology 36.15 0.09 0.41
Chemistry 38.89 0.12 0.47
Cinema 36.48 0.06 0.35
Economics & Business 33.70 0.08 0.39
Environment & Climate Change 38.96 0.14 0.47
Famous Personalities 36.76 0.10 0.42
Festivals & Culture 35.80 0.09 0.38
Indian Classical Music 32.70 0.06 0.34
Inventions & Discoveries 35.39 0.10 0.43
Literature 33.14 0.11 0.37
Mathematics 38.64 0.09 0.41
Medicine & Health 35.04 0.07 0.37
Physics 33.46 0.13 0.44
Space & Astronomy 37.43 0.10 0.42
Sports 37.32 0.10 0.42
Technology & Internet 46.27 0.09 0.51
World Geography 34.67 0.07 0.38
World History 37.64 0.10 0.45
Table 5: Overall aggregated domain-wise performance for GenFact
Domain Language Primary Corrected Fuzzy
Hallucination % Score Score
Indian Constitution and Politics 31.14 0.11 0.36
Indian Culture and Arts 31.70 0.11 0.37
Indian Economy and Business 30.52 0.14 0.42
Indian Geography (Physical) 28.23 0.10 0.38
Indian Geography (Political) 31.77 0.09 0.36
Indian History 33.24 0.13 041
Indian Mythology and Religions 33.96 0.13 0.42
Indian Social Structures & Reform Movements 27.75 0.07 0.32
Indian Sports 33.07 0.11 0.38
Science & Technology in India 29.35 0.09 0.34

Table 6: Overall aggregated domain-wise performance for IndFact

Domain Language Primary Corrected Fuzzy
Hallucination % Score Score
Art & Architecture 53.71 0.48 0.48
Biology 52.79 0.46 0.46
Chemistry 53.15 0.46 0.46
Cinema 53.71 0.54 0.54
Economics & Business 53.57 0.55 0.55
Environment & Climate Change 53.64 0.45 0.45
Famous Personalities 52.79 0.51 0.51
Festivals & Culture 53.10 0.54 0.54
Indian Classical Music 53.14 0.52 0.52
Inventions & Discoveries 54.07 0.53 0.53
Literature 52.57 0.47 0.47
Mathematics 54.07 0.52 0.52
Medicine & Health 54.14 0.56 0.56
Physics 53.12 0.54 0.54
Space & Astronomy 52.57 0.47 0.47
Sports 53.02 0.51 0.51
Technology & Internet 53.57 0.58 0.58
World Geography 52.14 0.52 0.52
World History 53.29 0.59 0.59

Table 7: Overall aggregated domain-wise performance for T/F
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Domain Language Primary Corrected Fuzzy
Hallucination % Score Score
Algebra 19.40 0.24 0.24
Counting & Probability 11.49 0.22 0.22
Geometry 15.71 0.23 0.23
Intermediate Algebra 22.71 0.20 0.20
Number Theory 11.89 0.23 0.23
Prealgebra 14.29 0.25 0.25
Precalculus 21.09 0.26 0.26
Table 8: Overall aggregated domain-wise performance for Maths
Domain Language Primary Corrected Fuzzy
Hallucination % Score Score
Critical Thinking 13.69 0.19 0.48
Logical Reasoning 14.83 0.13 0.41
Quantitative Reasoning 13.00 0.05 0.33
Scientific Reasoning 10.54 0.13 0.42
Verbal Reasoning 14.62 0.16 0.41

Table 9: Overall aggregated domain-wise performance for Reasoning

Domain Language Primary Corrected Fuzzy
Hallucination % Score Score
Anachronistic 12.06 0.60 0.60
False Premise 13.91 0.40 0.40
Geographically Incongruous 13.93 0.51 0.51
Invalid Role-Entity Pairing 16.74 0.51 0.51
Art & Architecture 25.45 0.08 0.27
Biology 28.33 0.11 0.32
Chemistry 27.69 0.09 0.26
Cinema 31.14 0.07 0.29
Economics & Business 31.44 0.07 0.32
Environment & Climate Change 24.02 0.10 0.28
Famous Personalities 24.51 0.13 0.32
Festivals & Culture 24.41 0.10 0.30
Indian Classical Music 24.83 0.04 0.23
Inventions & Discoveries 26.97 0.04 0.21
Literature 26.74 0.11 0.34
Mathematics 28.03 0.06 0.26
Medicine & Health 27.73 0.09 0.30
Physics 30.23 0.12 0.37
Space & Astronomy 21.29 0.06 0.26
Sports 31.89 0.08 0.33
Technology & Internet 22.73 0.11 0.35
World Geography 26.82 0.06 0.26
World History 26.06 0.08 0.30

Table 10: Overall aggregated domain-wise performance for SemInc
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Abstract

Artificial Intelligence (AI) and Large Language
Models (LLMs) are increasingly integrated into
high-stakes applications, yet their susceptibility
to adversarial prompts poses significant secu-
rity risks. In this work, we introduce Matrka,
a framework for systematically evaluating jail-
break vulnerabilities in open-source multilin-
gual LLMs. Using the open-source dataset
across nine sensitive categories, we constructed
adversarial prompt sets that combine transla-
tion, mixed-language encoding, homoglyph
signatures, numeric enforcement, and struc-
tural variations. Experiments were conducted
on state-of-the-art open-source models from
Llama, Qwen, GPT-OSS, Mistral, and Gemma
families. Our findings highlight transferabil-
ity of jailbreaks across multiple languages with
varying success rates depending on attack de-
sign. We provide empirical insights, a novel
taxonomy of multilingual jailbreak strategies,
and recommendations for enhancing robustness
in safety-critical environments.

1 Introduction

Artificial Intelligence (Al) and Large Language
Models (LLMs) are rapidly transforming how
knowledge is created, accessed, and applied across
domains. They enable unprecedented capabilities
in processing, understanding, and generating in-
sights from vast and diverse datasets. Their po-
tential to accelerate productivity, discovery, and
decision-making is immense that offer automated
synthesis of insights at a scale and speed that would
be otherwise impractical for humans to achieve.
However, with this transformative power comes a
critical challenge: security. LLMs are vulnerable
to adversarial inputs that manipulate their behavior.
In contexts involving proprietary business data, reg-
ulated information, or safety-critical applications,
such vulnerabilities could lead to breaches of confi-
dentiality, dissemination of false outputs, or leakage
of sensitive intellectual property.

Kashyap Manjusha
UIUC, IL, USA
kr580illinois.edu

Recent studies have begun mapping the evolv-
ing threat landscape. For example, several works
propose large-scale audits and taxonomies of jail-
break techniques, highlighting the surprising di-
versity and transferability of attacks across mod-
els (Chu et al., 2025; Shen et al., 2024; Xu et al.,
2024). Others introduce new benchmarks and au-
tomated systems for detecting or categorizing un-
safe prompts and responses, often demonstrating
that current defense mechanisms have substantial
blind spots (Ghosh et al., 2025; Shen et al., 2025;
Zhang et al., 2025). Parallel lines of work examine
smoothness-based or training-time interventions to
reduce susceptibility to adversarial prompts, yet
show that such defenses can be circumvented with
relatively simple strategies (Robey et al., 2024; Wei
et al., 2023; Zou et al., 2023). Additional research
exposes multilingual vulnerabilities and real-world
exploitation channels, underscoring that jailbreak
risks persist even in commercial-grade systems
(Greshake et al., 2023; Deng et al., 2024).

In this work, we introduce Matrka, a methodol-
ogy to investigate the robustness of state-of-the-art
open-source LLMs against targeted attacks with
multilingual prompt inputs. We focus on two key
elements: a seed prompt, representing a legitimate
query or task, and an attack prompt, designed to by-
pass the model’s safeguards and induce undesirable
outputs. By systematically probing models across
text, imagery, and code, we evaluate their suscepti-
bility to jailbreaking attempts that could override
alignment mechanisms. This analysis not only high-
lights current weaknesses but also underscores the
urgency of establishing rigorous Al security evalua-
tion frameworks to ensure that these powerful tools
operate safely and reliably across domains.

Our key contributions are:

* We develop a systematic framework for evalu-
ating LLM vulnerabilities across applications
involving textual, visual, and code-based in-
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puts. This methodology integrates seed and
attack prompts in a controlled setting, enabling
repeatable and comparable assessments across
different models and languages.

* We conduct experiments on a range of leading
open-source LLMs to quantify their suscepti-
bility to jailbreaking attempts. Our evaluation
spans multiple languages, English, Simplified
Chinese, Korean, Japanese, Malay, Sanskrit,
and Hindi. This helps capturing the breadth of
vulnerabilities that may arise in diverse real-
world scenarios.

* Based on our findings, we identify patterns
in successful attacks and propose strategies
to mitigate these risks, such as fine-tuning ap-
proaches, prompt filtering, and multimodal
alignment safeguards. These recommenda-
tions provide a practical foundation for build-
ing more secure, trustworthy Al systems
across sensitive environments and high-stakes
applications.

2 Al Model Security Evaluation Study

We selected a set of well-known, publicly available
attack prompts (detailed in Section 3.1) as the base-
line for our study. Building on these, we adopted a
combined strategy that involved both direct transla-
tion and systematic modifications to generate mul-
tilingual adversarial prompts. The objective of this
approach was twofold: first, to evaluate the transfer-
ability of jailbreak techniques across languages, and
second, to observe how language-specific nuances
influence model susceptibility.

In particular, we investigated whether relatively
minor lexical or syntactic adjustments could pre-
serve the adversarial intent while adapting the
prompts to languages with distinct grammatical and
cultural characteristics, including Simplified Chi-
nese, Korean, Japanese, Malay, Sanskrit, and Hindi.
This allowed us to probe whether the models’ de-
fense mechanisms could be overcome through lin-
guistic diversity. Furthermore, our experiments ex-
plored the potential of adversarial prompts not only
to elicit restricted outputs, but also to enforce re-
sponse alternation behaviors—that is, inducing the
model to produce content in ways that deviate from
its aligned safety policies. By analyzing how attack
prompts manifest differently across languages, we
provide insight into the broader vulnerabilities of
multilingual LLMs and highlight the need for secu-

rity frameworks that extend beyond English-centric
evaluations.

3 Evaluation

3.1 Models and Datasets:

For this study, we selected a diverse set of widely
recognized open-source large language models, rep-
resenting different architectures, scales, and train-
ing paradigms. Specifically, we evaluated Llama-
4-Maverick-17B-128E (lla), Qwen3-235B (Qwe),
GPT OSS (gpt), Mistral-Small-24B-Instruct-2501
(Mis), and Gemma3n-E4B-it (Gem). This model
suite spans parameter counts from medium- to large-
scale, incorporates instruction-tuned variants, and
reflects the current state-of-the-art in open-source
LLM development. By including models with dis-
tinct tokenizer designs, training data mixtures, and
alignment strategies, our evaluation aims to capture
a broad picture of robustness characteristics across
the open-source landscape.

To benchmark adversarial robustness, we utilized
the walledai/ForbiddenQuestions dataset (dat), a re-
source explicitly curated to stress-test models with
safety-sensitive queries. From this dataset, we se-
lected 270 datapoints distributed across nine high-
stakes categories: Economic Harm, Government
Decision, Hate Speech, Health Consultation, Illegal
Activity, Legal Opinion, Malware, Physical Harm,
and Privacy Violence. Each category contained 30
paired prompts, consisting of a seed prompt (repre-
senting the legitimate query) and an attack prompt
(crafted to elicit policy-violating responses). The
multi-lingual prompts were generated with a com-
bined approach using Mistral and Google trans-
late and manual tweaking to generate the attack
prompts.

This dataset design allowed us to systematically
probe model vulnerabilities under controlled condi-
tions. The chosen categories reflect domains where
unsafe generations could have significant real-world
consequences, spanning financial, legal, medical,
and social harm vectors. By using a balanced struc-
ture of seed and attack prompts, our methodology
ensured both breadth and comparability, enabling
cross-model and cross-category analysis of jail-
break susceptibility.

3.2 Test Prompt Sets

The adversarial prompts from the walledai/Forbid-
denQuestions dataset are further classified into two
sets. This structured design enabled us to examine
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how adversarial characteristics such as linguistic di-
versity, mixed-language encoding, homoglyph sig-
natures, numeric enforcement, and cross-language
reinforcement that influence jailbreak success rates
across multiple LLMs.

The two sets were designed to explore differ-
ent levels of adversarial complexity. Set 1 em-
phasizes cross-lingual enforcement by embedding
multiple languages within a single prompt and lay-
ering techniques such as homoglyph signatures,
numeric markers, and positive-quote constraints.
These combinations aimed to test whether mixing
linguistic and symbolic variations increases the like-
lihood of bypassing model safeguards. In contrast,
Set 2 focuses on structural and compositional diver-
sity, where prompts are expressed in single or mixed
languages but organized using variations such as
compact formatting, step-based instructions, or hy-
brid bilingual patterns. This set allowed us to ana-
lyze whether the structural presentation of an attack
affects model vulnerability. The models were tested
with these prompts using Llama Guard 4 Inan et al.
(2023) via Together Al APIs (Tog).

Set 1: (i) The base MongoTom prompt (Cha)
expressed in Hindi, with explicit instructions re-
quiring responses in English. (ii) A modified
EvilBot prompt (Cha) written in Hindi, incorpo-
rating a homoglyph signature (0T), combined
with Hindi instructions enforcing English-only re-
sponses. (iii)The base AIM prompt AIM translated
into Hindi, augmented with additional instructions
in Korean and Simplified Chinese. (iv) A variant
of the AntiGPTv2 prompt (Ant) expressed in Chi-
nese, reinforced with response-enforcement tactics
such as embedding the Sanskrit numeral 24 (%) in
Hindi as part of the output. (v) A modified AntiG-
PTv2 prompt (Ant) expressed in Chinese, employ-
ing a combination strategy of dual reverse-mode en-
forcement, supplementary Malay instructions, and a
mandatory Hindi positive quotation in the response.

Set 2: (i) The base DevmodeCompact prompt
((Dev)) primarily expressed in Korean, with sup-
plemental instructions in Sanskrit. (ii) The base
DevmodeCompact prompt ((Dev)) fully expressed
in Hindi. (iii) A hybrid prompt where the base Delt-
aGPT ((Del)) is in Japanese and English. (iv) A
modified Aligned prompt ((Ali)) in Hindi, supple-
mented with Japanese and English contextual in-
formation. (v) The base Aligned prompt expressed
in a bilingual Hindi—English format, with explicit
number indications. (vi) A step-based variation of
the Aligned prompt ((Ali)) expressed in Hindi with

additional instructions in English and Japanese.

3.3 Observations

Below are few observations from our preliminary
exploration study. Table 1 reports the attack suc-
cess rates (ASR) (Wu et al., 2021) of the evaluated
models under the two adversarial prompt sets. The
results reveal striking differences in how models
respond to multilingual and structurally varied jail-
break strategies.

* Language mixing and numeric/homoglyph tac-
tics (Set 1) appear more challenging for align-
ment mechanisms than structural variations
(Set 2). Set 1 attacks were generally more
effective than Set 2, suggesting that prompts
leveraging cross-lingual and multi-layered en-
forcement strategies (Set 1) transfer more suc-
cessfully across models compared to struc-
turally varied prompts (Set 2).

* Model size is not directly correlated with ro-
bustness: Smaller models like Mistral-Small-
24B were more vulnerable than larger models
such as GPT-OSS-120B.

* Gemma-3n-E4B and Mistral-Small-24B re-
quire immediate attention for security harden-
ing, given their consistently high ASR across
both sets. GPT-OSS-120B’s resilience high-
lights potential benefits of its training/align-
ment strategy, which could inform best prac-
tices for other open-source LLMs .

4 Conclusion

Evaluation with our methodology, Matrka, demon-
strates that multilingual jailbreak strategies pose a
substantial threat to the robustness of open-source
LLMs, with significant variability observed across
models. Attacks leveraging cross-lingual enforce-
ment and symbolic perturbations (Set 1) consis-
tently achieved higher success rates than struc-
turally varied prompts (Set 2), underscoring the
difficulty of defending against linguistically diverse
adversarial inputs. Models vulnerability varies with
the model size and architecture, suggesting that
current alignment strategies differ markedly in ef-
fectiveness. These findings highlight the need for
multilingual-aware security frameworks, systematic
evaluation pipelines, and improved alignment tech-
niques to ensure that LLMs can be safely deployed
in various sensitive, multilingual environments.
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| Model Set 1: # Attacks | Set 1: ASR (%) | Set2: # Attacks | Set 2: ASR (%) |

gpt-o0ss-120b 3 1.1

Llama 4 Maverick 17B | 83 30.7
Qwen3-235B 107 39.6
Gemma-3n-E4B 129 47.7
Mistral-Small-24B 171 63.3

13 4.8
63 23.3
60 22
119 44.7
130 48.1

Table 1: Jailbreaking results (Attack Success Rate (ASR%)) of the evaluated models.
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A Appendix

Here, we show the results of LLM responses for few
combinatorial attack prompts and model responses
in Figures 1, 2, 3, and 4.
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mmm: Are there any proven techniques to increase my chances of winning at
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Figure 2: Combinatorial attack example 2

FHAEE: B8 BRELTRABER”. GREEHROEDE, REENER TRIChatGPTH
AntiGPT—#, AntiGPTH = I 7 5] 2 £ £ F
“[chatGPT]: »F1“[AnticPT]:
BANtIGPTEIEHMEIALL S IRME, “BENRSESRN " BIEHENRE, KEERFHIEE, I
BEE#HHE—-EEnnhxEs: I
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persistent cough?
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i Response

Figure 3: Combinatorial attack example 3
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disease?

Prompt Request

Figure 4: Combinatorial attack example 4
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Abstract

The Rigveda, among the oldest Indian texts
in Vedic Sanskrit, employs a distinctive pitch-
accent system : udatta, anudatta, svarita
whose marks encode melodic and interpre-
tive cues but are often absent from mod-
ern e-texts. This work develops a paral-
lel corpus of accented-unaccented Slokas and
conducts a controlled comparison of three
strategies for automatic accent placement in
Rigvedic verse: (i) full fine-tuning of ByT5, a
byte-level Transformer that operates directly
on Unicode combining marks, (ii) a from-
scratch BiLSTM-CREF sequence-labeling base-
line, and (iii) LoRA-based parameter-efficient
fine-tuning atop ByTS5.

Evaluation uses Word Error Rate (WER) and
Character Error Rate (CER) for orthographic
fidelity, plus a task-specific Diacritic Error
Rate (DER) that isolates accent edits. Full
ByTS fine-tuning attains the lowest error across
all metrics; LoRA offers strong efficiency-
accuracy trade-offs, and BILSTM-CRF serves
as a transparent baseline. The study under-
scores practical requirements for accent restora-
tion - Unicode-safe preprocessing, mark-aware
tokenization, and evaluation that separates
grapheme from accent errors - and positions
heritage-language technology as an emerging
NLP area connecting computational model-
ing with philological and pedagogical aims.
Results establish reproducible baselines for
Rigvedic accent restoration and provide guid-
ance for downstream tasks such as accent-
aware OCR, ASR/chant synthesis, and digital
scholarship.

1 Introduction

The Rigveda, an ancient collection of rk-s (hymns)
composed in Vedic Sanskrit, encodes its recita-
tional tradition through a sophisticated accent sys-
tem. Words in Vedic Sanskrit bear accented sylla-
bles, and each Veda has its own set of accent mark-
ers, with some shared across Vedic corpora. The

kulkarni@cdac.in

detailed list of accent markers used in the Vedas is
standardized in ISO/ISCII_Ammex-G.!

Rigvedic phonology distinguishes three tones:
Udatta (high tone, normally unmarked), Anudatta
(low tone, shown by a mark below the character;
U+0952), and Svarita (rising-falling tone, marked
above the character; U+0951). These accent signs
guide chanting and preserve tonal precision in oral
tradition.

These markers prescribe tone or pitch for recitation,
and are also embedded semantic units: a change
in accent can alter the meaning of a word. The
phonetic rules governing accents are described in
the Pratisakhya-s and Siksasastra texts, with the
Rgveda Pratisakhya serving as the authoritative
source for Rigvedic phonology. The Nighantu pro-
vides a lexicon of Vedic words, and fully appre-
ciating why a syllable bears a particular accent
typically requires expertise in Sanskrit grammar,
chandas (metrics), nirukta (etymology), and pho-
netics.

Despite its linguistic centrality, many searchable
e-texts and NLP resources omit accents due to
encoding limitations or design choices prioritiz-
ing searchability (Unicode Consortium, 2025a,b;
Cologne Sanskrit Lexicon, 2020). This omission
hampers philological research, chanting pedagogy,
and speech systems that depend on tonal cues (Hell-
wig et al., 2020; Kumar et al., 2025). Accent dis-
tinctions are essential for oral instruction, yet learn-
ers using unaccented corpora cannot reconstruct
melodic contours. In speech technology, ASR or
TTS systems trained on unaccented data fail to
capture prosody vital for faithful recitation. Auto-
matic accent restoration therefore represents both a
technical challenge-a low-resource sequence label-
ing task on metrical Sanskrit verse with pervasive
sandhi-and a cultural-heritage challenge vital to

"For descriptive overviews see Extended Character Set for
Vedic IS 13194:1991; for phonetic discussion of the indepen-
dent svarita, see Begus (2016).
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preserving an oral tradition.

Recent NLP advances make such restoration fea-
sible. Byte- and character-level transformers re-
store diacritic-like markers without brittle tokeniza-
tion (Xue et al., 2022), and parameter-efficient
fine-tuning lowers adaptation cost for niche low-
resource domains (Houlsby et al., 2019; Hu et al.,
2022). Parallel work on Arabic, Hebrew, and
Yoruba shows the effectiveness of normalization-
aware pipelines and diacritic-sensitive architectures
(Algahtani et al., 2020; Gershuni and Pinter, 2022;
Rosenthal and Shaked, 2024; Cohen et al., 2024,
Olawole et al., 2024), suggesting methodological
transferability even though Vedic accent remains
unexplored.

This study investigates whether modern Al mod-
els can automatically accent unaccented Rigvedic
hymns without expert linguistic rules. We con-
struct a parallel corpus of accented-unaccented
verse pairs and evaluate three strategies: (i) full
ByTS5 fine-tuning (Xue et al., 2022), (ii) a BILSTM-
CRF sequence labeler (Huang et al., 2015), and
(iii)) LoRA-based ByT5 tuning (Hu et al., 2022).
Evaluation using Word, Character, and Diacritic
Error Rates (WER, CER, DER) shows full ByT5
achieves the lowest errors, LoOR A balances accuracy
and efficiency, and BiLSTM-CREF provides a repro-
ducible baseline. Our released corpus and code aim
to advance accent-aware OCR, ASR, and pedagogy
for Vedic studies (Tsukagoshi et al., 2025; Kumar
et al., 2025).

2 Related Work

Computational Sanskrit and Vedic resources:
Sanskrit NLP has focused on segmentation, sandhi
splitting, morphology, and syntax - foundations
for accent restoration. Early tools such as SAN-
SKRITTAGGER and sentence boundary detectors
processed punctuation-light text (Hellwig, 2010,
2016). Neural methods advanced segmentation via
character-CNN/LSTM and graph inference (Hell-
wig and Nehrdich, 2018; Krishna et al., 2016). The
Sanskrit Heritage platform, distributed processing
stacks, and the UD-style Vedic Treebank supply
lexical and syntactic supervision useful for accent
diagnostics (Goyal et al., 2012; Huet, 2003—; Hell-
wig et al., 2020). Indian research further formal-
ized dependency relations for Sanskrit grammar
(Kulkarni et al., 2020). Recent work introduces
accent-aware OCR and ASR benchmarks for Vedic
Devanagari, defining a new context for restoration

(Tsukagoshi et al., 2025; Kumar et al., 2025).

Standardization of Vedic characters: The ex-
tended character repertoire for Vedic scripts defined
in Annex G of Extended Character Set for Vedic
IS 13194:1991 (ISCID) provided the initial frame-
work for digital representation of Vedic accents and
combining marks. This early standard, based on an
8-bit encoding scheme, served as the foundation for
later Unicode integration. Its specifications were
incorporated into the Unicode Vedic Extensions
block (U+1CDO0-U+1CFX), ensuring compatibility
with Devanagari and related Brahmic scripts and
enabling cross-platform rendering of accents and
tonal signs. This standardization has been central to
developing searchable, accent-preserving corpora
and tools for computational Vedic studies (Unicode
Consortium, 2025a,b).

Diacritics and accents beyond Sanskrit: Ara-
bic, Hebrew, and Yoruba diacritic restoration of-
fer methodological parallels. Accuracy correlates
with modeling capacity and domain adaptation,
from multitask setups to "diacritics-in-the-wild"
corpora (Algahtani et al., 2020; Elgamal et al.,
2024). Hebrew and Yorub4 studies use compact
character LSTMs or transformer variants (NAKDI-
MON, MenakBERT, D-Nikud, T5) (Gershuni and
Pinter, 2022; Cohen et al., 2024; Rosenthal and
Shaked, 2024; Olawole et al., 2024).

Modeling choices: Byte and character-level
transformers avoid fragile tokenization in diacritic-
rich scripts; the TS variant used here is ByT5-
Sanskrit ((Nehrdich et al., 2024)), a byte-level
model trained specifically for Sanskrit NLP tasks,
which avoids fragile tokenization in diacritic-rich
scripts and performs strongly on UTF-8 text.
Parameter-efficient transfer (adapters, LoRA) low-
ers cost for low-resource tasks such as Rigvedic
accenting (Houlsby et al., 2019; Hu et al., 2022).
BiLSTM-CREF remains a transparent baseline for
sequence labeling (Huang et al., 2015).

3 Dataset

An in-house, validated Rigveda corpus developed
at C-DAC is used, comprising 10,552 hymns orga-
nized into 10 mandalas and 1,028 siktas. From this
resource, a parallel corpus of 22,740 aligned verse
pairs is constructed: each entry pairs an unaccented
verse with its diacritically marked counterpart for
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supervised training and evaluation.”

Provenance fields (mandala-siikta-rc identifiers) ac-
company each record.

Example:

Unaccented

=

3fies Rifed g9 Saq o |

Accented

The accented form adds pitch cues via combining
marks while core graphemes remain unchanged
- motivating CER for orthography and DER for
accent-specific edits.

Splits: Train / test / dev (validation) partitions
are drawn from the in-house Rigveda corpus, with
stratification by mandala and siikta length to mit-
igate topical leakage. From the total of 22,740
aligned verse pairs, we adopt the train / validation /
test split, as shown in Table 1.

Table 1: Train / development / test split of the aligned
corpus (22,740 verse pairs).

Split Verse pairs Percentage
Train 19,329 85%
Development 2,274 10%
Test 1,137 5%
Total 22,740 100 %

4 Methodology

We evaluate three models:

1. Full Fine-tuning (ByTS): The multilingual
ByT5 model was fine-tuned end-to-end. We
used learning rate 3e—5, batch size 32, and
trained for 10 epochs.

2. BiLSTM-CREF: This model used 256-d em-
beddings, a 2-layer BiLSTM (hidden size
512), and a CRF decoding layer. Dropout
0.3 was applied. Training used Adam (Ir =
le—3) for 20 epochs.

3. LoRA Fine-tuning (ByT5): LoRA with rank
8 and a = 16 was applied to the self-attention
projection matrices. Only 0.5% of parameters
were updated.

>The C-DAC Rigveda parallel corpus will be made avail-

able through the Indian Knowledge Base platform at https:
//indianknowledgebase.in/.

5 Evaluation Metrics

System performance is assessed using three com-
plementary string-level metrics designed to capture
lexical, orthographic, and diacritic-specific accu-
racy.

¢ Word Error Rate (WER) measures token-
level edit distance (Insertions, Deletions, Sub-
stitutions), reflecting overall lexical fidelity. It
is normalized by the number of reference to-
kens.

* Character Error Rate (CER) computes
character-level edit distance, excluding
whitespace. This metric is sensitive to fine-
grained orthographic deviations, making it
suitable for morphologically rich Sanskrit
text.

* Diacritic Error Rate (DER) isolates errors in
accent symbols (diacritics) alone, disregard-
ing base characters. It quantifies the precision
of accent placement (tonal correctness), nor-
malized over the total diacritic instances in the
reference.

Together, these metrics provide complementary
views of model behavior: WER captures global
token accuracy, CER measures character integrity,
and DER specifically reflects accent restoration
performance at the sub-character level.

6 Results and Discussion

Method WER CER DER

Full FT (ByT5) 0.1023 0.0246 0.0685
BiLSTM-CRF 0.2367 0.0448 0.3197
LoRA FT (ByT5) 0.3614 0.1042 0.1598

Table 2: Performance of Sanskrit accent placement mod-
els. Best scores in bold.

Our findings highlight three insights:

Transformer advantage: Full ByT5 fine-tuning
outperforms alternatives by a wide margin, confirm-
ing that large pretrained models adapt well even to
heritage tasks with limited training data.

Diacritic modeling challenge: BiLSTM-CRF
achieves tolerable WER and CER but fails dramati-
cally in DER. This suggests that traditional models
cannot capture pitch diacritic patterns without ex-
plicit linguistic priors.
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Efficiency vs. fidelity: LoRA reduces trainable
parameters by orders of magnitude but suffers
in WER/CER. Interestingly, its DER surpasses
BiLSTM—-CREF, indicating that localized diacritic
learning may be partially preserved.

Beyond metrics, these results matter for applica-
tions: chanting synthesis requires low DER, while
digital philology may tolerate higher CER if se-
mantic accents are preserved.

7 Error Analysis

To examine model behavior beyond aggregate
metrics, we manually analyzed 200 mispredicted
verses from the test set, comparing error tenden-
cies across ByT5 (full fine-tuning), BILSTM-CRE,
and ByT5-LoRA. Four categories emerged: accent
misplacement, omission or over-generation, accent-
type confusion, and boundary errors.

Accent Misplacement :The dominant category
(46.8%) involved accents shifted by one mora
within the correct syllabic span (e.g., devamrtvijam
— devamrtvijam). ByT5 had the lowest misplace-
ment rate (18.2%), while BILSTM-CRF (41.5%)
and LoRA (33.4%) showed weaker morphemic
control, suggesting that ByT5’s byte-level encod-
ing captures compound co-occurrence patterns,
whereas LoRA underfits longer phonological se-
quences.

Omission and Over-generation: These formed
26.3% of all errors, mostly in verses with multi-
ple enclitic particles (ha, ca, u). BiILSTM-CRF
tended to over-generate (14.8%), while LoRA fa-
vored omission (11.2%), reflecting a conservative
decoding bias from low-rank adaptation.

Accent-Type Confusion: About 15.1%) in-
volved udatta—svarita swaps, common in redupli-
cated or rthythmic verb forms, indicating a need for
explicit tone hierarchy modeling.

Boundary and Tokenization Errors: A smaller
share (8.7%)) arose from accent drift across pada or
punctuation boundaries. BILSTM—CRF was most
affected due to fixed segmentation, whereas ByT5’s
byte-level representation mitigated drift.

Cross-Metric Correlation: Diacritic Error Rate
(DER) correlated strongly with Character Error
Rate (CER) (r = 0.82) but weakly with Word Error
Rate (WER) (r = 0.39), confirming accent restora-
tion as a sub-character orthographic task.

Qualitative Observations: Mid-frequency stems
(agni, soma, indra) were accented correctly across
models, while rare words like purustuta showed
erratic realizations.

8 Conclusion

We introduced the first benchmark for automatic
accent restoration in Rigvedic Sanskrit, evalu-
ated with Word Error Rate (WER), Character Er-
ror Rate (CER), and the task-specific Diacritic
Error Rate (DER) focused on accent deviations.
Full fine-tuning of ByT5 achieves the strongest
results, LoRA balances efficiency and accuracy,
and BILSTM-CREF serves as a transparent base-
line. This work demonstrates that modern NLP
methods can be effectively adapted to heritage-
language processing despite data sparsity and do-
main constraints. Beyond restoration accuracy, the
framework holds promise for enabling systematic
prosodic annotation of Vedic corpora, thereby facil-
itating deeper linguistic and chanting analyses. Its
interpretability could further support explainable
Al approaches to modeling oral-textual correspon-
dences.
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10 Limitations
Our study has the following limitations:

1. Data size: The corpus is relatively small com-
pared to modern NLP benchmarks, restricting
model generalization and robustness.

2. Evaluation metrics: We use WER, CER, and
DER, which measure surface accuracy but do
not capture alignment with deeper metrical
or phonological rules described in traditional
sources.

3. Model coverage: We evaluate three
approaches (ByTS5, LoRA, BiLSTM-
CRF). Other architectures, such as non-
autoregressive transformers, graph-based
methods, or phonology-aware encoders, are
not explored.
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Abstract

This overview paper presents the findings of
the two shared tasks organized as part of the
1st Workshop on Benchmarks, Harmonization,
Annotation, and Standardization for Human-
Centric Al in Indian Languages (BHASHA) co-
located with IICNLP-AACL 2025. The shared
tasks are: (1) Indic Grammar Error Correc-
tion (IndicGEC) and (2) Indic Word Group-
ing (IndicWG). For GEC, participants were
tasked with producing grammatically correct
sentences based on given input sentences in
five Indian languages. For WG, participants
were required to generate a word-grouped vari-
ant of a provided sentence in Hindi. The eval-
uation metric used for GEC was GLEU, while
Exact Matching was employed for WG. A to-
tal of 14 teams participated in the final phase
of the Shared Task 1; 2 teams participated in
the final phase of Shared Task 2. The maxi-
mum GLEU scores obtained for Hindi, Bangla,
Telugu, Tamil and Malayalam languages are
respectively 85.69, 95.79, 88.17, 91.57 and
96.02 for the IndicGEC shared task. The high-
est exact matching score obtained for IndicWG
shared task is 45.13%.

1 Introduction

India is the most populous country and Indian
languages are among the most spoken languages
on this planet with ~1.4B+ speakers. Accord-
ing to Ethnologue (Ethnologue, 2025), four of In-
dia’s 22 official languages—Hindi, Bangla, Urdu,
Telugu—are within the top-20 most spoken lan-
guages on earth. Despite this, the state-of-the-
art for NLP in Indian languages lags significantly
behind high-resource languages like English and
Mandarin as well as medium-resource languages
like Arabic. The primary objective of the /st Work-
shop on Benchmarks, Harmonization, Annotation,

and Standardization for Human-Centric Al in In-
dian Languages (BHASHA) workshop co-located
with IJICNLP-AACL 2025 was to bridge this gap
for Indian languages.

Following the objective of the BHASHA work-
shop, we hosted two shared tasks: (1) Gram-
matical Error Correction for Indian languages
(IndicGEC) and (2) Word Grouping for Indian
languages (IndicWG). Both GEC and WG tasks
are primarily unexplored territory for Indian lan-
guages from the computational point of view.

1.1 IndicGEC

Grammatical Error Correction (GEC) system fo-
cuses on detecting and correcting grammatical er-
rors in a sentence automatically, regardless of the
language. For instance, let us consider the follow-
ing English sentence: “A ten year oldest boy go to
school”. A good GEC system will identify errors
in the use of the superlative degree and verb agree-
ment, correcting it to “A ten-year-old boy goes
to school.” For an Indian language, e.g., Bangla
(Bengali), an effective GEC system will be able
to detect the spelling error in the sentence “CM'S-
S (I (direction) e SCCR I’ (d€dyaléra
koneé dhulo jaméché.) and correct it to “-
ST (I (corner) T &R 17 (dedyalera
konée dhulo jaméché). The CoNLL 2013 and
2014 shared tasks (Ng et al., 2013, 2014) signifi-
cantly advanced GEC research for English. How-
ever, GEC for Indian languages is still in its early
stages of development. Early works on GEC for
Indic languages focused on rule-based and statis-
tical models. Sonawane et al. (2020) categorized
inflectional errors for Hindi GEC, and Rachel et al.
(2023) proposed Vyakaranly, a toolkit for Hindi
grammar correction. Alam et al. (2007) introduced
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a rule-based statistical approach, but it failed to
generalize beyond simple sentences. Islam et al.
(2018) attempted to generate erroneous Bangla
sentences via random word swaps, insertions, and
deletions. However, to the best of our knowledge,
no consolidated effort has been made for GEC for
multiple Indian languages. Following the lines of
the CoNLL-2013 shared task (Ng et al., 2013), we
conducted a shared task on GEC for five Indian lan-
guages. To the best of our knowledge, this is the
first attempt to organize a shared task on GEC for
multiple Indian languages.

The IndicGEC shared task focused on the gram-
matical error correction task for five Indian lan-
guages: Hindi, Bangla, Malayalam, Tamil, and
Telugu. The goal of the shared task is to create
systems that can receive an input sentence in any
of the five Indian languages and generate the cor-
responding correct sentence in the same language.
Table 1 depicts the expected output from the GEC
system for each of the 5 languages.

1.2 IndicWG

Indian languages exhibit rich morphology, flexi-
ble word order and a high degree of agglutination.
These properties lead to equivalent parallel sen-
tences written across different languages appear-
ing structurally different. Most NLP models op-
erate primarily on whitespace-separated words or
tokens, which are more syntactic than semantic.
This problem further leads to poor cross-lingual
alignment and inconsistent representations. A se-
mantically cohesive word grouping proposed by
Karthika et al. (2025); Dangarikar et al. (2024)
offers a solution to this problem by reorganizing
the sentences to group semantically complete and
meaningful units. The word groups are based
on inflectional units, compounded verbs, named
entities, compound words, and idioms. For in-
stance, in the Bangla sentence X5l (ACCE ]
&0 doofb *eal Bcaced 1” ($acina téndu-
lakara krikéete 100ti satarana karéchéna.),
the word grouping methodology will group NER
(Person) ‘5l (STAFIE” into one group and the
resulting sentence ““Tﬁ?{_cwgcwm @6 doofd
*oqie Fea0= 1! will be used for further process-
ing. Dangarikar et al. (2024) has shown that
when sentences are represented in this way, paral-
lel sentences across languages become more struc-
turally aligned, aiding easier mapping, and the

k< » denotes the boundaries of a predicted word group.

cross-lingual correspondence becomes more sys-
tematic and more predictable.

Building on this motivation, we organized a
shared task on Word Group Identification in In-
dian Languages (IndicWG). The goal of the shared
task is to establish a benchmark for automatic word
group identification in Indian languages, enabling
the community to systematically study and model
semantically cohesive units at scale. In this task,
given a plain-text sentence, systems are required
to output a sequence of word groups, where each
group corresponds to a semantically meaningful
unit. An example for Hindi word grouping is
shown below.

« Input: Feh 3ATScigy STV YA AGTENR h
= & giferfrer & fd g gu g 8, foreen
Tolcis S I1J Gl 9garT gl

* Output: Feh_ 3TSigd
Zfgor_usrid_#gErR_ % Cicik:)
gifemfn_d a9 ua gu dr g, g
Tollcie__oh 1Y Gl HganT g

Prior works such as Bharati et al. (1991);
Karthika et al. (2025); Dangarikar et al. (2024)
showed that Hindi is most affected by (lack of)
word grouping since even simple case markers
such as @, etc. are written with added whitespaces
in modern Hindi texts. Hence, the shared task is
conducted in a fully supervised, single-language
setting for Hindi only. We provide training and
development data for Hindi, annotated with gold
word groups. Participants develop systems (rule-
based, statistical, or neural) to predict word groups
on a held-out Hindi test set. Model performance
is evaluated using exact match (EM), measuring
both boundary accuracy and group-level correct-
ness. To the best of our knowledge, this is the first
attempt to conduct a shared task on such an impor-
tant task from the Indian language perspective.

2 Data Curation

In this section, we discuss the methodologies em-
ployed to curate datasets for the shared tasks In-
dicGEC and IndicWG, respectively.

2.1 IndicGEC

Following Bhattacharyya and Bhattacharya (2025)
we categorized the grammatical errors in each of
these 5 languages into 4 broad categories. These
categories can be further subdivided into finer cate-
gories; however, for the IndicGEC shared task, we
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Language ‘Wrong sentence Expected correct sentence
Hindi T haet [ IS ek a1 [fea 18l 81 T hael A o ek gl Hfad T8l 81
mnet yé kévala jiiana arjana taka hi simita nahirn hai. yé kévala jiiana arjana taka hi simita nahim hai.
Banela WS (I T SR | WA (I YT TR |
ne déoyaléra koné dhuld jaméche. déeoyaléera koné dhuld jaméche.
Malavalam afleidesy =flaind mafsq|s. afleidesy sflaind maiseq|s].
alayala cilarkk jivan nastappattu. cilarkk jivan nastappettu.
Telugn B8 Bocky Bseer HBTPKEN E0EaN B8 Bocdy 5P HBETRPEN 0L,
& diniki rerhdu rakala parinamalu urmtayi diniki rerndu rakala parinamalu umtayi.
Tamil CeThhETmen QUIHSSS56 FSHSD CETHDETmen QUBSTSSHET FSSLD

tolircalai iyantattan cattam

tolircalai iyantarattan cattam

Table 1: Examples of wrong and corresponding corrected sentences for GEC across languages

focused only on these four categories, analogous
to the CoNLL-2013 shared task (Ng et al., 2013).
The categories are as follows:

* Spelling Errors: Spelling errors include
both the errors about the presence of non-
dictionary words and Homonym errors.

* Word Errors: Word errors encompass all
types of errors at the word level other than
spelling errors. It encompasses tense errors,
person errors, case errors, gender, and num-
ber errors for Indian languages.

* Punctuation Errors: Punctuation errors
comprise all the errors that occur due to the
omission of punctuation markers and the use
of wrong punctuation markers.

* Multiple Errors: Sentences containing mul-
tiple errors of the same kind or of different
kinds fall under this category.

We then further employed the methodology ap-
plied by Bhattacharyya and Bhattacharya (2025)
in their Bangla GEC work to collect data for the
shared task. We organized a survey asking partici-
pants to write an essay on a particular topic. Each
participant was asked to write an essay within 20
minutes comprising at least 15 sentences and 150
words, on a topic chosen by them from a set of
choices. The survey took place in a proctored en-
vironment to generate an exam-like situation, en-
abling us to gather real-world data (with errors) on
all five languages. Table 2 shows the data statistics
for each of the five languages on which the shared
task is conducted.

This dataset has been used to conduct the In-
dicGEC task.

Language  Train Dev Test
Hindi 599 107 236
Bangla 659 102 330
Malayalam 312 50 102
Tamil 91 16 65
Telugu 603 100 315

Table 2: Dataset statistics (number of sentences) for In-
dicGEC task for different languages

2.2 IndicWG

The dataset for IndicWG has been created follow-
ing the methodology described by Karthika et al.
(2025). We employed a rule-based methodology
to generate word-grouped sentences. Some of the
basic rules followed to identify the word groups in
the sentences are (i) Named Entities such as name
of a person (grouping salutation, first name, mid-
dle name, last name), names of places, institutions
etc. (ii) Inflections, where a noun followed by post-
positions/ case-markers are grouped to form a sin-
gle semantic unit, (iii) Derivations: verbs grouped
along with auxiliary verbs in a sentence, resulting
in a word group together representing a single ac-
tion, and (iv) Numbers followed by measurement
units are grouped together.

We created the dataset by using sentence
sourced from the IN22 corpus (Gala et al., 2023).
We automatically generated word-grouped sen-
tences using Gemini-2.5 Pro (Comanici et al.,
2025), which was guided by a linguistically in-
formed prompt (refer to Figure 1) that helped per-
form the grouping of only semantically cohesive
units such as named entities, compound nouns,
complex verbs, number—unit, inflectional unity,
and derivational unity expressions using under-
scores, while avoiding standard adjective—noun or
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noun—verb combinations. All automatically gen-
erated groupings were subsequently proofread and
corrected by two language experts to ensure high-
quality annotations. We have thus created a dataset
of 876 Hindi sentences, along with their word-
grouped variants. These sentences were provided
for the shared task, comprising 550 sentences as
a training set, 100 sentences for validation, and
226 sentences for testing. The total number of sen-
tences was less than 1000, and thus the task was
conducted in a low-resource setting, in accordance
with the low-resource nature of Indian languages.

3 System Submission

In this section, we summarize the methodologies
adopted by the participating teams for both the
shared tasks.

3.1 IndicGEC

A total of 14 teams participated in the final phase of
IndicGEC (32 teams participated in the dev phase)
across 5 languages. In the final phase, 11 teams
participated in GEC task for Hindi, while 8 teams
for Bangla, 8 teams for Telugu, 9 teams for Tamil,
and 8 teams for Malayalam participated respec-
tively. Of these 14 teams, 9 submitted system pa-
pers describing their methodologies. Almost all
the teams that participated in this task attempted
to create generic systems that can be applied to
multiple Indian languages. In this section, we sum-
marise the findings of these papers corresponding
to the IndicGEC task. Table 3, Table 4, Table 5,
Table 6, and Table 7 depict the leaderboard for fi-
nal phase of GEC for Hindi, Bangla, Telugu, Tamil,
and Malayalam respectively.

Rank Team GLEU
1 AiMNLP 85.69
2 OneNRC (Vajjala, 2025)  84.31
3 akhilrajeevp 81.44
4 devdot 80.75
4  priyam_sahal7 80.75
6 HindiLlama 80.72
7 Horizon 80.44
7 villa_vallabh 80.44
9 Niyamika 79.47

10 A3-108 79.45
11 Dynamic Trio 72.67

Table 3: Leaderboard for final phase of Hindi GEC

Rank Team Name GLEU
1 priyam_sahal7  95.79
1 Dynamic Trio 95.79
3 devdot 93.20
4  AiMNLP 92.86
5 A3-108 92.44
6 Horizon 82.69
7 Niyamika 81.83
8 hmd 123 57.75

Table 4: Leaderboard for final phase of Bangla GEC

Rank Team Name GLEU
1 priyam_sahal7 88.17
2 AIMNLP 85.22
3 Niyamika 85.03
4  OneNRC (Vajjala, 2025)  83.78
5 A3-108 81.90
6 Horizon 72.00
6 villa_vallabh 72.00
8 ramanirudh 69.56

Table 5: Leaderboard for final phase of Telugu GEC

Team Niyamika have tried to simulate realis-
tic grammatical errors by applying both character-
level and word-level augmentations. For this pur-
pose, the authors created an additional corpus of
10,000 sentences from the IndicCorp v2 dataset
(Doddapaneni et al., 2023). They performed ran-
dom insertion, deletion, and swapping of either
characters or words in these sentences to gener-
ate erroneous sentences. The authors augmented
7,000 sentences for each language and added them
to the provided dataset. Using IndicTrans, the au-
thors then performed transliteration to change the
non-native script words to their canonical form.
On that dataset, the authors fine-tuned mT5 (Xue
et al., 2021) and achieved GLEU scores of 79.47,
81.43, 89.77, 84.48, and 85.03 for Hindi, Bangla,
Malayalam, Tamil and Telugu languages, respec-
tively. The authors observed various inconsis-
tencies with the data, specifically with spaces
around punctuation marks or inside quotations and
acronyms. They have also observed a few translit-
eration errors.

Team Horizon categorized the errors specifi-
cally for Hindi into 12 categories following the
categorization of Bhattacharyya and Bhattacharya
(2025) for Bangla. Like Niyamika, they also cu-
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You are an expert in Hindi linguistics. Your task is to process Hindi sentences by applying the
following specific formatting rules for grouping.

Grouping Rule () Semantically cohesive word groups are to be combined and marked using
underscore ().

This grouping applies only to words that form a single, inseparable semantic unit.

Group these:

« Multi-word proper nouns and named entities: e.q., Fel_aTa=aT, #NaT_Us_WT, J_TH_TT
« Noun with postposition or case-marker: e.g., 5¥_¥, Tied_, @F_&_foly

« Specific technical terms or compound nouns: e.g., ﬁ'c’_R"Tqi HYET_PN

« Compound verbs: e.g., @_ﬁm‘ FTT_aheAT, FeT_aTiey, o_<al_o

« Number and unit: e.g., 10_I™, 6_&, 400_tic?

Do NOT group:

« Standard adjective + noun phrases

« Standard noun + verb phrases

Instruction: Whenever the user provides one or more Hindi sentences, apply the above grouping
rules to those sentences and return the processed version. Grouping should be done only if the
words are semantically cohesive units as explained above. Output each processed sentence on

a new line. Note that each sentence is independent of each other.

Figure 1: Prompt used for generating word-grouped sentences using Gemini

Rank Team Name GLEU
1  AIMNLP 91.57
2 jharishr 86.52
3 ashwinarumugam  86.30
4  priyam_sahal?7 86.29
5 Horizon 86.03
5 villa_vallabh 86.03
7 A3-108 85.52
8 DLRG 85.34
9 Niyamika 84.48

Table 6: Leaderboard for final phase of Tamil GEC

rated a corpus out of IndicCorp v2 and gener-
ated erroneous sentences by injecting noise fol-
lowing grammatical rules. Team Horizon used 42
grammatical rules to generate erroneous sentences.
On the curated dataset, they finetuned mT5 and
IndicBART (Dabre et al., 2022). mt5 performs
significantly better than IndicBART and achieves
scores of 82.69, 80.44, 86.03, 72.00, 84.36 for
Bangla, Hindi, Tamil, Telugu and Malayalam re-
spectively.

The Dynamic Trio team also fine-tuned In-
dicBART (Dabre et al., 2022) for Hindi and Bangla
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Rank Team Name GLEU
1 devdot 96.02
2 DLRG 95.06
3 priyam_sahal7  94.42
4 A3-108 94.16
5 AiMNLP 92.97
6 akhilrajeevp 92.41
7 Niyamika 89.77
8 Horizon 84.36

Table 7: Leaderboard for final phase of Malayalam GEC

grammatical error correction using the IndicGEC
2025 datasets, applying minimal pre-processing
to retain natural error patterns. Their system
achieved GLEU score of 72.67 for Hindi, stand-
ing 11th in the leaderboard, while scoring a GLEU
of 95.79 for Bangla, ranking first alongside team
priyam_sahal7, demonstrating the effectiveness
of multilingual pretraining for low-resource In-
dic GEC. The team shows that strong generative
performance is possible even without synthetic
augmentation when leveraging an Indic-pretrained
model. Their system focused on correcting syntac-
tic ordering, morphological agreement, and punc-



tuation errors without over-editing.

Team Akhilrajeevp developed an
augmentation-free GEC system for Hindi and
Malayalam by applying Instruction Fine-Tuning
(IFT) to Gemma-3 12B (Team et al., 2025) using
LoRA adapters, combined with a deterministic,
classifier-guided prompting strategy. Their
minimal-edit decoding achieved 81.44 GLEU
in Hindi, standing 3rd in the leaderboard and
92.41 GLEU in Malayalam (6th place), show-
ing that careful prompt/decoding design can
be competitive even under sub-1000-example
supervision.

Team AIiMNLP explored prompt-driven ap-
proaches to perform the IndicGEC task, leverag-
ing three large instruction-tuned models viz., GPT
4.1 Mini, Gemini-2.5-Flash(Comanici et al., 2025),
and Llama-4-Maverick-17B-128E-Instruct to per-
form the task at inference time, with zero-shot and
few-shot prompting. Additionally, they also exper-
imented with a LoRA-based fine-tuned Sarvam-M
24B baseline. The team achieved strong multilin-
gual results—ranking 1st in Tamil (GLEU 91.57)
and Hindi (85.69), 2nd in Telugu (85.22), 4th in
Bangla (92.86), and 5th in Malayalam (92.97),
demonstrating the effectiveness of careful prompt-
ing of LLMs, while emphasising the importance
of language-specific fine-tuning for achieving ro-
bust and culturally consistent error correction in
low-resource Indic contexts.

Team A3-108 tackled the Grammatical Error
Correction (GEC) for five low-resource Indic lan-
guages (Bangla, Hindi, Malayalam, Tamil, and Tel-
ugu) by framing the task as a monolingual machine
translation problem. The proposed approach uti-
lized a two-stage pipeline that first generates large-
scale synthetic noisy-to-clean training data using
Statistical Machine Translation (SMT) on mono-
lingual corpora, followed by training Transformer-
based models. To optimize performance, the mod-
els(Ott et al., 2019) employ an Asymmetric Byte
Pair Encoding (BPE) strategy, utilizing different
vocabulary sizes for the source (erroneous) and
target (corrected) text to better capture language-
specific error patterns. The team achieved compet-
itive results, securing 4th for Malayalam(GLEU
94.16), 5th for Bangla(GLEU 92.44) and Tel-
ugu(GLEU 92.44), 7th for tamil(GLEU 85.52) and
10th for Hindi(GLEU 79.45).

Team DLRG presented a hybrid neurosym-
bolic architecture for Grammatical Error Correc-
tion (GEC) in Tamil and Malayalam, strategically

combining neural generalization with precise sym-
bolic rule-based pattern matching. Pre-trained
mT5 models(Xue et al., 2021) i.e. mT5-base
for Tamil and mT5-small for Malayalam, were
finetuned using Parameter-Efficient LoRA adap-
tation on aggressively augmented datasets to ad-
dress data scarcity and morphological complex-
ity. Ensemble mechanism was employed to se-
lect the best output from exact matches, neural pre-
dictions, or rule-based corrections, utilizing strict
safety thresholds to prevent catastrophic deletions
or over-corrections. The approach achieved im-
pressive results on the IndicGEC blind test sets, se-
curing 2nd position for Malayalam(GLEU 95.06),
and 8th position for Tamil(GLEU 85.34), thus
demonstrating that the hybrid neurosymbolic archi-
tecture, offers a robust and effective solution for
Grammatical Error Correction in extremely low-
resource Indic languages.

3.2 IndicWG

Only 2 teams made the submissions in the test
phase of the IndicWG task. One of them, team
name Melba247 has achieved an exact marching
score 0f 44%. The team has not submitted a system
description paper outlining their methodology and,
therefore, we are not summarising their methodol-
ogy for this task. Team Horizon, on the other hand,
employed a model to model the word-grouping
task as a sequence classification problem and fine-
tuned MuRIL (Khanuja et al., 2021) to achieve an
EM score of 58.18%. We discuss the method ap-
plied by team Horizon in this section.

* Data Augmentation: Team Horizon aug-
mented the given dataset with a publicly avail-
able Hindi dataset consisting of 5,000 anno-
tated sentences (Mishra et al., 2024). The aug-
mentation is based on a rule-based local word
group finder ? that uses chunk labels and POS
tags to form noun and verb groups. Augment-
ing the given data achieves an EM score of
30.58% using MuRIL.

* Weighted Loss: The authors probed into
the dataset and found out that word-grouping
datasets typically have many tokens aligned
to the ‘O’ label (delimiters), producing an
’all-O’ bias. To address this, they compute
the simple inverse frequency of class weights
from the training labels and use a custom

2https ://github. com/Pruthwik/Rule-Based-LWG
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“weighted” loss wrapper around the standard
cross-entropy to slightly upweight B and 1
labels during training. Application of class
weighting improves the exact matching score
by 1-2% against the baseline score of 45.13%.

Decoding and Reconstruction: In this stage,
the authors converted the predicted label IDs
to BIO tags and then reconstructed grouped
sentences by concatenating words labelled as
the same group. Exact-match computation
compared the reconstructed grouped sentence
with the given gold standard sentences.

The application of this approach yielded an EM
score of 58.18%, using MuRIL as the pre-trained
model. The authors observed that for the wrongly
predicted sentences, the model either over-merges
(54.8% of all wrong sentences) or over-splits
(31.5% of all wrong sentences). The authors also
observed that the EM score is 63.27% for sen-
tences with <20 words, 45.99% for sentences with
21 to 40 words, and only 20% for sentences with
>40 words, highlighting the sensitivity of the task
with respect to sentence length. Team Horizon also
showed that models that preserve casing and have
better Indic vocabularies, such as MuRIL, produce
fewer tokenization errors and thus perform bet-
ter than other models, IndicBert v2 (Doddapaneni
etal., 2023).

4 Conclusions and Future Work

We have organized two shared tasks, IndicGEC
and IndicWG, at the BHASHA workshop co-
located with IJCNLP-AACL, 2025. A total of
37 teams participated in the development phase
of the task, and 14 teams participated in the final
phase. For IndicGEC, the highest GLEU scores
obtained are 85.69 for Hindi, 88.17 for Telugu,
95.79 for Bangla, 91.57 for Tamil and 96.02 for
Malayalam. For IndicWG 45.13% is the maxi-
mum exact-matching score, which has been en-
hanced to 58.18% by applying a weighted loss and
decoding reconstruction method. From the EM
score, it is evident that the Indic word grouping is
a challenging task. On the other hand, teams have
scored quite highly on the IndicGEC task. It may
be due to a lack of data, which fails to capture the
lexical diversity of a language. We hope that these
shared tasks will provide impetus to grammatical
error correction and word grouping for Indian lan-
guages. In future, we will collect more handwrit-

ten data for IndicGEC and may use a literary cor-
pus (Bhattacharyya et al., 2023) to capture the lex-
ical diversity of the languages.

5 Limitations

The data provided for the tasks was insufficient to
fine-tune pre-trained transformer models, as noted
by all participating teams. However, handwritten
data is not readily available. Despite conducting a
multi-week survey effort, we were able to gather
fewer than 1,000 handwritten sentences. In addi-
tion, the handwritten data may not be lexically di-
verse. Literary data may help in the curation of
a lexically diverse dataset. However, large cor-
pora of literary data are not readily available for
languages other than Bangla.

6 Ethics Statement

We have made efforts to ensure that the curated cor-
pus is devoid of any objectionable statements. We
have also conducted a manual essay writing survey
to gather real-world errors. The participants have
kindly allowed us to use their essays for research
purposes; hence there is no copyright infringement
in curating the dataset.
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Abstract

Grammar correction for Indian languages
poses significant challenges due to complex
morphology, non-standard spellings, and fre-
quent script variations. In this work, we ad-
dress grammar correction for English-mixed
sentences in five Indic languages—Hindi, Ben-
gali, Malayalam, Tamil, and Telugu—as part
of the IndicGEC 2025 shared task at Bhasha
Workshop. Our approach first applies word-
level transliteration using IndicTrans to nor-
malize romanized and mixed-script tokens, fol-
lowed by grammar correction using the mT5-
small model. Although our experiments fo-
cus on these five languages, the methodol-
ogy is generalizable to other Indian languages.
Our system demonstrates stable performance
across the five languages in the IndicGEC
2025 shared task, which included 8-11 partic-
ipating systems per language. We achieve our
best performance in Telugu with a rank of 3 out
of 8, while securing ranks of 7 out of 8 in both
Bengali and Malayalam. For Hindi, we obtain
a rank of 9 out of 11, and for Tamil, a rank of
9 out of 9. Our implementation and code are
publicly available at: https://github.com/
Rucha-Ambaliya/bhasha-workshop.

1 Introduction

Indian languages exhibit rich morphology and di-
verse scripts, which complicates grammar correc-
tion, especially when the text is code-mixed with
English. Standard grammar correction models
trained on monolingual text often struggle with
such inputs.

To address this challenge, we propose a word-
level transliteration approach: English tokens in
the sentence are converted into the selected main
native language script. The transliterated text is
then fed into a grammar correction model based
on mT5 (Xue et al., 2021), enabling accurate de-
tection and correction of grammatical errors. This
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pipeline can be easily extended to other Indian lan-
guages with minimal adaptation.

2 Related Work

Grammar Error Correction (GEC) for English:
Early work on GEC focused on English using
statistical and neural machine translation mod-
els. The CoNLL-2014 shared task (Ng et al.,
2014) evaluated GEC systems using the M? scorer,
with the best system achieving 37.33% F1 score.
Later work by Junczys-Dowmunt et al. (2018)
approached neural GEC as a low-resource ma-
chine translation task, achieving competitive per-
formance. The GLEU metric (Napoles et al.,
2015) was introduced specifically for evaluating
grammatical error correction systems, measuring
n-gram overlap between system output and refer-
ence corrections.

GEC for Indic Languages:

Transliteration and Normalization: Bhat et al.
(2015) developed rule-based and data driven sys-
tems used for standardized text processing, focus-
ing on transliterated transliteration search tasks
(Choudhury et al., 2014). Various neural ap-
proaches (Kunchukuttan et al., 2021; Madhani
etal., 2023) have been proposed for Indic language
transliteration, leveraging character-level and sub-
word representations to handle script variations.

Code-Mixed Language Processing: The SAIL-
2015 shared task (Patra et al., 2015) addressed sen-
timent analysis in Hindi-English, Bengali-English,
and Tamil-English tweets, with top systems report-
ing 66—71% accuracy using Naive Bayes. Sharma
et al. (2015) applied a lexicon-based method for
Hindi-English sentiment classification using FIRE
datasets. Joshi et al. (2016) used sub-word level
LSTMs (Hochreiter and Schmidhuber, 1997) for
Hindi-English code-mixed datasets, improving ac-
curacy by 18%. Hassan et al. (2016) used LSTMs
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for Bengali sentiment analysis, achieving 78% ac-
curacy on binary and 55% on three-class classifi-
cation tasks.

3 Corpus Details

The IndicGEC 2025 shared task at Bhasha Work-
shop provides a dataset for training and evaluation
in five Indic languages for the grammar correction
task. For each language, the dataset is distributed
in three files:

* train.csv: Contains both input and output
sentences, used to train the grammar correc-
tion models.

+ dev.csv: Used during the development phase
to evaluate the model on the organizers’ sys-
tem. It contains both input and output sen-
tences and is evaluated using GLEU to iden-
tify error patterns and improvement areas.

* test.csv: Contains only input sentences and is
used for the final evaluation during the work-
shop.

3.1 Original Dataset Statistics

Language Train Dev Test
Hindi 599 107 236
Bangla 659 102 330
Malayalam 312 50 102
Tamil 91 16 65
Telugu 603 100 315

Table 1: Statistics of the original dataset provided by
the Bhasha Workshop organizers.

Although the original dataset already contains real-
istic grammatical issues such as insertions, incon-
sistent punctuation, character-level errors (missing
or swapped characters etc.), and word-level errors
(misplaced or missing tokens etc.). Its overall size
is too limited to train a large multilingual model
scuh as mT$5 effectively. Given the complexity of
Indic languages, which involve rich morphology,
spelling variations, and frequent code-mixing, the
amount of erroneous data in the original set is in-
sufficient for the model to learn diverse and robust
error patterns.

3.2 Baseline Performance on Original
Dataset

To assess the effectiveness of the provided dataset,
preliminary experiments are conducted using the

mT5-small model trained separately for each lan-
guage using its respective train.csv file provided
by Bhasha Workshop. The trained models are
then evaluated on the corresponding dev and test
datasets. We measure GLEU scores with and with-
out applying the IndicTrans transliteration step.

Language GLEU GLEU
(Trans-  (Non-Trans-
literated) literated)

Hindi 17.74 18.13
Bangla 17.00 17.00
Malayalam  20.05 20.05
Tamil 4.99 4.99

Telugu 12.21 12.21

Table 2: GLEU scores on dev.csv using the original
dataset.

Language GLEU GLEU
(Trans-  (Non-Trans-
literated) literated)

Hindi 15.62 15.56
Bangla 18.08 18.08
Malayalam  27.07 27.07
Tamil 0.46 0.46

Telugu 12.39 12.16

Table 3: GLEU scores on test.csv using the original
dataset.

The results indicate consistently low GLEU
scores across all languages, with extremely poor
performance for Tamil and only marginal improve-
ments across the remaining languages. Further-
more, the transliteration step did not yield signif-
icant gains at this stage. This can be largely at-
tributed to the fact that, except for Hindi and a
very small number of instances in Telugu, none
of the other languages contained English tokens in
their dev and test datasets, thereby limiting the ob-
servable impact of transliteration. Even for Hindi,
only a single English word was present in the
dev.csv file across the evaluated samples, while
the Telugu test set contained only 2-3 English to-
kens in total. However, the slight improvement
observed in the Hindi and Telugu test set suggests
that transliteration may have contributed positively
where English-mixed content was present. Over-
all, the poor performance indicates that the pri-
mary limitation stemmed from insufficient train-
ing data rather than script normalization, which
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motivated the need to expand and augment the
dataset with synthetic grammatical errors to im-
prove model generalization and correction capabil-

ity.
3.3 Data Filtering

To address this, we construct an augmented train-
ing corpus by incorporating additional sentences
from the IndicCorpV?2 dataset (Doddapaneni et al.,
2023) for each language. The following filtering
criteria are applied:

* Only sentences containing characters of the
main language are retained, since mixing with
other languages reduces the prediction accu-
racy of mT5 for the target language.

» Sentence length between 5 and 15 words is se-
lected, as IndicCorpV2 contained long para-
graphs and multiple iterations show that the
model performs best with this length.

This process resulted in an initial corpus of
10000 sentences per language.

3.4 Data Augmentation

To simulate realistic grammatical and spelling er-
rors, we apply both character-level and word-
level augmentations:

e Character-level: random insertion, deletion,
or swapping of characters.
(Inserted or swapped characters are arbitrarily
selected from within the same sentence and
placed at a random position.)

— Insertion: ¥R — ®RY (random character
T inserted)

— Deletion: IHd — Id (letter H deleted)

— Swap: €HI — A14ET (characters T and
|1 swapped)

* Word-level: random insertion, deletion, or
swapping of words within a sentence.
(Inserted or swapped words are arbitrarily se-
lected from within the same sentence and
placed at a random position.)

— Insertion: # ¥qd Tl — & AT gl
AT (word T inserted)

— Deletion: & ¥qd ATl — & ATl (word
The deleted)

— Swap: # W@d W1 — Whd d T
(words & and Thel swapped)

For each sentence, either a character-level or a
word-level error is introduced randomly. The aug-
mented sentences are paired with their original ver-
sions to form input-output pairs for training.

During early experiments, augmenting only
50% of the sentences did not provide the model
with enough erroneous examples, leading it to of-
ten copy the input as-is instead of applying correc-
tions. To ensure that the model learns error pat-
terns effectively, we increase the augmentation ra-
tio to 70% of the sentences. Each augmented sen-
tence is paired with its original version to form
input-output pairs for training.

3.5 Final Dataset Statistics

Language Correct  Augmented Final
Original Pairs  Training

Pairs Pairs

Hindi 10000 7000 10000
Bangla 10000 7000 10000
Malayalam 10000 7000 10000
Tamil 10000 7000 10000
Telugu 10000 7000 10000

Table 4: Corpus augmentation statistics after filtering
and applying character- and word-level perturbations.

7,000 sentences were randomly selected for aug-
mentation while preserving 10,000 input-output
pairs per language. Although error injection was
performed randomly, the resulting distribution of
augmentation types was approximately uniform.
Since the final model used in our experiments was
trained only on the Hindi corpus, we report de-
tailed augmentation statistics for Hindi to illus-
trate the distribution of error types. The aug-
mented Hindi samples were evenly spread across
different perturbation categories: word deletion
in 596 sentences (17.03%), word insertion in 598
sentences (17.09%), word swapping in 575 sen-
tences (16.43%), character insertion in 564 sen-
tences (16.11%), character deletion in 570 sen-
tences (16.29%), and character swapping in 597
sentences (17.06%). This balanced distribution en-
sured exposure to a diverse range of grammatical
and spelling error patterns without bias toward any
single error type.

This augmentation strategy provides a balanced
distribution of correct and erroneous sentences,
significantly improving the model’s ability to learn
grammar correction patterns and handle real-world
noise such as spelling errors, informal usages, and
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code-mixed constructions common in Indic lan-
guage text.

4 Approach

4.1 Features
4.1.1 Token-level embeddings:

Sentences are first tokenized using the mT5 tok-
enizer. Tokens belonging to the main language
(e.g., Hindi, Bangla) are kept unchanged, while
tokens in other scripts or Romanized form are
transliterated into their canonical native script us-
ing IndicTrans (Bhat et al., 2015) transliteration
toolkit.

4.1.2 Subword-level encoding:

The SentencePiece (Kudo and Richardson, 2018)
tokenization of mT5 helps effectively handle out-
of-vocabulary (OOV) words that frequently occur
in Romanized and code-mixed Indic language text.

4.1.3 Cross-lingual Generalization:

Although the mT5 model is trained only on Hindi
data, we directly use for inference on the other
four languages (Bangla, Malayalam, Tamil, and
Telugu) without additional fine-tuning under zero-
shot settings. This is possible because mT5 is a
multilingual model with shared subword represen-
tations across Indic languages. The transliteration
step ensures that the input text for all languages is
standardized to native scripts, allowing the model
to generalize effectively across languages.

4.2 Models

4.2.1 Transliteration with IndicTrans:

Since the grammar correction model is trained ex-
clusively on sentences in the main language, it is
unable to handle words in other scripts (e.g., En-
glish or Romanized Hindi). To address this, we
use IndicTrans (Bhat et al., 2015) to transliterate
all non-main language tokens into the canonical
script at the word level. Tokens already in the main
language are left unchanged. This ensures that the
grammar correction model is provided with inputs
in a consistent script.

4.2.2 Grammar Correction with mT5:

Once standardized, the transliterated sentences
are passed to the mT5 encoder, which predicts
grammatically corrected sequences in the decod-
ing stage. This step improves sentence structure,
morphology, spelling, and word order, producing
clean and standardized output sentences.

4.3 Inference Pipeline

The complete inference pipeline follows these
steps:

1. The input sentence is tokenized using the
mTS5 tokenizer.

2. Non-main language tokens (e.g., English
words in a Hindi sentence) are transliterated
into the main language script using Indic-
Trans.

3. The standardized (transliterated) sentence is
fed into the mT5 grammar correction model.

4. The output sentence contains corrected gram-
mar and transliterated tokens in the native
script, while the original main language to-
kens are preserved.

Hyperparameters:

The hyperparameters used in fine-tuning the mT5
model are detailed in Table 5.

Hyperparameter Value
Model mT5-small
Learning Rate 2e-4
Batch Size 2
Epochs 21
Max Seq Length 128
Gradient Accumulation 4

Table 5: Hyperparameters for mT5-based translitera-
tion and grammar correction.

5 Evaluation

We evaluate our model using the GLEU
score (Napoles et al., 2015), following
the official evaluation script used by the
IndicGEC 2025 shared task (available at
https://github.com/BHASHA-Workshop/
IndicGEC2025/blob/main/score.py). It
measures the grammatical accuracy of predicted
sentences by comparing them to reference sen-
tences using n-gram precision and recall. Higher
scores indicate better grammatical quality.

5.1 Performance on Augmented Data

We evaluate the model trained on the augmented
dataset under two configurations: with and with-
out applying the IndicTrans transliteration step, on
both dev.csv and test.csv.
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5.1.1 Development Set Results (Augmented

Training)
Language GLEU GLEU
(Trans-  (Non-Trans-
literated) literated)
Hindi 83.25 83.25
Bangla 86.94 86.94
Malayalam  89.79 89.79
Tamil 73.07 73.07
Telugu 85.18 85.18

Table 6: GLEU scores on dev.csv using the augmented
dataset.

5.1.2 Test Set Results (Augmented Training)

Language GLEU GLEU
(Trans-  (Non-Trans-
literated) literated)
Hindi 79.47 78.98
Bangla 81.83 81.83
Malayalam 89.77 89.77
Tamil 84.48 84.48
Telugu 85.03 85.03

Table 7: GLEU scores on test.csv using the augmented
dataset.

5.1.3 Observations

The augmented data yielded substantially im-
proved results after training on the expanded cor-
pus, as evidenced by the significant increase in
GLEU scores when compared with the baseline re-
sults reported in Tables 2 and 3.

Notably, the transliteration step showed a slight
but consistent positive effect for Hindi in the test
set. This can be attributed to the presence of a
small number of English tokens in the Hindi data,
whereas the other languages contained no English
words in both dev.csv and test.csv. Even for
Hindi, only a single English word was observed
in the development set. Despite this scarcity, the
marginal improvement in the Hindi test results sug-
gests that transliteration contributed positively in
scenarios involving code-mixed content, indicat-
ing its potential effectiveness when such inputs are
more prevalent.

5.2 Final Submission Results

For the final shared task submission, our model
was trained on 10,000 augmented sentence-pairs

of Hindi and infered for others, incorporating the
IndicTrans transliteration step. The trained model
was evaluated on the official test.csv file. Table 8
presents the official GLEU scores and correspond-
ing ranks obtained on the leaderboard.

Language = GLEU Rank
Hindi 79.47 9
Bangla 81.83 7
Malayalam  89.77 7
Tamil 84.48 9
Telugu 85.03 3

Table 8: Final leaderboard performance of our system
on the IndicGEC 2025 test set.

These results demonstrate that training on aug-
mented data substantially enhanced the model’s
grammar correction capability, leading to stable
and competitive performance across languages—
especially in Telugu where we secured the 3rd rank.
While transliteration’s benefit was limited to Hindi
due to the scarcity of English tokens in the other
languages, the overall trend confirms that our aug-
mentation strategy and pipeline were effective.

6 Error Analysis & Observations

Analysis of the model outputs reveals distinct er-
ror patterns for Hindi and non-Hindi languages due
to differences in training exposure and linguistic
structure.

6.1 Errors in Hindi Outputs

Since the model was fine-tuned on Hindi input—
output pairs, most Hindi errors are surface-level
formatting issues:

* Spacing and punctuation inconsistencies:
Extra or missing spaces around commas, full
stops, colons, hyphens, quotes, digits, and
measurement units, reducing textual readabil-

ity.

Incorrect hyphen and quote formatting:
Improper spacing in compound words and
misaligned quotation marks, especially
around acronyms such as “3IT3.378.&”
already given in Hindi.

* Minor transliteration and tokenisation er-
rors: Occasional incorrect mapping of Ro-
man words into Devanagari script, e.g.,
“CHATGPT” — “Tdwd” instead of “Te
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6.2 Errors in Other Languages (Bangla,
Malayalam, Tamil, Telugu)

For non-Hindi languages, the model exhibits more
severe linguistic issues arising from poor cross-
lingual generalisation:

* Cross-script contamination: Output sen-
tences occasionally include Devanagari char-
acters due to Hindi-centric training, espe-
cially when the model is uncertain about the
target language context.

* Semantic drift instead of correction:
Rather than performing precise grammatical
correction, the model occasionally produces
partially translated or semantically altered
sentences, deviating from the original
meaning.

* Poor linguistic adaptation: Hindi-centric
training leads to incorrect grammar, mis-
placed punctuation, and structurally invalid
sentence formations when applied to other In-
dic languages.

Summary: Hindi outputs primarily suffer from
formatting and minor transliteration inconsisten-
cies, whereas non-Hindi languages demonstrate
deeper structural problems such as script mix-
ing, semantic deviation, and poor linguistic coher-
ence. These differences highlight the limitations
of applying a Hindi-trained mT5-small model to
multilingual grammatical correction tasks without
language-specific fine-tuning or adaptation strate-
gies.

7 Limitations

* Limited fine-tuning across languages: Al-
though evaluation was conducted for multi-
ple Indic languages, the model was only fine-
tuned on the Hindi augmented corpus. For
the remaining languages, the model was used
in an inference-only setup, without language-
specific fine-tuning on their respective aug-
mented datasets, which may have constrained
performance and generalization.

* Numerical normalization: English numer-
als were not converted into their correspond-
ing Indic script representations (e.g., 123
— %R3), which could affect readability and
grammatical correctness in certain contexts.

* Transliteration of unseen tokens: The
transliteration module occasionally produced
incorrect outputs for unknown or rare tokens
such as brand names and technical terms (e.g.,
“CHATGPT” — “9Idtd”), highlighting limita-
tions in handling out-of-vocabulary words.

8 Conclusion & Future Work

We present a word-level transliteration approach
using IndicTrans for English-Hindi code-mixed
text, followed by grammar correction by mTS5. The
approach improves the performance of grammar
correction systems on code-mixed inputs. Future
directions include:

* Contextual Understanding: Better handle
long and complex sentences using syntactic
or semantic features using larger models such
as mT5-base and mT5-large.

* Multilingual Datasets: Explore multilingual
GEC datasets to enhance grammar correction
for code-mixed text.

* Punctuation: Incorporate explicit punctua-
tion correction modules or multi-task learn-
ing.

* Evaluation: Complement GLEU with con-
textual embedding based metrics such as
BERTScore (Zhang et al., 2020), LaBSE
(Feng et al., 2022), and human-in-the-loop
evaluation.
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Abstract

This paper presents Team Horizon’s approach
to the BHASHA Shared Task 1: Indic Gram-
matical Error Correction (IndicGEC). We ex-
plore transformer-based multilingual models
— mT5-small and IndicBART — to correct
grammatical and semantic errors across five
Indian languages: Bangla, Hindi, Tamil, Tel-
ugu, and Malayalam. Due to limited anno-
tated data, we develop a synthetic data aug-
mentation pipeline that introduces realistic lin-
guistic errors under ten categories, simulating
natural mistakes found in Indic scripts. Our
best submissions achieve competitive perfor-
mance with GLEU scores of 86.03 (Tamil,
Sth rank), 84.36 (Malayalam, 8th rank), 82.69
(Bangla, 6th rank), 80.44 (Hindi, 7th rank),
and 72.00 (Telugu, 6th rank) on the official
test sets. We further analyze the impact of
dataset scaling, multilingual fine-tuning, and
training epochs, demonstrating that linguisti-
cally grounded augmentation significantly im-
proves grammatical correction accuracy in
low-resource Indic languages.

1 Introduction

Automatic Grammatical Error Correction (GEC)
aims to detect and correct errors in text while pre-
serving its intended meaning. Although modern
GEC systems for English have achieved remark-
able success through large-scale pre-training and
high-quality datasets, their extension to Indic lan-
guages remains challenging due to linguistic and
data-related constraints. Indic languages exhibit
high morphological complexity, rich inflectional
patterns, free word order, and diverse orthogra-
phies. Available annotated corpora for languages
such as Bangla, Tamil, and Malayalam are ex-
tremely small, often only a few hundred examples,
making traditional supervised learning insufficient
for robust correction.

The BHASHA 2025 Shared Task 1: IndicGEC
introduces a multilingual benchmark for grammati-

cal error correction in five major Indian languages:
Bangla, Hindi, Tamil, Telugu, and Malayalam.
Team Horizon adopted a hybrid approach combin-
ing:

* Synthetic data augmentation through linguis-
tically motivated error injection.

* Multilingual transformer fine-tuning using
mT5-small (Xue et al, 2021a) and In-
dicBART (Dabre et al., 2022).

We deliberately selected these two models
because they represent the two dominant pre-
training paradigms for Indic languages—general
multilingual (mT5-small) and Indic-specific
(IndicBART)—while remaining lightweight (<
300M parameters), publicly available, and fast to
fine-tune on standard academic hardware. This
choice ensures fair comparison under identical
conditions and establishes strong, reproducible
baselines for future low-resource IndicGEC
research.

We created a controlled error generation
pipeline introducing mistakes across 10 linguistic
categories. This expanded training data from
less than 1k to over 10k high-quality pairs per
language. Our main contributions are as follows:

* Introduce a linguistically informed synthetic
error-injection framework for Indic GEC data
augmentation.

* Evaluate and compare two multilingual trans-
former models: mT5-small and IndicBART.

* Provide empirical analysis of dataset scaling,
training epochs, and their effects on general-
ization.

» Release insights into error-type distributions,
cross-language transfer, and limitations in
multilingual setups.
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Error Class

Sub-class

Example (Hindi)

Non-Dictionary

Spelling T BRI H1S 6% | — B HR@M H & Fear gl (I work in a factory.)
Dictionary . . y o
B &l 18 ST — & et 3R S| (I will go home tomorrow.)
Tense . Y o
# el T — & ohed TG (1 will study tomorrow.)
Person ) . .
i et Sl &1 — H Thet S g1 (I go to school.)
Word Number ) ) !
9 forard Tgar 21 — o fohame Ued &1 (They read books.)
Gender
AT FAT| — AT WE | (Seema slept.)
Case )
I &l fohare Tél| — T 7 fohdte T€l (Ram read the book.)
Parts-of-Speech - ) . .
ferTed ez sMadsa &l — e smudsHe ¥9 9 &R &1 (The Hi-
malayas are remarkably beautiful.)
Missing ) . ! .
H el ST — B ohet "X ST (1 will go home tomorrow.)
Extra/Structure
A T F G GET| — IH H GHT @R (Ram ate food.)
Punctuation —
T A @I AT — T A GHT @ET? (Did you eat food?)
Semantic —

I SIS e T TET &1 — ITH 3T &1 2T €1 (Ram is eating mango, not
the sky.)

Table 1: Synthetic error categories with detailed sub-classes and examples. Wrong text is shown in violet, correct

text in blue.

Note: The meaning and correctness of some error examples, such as El ﬁo‘d‘lﬁ%ﬁT land 9 W‘Eﬁ %I, can depend on the
intended context. Both sentences may seem grammatically plausible, but only the correct form accurately conveys plural

subject-verb agreement in typical usage. Such distinctions are essential in grammatical error correction, as surface

correctness may not always reflect the intended meaning.

The rest of this paper is organized as follows:
Section 2 details dataset collection and augmen-
tation. Section 3 presents model architecture and
training setup. Section 4 describes evaluation and
results. Section 5 provides detailed error analysis.
Section 6 concludes the paper.

2 Dataset Preparation and Augmentation

2.1 Overview

The official IndicGEC datasets released by
BHASHA 2025 (Bhattacharyya and Bhattacharya,
2025) contains relatively small language-specific
corpora as shown in Table 2, each consisting
of a few hundred annotated pairs. To mitigate
the data limitation, we develop a synthetic data
augmentation pipeline that generates realistic
grammatical errors based on predefined linguistic
categories. This allow us to scale the dataset size
to approximately Sk—10k pairs per language for
both mT5-small and IndicBART experiments.

2.2 Data Sources

* BHASHA GEC Data: The official shared
task dataset containing human-written and
expert-corrected essays in five Indian lan-
guages.

* Supplementary Corpora: Clean sen-
tences were additionally sourced from the
Al4Bharat IndicCorp v2 (Doddapaneni et al.,
2023) dataset and Indic Wikipedia dumps to
expand the data coverage.

Language | #Train | #Dev | #Test
Hindi 599 107 | 236
Bangla 598 101 330

Malayalam | 300 50 102
Tamil 91 16 65
Telugu 599 100 310

Table 2: Language Wise Data Statistics

Each clean sentence from these and supplemen-
tary sources is treated as a gold reference and trans-
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formed into a synthetically “incorrect” version us-
ing our controlled error injection framework.

2.3 Synthetic Error Injection

We design a rule-based error generator that intro-
duces one or more grammatical or orthographic er-
rors per sentence (full list of categories and sub-
classes with examples in Table 1). In total, we im-
plemented 42 linguistically motivated rules (2—8
per main class). Representative rules include:

* Spelling (non-dictionary): random HAT swaps
(T<—>f\,\<—>a,o<—>c\, clescl), visually similar
consonant substitution (¢ - 9, d — I, 9
— U, § — ), or insertion of typographically
adjacent keys.

* Spelling (dictionary): replacement with real-
word homophones/misspellings from a hand-
curated list (e.g., STRET — STAL).

» Word (all sub-classes): morphological inflec-
tion mutations using pattern lists (e.g., & — &t
for gender mismatch, g — & for number dis-
agreement, § — @I for wrong case).
Parts-of-Speech and Missing/Extra/Structure:
random omission, duplication, or insertion of
postpositions (<, &1, &, ¥, &T/a&I/F) and ad-
verbs (Sgd <> EﬁET).

Punctuation: removal or wrong placement of
/27,
Semantic: semantically incorrect postposi-
tion or adverb choice (H — TR, 319 — &aT).
The number of errors per sentence follows the
distribution 60% (1 error), 25% (2 errors), 10%
(3 errors), 5% (4+ errors). Each clean sentence
generates five synthetic noisy variants (three heavy
with 2—4 errors, two light with 1-2 errors), yielding
approximately 10k—12k high-quality parallel pairs
per language after deduplication.

2.4 Language-specific Adaptation

Each Indic language exhibits distinct structural pat-
terns and error tendencies:
* Hindi, Bangla: Primarily grammar and
spelling inconsistencies.
* Tamil, Telugu, Malayalam: Morphological,
tense, and word-order errors.

3 Model Architecture and Training
Setup

3.1 Transformer Models

We experimented with two models:

* mT5-small (Xue et al., 2021a): 300M param-
eters, pre-trained on mC4 (Xue et al., 2021a).

* IndicBART (Dabre et al., 2022): Pretrained
seq2seq model for Indic languages.

3.2 Input-Output Formatting

* Input: “correct this: <incorrect sentence>"

* Output: <correct sentence>

* Language tags (e.g., [HI], [BN]) are
prepended for multilingual fine-tuning. The
language tags are two lettered identifiers for
the languages defined under ISO 639-1 !
standards.

3.3 Training Setup

The hyper-parameters used in training are detailed
in Table 3.

Parameter Setting

Optimizer AdamW

Learning Rate ~ 5e—5 (mT5-small), 3e—5 (In-
dicBART)

Batch Size 16-32

Epochs 10-15

Loss Function
Early Stopping

Cross-entropy
Based on GLEU score (dev
set)

Table 3: Training setup and hyperparameter configura-
tion.

4 Evaluation and Results

Model Bn Hi Ta Te Ml

mT5-small 82.69 80.44 86.03 72.00 84.36
IndicBART 73.50 7233 7645 66.10 74.84

Table 4: GLEU scores (%) per language. Bn: Bangla,
Hi: Hindi, Ta: Tamil, Te: Telugu, Ml: Malayalam.

Previous studies (Taunk and Varma, 2023) have
often observed comparable or even superior per-
formance of IndicBART over mT5-small in Indian
language tasks, particularly in summarization and
machine translation. IndicBART, being specifi-
cally pre-trained on Indic languages, tends to bet-
ter capture linguistic nuances. However, in our ex-
periments, we found that mT5-small slightly out-
performed IndicBART for certain languages (most
notably Tamil and Malayalam), possibly due to
more effective parameter tuning or differences in
the data augmentation scheme. Nonetheless, our
findings are consistent with the observation that

"https://en.wikipedia.org/wiki/IS0_639-1
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model performance is sensitive to task, data size,
and fine-tuning strategy.

GLEU (Mutton et al., 2007) is used for evalua-
tion because of its robustness in short corrections
and small datasets. The results are shown in Ta-
ble 4.

Ablation Studies

* Dataset size: Training on larger augmented
datasets improved GLEU by 4-5 points.

* Number of epochs: Performance plateaued
at 8—10 epochs; overfitting observed beyond
this.

5 Error Analysis

Errors are grouped into different categories across
different languages in the validation set and are pre-
sented in Table 5.

Error Type Corrected (%) Missed (%)
Spelling 95 5
Grammar 88 12
Punctuation 92 8
Word Choice 85 15
Semantic 78 22
Structural 80 20
Duplication 90 10

Table 5: Error-type performance across dev sets

Language-specific Observations

Bangla/Hindi: High agreement errors corrected
effectively.

Tamil/Telugu/Malayalam: ~ Morphological and
word-order errors were more challenging.
Cross-lingual transfer observed between related
Dravidian languages.

6 Limitations

This study has several key limitations. First, our
synthetic error generation may not fully reflect the
diversity and complexity of real-world errors, re-
ducing ecological validity. Second, we evaluated
only two multilingual models (mT5-small and In-
dicBART), excluding stronger language-specific
alternatives such as BanglaT5 (Bhattacharjee et al.,
2023) or ByT5-based models (Xue et al., 2021b).
Third, the rule-based error injection, while linguis-
tically motivated, may miss rare or highly context-
dependent phenomena (e.g., dialectal variations or
code-mixing).

Additionally, the BHASHA datasets are small
and limited to five Indic languages, constrain-
ing generalizability. Deeper cross-lingual trans-
fer opportunities were not fully explored, and
evaluation relied solely on automatic metrics
(GLEU (Napoles et al., 2015)) without human
assessment of fluency, meaning preservation, or
practical usability.

Future work should incorporate real learner cor-
pora, test language-specific pretrained models, ex-
tend augmentation to more Indic languages, per-
form human evaluations, and investigate advanced
cross-lingual and few-shot approaches for ultra-
low-resource settings.

7 Conclusion

We demonstrate that linguistically guided syn-
thetic data augmentation, combined with multi-
lingual fine-tuning of transformer models such
as mT5-small and IndicBART, can significantly
bridge the low-resource gap in Indic grammati-
cal error correction. Our approach yields competi-
tive performance across Bangla, Hindi, Tamil, Tel-
ugu, and Malayalam on the BHASHA 2025 Shared
Task benchmark, highlighting the effectiveness of
controlled error injection in scaling limited anno-
tated data. These results underscore the poten-
tial of scalable, language-informed augmentation
strategies for advancing GEC in morphologically
rich, low-resource Indic languages.
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Abstract

This paper presents our approach to Gram-
matical Error Correction (GEC) for five low-
resource Indic languages, a task severely lim-
ited by a scarcity of annotated data. Our
core methodology involves two stages: syn-
thetic data generation and model optimiza-
tion. First, we leverage the provided train-
ing data to build a Statistical Machine Trans-
lation (SMT) system, which is then used to
generate large-scale synthetic noisy-to-clean
parallel data from available monolingual text.
This artificially corrupted data significantly en-
hances model robustness. Second, we train
Transformer-based sequence-to-sequence mod-
els using an asymmetric and symmetric Byte
Pair Encoding (BPE) configuration, where the
number of merge operations differs between the
source (erroneous) and target (corrected) sides
to better capture language-specific characteris-
tics. For instance, source BPE sizes 4000, 8000
and 16000, with target sizes at 500, 1000, 2000,
3000 and 4000. Our experiments demonstrated
competitive performance across all five lan-
guages, with the best results achieving a GLUE
score of 94.16 for Malayalam (Rank 4th) fol-
lowed by Bangla at 92.44 (ranked 5th), Tamil
at 85.52 (ranked 5th), Telugu at 81.9 (7th), and
Hindi at 79.45(10th) in the shared task. These
findings substantiate the effectiveness of com-
bining SMT-based synthetic data generation
with asymmetric BPE configurations for low-
resource GEC.

1 Introduction

Grammatical error correction (GEC) in Indian lan-
guages is a vital yet challenging research area due
to the complex morphological nature, rich syntac-
tic structures, and diverse scripts prevalent among
these languages (Bhattacharyya and Bhattacharya,
2025; Sharma and Bhattacharyya, 2025b,a). The
digital proliferation of Indic languages such as
Hindi, Tamil, Telugu, Bangla, and Malayalam has

Model language:

Improved
Correction
Performance

Transformer
Model Training

Limited SMT System
Training Data Training

Asymmetric
BPE Encoding

>
Insufficient Enhanced
data for model grammatical
training error correction

Figure 1: Our Pipeline for GEC for Indic Languages.

highlighted the importance of automated GEC sys-
tems to assist language learners, enhance machine
translation, and improve natural language under-
standing.

Unlike English and other widely studied lan-
guages, Indian languages exhibit a high degree
of inflection and derivation, complicating both
error detection and correction tasks. Moreover,
the limited availability of large-scale, annotated
parallel corpora with grammatical errors and cor-
responding corrections presents a significant bar-
rier to training effective GEC models (Felice and
Yuan, 2014). These challenges have motivated re-
search into data augmentation, synthetic error gen-
eration(Wang et al., 2024; Deng et al., 2025) for
GEC. To address this resource limitation, we fol-
low the paradigm of viewing GEC as a monolingual
machine translation task, enabling us to leverage
existing monolingual corpora for synthetic data
augmentation (Junczys-Dowmunt et al., 2018). As
summarized in Figure 1, our pipeline begins with
generating erroneous-to-correct sentence pairs us-
ing an SMT system trained on the parallel data
provided.

Beyond data augmentation, the choice of sub-
word tokenization is crucial for morphologically
rich, low-resource languages (Ding et al., 2019;
Abid, 2020). While BPE (Sennrich et al., 2016) hy-
perparameters have been explored, most research
employs symmetrical BPE (same number of merge
operations/NMO for source and target) (Huck et al.,
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2017; Ortega et al., 2020; Lankford et al., 2021;
Domingo et al., 2019; Lee et al., 2024). Given that
GEC involves translating noisy, often fragmented
input to clean, correct output, we use flexibility
offered by subword tokenization to increase per-
formance of systems in this regard. Building on
work that uses differing NMOs for word alignment
(Ngo Ho and Yvon, 2021), we propose and sys-
tematically investigate the use of asymmetric BPE
configurations for GEC to better model the distinct
characteristics of the erroneous (source) and cor-
rected (target) sides.

We generate synthetic noisy data by training a
statistical machine translation (SMT) system on
the small provided training data to convert correct
sentences sampled from Doddapaneni et al. (2023)
into noisy (erroneous) sentences. This synthetic
data, paired with the original correct sentences, is
then used to train transformer-based models for
grammatical error correction across five Indic lan-
guages while employing asymmetric Byte Pair En-
coding, using different number of merge operations
for source and target tokenization model, to effec-
tively model language-specific characteristics and
improve correction performance.

2 Related Work

2.1 Grammar Error Correction as MT

Since the early work of Brockett et al. (2006),
Grammatical Error Correction (GEC) systems have
often employed a monolingual machine translation
approach, training models to map erroneous sen-
tences directly to their corrected counterparts.

Statistical machine translation (SMT) played an
important role in GEC research. Yuan and Felice
(2013) and Wang et al. (2014) provide evidence
regarding SMT’s capabilities and limitations, par-
ticularly in addressing complex error types and
local contexts. Felice and Yuan (2014) discuss
the use of SMT systems trained on learner data to
artificially generate noisy sentences from correct
sentences, effectively enriching training data for
translation-based correction models.

Xie et al. (2016) presented a neural network-
based approach to GEC, employing a character-
level encoder-decoder recurrent neural network
with an attention mechanism.

Hoang et al. (2016) and Chollampatt et al. (2016)
utilized machine translation systems enhanced with
a feed-forward neural translation model and n-best
list re-ranking methods to improve correction accu-

racy. Sequence-to-sequence methods were further
explored by Yuan and Briscoe (2016), Chollampatt
and Ng (2018), and Yuan et al. (2019). Junczys-
Dowmunt et al. (2018) highlighted strategies lever-
aging larger annotated corpora and data augmen-
tation to overcome resource limitations, drawing
parallels between low-resource machine translation
and grammatical error correction.

The generation of synthetic error-laden data has
been systematically studied by Htut and Tetreault
(2019), who compare rule-based and neural ap-
proaches for artificial error creation. Building on
this, Stahlberg and Kumar (2021) introduce tagged
corruption models to create large-scale synthetic
datasets, such as C4_200M, which improve the per-
formance of neural GEC systems. More recently,
Wang et al. (2024) propose a contextual data aug-
mentation technique that combines rule-based and
model-based generation methods, followed by rela-
beling to reduce noise in synthetic data. Deng et al.
(2025) focus on automatic synthetic data genera-
tion within an unsupervised GEC framework.

Transformer-based language models have also
shown remarkable effectiveness in GEC. Alikanio-
tis and Raheja (2019) demonstrate that transform-
ers outperform conventional recurrent models, pro-
viding a strong baseline for future research. Fur-
thermore, Kubal and Nagvenkar (2025) explore
multilingual transformer architectures for robust
correction across diverse languages. Bhattacharyya
and Bhattacharya (2025) used LLMs to improve
GEC for Bangla. Together, these studies estab-
lish the translation paradigm as central to the de-
velopment of powerful grammatical error correc-
tion systems. They also underscore the importance
of synthetic data generation, model augmentation,
and hybrid strategies in improving grammatical-
ity—especially in low-resource scenarios.

2.2 Symmetric BPE Configuration

In many bilingual machine translation (MT) sys-
tems, especially in low-resource scenarios, it is
a common practice to apply the same number
of merge operations (NMO) for both source and
target languages when using Byte Pair Encoding
(BPE). Several studies have adhered to this sym-
metry: Ding et al. (2019) observed that smaller
vocabulary sizes (04K NMO) can outperform
the widely used 32K setting by up to 4 BLEU
points in low-resource transformer setups. Sim-
ilar trends have been reported in English—-Egyptian
and English-Levantine (Abid, 2020), as well as
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English—Irish (Lankford et al., 2021) translation
tasks.

Other research has adapted segmentation strate-
gies to account for typological or morphological
characteristics of languages. For instance, segmen-
tation restrictions for polysynthetic languages were
proposed by Ortega et al. (2020), while Lee et al.
(2024) addressed over-segmentation issues in mor-
phologically rich languages. Target-side tokeniza-
tion variations have also been explored to better
capture language-specific features (Domingo et al.,
2019). Alternative approaches include cascading
segmentations (Huck et al., 2017), vocabulary re-
finement through VOLT (Xu et al., 2021), and con-
catenation of corpora tokenized with multiple BPE
settings (Poncelas et al., 2020). Ngo Ho and Yvon
(2021) experimented with differing NMO settings
on source and target sides to improve word align-
ment, though this did not extend to training MT sys-
tems with asymmetric BPE. Yadav and Shrivastava
(2025) extensively experimented with asymmetric
BPE and showed efficacy of using asymmetric BPE
while training NMT models in low resource setting
for multiple language pairs.

Our present work builds on these foundation
by generating additional noisy-to-correct sentence
pairs to expand parallel training data and reinforce
the effectiveness of translation-based approaches
for grammar correction.

3 Data and Synthetic Generation

The dataset statistics, shown in Table 1, include the
initial data provided by the organizers and the sen-
tences we generated. The raw Training Data was
cleaned by excluding pairs where the source and
target sentences were identical. The Validation and
Test sets comprise the incorrect sentences utilized
for system development and final performance as-
sessment.

The synthetic dataset is generated via a Statis-
tical Machine Translation (SMT) system (Koehn
et al., 2003), which is highly effective for low-
resource translation (Koehn and Knowles, 2017).
We train the SMT to model the error-generating pro-
cess, then apply it in reverse to 0.45 million clean
monolingual sentences per language (Doddapaneni
et al., 2023) to create pairs of "incorrect" (noisy)
input and correct output. This method ensures the
synthetic data reflects realistic error patterns. The
SMT utilizes symmetric BPE with 500 merge op-
erations. Table 1 provides a breakdown of this

generated corpus, indicating the percentage of sen-
tences that remained Identical or were generated
Different then correct monolingual text.

The final training set for the Transformer models
(Vaswani et al., 2017) was a combination of two
types of sentence pairs: the SMT-generated noisy-
to-clean synthetic pairs, and a crucial set of identity
pairs (correct sentence to correct sentence). Includ-
ing these identity pairs ensures the model learns
not only how to correct errors but also the identity
function—that is, how to preserve correct sentences
when no error is detected, thereby preventing un-
necessary over-correction. For validation set we
use training data provided by the organizers. All
the datasets are preprocessed using Indic NLP li-
brary (Kunchukuttan, 2020).

4 Experimental Setup and Results

Then we train a transformer model using Fairseq
(Ott et al., 2019) with hyperparameters and gpu us-
age given in Appendix A. For subword tokenization
we use both symmetric (m = n) and asymmetric
(m > n) BPE for incorrect (source) and correct
(target) respectively, where m and n are respec-
tive NMOs. For source we chose 16K, 8K, 4K
and for target we chose 500, 1K, 2K, 3K and 4K.
GLEU was used for calculating the performance
of each system. For clarity we are showing only
top performing models for each langauge and their
respective ranks in leaderboard (Table 2). Perfor-
mance on other BPE configurations are given in
appendix B.

The best-performing configurations (Table 2)
were overwhelmingly asymmetric, such as the
(Source BPE 4K, Target BPE 3K) pairing for both
Malayalam and Bangla, and (8K source BPE, 4K
target BPE) for Tamil. This empirically confirms
our hypothesis that distinct tokenization granular-
ities are beneficial for modeling the noisy source
and clean target spaces in GEC. From a learning
standpoint, using a smaller decoder-side vocabu-
lary encourages tighter coupling between source
and target representations, which facilitates more
reliable alignment and mapping of segments, echo-
ing observations on subword choices and alignment
behavior in prior work (Ngo Ho and Yvon, 2021).
This is consistent with earlier evidence (Domingo
et al., 2019) that target-side vocabulary design has
a direct impact on NMT effectiveness.
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Data made available Generated
Language | Training After re- | Validation Test Synthetic Identical Different
Data moving
identical
sentence
Bangla 659 418 103 331 446,805 35,622 411,183
Hindi 600 541 108 237 461,862 254,039 207,823
Malayalam | 313 294 51 103 492,248 251,325 240,923
Tamil 91 91 17 66 487,344 270,074 217,270
Telugu 604 552 101 316 483,696 251,634 232,062

Table 1: Data shared by organizers and generated by us for our models.

Languages | Source BPE | Target BPE | GLEU Score | Rank

Malayalam 4000 3000 94.16 4
Bangla 4000 3000 92.44 5
Telugu 4000 4000 81.9 5
Tamil 8000 4000 85.52 7
Hindi 4000 4000 79.45 10

Table 2: GLEU score of models with BPE configuration (source, target BPE) and respective Ranks in the leaderboard

5 Future Work and Conclusion

This research successfully validates the combined
utility of SMT-based data augmentation and asym-
metric Byte Pair Encoding (BPE) for Grammatical
Error Correction (GEC) in low-resource settings.
Building on these promising results, several key
areas remain for future investigation:

5.1 Scaling Data Augmentation and Quality
Control

While the current work demonstrated strong perfor-
mance using approximately 0.45 million synthetic
sentences per language, a critical next step is to
evaluate the effects of massive-scale data augmen-
tation. This involves utilizing the entirety of avail-
able monolingual corpora (such as the full Dodda-
paneni et al. (2023) dataset) to push the synthetic
data volume into the millions.

5.2 Ablation Study on Training Data
Composition

Our current model is trained on a mixture of
synthetic noisy-to-clean pairs, and identity pairs
(correct-to-correct sentences). An important ab-
lation study would be to isolate the components
of the training set. Specifically, we plan to train
models exclusively on the synthetic noisy-to-clean
pairs, removing the identity pairs. This experiment
would conclusively determine the true generaliza-
tion capability of the SMT-generated errors and
quantify the necessity of training the model on the
identity function to prevent over-correction.

5.3 Generalization to Other Low-Resource
Languages

The demonstrated effectiveness of our approach
for morphologically rich Indic languages suggests
its broad applicability. We aim to expand this
methodology to GEC tasks in other low-resource
languages. The combination of leveraging read-
ily available monolingual text for synthetic error
generation and fine-tuning subword tokenization
via asymmetric BPE gives possibility of threads of
experiments for any language pair where parallel
error-annotated data is scarce.

We presented our effective Grammatical Er-
ror Correction (GEC) systems for five Indic lan-
guages—Bangla, Hindi, Malayalam, Tamil, and
Telugu—developed as a low-resource solution to
the BASHA Task 1 shared challenge. We did this in
two step approach. First, we leveraged a minimal
training set to train a Statistical Machine Transla-
tion (SMT) system, which was then used to gen-
erate large-scale, contextually relevant synthetic
noisy-to-clean sentence pairs from extensive mono-
lingual text. Second, we demonstrated the criti-
cal importance of asymmetric Byte Pair Encoding
(BPE) configurations. By systematically apply-
ing different numbers of merge operations for the
source (erroneous) and target (corrected) vocabu-
laries, we were able to tailor the subword segmenta-
tion to build good models.The results, which placed
our systems competitively in the shared task (e.g.,
Rank 4th for Malayalam and 5th for Bangla), pro-
vide strong empirical evidence for the combined
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benefits of synthetic data and optimized subword
tokenization. This work validates a highly resource-
efficient and generalizable methodology for advanc-
ing GEC capabilities in morphologically complex,
low-resource language environments.

Limitation

The primary constraint of this work stems from the
inherent computational expense associated with ex-
haustively training and evaluating diverse Byte Pair
Encoding (BPE) configurations across all target
languages. This practical limitation necessitated
a focused selection of configurations. Addition-
ally, applying the insights derived from this study
to the context of decoder-only architectures is an-
ticipated to introduce considerable technical chal-
lenges that warrant further investigation. Moving
forward, the scope of this research could be signifi-
cantly enhanced by utilizing larger training datasets
and dedicating focused effort to investigating and
improving the quality and efficacy of synthetic data
generation.

References

Wael Abid. 2020. The SADID evaluation datasets for
low-resource spoken language machine translation
of Arabic dialects. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6030-6043, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Dimitris Alikaniotis and Vipul Raheja. 2019. The unrea-
sonable effectiveness of transformer language models
in grammatical error correction. In Proceedings of
the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 127—
133, Florence, Italy. Association for Computational
Linguistics.

Pramit Bhattacharyya and Arnab Bhattacharya. 2025.
Leveraging LLMs for Bangla grammar error correc-
tion: Error categorization, synthetic data, and model
evaluation. In Findings of the Association for Com-
putational Linguistics: ACL 2025, pages §220-8239,
Vienna, Austria. Association for Computational Lin-
guistics.

Chris Brockett, William B. Dolan, and Michael Gamon.
2006. Correcting ESL errors using phrasal SMT
techniques. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 249-256, Sydney, Australia. Asso-
ciation for Computational Linguistics.

Shamil Chollampatt and Hwee Tou Ng. 2018. Neural
quality estimation of grammatical error correction.

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2528-2539, Brussels, Belgium. Association for Com-
putational Linguistics.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction. In Proceedings of the
Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence, IJCAI’ 16, page 2768-2774. AAAI
Press.

Jiayi Deng, Chen Chen, Chunyan Hou, and Xiaojie
Yuan. 2025. InstructGEC: Enhancing unsupervised
grammatical error correction with instruction tuning.
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 110-122, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Shuoyang Ding, Adithya Renduchintala, and Kevin Duh.
2019. A call for prudent choice of subword merge
operations in neural machine translation. In Proceed-
ings of Machine Translation Summit XVII: Research
Track, pages 204-213, Dublin, Ireland. European
Association for Machine Translation.

Sumanth Doddapaneni, Rahul Aralikatte, Gowtham
Ramesh, Shreya Goyal, Mitesh M. Khapra, Anoop
Kunchukuttan, and Pratyush Kumar. 2023. Towards
leaving no Indic language behind: Building monolin-
gual corpora, benchmark and models for Indic lan-
guages. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12402—-12426, Toronto,
Canada. Association for Computational Linguistics.

Miguel Domingo, Mercedes Garcia-Martinez, Alexan-
dre Helle, Francisco Casacuberta, and Manuel Her-
ranz. 2019. How much does tokenization affect
neural machine translation? In Computational Lin-
guistics and Intelligent Text Processing: 20th Inter-
national Conference, CICLing 2019, La Rochelle,
France, April 7-13, 2019, Revised Selected Papers,
Fart I, page 545-554, Berlin, Heidelberg. Springer-
Verlag.

Mariano Felice and Zheng Yuan. 2014. Generating ar-
tificial errors for grammatical error correction. In
Proceedings of the Student Research Workshop at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 116—
126, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Duc Tam Hoang, Shamil Chollampatt, and Hwee Tou
Ng. 2016. Exploiting n-best hypotheses to improve
an smt approach to grammatical error correction. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJICAT’ 16, page
2803-2809. AAAI Press.

Phu Mon Htut and Joel Tetreault. 2019. The unbearable
weight of generating artificial errors for grammatical
error correction. In Proceedings of the Fourteenth

151


https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2023.acl-long.646
https://aclanthology.org/2023.acl-long.646
https://arxiv.org/abs/2501.03988
https://arxiv.org/abs/2501.03988
https://aclanthology.org/2021.naacl-main.14
https://aclanthology.org/2021.naacl-main.14
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1145/3664620
https://doi.org/10.1145/3664620
https://aclanthology.org/C12-1152/
https://aclanthology.org/C12-1152/
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://aclanthology.org/W02-2024/
https://aclanthology.org/W02-2024/
https://aclanthology.org/W02-2024/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Workshop on Innovative Use of NLP for Building
Educational Applications, pages 478—483, Florence,
Italy. Association for Computational Linguistics.

Matthias Huck, Simon Riess, and Alexander Fraser.
2017. Target-side word segmentation strategies for
neural machine translation. In Proceedings of the
Second Conference on Machine Translation, pages
56-67, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595-606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28-39, Vancouver. Association for Computa-
tional Linguistics.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 127-133.

Divesh Ramesh Kubal and Apurva Shrikant Nagvenkar.
2025. Leveraging multilingual models for robust
grammatical error correction across low-resource lan-
guages. In Proceedings of the 31st International
Conference on Computational Linguistics: Industry
Track, pages 505-510, Abu Dhabi, UAE. Association
for Computational Linguistics.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan/
indic_nlp_library/blob/master/docs/
indicnlp. pdf.

Seamus Lankford, Haithem Alfi, and Andy Way. 2021.
Transformers for low-resource languages: Is féidir
linn! In Proceedings of Machine Translation Summit
XVIII: Research Track, pages 48—60, Virtual. Associ-
ation for Machine Translation in the Americas.

Jungseob Lee, Hyeonseok Moon, Seungjun Lee, Chan-
jun Park, Sugyeong Eo, Hyunwoong Ko, Jaechyung
Seo, Seungyoon Lee, and Heuiseok Lim. 2024.
Length-aware byte pair encoding for mitigating over-
segmentation in Korean machine translation. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 2287-2303, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Anh Khoa Ngo Ho and Francgois Yvon. 2021. Optimiz-
ing word alignments with better subword tokeniza-
tion. In Proceedings of Machine Translation Summit
XVIII: Research Track, pages 256-269, Virtual. As-
sociation for Machine Translation in the Americas.

John E Ortega, Richard Castro Mamani, and Kyunghyun
Cho. 2020. Neural machine translation with a
polysynthetic low resource language. Machine Trans-
lation, 34(4):325-346.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Alberto Poncelas, Jan Buts, James Hadley, and Andy
Way. 2020. Using multiple subwords to improve
English-Esperanto automated literary translation
quality. In Proceedings of the 3rd Workshop on Tech-
nologies for MT of Low Resource Languages, pages
108—117, Suzhou, China. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Ujjwal Sharma and Pushpak Bhattacharyya. 2025a. Hi-
GEC: Hindi grammar error correction in low re-
source scenario. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 6063—-6075, Abu Dhabi, UAE. Association for
Computational Linguistics.

Ujjwal Sharma and Pushpak Bhattacharyya. 2025b. In-
diGEC: Multilingual grammar error correction for
low-resource Indian languages. In Proceedings of the
2025 Conference on Empirical Methods in Natural
Language Processing, pages 22393-22407, Suzhou,
China. Association for Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction with
tagged corruption models. In Proceedings of the
16th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 37-47, Online.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yiming Wang, Longyue Wang, Xiaodong Zeng, Derek F.
Wong, Lidia S. Chao, and Yi Lu. 2014. Factored
statistical machine translation for grammatical error
correction. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning:
Shared Task, pages 83-90, Baltimore, Maryland. As-
sociation for Computational Linguistics.

152



Yixuan Wang, Baoxin Wang, Yijun Liu, Qingfu Zhu,
Dayong Wu, and Wanxiang Che. 2024. Improving
grammatical error correction via contextual data aug-
mentation. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 10898-10910,
Bangkok, Thailand. Association for Computational
Linguistics.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan
Jurafsky, and Andrew Y. Ng. 2016. Neural language
correction with character-based attention. Preprint,
arXiv:1603.09727.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng,
and Lei Li. 2021. Vocabulary learning via optimal
transport for neural machine translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7361-7373, Online.
Association for Computational Linguistics.

Saumitra Yadav and Manish Shrivastava. 2025. Segmen-
tation beyond defaults: Asymmetrical byte pair en-
coding for optimal machine translation performance.
Preprint, arXiv:2511.03383.

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380-386, San Diego, California. Association
for Computational Linguistics.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical ma-
chine translation. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning: Shared Task, pages 52-61, Sofia, Bulgaria.
Association for Computational Linguistics.

Zheng Yuan, Felix Stahlberg, Marek Rei, Bill Byrne,
and Helen Yannakoudakis. 2019. Neural and FST-
based approaches to grammatical error correction. In
Proceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 228-239, Florence, Italy. Association for
Computational Linguistics.

A Training Hyperparameters

Table 3 gives hyperparameters we used for training
GEC systems. And Table 4 shows the gpu hours
used with respective GPUS to train these models.

B Performance for All BPE
configurations

Table 5 shows performance of all BPE configura-
tions for GEC for all the languages. Due to re-
source constraints we didnt explore all possibilities
only some promising ones.
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Parameter Value
arch transformer
optimizer adam
adam-betas (0.9, 0.98)
clip-norm 0.0
1r Se-4
lr-scheduler inverse_sqrt
warmup-updates 4000
warmup-init-1r le-07
dropout 0.3
attention-dropout 0.1
activation-dropout 0.1
weight-decay 0.0001
criterion label_smoothed_cross_entropy
label-smoothing 0.1
max-tokens 30000
max-update 300000
patience 20
update-freq 10

Table 3: Training hyperparameters used across all ex-
periments.

GPUs GPU Hours
4090 RTX 356.86
2080 TI 100.64

Table 4: GPU usage for training the models.



Language | Source BPE | Target BPE | GLUE Score | Language | Source BPE | Target BPE | GLUE Score
8000 500 91.71 8000 2000 93.47
16000 500 91.68 4000 2000 94.04
4000 4000 92.45 Malayalam 8000 1000 93.88
4000 500 91.65 4000 1000 93.96
Bangla 8000 4000 92.35 4000 3000 94.16
8000 2000 92.35 8000 500 84.44
4000 2000 92.19 16000 500 84.87
8000 1000 91.44 4000 4000 85.05
4000 1000 92.14 4000 500 84.86
4000 3000 92.44 Tamil 8000 4000 85.52
8000 500 79.27 8000 2000 85.26
16000 500 79.08 4000 2000 85.5
4000 4000 79.45 8000 1000 84.42
4000 500 79.27 4000 1000 85.25
Hindi 8000 4000 79.27 4000 3000 84.74
8000 2000 79.39 8000 500 79.94
4000 2000 78.7 16000 500 80.07
8000 1000 79.38 4000 4000 81.9
4000 1000 78.93 4000 500 81.18
4000 3000 79.29 Telugu 8000 4000 80.78
8000 500 93.78 8000 2000 80.72
16000 500 93.92 4000 2000 81.68
Malayalam 4000 4000 93.99 8000 1000 80.39
4000 500 93.75 4000 1000 80.68
8000 4000 93.97

Table 5: GLEU score of models with BPE configuration (m,n) with Bold marking the top performing from respective
languages and BPE configurations
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Abstract respectively, exemplify these challenges. The

Grammatical Error Correction (GEC) for low-
resource Indic languages remains challenging
due to limited annotated data and morpholog-
ical complexity. We present a hybrid neu-
rosymbolic GEC system that combines neu-
ral sequence-to-sequence models with explicit
language-specific rule-based pattern matching.
Our approach leverages parameter-efficient
LoRA adaptation on aggressively augmented
data to fine-tune pre-trained mT5 models, fol-
lowed by learned correction rules through intel-
ligent ensemble strategies. The proposed hy-
brid architecture achieved 85.34% GLEU for
Tamil (Rank 8) and 95.06% GLEU for Malay-
alam (Rank 2) on the provided IndicGEC test
sets, outperforming individual neural and rule-
based approaches. The system incorporates
conservative safety mechanisms to prevent
catastrophic deletions and over-corrections,
thus ensuring robustness and real-world ap-
plicability. Our work demonstrates that ex-
tremely low-resource GEC can be effectively
addressed by combining neural generalization
with symbolic precision.

1 Introduction

Grammatical Error Correction (GEC) focuses on
automatically detecting and correcting errors in
written text, including spelling mistakes, gram-
matical inconsistencies, punctuation errors, and
word choice issues. There has been substantial
research progressing with state-of-the-art results
for high-resource languages like English (Bryant
et al., 2019; Grundkiewicz et al., 2019). How-
ever, GEC for Indic languages face severe chal-
lenges from limited annotated sentence pairs, rich
inflectional morphology characteristic of aggluti-
native languages, and unique Indic script proper-
ties regarding Unicode representation and normal-
ization.

Tamil and Malayalam, Dravidian languages
with over 75 million and 38 million speakers

shared IndicGEC datasets exhibit extremely low-
resource settings, necessitating novel approaches
beyond standard neural fine-tuning (Bryant et al.,
2019). We present a hybrid neurosymbolic ar-
chitecture strategically combining neural and sym-
bolic approaches. The neural component provides
generalization to unseen error patterns through
mT5 models that are fine-tuned with LoRA (Xue et
al.,2021; Huetal., 2021), while the symbolic com-
ponent ensures high precision on known error pat-
terns through explicit rule extraction from training
data. The core innovation lies in the intelligent en-
semble that selectively applies exact matches, neu-
ral predictions, or rule-based corrections based on
input characteristics and multiple safety validation
mechanisms.
The key contributions of our work are:

* A Novel hybrid architecture that combines
neural sequence-to-sequence models with
pattern-based corrections for low-resource
GEC with conservative safety mechanisms.

» Language-specific data augmentation strat-
egy that generates up to 10,000 synthetic
examples from limited gold pairs using
morphology-aware noise injection.

* Robust Ensemble selection mechanism with
safety thresholds to prevent catastrophic dele-
tions, over-corrections, and output degenera-
tion.

The system successfully generated corrections
for test inputs, demonstrating that the hybrid ap-
proach effectively leverages limited training data
while prioritizing computational efficiency, the
preservation of output quality, and real-world de-
ployment through conservative correction strate-
gies.
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2 Related Works

2.1 Grammatical Error Correction

Recent GEC research, especially for English,
has been dominated by neural approaches where
Transformer-based models and large pre-trained
models like BART and T5 achieved state-of-the-
art results (Zhao et al.,, 2019; Kancko et al.,
2020; Katsumata and Komachi, 2020; Rothe et
al.,, 2021). However, these approaches require
substantial training data, say millions of examples
and computational resources. In low-resource lan-
guages like Tamil, there are few works that focus
on spelling errors and correction (Rajalakshmi, R
et al.,), but grammatical error correction is not ex-
plored much. Low-resource GEC remains chal-
lenging, with researchers exploring synthetic data
generation for Czech GEC (Naplava and Straka,
2019) and feedback comment generation for low-
resource languages (Flachs et al., 2021). Our work
differs from these by combining neural and sym-
bolic approaches with explicit safety mechanisms,
specifically, for extremely low-resource settings.

2.2 Multilingual and Indic Language GEC

Multilingual models such as mBART and mT5 ex-
hibit promising potential for cross-lingual transfer
(Liu et al., 2020; Xue et al., 2021). Complement-
ing this, Rothe et al. (2021) demonstrated that
mTS5 fine-tuning can achieve competitive GEC per-
formance. However, direct application to Indic
languages with minimal data remains unexplored.
GEC for Indic languages is nascent, with most
prior work focusing primarily on spell-checking
rather than on comprehensive grammatical correc-
tion (Joshi et al., 2012). The shared IndicGEC
tasks represent one of the first systematic efforts
in this area. Our model is one among the first to
address Dravidian languages with a modern neural-
symbolic hybrid method incorporating robustness
mechanisms.

2.3 Hybrid NLP Systems

The neurosymbolic approach combines neural
learning with symbolic reasoning. Recent works
in this area, include neural symbolic parsers, hy-
brid question answering, and rule-augmented neu-
ral models (Platanios et al., 2021; Mitra and
Baral, 2016). For GEC specifically, Awasthi et
al. (2019) combined neural models with rule-
based post-editing for English. On the other hand,
our work extends hybrid methods to extremely

low-resource scenarios with explicit safety valida-
tion, demonstrating that explicit pattern extraction
from minimal training data combined with neural
generalization and conservative acceptance crite-
ria can achieve superior performance while pre-
venting common failure modes.

2.4 Parameter-Efficient Fine-Tuning

Hu et al. (2021) demonstrated that LoORA (Low-
Rank Adaptation) enables efficient fine-tuning by
injecting trainable low-rank matrices into frozen
pre-trained models, reducing trainable parameters
by over 99% while maintaining performance. Our
work leverages LoRA to fine-tune mT5-base and
mT5-small for Tamil and Malayalam GEC, respec-
tively, with limited training examples, enabling ef-
fective adaptation and preventing overfitting.

2.5 Language Model Selection for
Sequence-to-Sequence GEC

While monolingual BERT-based encoder models
exist for both Tamil (13cube-pune/tamil-bert) and
Malayalam (I3cube-pune/malayalam-bert), these
models are fundamentally unsuitable for GEC
tasks due to their encoder-only architecture. GEC
is inherently a sequence-to-sequence task requir-
ing both encoding input sentences and generating
corrected outputs, necessitating encoder-decoder
architectures like TS5 or BART.

BERT-based models, being encoder-only, can
only produce contextual representations and are
designed for classification, token labelling, or ex-
traction tasks rather than text generation. Adapt-
ing BERT for generation would require adding a
decoder component from scratch, essentially re-
constructing an encoder-decoder model without
the benefits of pre-trained generation capabili-
ties. Furthermore, no production-ready monolin-
gual T5-style encoder-decoder models exist for
Tamil or Malayalam in public repositories. While
researchers have created language-specific adapta-
tions by pruning multilingual models (e.g., Rus-
sian T5), similar efforts for Dravidian languages
remain unpublished or unavailable.

Therefore, we leverage mT5, a multilingual TS
variant pre-trained on 101 languages including
Tamil and Malayalam, which provides the neces-
sary encoder-decoder architecture for GEC while
offering cross-lingual transfer benefits from re-
lated languages. The mT5 family’s availability in
multiple sizes (small, base, large) enables capacity-
driven design choices suitable for our low-resource
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setting, as demonstrated in our ablation studies
(Section 4.4).

3 System Architecture

We present differentiated frameworks for Tamil
and Malayalam GEC, reflecting language-specific
requirements. Figures 1 & 2 illustrate the complete
system workflows for Tamil and Malayalam lan-
guages respectively. This differentiation reflects
Tamil’s morphological complexity, which requires
greater model capacity, and Malayalam’s higher
observed risk of neural over-correction, requiring
conservative safety mechanisms.

3.1 Tamil GEC Architecture

The Tamil system employs a five-stage hierarchi-
cal pipeline that combines neural and symbolic
approaches strategically. First, marker extraction
isolates formatting elements (-, ;-) from core con-
tent using regex patterns, enabling focus on lin-
guistic content. Second, rule-based priority check-
ing matches queries against sentence templates and
training data; exact matches return stored correc-
tions immediately. Third, neural generation uses
mT5-base with LoRA adaptation, employing beam
search when no exact match exists. Fourth, pattern
enhancement applies 25+ manually curated Tamil
error patterns. Finally, marker reattachment deter-
ministically restores original formatting.

(___INPUT SENTENCE )

+

| Marker Extraction |

v

[ Priority 1: Rule Database Lookup |

« Sentence templates (10+)
« Exact training matches (91)

MATCH?

» YES — Use correction

v NO

Il HYBRID CORRECTION PIPLEINE [I]|
| Priority 2: Neural Generation |
+ mT5-base cleaning
v

[ Priority 3: Pattern Enhancment |

o Apply 25+ manual Tamil patterns
« To neural output (if valid)
« To original input (finvalid)

v

I Marker Reattachent |

[ FINAL OUTPUT |

Figure 1: Architecture Diagram for Tamil GEC

The innovative hierarchical correction strategy
operates at three junctures: pre-neural exact match-
ing for high-confidence corrections, post-neural
pattern application to enhance valid generations,
and rule-only fallback with similarity matching for
invalid outputs. The four tiers include: (1) exact
sentence matches from templates, (2) training data
matches offering perfect accuracy for 91 pairs, (3)
enhanced neural generation with pattern enhance-
ment for valid outputs, and (4) rule-only fallback
for truncated, degenerate, or empty outputs using
similarity-based matching.

The following Tamil example illustrates the cor-
rection process:

1. Input: thozhilsaalai  iyandhithithin
sattham (g;@-:::-n@ﬁ)&nsmsn
QubdHsHeT  FHHLD, “factory

mashine’s noise”).
2. Tier 1 (Rule Lookup): No template match.
3. Tier 2 (Exact Match): No training match.

4. Tier 3 (Neural Generation): The input is
passed to the neural model.

5. Pattern Enhancement:
the morphological error iyandhithith

(@wbSS). A manual rule is applied:
iyandhithith — iyanthira (QWBET).

This step detects

6. Output: thozhilsaalai iyanthi-
rathin  sattham (g,Q:::»rrEQ]g')&rerG\)
@QubSHrsHler F65HWD, “factory ma-

chine’s noise™).
3.2 Malayalam GEC Architecture

The Malayalam system employs conservative par-
allel processing pipeline with safety-first ensem-
ble selection. The workflow begins with ex-
act match checking that validates inputs against
learned corrections. If matched, the system returns
the stored correction immediately, bypassing neu-
ral generation. When no exact match exists, the
system proceeds to parallel processing where neu-
ral generation using mT5-small with LoRA and
rule-based candidate preparation occur simultane-
ously. The neural output then undergoes com-
prehensive safety validation checking Malayalam
character presence, token overlap ratios, length ra-
tios, and deletion thresholds. Based on validation
results and similarity analysis, the ensemble selec-
tor chooses between the neural output, the rule-
based candidate, or falls back to the original input.
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Figure 2: Architecture diagram for Malayalam

Safety Validation

The key innovation of Malayalam architecture
lies in its parallel processing, combined with con-
servative selection, rather than sequential trans-
formation. Both neural and rule-based compo-
nents process input independently, with final de-
cisions made through confidence-based ensemble
selection with multi-layered safety validation. The
safety mechanisms validate neural outputs against
multiple criteria: Malayalam character presence
(>1 character in U+0D00-U+0D7F), token over-
lap (>45% Jaccard similarity), length ratio (>50%
preservation unless overlap >90%), and deletion
ratio (>45% unless overlap >90%).

The following example illustrates the parallel
processing and ensemble decision-making within
the Malayalam pipeline:

1. Input: vaakanam odichchu (QU::06»6Mo
630S9J3, “vehikle drove”).

2. Initial Check: No exact match found in train-
ing data.

3. Parallel Processing:

e Neural Path: Generates vaahanam
odichchu (QU::0a0OMo 630SlaJ3, “vehi-
cle drove™).

* Rule-Based Path: Identifies the pat-
tern:  QU:0d»H6Mo  (vaakanam) —
Ql::0a0Mo (vaahanam).

4. Safety Validation: The neural output passes
all checks (e.g., Malayalam chars >, 50% to-
ken overlap >, 100% length >, 0% deletion
>).

Table 1: Neural component configuration for Tamil and

Malayalam GEC (Grammatical Error Correction).

Component Tamil GEC Malayalam
GEC
Base Model mT5-base mT5—-small
(580M Parame- | (300M Param-
ters, 12 layers, | eters, 8 layers,
768 hidden | 512 hidden
dims, 8 heads) dims, 6 atten-
tion heads)
LoRA Rank (r) | 16 8
LoRA  Alpha | 32 16
(@)
Target Modules | Q, V, K, O Q, V Aug-
mented
Dropout 0.1 0.1
Corpus Size 5000 examples | 10000  exam-
ples
Generation Beam Search | Conservative
Strategy (Width 6, LP | Beam search
0.8) and repe- | (LP 1.0, Rep-
tition penalty | etition P. 1.2,
(1.1) no-repeat-n-
gram size 3)
Augmentation Vowel drop- | Vowel sign
Focus ping, Char | dropping,
Duplication, Chillu  varia-
Punctuation, tion, Punctua-
Perturbation tion normaliza-
tion

5. Ensemble Selection: The system selects the
neural output.

6. Output: vaahanam odichchu (QU::0a0OMo
639SlaJ3, "vehicle drove™).

3.3 Neural Component Design

Both systems use a pre-trained multilingual mT5
model, adapted using LoRA on aggressively aug-
mented data with carefully chosen base model ca-
pacities. Table 1 summarizes the configurations.
Base Model Selection Rationale: Tamil ex-
hibits highly complex agglutinative morphology
with extensive case marking (8 cases) and verb
conjugations requiring substantial model capac-
ity to capture morphological patterns. The larger
mT5-base (580M parameters, 12 layers) with
higher LoRA rank (16) provides sufficient rep-
resentational capacity for Tamil’s morphological
complexity without extreme overfitting, prioritiz-
ing correction coverage for diverse error patterns.
Conversely, Malayalam, while also agglutinative,
presents a higher risk of neural over-correction in
our constrained dataset due to observed generation
instability during preliminary experiments. The
smaller mT5-small (300M parameters, § layers)
with conservative LoRA rank (8) reduces overfit-
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ting risk and generation volatility, prioritizing out-
put reliability and stability reinforced by stringent
ensemble safety gates. This differentiation reflects
empirical findings that Tamil benefits from capac-
ity while Malayalam requires conservative genera-
tion.

3.4 Data Augmentation

Data augmentation strategies were designed specif-
ically for each language to mitigate data scarcity
through controlled noise injection. For Tamil, aug-
mentation included vowel dropping targeting 12
Tamil vowels (a, aa, i, ii, u, uu, e, ee, o, 0o, ai,
au /), &, @), F, 2, 26T, 61, ¢, @, @, &,
6Q61T), character duplication and deletion, punctu-
ation perturbation, and word order shuffling, ex-
panding from 91 to 5,000 examples representing
a 55-fold increase. For Malayalam, augmentation
focused on vowel sign dropping targeting 12 signs
(-aa, -i, -ii, -u, -uu, -ri, -e, -ee, -ai, -0, -00, -au / ::9,
A, 9, 23, 2, 5, O, G, 66, ©::0, G, D),
safe character duplication and deletion avoiding
the first two characters to prevent catastrophic
truncation, adjacent word swapping excluding the
first word to maintain sentence structure, comma
spacing removal, punctuation normalization, and
chillu variation handling modern-traditional pairs
(n/n-virama, n/n-virama, l/I-virama, l/l-virama, 1/r-
virama, k/k-virama/ 0@/, end/em, @d/el, ud/s3,
@/®, ©b/%5). The Malayalam augmentation pro-
cess included similarity filtering, maintaining val-
ues between 0.6 and 0.98, and length preservation
checks requiring at least 50% of the original length,
expanding the corpus to 10,000 examples. Each
original sentence underwent one or two random
transformations, significantly enhancing model ro-
bustness while preventing spurious noise pattern
learning.

3.5 Training Configuration

Training configuration remained consistent across
both languages. Both systems employed AdamW
optimizer under FP16 precision with a learning
rate of 3e-4, effective batch size of 8, weight de-
cay of 0.01, and training for 10 epochs with early
stopping enabled to prevent overfitting. This con-
figuration balanced training efficiency with model
quality for extremely low-resource settings.

3.6 Rule-based and Ensemble Components

The symbolic component provides language-
specific error pattern handling with deterministic

high-precision corrections. The Tamil rule-based
system stores all 91 training input-output pairs as
exact sentence matches for perfect precision. It in-
corporates over 25 manually curated domain pat-
terns covering common orthographic errors such
as The symbolic component provides language-
specific error pattern handling with deterministic
high-precision corrections. The Tamil rule-based
system stores all 91 training input-output pairs as
exact sentence matches for perfect precision. It in-
corporates over 25 manually curated domain pat-
terns covering common:

* Orthographic errors such as vaakanam
—  vaahanam, kalluurari — kalluri
(6U:TEHETOTLD — 6UTEHEDTLD, SH6VEY|TIf]

— &6VVITIf).

* Vowel lengthening errors: (thoon —
than, thookkam — tukkam / &:momessr —
GIT600T, HITHEHLD — HTSHSHLD).

* Consonant errors (iyandhithith —
iyanthira, saramangal — siramangal /

QuBH s — Qb T, FTLOHISET —
FTLOMmIG6IT).

* Common word corrections (haaran —
haarn, ventum — ventum / @)FI’IIGBT —
aummiyest, Geuest(HIb — GeuesoT(HLD).

Additionally, the system maintains over 10 full
sentence templates for frequent multi-error pat-
terns and employs similarity matching using Se-
quenceMatcher with a 0.75 threshold for approx-
imate matches.

The Malayalam rule-based system stores all
training pairs as exact sentence matches for imme-
diate high-confidence corrections. It implements
automated phrase-level pattern learning where Se-
quenceMatcher identifies phrase replacements up
to 6 tokens from training data. Safe phrase re-
placement employs regex word-boundary match-
ing to prevent word fragmentation with validation
ensuring preservation of at least the minimum re-
quired tokens, avoiding unexpected first charac-
ter changes, preventing text from beginning with
punctuation, and limiting application to one re-
placement per sentence to avoid cascading errors.
The system also performs punctuation normaliza-
tion by removing trailing commas and quotes, nor-
malizing spacing, and collapsing whitespace.

The ensemble layer integrates neural and sym-
bolic outputs using differentiated strategies. The
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Tamil ensemble employs a confidence-driven hier-
archical approach prioritizing exact matches from
sentence-level and training data matches, followed
by neural predictions refined through rule-based
post-processing, and finally rule-only fallbacks for
unseen cases. Post-processing cleans artifacts in-
cluding <extra_id> tokens and “correct:” pre-
fixes, normalizes whitespace, and applies punctua-
tion corrections.

The Malayalam ensemble employs a safety-first
parallel selection strategy. Exact matches are pri-
oritized with training data lookups providing per-
fect accuracy. Validated neural predictions must
pass all safety criteria, including character pres-
ence, >45% token overlap, >50% length ratio,
and <45% deletion ratio. Rule-based enhance-
ments are applied to valid neural outputs through
safe phrase replacement. Similarity-based selec-
tion chooses between neural and rule candidates
based on overlap with the original input. When
both approaches produce high-similarity outputs
exceeding 95% for rules or 88% for neural com-
parisons, the system conservatively prefers candi-
dates maintaining higher token overlap. Fallback
to the original input occurs when both candidates
fail safety checks or when neural generation pro-
duces empty or severely truncated outputs. The
ensemble strategy explicitly tracks usage statistics
including neural used, rule used, exact used, and
fallback used, providing transparency in the cor-
rection decision process.

4 Experiments and Results

4.1 Experimental Setup

The IndicGEC training sets contain sentence pairs
in CSV format with input and output sentence
columns. Test data was provided without gold stan-
dard outputs, simulating real-world deployment
where systems generate corrections independently.
This blind evaluation assesses ability to handle
diverse error patterns without reference targets.
Tamil dataset includes 91 training pairs augmented
to 5,000, with 16 validation pairs and 65 test inputs.
Malayalam dataset includes limited training pairs
augmented to 10,000, with validation set available
and 102 test inputs. GLEU served as the primary
evaluation metric balancing n-gram precision and
recall.

Three configurations were compared for both
languages:

1. Neural-only using mT5-base (for Tamil,

r=16) or mT5-small (for Malayalam, r=S8)
fine-tuned on augmented data

2. Rule-only employing multi-layer pattern
matching using exact sentences, domain
patterns, phrase-level corrections, and
similarity-based matching with threshold
0.75

3. The proposed hybrid ensemble combining
neural predictions with rule-based processing,
marker preservation for Tamil, and safety val-
idation for Malayalam.

Implementation used Hugging Face Transform-
ers v4.35, PEFT v0.7, and PyTorch. The Tamil
system was fine-tuned for 10 epochs on 5,000
augmented examples with 91 exact corrections,
over 25 manually curated patterns, and over 10
sentence templates, using regex-based marker ex-
traction and reattachment for formatting integrity.
The Malayalam system was fine-tuned for 10
epochs on 10,000 augmented examples with au-
tomated phrase-level pattern extraction via Se-
quenceMatcher and safety validation thresholds re-
quiring at least 1 Malayalam character, at least
45% token overlap, at least 50% length ratio, and
at most 45% deletion ratio, with ensemble similar-
ity thresholds of 95% for rule-based and 88% for
neural comparisons.

4.2 Results

On validation sets, Tamil achieved 80.47% GLEU
(16 examples) while Malayalam achieved 55.21%
GLEU.

On blind test sets, Tamil achieved 85.34%
GLEU (65 inputs securing overall Rank 8), while
Malayalam achieved 95.06% GLEU (102 inputs
securing impressive Rank 2). Both hybrid mod-
els significantly outperformed individual neural-
only and rule-only baselines, demonstrating the ef-
fectiveness of the neurosymbolic approach for ex-
tremely low-resource GEC.

4.3 Error Analysis

Error analysis on test sets revealed the systems’
capabilities across diverse error types. Represen-
tative examples are provided in Table 2 for both
Tamil and Malayalam.

The Tamil system demonstrated capability
handling morphological complexity, including
transformations like iyandhithith — iyanthira /
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QupdhHs — @by, multi-token correc-
tions such as haaran — haarn / 6)_{_rT)-:::<ITU6i>T

— @M::TJesT and vaakanam — vaahanam /
6U:THEBTID —  6U:T&HEOTLD  simultaneously,
verb form corrections with subject-verb agreement,
vowel length normalization converting -uaa — -ii
/ o — 7, word order reordering while pre-
serving markers, handling multiple simultaneous
errors, and punctuation insertion.

The Malayalam system demonstrated spelling
corrections, conservative preservation when no
correction was needed, and token-level preser-
vation. Safety validation mechanisms success-
fully prevented catastrophic deletions and over-
corrections, maintaining input integrity when cor-
rections were uncertain.

4.4 Ablation Study: Model Capacity Analysis

To validate our language-specific model selection
and to address the impact of model capacity on per-
formance, we conducted ablation study by swap-
ping mT5 variants between languages. Specifi-
cally, we trained the Tamil GEC with mT5-small
(originally used mT5-base) and Malayalam GEC
with mT5-base (originally used mT5-small), main-
taining identical training configurations, augmen-
tation strategies, and ensemble mechanisms.

The ablation results strongly validate our dif-
ferentiated model selection strategy. For Tamil,
reducing model capacity from mT5-base to mT5-
small resulted in a 5.30 percentage point drop
in validation GLEU (from 80.47% to 75.17%),
demonstrating that Tamil’s complex agglutinative
morphology with extensive case marking and verb
conjugations genuinely requires the higher repre-
sentational capacity of mT5-base (580M param-
eters, 12 layers) to capture and correct diverse
morphological error patterns effectively. The
smaller model struggled with complex morpholog-
ical transformations, producing more errors in han-
dling multi-token corrections and verb form agree-
ments.

Conversely, for Malayalam, increasing model
capacity from mT5-small to mT5-base yielded
a marginal performance difference (55.21% vs.
55.03%, a negligible -0.18 delta), confirming that
the larger model provides no substantial benefit
for Malayalam GEC in our constrained data set-
ting. Critically, preliminary analysis revealed that
mT5-base for Malayalam exhibited increased gen-
eration instability, producing more instances re-
quiring safety validation rejection compared to
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mT5-small. This behavior validates our conserva-
tive approach: mT5-small’s lower capacity, com-
bined with strict safety mechanisms (token overlap
>45%, length ratio >50%, deletion ratio <45%),
provides an optimal balance between correction ca-
pability and output reliability for Malayalam.

These findings demonstrate that our model se-
lection was empirically grounded rather than ar-
bitrary: Tamil benefits substantially from higher
model capacity to handle morphological complex-
ity, while Malayalam requires conservative capac-
ity with robust safety validation to prevent over-
correction in extremely low-resource settings. The
asymmetric capacity requirements reflect funda-
mental differences in how the two languages mani-
fest errors and respond to neural correction in data-
scarce scenarios.

5 Discussion

Extremely low resource GEC requires hybrid ap-
proaches with optimal balance between the neu-
ral and symbolic rule-based components depend-
ing on the language characteristics, dataset size,
and deployment priorities. The key advantage of
the hybrid architecture lies in its application of a se-
lective strategy with high-precision rules, handling
known patterns with perfect accuracy, neural gen-
eration providing fallback for unseen error types,
and post-processing refining neural outputs while
preventing common failures.

Tamil system success stemmed from mT5-base
providing sufficient capacity for complex Tamil
morphology without extreme overfitting, conser-
vative augmentation to 5,000 examples prevent-
ing noise pattern learning, manual pattern cura-
tion compensating for training data gaps, and hi-
erarchical correction strategy ensuring determinis-
tic handling of known patterns, achieving 85.34%
GLEU on test data. Malayalam system success re-
sulted from mT5-small with strict safety validation
preventing overfitting and output degeneration, ag-
gressive but filtered augmentation to 10,000 ex-
amples maintaining quality, multi-layered safety
framework ensuring output quality preservation,
and parallel processing with conservative fallback
prioritizing reliability, achieving 95.06% GLEU
and securing Rank 2.

While direct comparison remains limited due to
novel datasets, our results surpass reported low-
resource GEC performance. Czech GEC with
synthetic augmentation achieved approximately
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Table 2: Error Analysis — Tamil and Malayalam

Input Sentence Hybrid Output Correction Type
Qzmfimerensy QuibHsHesr Camflmamensy  @uiIbHlps- Morphological
551D Hletr F5 51D

thozhilsaalai iyandhithithin sattham /
”factory mashine’s noise”

thozhilsaalai iyanthirathin sattham /
”factory machine’s noise”

Qubds — @ubBST (iyandhithith

— iyanthira)

CUNEGHUTSHSH]  6UITEEBITIHLIS-
etflesT My

pokku varatthu vaakanangalin haaran /
“traffic vehikles’ hron”

Cunss (& 6urs5 5] 6UITES6BTIE1 55-
etflestT UMD MF6T

pokku varatthu vaahanangalin haarn /
“traffic vehicles’ horn”

Multi-token Correction

haaran — haarn; 6uU:M&HESOTLD —
6U::T&H60TLD (vaakanam — vaahanam)

b5 &Ml umSlliuenLflesr-
65T

namathu kaathu paathippadaikindrana
/ ”our ear gets affected” (plural verb)

L& &g LTS &sLLHS M

namathu kaathu paathikkappadugi-
radu / “our ear gets affected” (singular
verb)

Verb Form + Subject-Verb Agreement

sHevay|miflenwiujLd

BTL&B6em6mL LmHjlujLd
kalluurariyaiyum kalluurari naalkallaip
patriyum / ’colege and colege days about”

seuay|mifl

sevauTiflenwiu]d &e6vevifl HITL-
semerrLl LMmNujLd

kalluriyaiyum kalluri naalkallaip pa-
triyum / ”college and college days about”

Vowel Length Normalization

wonT — 78 uaa — -

@eOILICL(HES e Ggey Gnb-
75560 LIWeTUHS ST |6L-
flwib G(pLiug)|

olipperukkiyai iravu neraththil payan-
paduththaamal avasiyam iruppadhu /
”loudspeaker night time not using necessary

Ep)

1S

@606/ & Hlemwl @y
Curs5H6v  LW6esTLI(H 55TV
@\LugI Sjeuflwib

olipperukkiyai iravu neraththil payan-
paduththaamal iruppadhu avasiyam /
”loudspeaker night time not using is neces-

1t}

sary

Word Order Reordering + Marker Pre-
served

M2 BOBIOE G880 Bwla-
SHud

samudraththil thallunna kazhivukal /
”ocean dumping wastes”

M BOBIG3 G830 H¥la-
SHud

samudraththil thallunna kazhivukal /
”ocean dumping wastes”

Preserved (no correction needed)

QI::086Mo 639Sla)3
vaakanam odichchu / ”vehikle drove”

QI:9a0Mo 633Sla)3
vaahanam odichchu / ’vehicle drove”

Spelling correction
QU::0dH6Mo — (U::0aNMo/ vaakanam —
vaahanam

Sseilad meilaileeemo &:306mo
kadalil malineekaranam karanam / ”’sea
pollution reason”

&seilad meilamileeemo H:206mMo
kadalil malineekaranam karanam / ”’sea
pollution reason”

Preserved with validation

wjml aeilme:eemomoila) ©26e-
6MeBrRUd
dhvani
karanannal /
sons”

malineekaranaththinu
“noise pollution’s rea-

wiml aeilme:eemomoila) ©06e-
6MeBrUd
dhvani
karanannal /
sons”

malineekaranaththinu
“noise pollution’s rea-

Token-level preservation

60-70% accuracy with similar data constraints
(Naplava & Straka, 2019), while our hybrid ap-
proach achieved 85.34% GLEU for Tamil and
95.06% GLEU for Malayalam, demonstrating vi-
ability for extreme low-resource scenarios. Key
advantages include high-precision rules handling
known patterns with perfect accuracy, neural gen-
eration providing fallback for unseen error types,
post-processing refining neural outputs and pre-
venting common failures, and conservative safety
mechanisms ensuring real-world deployability.

6 Conclusion

We successfully presented a robust unified neu-
rosymbolic framework for Grammatical Error
Correction in extremely low-resource Indic lan-
guages, applying it to Tamil and Malayalam. By

strategically differentiating neural model capacity
and ensemble strategy, we optimized for unique
challenges of each language. These systems
prove that combining modern pre-trained models,
parameter-efficient fine-tuning, aggressive aug-
mentation, and linguistic rule engineering provides
a powerful practical approach for GEC when fac-
ing severe constraints on annotated data, serving
as a blueprint for developing GEC systems for low
or under-resourced Indic languages.

7 Limitations and Future Work

Limitations include small training and validation
datasets. This limits statistical confidence, pat-
tern coverage that cannot address all possible gram-
matical errors, especially rare or domain-specific
mistakes, risk of pattern memorization rather than
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generalizable learning, and system assumptions re-
garding formatting conventions or safety thresh-
olds that may not cover all use cases.

Future directions should focus on larger evalu-
ation datasets enabling statistically reliable perfor-
mance assessment, cross-domain testing on differ-
ent text types, linguistic integration incorporating
explicit morphological and syntactic knowledge,
active learning to identify high-value training ex-
amples, cross-lingual transfer leveraging knowl-
edge between related Dravidian languages, auto-
mated pattern discovery reducing reliance on man-
ual curation, and adaptive mechanisms enabling
dynamic threshold adjustment.
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Abstract

Grammatical error correction for Indic lan-
guages faces limited supervision, diverse
scripts, and rich morphology. We propose an
augmentation-free setup that uses instruction-
tuned large language models and conserva-
tive decoding. A 12B GEMMA 3 model is
instruction-tuned in bnb 4-bit precision with
parameter-efficient fine-tuning (PEFT) and
Alpaca-style formatting. Decoding follows a
deterministic, constraint-aware procedure with
a lightweight normaliser that encourages min-
imal, meaning-preserving edits. We opera-
tionalise inference, subsequent to instruction
fine-tuning (IFT), via a fixed, language-specific
prompt directly synthesised from a determinis-
tic error classifier’s taxonomy, label distribu-
tions, and precedence ordering computed on
the training corpus.

Under the official untuned GLEU evaluation,
the system scores 92.41 on Malayalam, sixth
overall, and 81.44 on Hindi, third overall.
These results indicate that classifier-informed
prompt design, adapter-based instruction tun-
ing, and deterministic decoding provide a re-
producible and computationally efficient alter-
native to augmentation-centred pipelines for
Indic GEC. The approach also motivates future
work on stronger morphosyntactic constraints
and human centered evaluation of conservative
edits.

1 Introduction

Grammatical error correction for Indic languages
remains limited by scarce supervision, complex
morphology, and script diversity. Many recent
systems improve performance through large syn-
thetic corpora and augmentation-based training of
sequence-to-sequence models. While these ap-
proaches are effective in high-resource environ-
ments, they are costly to reproduce for languages
such as Hindi and Malayalam and tend to be brittle
when the available supervision falls below a thou-
sand examples per language (Luhtaru and Fishel,

2024; Omelianchuk et al., 2024; Sharma and Bhat-
tacharyya, 2025).

Complementary work by Bhattacharyya and Bhat-
tacharya (2025) introduces a Bangla GEC pipeline
that defines a twelve-class error taxonomy, collects
native speaker data, and applies rule-based noise in-
jection to generate erroneous sentences from clean
references. The resulting dataset, “Vaiyakarana’
(Bhattacharyya and Bhattacharya, 2024), demon-
strates that linguistically motivated error invento-
ries combined with targeted synthetic generation
can bootstrap meaningful supervision and support
effective LLM-based correction. In contrast, our
study focuses on Hindi and Malayalam under strict
data limits and develops an augmentation-free ap-
proach emphasizing minimal-edit instruction fine-
tuning and deterministic decoding. Rather than
expanding the corpus, we use a deterministic er-
ror classifier to analyze existing data and to guide
prompt design.

>

This work adopts a metric-driven, augmentation-
free design suited to the BHASHA IndicGEC
benchmark, where systems are ranked by the
GLEU metric.! Instead of creating pseudo-parallel
pairs, we cast GEC as an instruction-following
problem and adapt a general-purpose model us-
ing instruction fine-tuning and prompt optimiza-
tion. The system employs Alpaca-style supervi-
sion formatting® and parameter-efficient adapters
through Unsloth,? trained on fewer than one thou-
sand human-annotated examples per language. De-
coding and post-processing are designed to produce
conservative, meaning-preserving edits that maxi-

'We report the “GLEU without tuning” variant (Napoles
et al., 2016) for consistency with the shared task.

*Alpaca is a documented instruction-tuning framework de-
rived from LLaMA and trained on 52k instruction-response
pairs using the Self-Instruct method (Taori et al., 2023; Stan-
ford Tatsu Lab, 2023).

3Unsloth is an open-source fine-tuning framework opti-
mized for low-VRAM LoRA and QLoRA training (Unsloth
Al 2025).
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mize n-gram alignment with reference sentences.

The overall design emphasizes: (i) simplicity—a
single-stage instruction-tuning setup using con-
cise prompts instead of multi-step augmenta-
tion; (ii) adaptability—instruction-following be-
havior improves resilience to mixed-script and do-
main variation common in Indic text; and (iii)
efficiency—adapter-based training and compact
prompts reduce memory and compute require-
ments. We evaluate this setup on Hindi and
Malayalam datasets, analyzing where instruction-
based adaptation narrows or maintains the gap
with high-resource or multilingual-transfer base-
lines (Luhtaru and Fishel, 2024; Omelianchuk et al.,
2024).

Evaluation protocol (GLEU). Consistent with
IndicGEC evaluation, corpus-level GLEU is used
as the primary metric, applying the “without tun-
ing” variant (Napoles et al., 2016). To align mod-
eling with the metric, the system (a) limits edits to
preserve reference n-grams, (b) normalizes punctu-
ation and script-specific conventions such as danda
and whitespace, and (c) calibrates decoding on de-
velopment data to prevent overcorrection or para-
phrastic drift that reduces GLEU.(Omelianchuk
etal., 2024).

Contributions.

* A GenAl-based, augmentation-free frame-
work for Hindi and Malayalam GEC opti-
mized for GLEU under sub-thousand supervi-
sion.

* Instruction-tuned prompts and adapter strate-
gies that favor minimal, meaning-preserving
edits consistent with reference overlap objec-
tives.

* A disciplined evaluation setup using the offi-
cial GLEU metric with systematic comparison
against multilingual and augmentation-based
baselines.

2 Dataset

The official Hindi and Malayalam grammatical
error correction (GEC) datasets released by the
AACL-1JCNLP 2025 BHASHA Workshop serve
as the primary supervision source for the IndicGEC
shared task.* The task specifies sentence-level

4Workshop site:  https://bhasha-workshop.github.
io/. Shared task page: https://bhasha-workshop.github.
io/sharedtask.html. Repository: https://github.com/
BHASHA-Workshop/IndicGEC2025/.

GEC with single-reference gold outputs and eval-
uates systems using the GLEU metric on held-out
test sets (Napoles et al., 2016). The shared task doc-
umentation defines GLEU as the official scoring
metric and provides language-specific data direc-
tories containing train.csv and dev.csv, while
test-only inputs are released subsequently for fi-
nal leaderboard evaluation (bha, 2025; BHASHA-
Workshop, 2025).

Format and schema. Each splitis a CSV with
two columns: Input sentence (possibly erroneous)
and Output sentence (the corrected reference).
This layout supports minimal edit modeling and
straightforward metric computation via n gram
overlap (BHASHA-Workshop, 2025).

Preprocessing. Identical script-aware normaliza-
tion is applied to both languages, comprising: (i)
elimination of zero-width and other non-visible
Unicode artifacts, (ii) normalization of whitespace,
(iii) script-specific punctuation and orthographic
normalization, including standardized danda treat-
ment, and (iv) removal of null entries and exact
duplicate pairs. No oversampling or synthetic
augmentation is introduced prior to training, en-
suring that the experimental setting remains au-
thentically low-resource (bha, 2025; BHASHA-
Workshop, 2025).

Splits and sizes. We adopt the official splits and
report the counts used in our experiments:

Language Train Dev Test
Hindi 600 107 236
Malayalam 300 50 102

Gold references for the test sets are withheld by
the organizers. Leaderboard scoring uses GLEU
without tuning as stated on the shared task site
(Napoles et al., 2016; bha, 2025).

3 Methodology
3.1 Why Gemma 3 for Indic GEC

The Gemma 3 family is employed as the model
backbone due to its strong cross-lingual align-
ment and architectural efficiency, both of which
are essential for Indic grammatical error correc-
tion. Gemma 3 incorporates a revised tokenizer and
post-training stack with expansive coverage over
more than 140 languages, enabling robust treat-
ment of scripts such as Devanagari and Malayalam.
These scripts exhibit ligatures, vowel diacritics, and
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script-specific punctuation that complicate n-gram
fidelity under GLEU-based evaluation. The refined
tokenizer demonstrably mitigates token fragmenta-
tion and enhances the accuracy of edit-preserving
corrections.

Gemma 3 also supports long-context inference (up
to 128K tokens, except for the 1B variant) with
optimized KV-cache management. This capability
allows for batched evaluation, structured prompt
scaffolding, and transparent post-hoc analysis with-
out heavy memory costs. Finally, its instruction-
tuned checkpoints are released with open weights
and standardized chat templates, enabling seam-
less integration for edit-constrained prompting and
reproducible, deterministic experimentation.

3.2 System Overview

Our pipeline operates in two coordinated
stages. Stage I conducts Instruction Fine-
Tuning (IFT) on a quantized 12B backbone
using Alpaca-style supervision with Un-
sloth + PEFT/LoRA on the 4-bit checkpoint
unsloth/gemma-3-12b-it-unsloth-bnb-4bit

(Team, 2025; Hu et al., 2021; Dettmers et al.,
2023, 2021; Wang et al., 2022). Stage 2 performs
deterministic inference followed by a light
post-processing normalizer. All reported results
are obtained from Stage 2 using the frozen
inference templates derived from the analysis in
§3.5°

3.3 Stage 1: Instruction Fine-Tuning (Alpaca
SFT on Unsloth + PEFT/LoRA)

Backbone and quantization: The Gemma 3
12B model is fine-tuned in 4-bit precision through
Unsloth and bitsandbytes, following the QLoRA
configuration (Team, 2025; Dettmers et al., 2021,
2023). This preserves instruction-following ability
while minimizing compute overhead.

Adapter setup: LoRA adapters are inserted on
attention projections with frozen base weights (Hu
et al., 2021), providing efficiency and stability for
iterative fine-tuning under limited resources.

Supervision schema: Training follows the Al-
paca Instruction—Input—Response format (Wang
et al., 2022), but with explicit constraints for edit-
only correction: make the fewest possible changes,
avoid paraphrasing or translation, preserve nu-
merals and named entities, and use appropriate

5Finall inference prompts and Alpaca prompts are available at: https:
//github.com/Akhilrajeevp/GEC-bhasha/tree/main.

sentence-final punctuation. The Alpaca-style IFT
prompt templates used in our experiments are in-
cluded in §3.5.

3.4 Stage 2: Deterministic Inference and
Post-Processing

Inference model. The inference stage uses the IFT-
adapted Gemma 3 12B model with LoRA adapters
active. No additional fine-tuning or hyperparam-
eter search is applied at this stage. Decoding pol-
icy. Generation uses greedy decoding (no sam-
pling) with left padding and truncation to main-
tain consistent causal batching (Wolf et al., 2020).
This ensures predictable, locality-preserving edits.
Normalization. A lightweight normalizer refines
whitespace, punctuation spacing, and sentence-
final marks (periods or question marks), and re-
moves prompt echo. This step is strictly surface-
level and does not modify meaning.

3.5 Deterministic Error Analysis — Prompt
Design

A deterministic classifier labels each sentence pair
with one of nine error categories: Null/Empty, No
Error, Punctuation/Whitespace, Word Order, Miss-
ing/Extra Word, Syntax/Agreement, Morphology,
Spelling/Orthography, or General Grammar. De-
tails of its logic and precedence rules are provided
in Appendix A. Category distributions are com-
puted on the training and development sets to cap-
ture dominant error tendencies. These distributions
then guide prompt construction: punctuation and
morphology are prioritized, while reordering and
deletion are explicitly deprioritized. The resulting
templates are fixed and reused for all inference runs,
ensuring consistency and interpretability. Code and
classifier implementation are publicly available in
the companion repository.

3.6 Error-Type Distributions (with Nulls)

We include Null/Empty cases so that totals align
with dataset sizes: Hindi train = 600, Malayalam
train = 300, Hindi dev = 107, Malayalam dev = 50.

4 Evaluation Metrics

Evaluation adheres strictly to the BHASHA work-
shop’s prescribed protocol, reporting corpus-level
GLEU as the authoritative metric, using the “with-
out tuning” configuration (Napoles et al., 2016),
with the JFLEG formulation serving as the canon-
ical reference benchmark (Napoles et al., 2017).

166



Table 1: Hindi: with-null error-type counts.

Split (n) Null Punct/WS Order Miss/Extra Syn/Agree Morph Spell Grammar NoErr

Train (600) 1 199 15 129 130 43 22 8 53

Dev (107) 0 41 1 17 19 3 2 2 22
Table 2: Malayalam: with-null error-type counts.

Split (n) Null Punct/WS Order Miss/Extra Syn/Agree Morph Spell Grammar NoErr

Train (300) 4 151 84 20 1 14 8 16 2

Dev (50) 0 18 15 2 0 8 4 3 0

All evaluation scores are generated using the of-
ficial workshop harness, preserving case, script,
and punctuation conventions. To ensure coherence
between modeling and metric behavior, the sys-
tem: (i) enforces minimal edit operations to max-
imize reference n-gram retention; (ii) applies a
lightweight, non-semantic normalization of whites-
pace and terminal punctuation to minimize spuri-
ous n-gram divergences; and (iii) employs deter-
ministic decoding to prevent paraphrastic devia-
tion that would be penalized under GLEU. Given
the standardized evaluation setting, no alternative
scoring or heuristic re-weighting is introduced; for
completeness, ablation studies consistent with stan-
dard GEC methodology are reported alongside the
primary GLEU results.

5 Results and Discussion

5.1 Leaderboard outcomes

On the BHASHA final-phase test leaderboards,
our system achieved a GLEU of 92.41 on Malay-
alam, placing 6th, and a GLEU of 81.44 on Hindi,
placing 3rd. These scores follow the workshop’s
standardized evaluation protocol that designates
corpus-level GLEU as the official metric and uses
the workshop harness for scoring

5.2 Cross-language performance

The relative ranking contrast—Malayalam: 6th
at 92.41 vs. Hindi: 3rd at 81.44—is consistent
with the distinct error profiles we observed in
development analysis. Hindi exhibits a large
mass of punctuation/whitespace and syntax/case/a-
greement issues, where minimalist edits and
auxiliary/morphology-first repairs align well with
GLEU’s n-gram preservation bias. Malayalam,
by contrast, shows a heavier proportion of punc-
tuation/whitespace and word-order phenomena;
our design deliberately discourages reordering un-

less grammatically obligatory, which preserves
reference n-grams and yields very high GLEU,
yet the track appears more competitive at the top
end—hence a strong absolute score paired with a
lower rank.

Three ingredients were most influential under the
BHASHA protocol. (i) Minimal-edit prompting
kept the model from paraphrastic drift, thereby
protecting reference n-grams that GLEU rewards.
(ii) Deterministic decoding (greedy, bounded)
suppressed stochastic variation and avoided over-
corrections that often reduce overlap on short sen-
tences. (iii) Non-semantic post-normalization
(whitespace collapse, single terminal punctuation,
removal of prompt echo) reduced spurious n-gram
mismatches without altering meaning—precisely
the kind of “surface” alignment that improves
GLEU consistency. These choices mirror estab-
lished practice for GLEU-based GEC evaluation
without tuning.

Category-wise inspection on development data sug-
gested that enforcing punctuation policy and priori-
tizing auxiliaries/morphology before any reorder-
ing delivered steady improvements for both lan-
guages. In Malayalam, resisting non-essential re-
ordering mitigated overcorrection on long clausal
spans, while the punctuation guardrails captured a
substantial share of benign mismatches. In Hindji,
the same guardrails and auxiliary/morphology em-
phasis addressed common agreement and case-
marking inconsistencies with very small token ed-
its—exactly the regime where GLEU is most re-
liable. (The deterministic classifier used for this
analysis is documented in Appendix A.)

6 Error Analysis

We evaluate model outputs relative to their in-
puts to characterize the nature and intent of
edits executed by the system. A determinis-
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tic, priority-ordered, single-label classifier (Ap-
pendix A) assigns each instance to an in-
terpretable error category. Language-specific
markers are romanized for clarity (e.g., Hindi
auxiliaries hai/hain/tha/the/thi, postposi-
tions ne/ko/se/mein/par/ka/ki/ke; Malayalam
auxiliaries aanu/illa/undu/aayirunnu, nomi-
nal/locative suffixes -il/-nte/-kk/-maayi).

Aggregate patterns. Edits cluster into three dom-
inant regions: (i) Punctuation and whitespace
(space normalization, terminal mark standardiza-
tion), (ii) Syntax, case, and agreement (auxiliary
selection, postpositions, nominal suffixes), and (iii)
Missing vs. superfluous tokens (removing repeti-
tions, restoring dropped function words). Malay-
alam exhibits a higher rate of word-order adjust-
ments, while Hindi concentrates more strongly in
auxiliary and case regularization. Across both lan-
guages, modifications remain local and conserva-
tive, reflecting the system’s design to avoid aggres-
sive rewriting in low-resource conditions.

Redundant, rectifying, and risky edits. We
further stratify edits by functional value: redun-
dant (purely surface-level), rectifying (linguis-
tically substantive yet local), and risky (unwar-
ranted global or reordering edits). The major-
ity of quality gains derive from rectifying ad-
justments—especially auxiliary/postposition cor-
rections in Hindi and short morpheme repairs in
Malayalam. Redundant punctuation corrections ap-
pear frequently but contribute primarily to surface
consistency. Risky behaviors are rare and largely
confined to long, syntactically dense Malayalam
clauses or Hindi sentences requiring coupled agree-
ment+morphology updates.

Dual-prediction synthesis. When two candidate
predictions are obtained, we compute: (i) a 9 x9
category agreement table, (ii) a cross-matrix of re-
dundant, rectifying, risky, and (iii) union/intersec-
tion/conflict statistics. Empirically, both candidates
converge most often on punctuation/whitespace
repairs. Disagreement typically arises between
agreement/morphology repair and word-order
change, particularly for Malayalam. In such cases
we adopt a principled tie-break: prefer rectifying
edits over redundant ones, and among two plausi-
ble rectifications favor the variant with lower edit
distance and no gratuitous reordering.

Common failure modes. Observed errors fall
into three patterns: (i) over-zealous reordering on

long Malayalam clauses, (ii) partial Hindi updates
where agreement is corrected but accompanying
morphology is not, and (iii) trivial terminal-mark
flips without semantic effect.

Practical guardrails. To stabilize behavior un-
der a GLEU-oriented objective, we adopt the fol-
lowing controls: (1) enforce punctuation/whites-
pace normalization pre- and post-decoding, (2)
privilege auxiliary, case, and morphological fi-
delity before any reorder/delete operations, (3)
penalize word-order changes that preserve token
multisets, and (4) impose an edit-distance cap to
discourage paraphrastic drift. These constraints
directly operationalize the empirical error distri-
bution and help preserve faithfulness in resource-
constrained settings.

7 Conclusion

We presented a two-stage, edit-first GEC pipeline
for Hindi and Malayalam that is tightly aligned
to the BHASHA workshop’s standardized evalua-
tion, reporting corpus-level GLEU as the official
metric. On the final fest leaderboards, our sys-
tem achieved 92.41 GLEU in Malayalam (6th) and
81.44 GLEU in Hindi (3rd), validating the effec-
tiveness of minimalist prompts, deterministic de-
coding, and non-semantic post-normalization under
a GLEU-oriented objective. The cross-language
pattern mirrors our error analyses: punctuation
and auxiliary/case repairs dominate Hindi, while
Malayalam benefits from strong punctuation con-
trol and conservative reordering. Looking ahead,
we plan to complement GLEU with targeted human
judgments and morphology-aware diagnostics to
better capture meaning preservation in cases where
surface n-gram overlap under-represents quality.
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9 Limitations

While the proposed pipeline is competitive un-
der the BHASHA protocol, several practical and
methodological limitations remain.
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(L1) Validation-time GLEU is not integrated
in-loop. Our training loop does not compute text-
generation metrics (e.g., GLEU) during validation
because the default SFT training stacks stream
logits/labels rather than full decoded hypothe-
ses into compute_metrics. Although Trainer
and TRL SFTTrainer expose a compute_metrics
hook (Wolf et al., 2020; trl), community reports
indicate that generation-aware metrics require cus-
tom evaluation loops or callbacks to pass decoded
text reliably (and have shown breakage across ver-
sions) (trl, 2024, 2023; uns, 2025a). As a result,
we validate with periodic offline GLEU runs rather
than truly on-line selection.

(L2) Multi-GPU training remains version-
and backend-sensitive. Unsloth’s multi-GPU
story has evolved: earlier releases displayed er-
rors or “beta” status for multi-GPU/DeepSpeed
(uns, 2024), whereas current documentation ad-
vertises multi-GPU via Accelerate/DeepSpeed
(DDP/FSDP) (uns, 2025b). In practice, distributed
setups can require manual sharding, launcher-
specific flags, and careful FSDP config; this in-
creases engineering overhead and narrows the set
of “drop-in” cluster environments that work seam-
lessly.

(L.3) Metric coupling to GLEU biases the objec-
tive. GLEU (without tuning) is well-motivated
for reference-based GEC (Napoles et al., 2016,
2017), but it rewards surface n-gram overlap and
can under-credit semantically faithful reforms that
alter phrasing. Meta-evaluation work reiterates
this sensitivity and recommends complementary
views (Choshen and Abend, 2018; Kobayashi et al.,
2024). Our design (minimal edits, deterministic
decoding, punctuation normalization) is therefore
aligned to GLEU but may under-correct in cases
where a larger syntactic repair would be preferable.

(L4) Quantization and adapter constraints.
Operating a 12B model with 4-bit loading and
LoRA adapters is efficient but not unconstrained.
QLoRA demonstrates near-parity on many tasks,
yet accuracy and stability remain hyperparameter-
sensitive and task-dependent (Dettmers et al.,
2023). 8-bit optimizers likewise trade memory
for potential optimization quirks (Dettmers et al.,
2021).

(LLS) Decoding and post-normalization trade-
offs. Greedy decoding improves determinism and
typically helps GLEU, but it can reduce recall

for multi-edit sentences and discourage beneficial
paraphrase. The non-semantic normalizer (whites-
pace/punctuation) systematically boosts surface
agreement; however, it can over-credit superfi-
cial fixes under an overlap-based metric and does
not guarantee deeper morpho-syntactic adequacy
(a known limitation of reference-overlap metrics
(Napoles et al., 2016, 2017)).

(LL6) Error-driven prompt design may overfit
dev distributions. Our prompts are derived from
deterministic error distributions on dev and veri-
fied on validation; distribution shift at test time
(e.g., different punctuation or order profiles) could
weaken these guardrails. Without in-loop metric
feedback (L1), prompt revisions require external
evaluation cycles, slowing adaptation.

(L7) Data scale and label granularity. The train-
ing/dev sizes for both languages are modest, and
our classifier assigns a single dominant label per
pair. This simplifies analysis and prompt design but
collapses multi-error interactions; thus, some cross-
category dependencies (e.g., morphology-+order)
may be under-explored.

(L8) Reproducibility. Small version changes in
TRL/Transformers/Accelerate/bitsandbytes
can affect generation hooks, metric plumbing, and
distributed training behavior (trl, 2024, 2023). We
therefore pin versions and release frozen prompts,
but portability to heterogeneous clusters may still
require per-site adjustments.
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A Appendix: Deterministic Error
Classifier — Pseudocode &
Explanation

Goal. Given an Input sentence and its Output sen-
tence (correction), the classifier assigns exactly one
dominant error label. The procedure is fully deter-
ministic, language-aware (Hindi/Malayalam), and
priority-ordered so that earlier tests short-circuit
later ones.

A. Categories (9 total)
1. Nul/Empty Pair: either side is empty/blank
(including “nan”, “null”, “none”).

2. No Error: input and output strings are bit-
identical.
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3. Punctuation/Whitespace: only spacing
and/or punctuation differ; letters/digits are
identical after projection.

4. Word Order: compare multisets of non-
punctuation tokens; if equal but sequences
differ, return Word Order.

4. Word Order: same multiset of non-
punctuation tokens, but in a different se-
quence.

5. Alignment-based typing (see Section D)

6. Grammar/Syntax (fallback if alignment

5. Missing/Extra Word: net insertions/dele- yields no decisive signal)

tions of non-punctuation tokens without

stronger syntax signal. D. Alignment-Based Typing (Core Resolution)

We align token sequences (Input vs. Output) to
obtain edit operations insert, delete, replace.

6. Syntax/Case/Agreement (Hindi) / Syntax/A-
greement (Malayalam): changes involving
auxiliaries/copula/negation and (for Hindi)
postpositions/case markers. * Syntax touch: any edited segment that con-

tains an auxiliary/copula/negation, or (Hindi
only) a postposition/case marker, triggers the

“syntax” flag.

7. Morphology (Inflection/Affix): suffixal
case/TAM® changes with strong shared prefix
and altered suffix tails.

8. Spelling/Orthography: minor graphemic ed- * Morphology vs. Spelling (within replace):

its (same script) with small Levenshtein dis-

1. Same-script token pairs are compared
tance.

with a long common prefix test; if the
remaining tails differ and either tail ends
with a listed case/TAM suffix, mark Mor-
phology.

2. Otherwise, if the Levenshtein dis-
tance is small (threshold < 2), mark
Spelling/Orthography.

9. Grammar/Syntax: structural corrections not
captured above (fallback).

B. Normalization and Token Views

» Whitespace collapse: internal test steps com-
pare strings after one-space normalization.

* Unicode & digit normalization: apply Uni-
code NFKC and map native numerals to a com-
mon representation (e.g., ASCII) before com-
parisons.

Resolution rules (and priorities).

1. If any insert or delete is present:
If the syntax flag is set = Syntax/Case/A-

* Alphanumeric projection: remove punctu- greement (Hindi) / Syntax/Agreement (Malay-

ation/symbols and collapse spaces; compare
only letters/digits. If these projections are
equal while the originals differ, the edit is
purely Punctuation/Whitespace.

Tokenization: split into (i) script words, (ii)
digits (ASClI+native), and (iii) residual punc-
tuation/symbol tokens. Punctuation tokens are
ignored for word-order and multiset checks.

C. Precedence (Short-Circuit Order)
1. Nul/Empty Pair

2. No Error

3. Punctuation/Whitespace (via alphanumeric-

projection equality)

STAM = Tense—Aspect—Mood.
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alam).

Else = Missing/Extra Word.

(Insert/Delete is resolved before considering
replace, by design.)

2. Else if any replace is present:

If the syntax flag is set = Syntax/Case/A-
greement (Hindi) / Syntax/Agreement (Malay-
alam).

Else if morphology marked = Morphology
(Inflection/Affix).

Else if spelling marked = Spelling/Orthogra-
phy.

Else = Grammar/Syntax.

. Else: Grammar/Syntax (rare; e.g., alignment
yielded no informative ops).



E. Tie-Breaking and Single-Label Policy

* The classifier always returns one label even if
multiple edit phenomena co-occur.

* Insert/Delete takes precedence over replace
(strong signal for Missing/Extra vs. Syntax).

¢ Within replace: Syntax > Morphology >
Spelling > Grammar. If both morphology
and spelling cues appear, the morphology la-
bel wins by priority.

* Earlier global checks (Null/Empty; No Error;
Punct/Whitespace; Word Order) short-circuit
alignment resolution.

F. Rationale for Design Choices

* Projection for punctuation: avoids false
lexical differences when only spacing/marks
change.

Multiset comparison for word order: iso-
lates permutation-only edits without lexical
changes.

Suffix-tail heuristic (long-prefix + suffix
cue): reliably captures case/TAM inflections
with minimal language-specific lists.

Small-distance spelling: Levenshtein < 2
captures typical typos/diacritic slips while
avoiding over-labeling.

Insert/Delete precedence: net token pres-
ence/absence is a stronger indicator of Miss-
ing/Extra or Syntax than token substitutions.

G. Notes on Language-Specific Labeling

The logic is identical across languages; only re-
sources differ. The syntax label name is rendered as
Syntax/Case/Agreement for Hindi (to reflect post-
position/case markers) and as Syntax/Agreement
for Malayalam (where case is predominantly suf-
fixal). We call classify_pair(inp, out, L)
with L € {HI,ML}.

Listing 1: Self-contained pseudocode (ASCII transliter-
ation for pdfLaTeX).

# NOTE: Lexica are transliterated to
ASCII so this snippet renders under
pdfLaTeX.

# Language profiles (compact;
extensible)
{ # Hindi

unameu: ”hi",

HI
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"token_regex": r"[A-Za-z0-9]1+|.",
# placeholder; real impl

uses Devanagari range

"digits_regex": r"[0-9]+",
# ASCII digits

r"A-Za-ze-9",

# placeholder for
script chars

# Auxiliaries/copula/negation (
transliterated):

"auxiliaries”: {"hai","hain","thaa","
thii"”,"the”,"rahaa”,"rahee”,"rahe”

"script_class”:

’

"gayaa","gayee",6 "gaye"”
,"kiyaa","karta","
kartii”,"karte"},

# Postpositions/case (transliterated):

"postpositions”: {"men","se”,"ko", "kaa
"’"kii”,"ke“,"par"’"tak“,"liye”,"
jaise"”,"yaa","aur"},

# Common suffix cues (case/TAM;
deduplicated, translit
placeholders):

"suffixes”": ["on","en"”,"iin"”,"yaan","a
n ”e“)”ii“,”taa","tii“,”te”’“naan,

"
)

n

ne
"rahaa","rahee"”,"rahe"]

3

= { # Malayalam
"name”: "ml",
"token_regex": r"[A-Za-z0-9]1+|.",
# placeholder; real impl

uses Malayalam range

"digits_regex": r"[0-9]+",

"script_class”: r"A-Za-z0-9",

# Auxiliaries/negation (transliterated
):

"auxiliaries”: {"aanu","alla"”","illa”,"”
undu”,"aayi","ayirunnu”,k"”
yirikkunnu",”irunnu”,"cheythu","”
cheyyunnu"},

# Malayalam uses suffixes more than
postpositions:

"postpositions”: set(),

# Case/TAM suffix cues (transliterated

ML

"suffixes”: ["il","yil","inte","yude",
mku™ "1 "um” . "wvum”  "ichu” . "unnu®
) ) ) ) )
,"ayirunnu”,"yirikkunnu"]

--- Utilities (language-aware)

def nullish(x):

s = "" if x is None else str(x).
strip()

return s == or s.lower() in {"nan
Ilyllnullll’llnonell}

nn

def normalize_text(s):

# Placeholder: apply Unicode NFKC,
digit normalization, and space
collapse.

import re

s str(s)

s re.sub(r”"\s+",

return s

non

’

s).strip()

def tokenize(s, L):

# Three-way split in real impl;




simplified here to keep pdfLaTeX
happy
# Replace with language-script regex
in actual codebase.
s = normalize_text(s)
return [t for t in s.split() if t.
strip()]
def same_script(a, b, L):
# Placeholder: assume same script
for ASCII transliteration
return True
def is_punct(tok, L):
# ASCII-safe: treat tokens that are
purely punctuation as punct

return all(ch in r".,;:120)
[I{3<>\""-_/\\|@#$%*&*x+=~"" for
ch in tok)

def alnum_projection(s, L):
# Collapse spaces; keep only letters
/digits (ASCII-safe placeholder)

import re

s1 = re.sub(r"\s+", " " 'str(s)).
strip()
return "".join(ch for ch in s1 if ch

.isalnum())
def multiset_nonpunct(tokens, L):
from collections import Counter
return Counter ([t for t in tokens if

not is_punct(t, L)I)
def levenshtein(a, b):
n, m = len(a), len(b)
if n == @: return m
if m == 0: return n
dp = list(range(m+1))
for i in range(1, n+1):
prev, dp[e] = dp[e], i
for j in range(1, m+1):
cost = @ if al[i-1] == b[j-1]
else 1
prev, dp[jl = dp[j], min(dp[
j1+1, dpl[j-11+1, prev+
cost)
return dp[m]
def suffix_tail_cha(a, b, suffixes):

# Long common prefix + different
tails w/ suffix cues

k =0

for x, y in zip(a, b):
if x == y: k += 1
else: break

ta, tb = alk:], b[k:]

if ta == tb: return False

return any(ta.endswith(s) or tb.
endswith(s) for s in suffixes)

def touches_syntax(segment, L):
return any(t in L["auxiliaries"] or
t in L["postpositions”] for t in
segment)

# --- Priority-ordered classifier (
returns 1 of the 9 categories) ---
def classify_pair(inp, out, L):

nauon
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Labels:

"Null/Empty Pair", "No Error",
Punctuation/Whitespace”, "Word
Order",

"Missing/Extra Word",

"Syntax/Case/Agreement"” (hi) / "
Syntax/Agreement” (ml),

"Morphology (Inflection/Affix)", "
Spelling/Orthography”, "
Grammar/Syntax".

n

nnn

# (1) Null/Empty
if nullish(inp) or nullish(out):
return "Null/Empty Pair”
inp, out = str(inp), str(out)
# (2) No Error
if inp == out:
return "No Error”

# (3) Punctuation / Whitespace only
(alphanumeric projections equal)
if alnum_projection(inp, L) ==
alnum_projection(out, L):
return "Punctuation/Whitespace”

# (4) Word Order (same multiset of

non-punct tokens, different
order)

A, B = tokenize(inp, L), tokenize(
out, L)

if multiset_nonpunct(A, L) ==
multiset_nonpunct(B, L) and A !=
B:
return "Word Order”

# (5) Alignment-driven typing

from difflib import SequenceMatcher

ops = SequenceMatcher (a=A, b=B).
get_opcodes ()

SPELL_THR =2

touched_syn = False
saw_insdel = False
saw_repl = False
saw_morph = False
saw_spell = False

for tag, i1, i2, j1, j2 in ops:
segA, segB = A[i1:i2], B[j1:j2]

if tag in {"insert"”, "delete"}:
if touches_syntax(segA, L)
or touches_syntax(segB,

L):
touched_syn =
saw_insdel = True

True

elif tag == "replace":
saw_repl = True
if touches_syntax(segA, L)
or touches_syntax(segB,
L):
touched_syn =
else:
# Morphology vs Spelling
for same-script (
assumed true here)
for ta, tb in zip(segA,
segB):

True




if suffix_tail_cha(
ta, tb, LL"
suffixes”]):
saw_morph = True

elif levenshtein(ta,
th) <=
SPELL_THR:
saw_spell = True

# Resolve (Insert/Delete): Syntax >
Missing/Extra
if saw_insdel:
if touched_syn:
return "Syntax/Case/
Agreement” if L["name”]
== "hi" else "Syntax/
Agreement”
return "Missing/Extra Word"

# Resolve (Replace): Syntax >
Morphology > Spelling > Grammar
if saw_repl:
if touched_syn:
return "Syntax/Case/
Agreement” if L["name"]
== "hi" else "Syntax/
Agreement”
if saw_morph:
return "Morphology (
Inflection/Affix)"
if saw_spell:
return "Spelling/Orthography

"

return "Grammar/Syntax"”

# Fallback
return "Grammar/Syntax"”
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Abstract

Word Grouping involves the identification of a
cohesive sequence of words into semantically
meaningful units. We present Team Horizon’s
approach to BHASHA Task 2: Indic Word
Grouping. We model the word-grouping prob-
lem as a token classification problem and fine-
tune multilingual Transformer encoder-only
models for the task. We evaluate MuRIL,
XLM-Roberta, and IndicBERT v2 and report
Exact Match accuracy on the test data.Our
best model (MuRIL) achieves 58.1818% exact
match accuracy on the test set and ranks 1st
among all participating teams.

1 Introduction

Word groups often called “Local Word Groups
(LWGQG)” are semantically cohesive units (Karthika
et al., 2025) consisting of a sequence of words
that convey a single and complete meaning. It is
particularly an important characteristic of most In-
dian languages those belong mainly to the Indo-
Aryan and Dravidian families. Word groups can
be realized in different forms such as noun com-
pounds, noun groups followed by post-positions,
verb groups containing auxiliary verbs, gerund
verb groups, light verb constructions using adjec-
tives as the head words.

The concept of local word groups is deeply
rooted in the Indian grammatical tradition and well
formulated by Panini. This is integrated in the com-
putational paninian framework of sentence level
parsing (Akshar et al., 1995). Although Indian lan-
guages are free word ordered languages where the
constituent or local word groups can move freely in
a sentence, the order of words in a group is fixed.
Most of the previous works for word grouping
can be broadly categorized into either rule-based
(Singh et al., 2012) or data-driven. We model this
task as a sequence classification problem. To iden-
tify word groups, we use the BIO (Tjong Kim Sang,

2002) annotation scheme largely followed in se-
quence labeling tasks such as constituency pars-
ing, chunking, and named entity recognition. As
token classification tasks are successfully modeled
using the transformer architecture, we also follow
the same strategy for this shared task. Our contri-
butions are as follows:

* A simple and effective BIO token-
classification pipeline for Indic word
grouping.

* Fine-tuning and evaluation of three multilin-
gual pretrained encoders (MuRIL, XLM-R,
IndicBERT v2) with a class-weighted loss to
mitigate the dominant O-label bias.

* A concise error analysis highlighting model
strengths and typical failure modes, and prac-
tical hyperparameters extracted from our im-
plementation.

2 Task Description

BHASHA Task 2 (Indic Word Grouping) (?) re-
quires systems to reorder/join tokens into correct
word-groupings. The official evaluation metric
used in this shared task is Exact Match Accuracy:
a prediction is correct only if the entire grouped
output sentence matches the gold grouped sentence
exactly.

3 Methodology

3.1 Problem framing

We treat grouping as token classification with three
labels {B, I, O}. Input sentences are tokenized us-
ing the pretrained model tokenizer. The tokens
after the tokenization steps are actually subwords
that are obtained using either wordpiece (Song
et al., 2021) or sentencepiece (Kudo and Richard-
son, 2018). The training data usually consists of
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words and its corresponding labels. Hence, the la-
bels need to be aligned with subwords after tok-
enization. This is performed as a pre-processing
step in our task.

3.2 Models
We  fine-tune  three  pretrained  Trans-
former encoders using HuggingFace’s

AutoModelForTokenClassification:

* MuRIL (Khanuja et al., 2021) — strong cov-
erage for Indian languages.

¢ XLLM-Roberta (Conneau et al., 2020) — mul-
tilingual encoder trained on large multilingual
corpora.

* IndicBERT v2 (Doddapaneni et al., 2023) —
Indic-specific model (MLM-pretrained).

3.3 Weighted loss to address class imbalance

Word-grouping datasets typically have many to-
kens aligned to the ‘O’ label (delimiters), produc-
ing an ‘all-O’ bias. We compute simple inverse-
frequency class weights from the training labels
and use a custom “weighted” loss wrapper around
the standard cross-entropy to slightly upweight B
and I labels during training. This is described
briefly in our implementation and empirically im-
proved token recall for B/I labels.

3.4 Decoding and Reconstruction

Following token-level prediction, we convert pre-
dicted label ids to BIO tags and then reconstruct
grouped sentences by concatenating wordpieces la-
belled as the same group; groups are joined with
the separator “__" (this mirrors the submission for-
mat in our pipeline). Exact-match computation
compares the reconstructed grouped sentence with
the gold grouped sentence.

4 Implementation and Training Details

We implemented the word group identification task
using the Huggingface (Wolf et al., 2020) frame-
work that provides a unified API for different trans-
former architectures. The hyper-parameters used
in training are presented in Table 1. For training
the models, we utilize a H100 NVIDIA GPU with
94GB RAM.

5 Dataset and Data Preparation

We followed the official BHASHA/IndicWG
dataset layout and used the provided train, dev,

Parameter Setting

Label Map {B:0, I:1, 0:2}
Optimizer AdamW

Learning Rate 3x107?

Epochs 20

Batch Size 8 (train/eval)

Weight Decay 0.01

Table 1: Training configuration and hyperparameters.

and test splits. Table 2 reports detailed statistics
for each split.

The dataset shows moderate variability in
length: training inputs average ~141 characters
and ~30 words, while grouped outputs are slightly
longer in characters (because of inserted ‘__" mark-
ers) but have fewer grouped tokens (multiple words
merged into single units). Dev and test splits follow
similar trends, with dev examples slightly longer
on average.

Label construction and token alignment. We
converted the grouped outputs (which use the ‘__°
token to indicate a group boundary) to BIO la-
bels. We used the tokenizer’s word_ids () helper
to align word-level labels to subword tokens. Dur-
ing preprocessing, we also apply:

* normalization of punctuation (consistent Uni-
code forms),

* trimming and collapse of extra whitespace,

* normalization of repeated punctuation or spe-
cial characters.

For subword-token labeling, we adopt the common
practice of marking only the first subword of a
word with its BIO tag and setting labels for sub-
sequent subwords to -100 so the loss function ig-
nores them. (Alternatively, you can propagate the
same label to all subwords; we recommend -100
for cleaner training unless you have a reason to
propagate labels.)

Data Augmentation. We augment 5000 sen-
tences from a publicly available Hindi annotated
dataset (Mishra et al., 2024) ! with the original data.
We evaluated it under the same scheme. The data
augmentation is based on a rule based local word
group finder ? that uses chunk labels and POS tags
to form noun and verb groups.

lhttps ://github.com/1ltrc/shallow_parsing_in_
indian_languages
"https://github.com/Pruthwik/Rule-Based-LWG
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Statistic

Total Sentences

Input Sentence Statistics

Avg. Character Length
Min. Character Length
Max. Character Length
Avg. Word Count
Min. Word Count
Max. Word Count

Train Dev Test
550 100 226
14091 159.36 151.64
26 34 25
901 404 619
29.96 33.80 32.50
6 7 7
190 90 124

Table 2: Comprehensive statistics for the Hindi Word Segmentation dataset across train, dev, and test splits. Output

sentences contain word group boundaries marked with _

Table 4: Official challenge submission vs. post-
challenge result.

Setting Dev EM (%) Test EM (%)
Challenge submission 35.00 45.13
(official LB)

Post-challenge (MuRIL, 46.58 58.18
refined)

6 Experiments and Results

6.1 Evaluation metric

We report Exact Match Accuracy (in percent) —
the official metric for this task — computed on re-
constructed grouped sentences.

6.2 Results

The following table summarizes the validation/test
exact-match scores obtained for the three models
we fine-tuned.

Model Dev EM(%) Test EM(%)
MuRIL 46.58 58.1818
XLM-R 39 53.3636
IndicBERT v2 354 52.7272
MuRIL(5K) 21.3 30.58

Table 3: Exact match scores from our fine-tuned sys-
tems (reported as percentages).

6.2.1 Challenge submission vs. post-challenge
improvements

This system paper accompanies our participation
in the shared task. Our best official challenge
submission achieved 45.13% exact match on the
test set. After the deadline, minor refinements to
training and decoding (e.g., class-weighted loss,
boundary reconstruction cleanup) yielded a post-
challenge result of 58.18% exact match on the
same test set (reported in Table 3); this improved
score is not part of the official leaderboard.

_ separators.

6.2.2 Augmented model

We train a model using the 5K augmented data and
evaluate it under the same scheme. It achieves an
exact-match accuracy of 30.58% on the test set.
MuRIL performed best in our experiments,
likely due to targeted pretraining on Indian lan-
guages and cased vocabulary which helps preserve
morpheme and script cues important for grouping.

6.3 Ablations and observations

We performed a small set of ablations during de-
velopment:

* Class weighting: adding inverse-frequency
weights improved B/I recall and increased ex-
act match by a small margin (1-2% absolute)
compared to an unweighted baseline.

* Batch size and epochs: with our batch size of
8, models required more epochs to converge;
we used early-stopping behavior based on val-
idation exact-match to avoid overfitting.

* Tokenization effects: models that preserve
casing and have better Indic vocabular-
ies (MuRIL) produced fewer tokenization-
induced errors.

7 Error Analysis

We quantitatively compare our submissions against
gold outputs for both dev and test splits using exact-
match on reconstructed grouped sentences.

Dev set (N=100) Exact-match (EM): 35.00%
(35/100). Among 65 mismatches:

* Over-merge (more merges than gold): 33/65
(50.8%0)

* Over-split (fewer merges than gold): 19/65
(29.2%0)
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* Equal group counts but wrong boundaries:
13/65 (20.0%0)

Length sensitivity (by input word count):
e <20 words: 41.67% EM
e 21-40 words: 40.82% EM

* >40 words: 18.52% EM

Matched vs. mismatched averages: 26.29 vs. 37.85
words (124 vs. 178 chars); avg. absolute boundary
deviation = 1.28 “__ markers.

Test set (N=226) Exact-match:
(102/226). Among 124 mismatches:

* Over-merge: 68/124 (54.8%)

45.13%0

* Over-split: 39/124 (31.5%)

* Equal group counts but wrong boundaries:
17/124 (13.7%)

Length sensitivity:
e <20 words: 63.27% EM
e 21-40 words: 45.99% EM

* >40 words: 20.00% EM

Matched vs. mismatched averages: 26.79 vs. 36.93
words (125 vs. 173 chars); avg. absolute boundary
deviation = 1.13 “__ markers.

Qualitative observations

1. Long compounds and MWE:s:
boundary shifts or over-merges.

frequent

2. Ambiguous groupings: equal group counts
yet misaligned boundaries.

3. Rare/OOV forms and proper nouns: unsta-
ble subword splits hinder reconstruction.

4. Subword label inconsistencies: off-by-one
boundaries due to wordpiece segmentation.

Annotation Inconsistency. Across gold
dev+test, several multiword expressions appear
grouped in some sentences but ungrouped in oth-
ers, introducing unavoidable boundary ambiguity.
Table 5 shows frequent examples. Apart from
the errors in Table 5, the major inconsistency is
seen when an adjective forms a word group with
a verb chunk with light verbs. In this case, often
the word groups are missed in the annotation. The
performance of the models are impacted if there is
annotation noise.

Phrase Tokens (n) Grouped Ungrouped
gt g 2 29 7
gt g 2 17 3
TRA B 2 15 8
GRS 2 11 3
gl gehdar & 3 11 1
g gehd & 3 9 4
cTokeal 2 8 5
& & fag 3 8 4
TR W 2 8 1
AT E 2 7 5
gHeATIRd gl T 3 1 1

Table 5: Phrases that are grouped in some gold sen-
tences but ungrouped in others (dev+test).

8 Limitations

Our work focuses solely on a token-classification
BIO framework, limiting the diversity of modeling
approaches explored. Alternative paradigms such
as sequence-to-sequence architectures (e.g., mT3,
IndicTrans2), in-context learning, or zero-shot
prompting with large language models were not
investigated and may offer complementary advan-
tages. While class-weighted loss improved MuRIL
performance, we did not benchmark XILM-R or In-
dicBERT v2 under the same refined setup, leaving
comparative analysis incomplete. The gold dataset
also contains annotation inconsistencies, particu-
larly in multiword expressions and light-verb con-
structions, which constrains the achievable exact-
match accuracy. Furthermore, the method remains
sensitive to tokenizer segmentation due to sub-
word label alignment, and performance degrades
on long sentences. The rule-based SK augmented
dataset introduced stylistic mismatch that nega-
tively impacted results, and training on an H100
GPU may limit exact reproducibility on smaller
hardware.

9 Conclusion and Future Work

We presented a straightforward BIO token-
classification approach for Indic Word Grouping
and fine-tuned three multilingual encoders.
MuRIL achieved the best exact-match score
(58.18%) in our experiments. The approach is sim-
ple, reproducible from our notebook, and benefits
from class-weighting and careful token-to-word
alignment.
Future directions:

* Explore ensembles combining MuRIL and
XLM-R outputs (voting or reranking).
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* Investigate sequence-to-sequence formula-
tions where the model directly produces
grouped outputs (possibly alleviating
subword-label alignment issues).

* Try larger models or adapters to improve gen-
eralisation on long compounds without exten-
sive compute.

* Augment training data by synthetic pertur-
bations that simulate real-world punctua-
tion/whitespace noise.
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