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Abstract

Multilingual large language models (LLMs) of-
ten demonstrate a performance gap between
English and non-English languages, particu-
larly in low-resource settings. Aligning these
models to low-resource languages is essential
yet challenging due to limited high-quality data.
While English alignment datasets are readily
available, curating equivalent data in other lan-
guages is expensive and time-consuming. A
common workaround is to translate existing En-
glish alignment data; however, standard transla-
tion techniques often fail to preserve critical el-
ements such as code, mathematical expressions,
and structured formats like JSON. In this work,
we investigate LLM-based selective translation,
a technique that selectively translates only the
translatable parts of a text while preserving non-
translatable content and sentence structure. We
conduct a systematic study to explore key ques-
tions around this approach, including its effec-
tiveness compared to vanilla translation, the
importance of filtering noisy outputs, and the
benefits of mixing translated samples with orig-
inal English data during alignment. Our experi-
ments focus on the low-resource Indic language
Hindi and compare translations generated by
Google Cloud Platform (GCP) and Llama-3.1-
405B. The results highlight the promise of se-
lective translation as a practical and effective
method for improving multilingual alignment
in LLMs.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success across various natural language
processing tasks, largely driven by vast amounts
of high-quality English data (Anil et al., 2023;
Achiam et al., 2023; Bercovich et al., 2025). How-
ever, a significant performance disparity persists
when these models are applied to non-English
languages, especially those designated as low-
resource (Joshi et al., 2020; Jadhav et al., 2024).

Bridging this gap is critical for equitable AI de-
velopment and broader global applicability. The
primary impediment to aligning LLMs with low-
resource languages lies in the scarcity of high-
quality, diverse, and representative training data
(Cahyawijaya et al., 2024). While comprehensive
English alignment datasets are abundant, the cre-
ation of analogous resources in other languages is
often expensive and time-consuming.

Current approaches for low-resource adaptation
of language models include continued pre-training
using low-resource data, which helps in familiariz-
ing the model with the target language’s unique lin-
guistic characteristics (Joshi et al., 2024). Another
prominent method is alignment using low-resource
supervised fine-tuning (SFT) and preference tuning,
where models are trained on specific downstream
tasks and human feedback to better adhere to user
intent and safety guidelines in the low-resource
language (Li et al., 2024; Toraman, 2024). The
data for these alignment processes is typically cu-
rated using synthetic data generation methods, with
translation of high-resource data being a common
strategy (Qin et al., 2024). Other probable meth-
ods include cross-lingual transfer learning, where
knowledge from high-resource languages is trans-
ferred to low-resource languages, and techniques
like zero-shot or few-shot learning, which lever-
age the model’s inherent generalization capabilities
to perform tasks with minimal or no explicit low-
resource data (Cahyawijaya et al., 2024; Lai et al.,
2024). Additionally, active-learning, self-training
and semi-supervised learning methods, which uti-
lize unlabeled low-resource data, are also being
explored (Kholodna et al., 2024).

A common and seemingly straightforward ap-
proach to address this data scarcity is to translate
existing high-resource (e.g., English) alignment
datasets into the target low-resource language. Nev-
ertheless, conventional machine translation tech-
niques frequently fall short. They often struggle
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Figure 1: English to Hindi translation examples using LLM-based selective translation and vanilla GCP translation.

to accurately preserve crucial non-translatable ele-
ments such as code snippets, complex mathemati-
cal expressions, and structured formats like JSON,
leading to corrupted or functionally incorrect data.
This issue severely limits the utility of convention-
ally translated datasets for robust LLM alignment,
particularly for tasks requiring precise understand-
ing of structured or logical content.

To address these limitations, we systematically
investigate LLM-based selective translation, an
approach that intelligently translates only the lin-
guistically appropriate portions of a prompt while
preserving non-translatable content and maintain-
ing overall sentence structure. This method lever-
ages the reasoning capabilities of LLMs to dis-
tinguish between translatable and non-translatable
segments, offering a more faithful and usable trans-
lation for alignment purposes. The distinct ad-
vantages of LLM-based selective translation over
vanilla machine translation are demonstrated in Fig-
ure 1.

In this study, we explore three key research ques-
tions:

• How does LLM-based selective translation
of alignment data compare to conventional
(vanilla) translation methods, such as Google
Cloud Platform (GCP), on the performance of
the aligned model?

• What is the optimal strategy for mixing orig-
inal English alignment data with selectively
translated target language data? Can trans-
lated data alone achieve effective alignment,
or is the inclusion of English data indispens-
able?

• What is the impact of filtering noisy or erro-
neous outputs generated during the selective
translation process?

We train the Nemotron-4-Mini-Hindi-4B-Base1

(Joshi et al., 2024) model on the LLM-translated
and GCP-translated datasets and compare the per-
formance on the downstream tasks like MTBench,
IFEval, and GSM8K in Hindi. Our experiments
focus on Hindi, a widely spoken yet low-resource
Indic language. We compare translation quality
and alignment effectiveness across outputs gen-
erated by GCP and Llama-3.1-405B, a powerful
open-source LLM. Through this comprehensive
analysis, we demonstrate that LLM-based selective
translation offers a practical and robust solution
for multilingual alignment, substantially improving
the performance of LLMs in low-resource settings
and moving toward more linguistically inclusive
AI systems. Throughout this study, "LLM transla-
tion" specifically refers to translations produced by

1https://huggingface.co/nvidia/
Nemotron-4-Mini-Hindi-4B-Base
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Llama-3.1-405B.

2 Related Work

Large Language Models (LLMs) have demon-
strated impressive capabilities, primarily due to
extensive training on high-resource language data,
leading to a performance disparity in low-resource
languages (LRLs). To address this, various adapta-
tion strategies have been explored, including con-
tinued pre-training on limited, authentic, or synthet-
ically generated LRL corpora (Joshi et al., 2024).
(Ogueji et al., 2021) indicates that even modest
amounts of LRL exposure can yield significant im-
provements, while (Hangya et al., 2022) delves
into specific techniques within multilingual frame-
works. Furthermore, the development of dedicated
open-source LLMs for languages like Hindi, as ex-
emplified by (Choudhury et al., 2025), underscores
the importance of tailored training on relevant LRL
datasets.

Multilingual LLMs (MLLMs) offer a promising
avenue for addressing LRL challenges, with their
inherent capacity for zero-shot or few-shot cross-
lingual transfer, including in-context learning abili-
ties for LRLs (Cahyawijaya et al., 2024). However,
this multilinguality does not guarantee uniform per-
formance across all languages; empirical studies
reveal significant disparities, with high-resource
languages often outperforming LRLs (Hasan et al.,
2024). In some cases, multilinguality can even
pose a "curse" where LRL performance is hin-
dered due to disproportionate resource allocation
to high-resource languages (Chang et al., 2024).
To counteract these limitations and facilitate more
effective knowledge generalization, methods like
cross-lingual optimization have been proposed to
enhance language transfer from high-resource to
low-resource settings (Lee et al., 2025).

Beyond foundational training, instruction tuning
has become crucial for aligning LLMs with hu-
man intent. In a multilingual context, this extends
to cross-lingual instruction following and explicit
alignment mechanisms. (Cahyawijaya et al., 2023)
demonstrates the effectiveness of continual cross-
lingual instruction tuning for aligning languages,
while (Tanwar et al., 2023) emphasizes the role
of alignment in boosting cross-lingual in-context
learning. (Ahuja et al., 2024) explores sample-
efficient multilingual instruction fine-tuning via
guided prompting. A broader perspective on en-
hancing multilingual capabilities and alignment

strategies is provided by (Zhao et al., 2024), collec-
tively emphasizing the move towards task-oriented
instruction following and robust cross-lingual align-
ment.

While existing research extensively covers con-
tinued pre-training, diverse fine-tuning strategies,
and instruction-based alignment for LRLs, a sys-
tematic exploration of leveraging LLM-based selec-
tive translation as a primary alignment mechanism
remains largely underexplored.

3 Methodology

3.1 Model Alignment

The alignment of multilingual large language mod-
els to low-resource languages is a critical step in
bridging the performance gap observed between
high-resource and low-resource settings. In this
work, we employ a two-stage alignment process,
Supervised Fine-Tuning (SFT) followed by Direct
Preference Optimization (DPO). Both stages are
designed to leverage the strengths of our selectively
translated Hindi corpus alongside the original En-
glish corpus, ensuring a robust and multilingual
alignment.

• Supervised Fine-Tuning (SFT): During SFT,
the Nemotron-4-Mini-Hindi-4B-Base model
is fine-tuned on a dataset of high-quality
instruction-response pairs. The primary goal
of this stage is to teach the model to follow
instructions and generate coherent, relevant
responses.

For SFT, we utilize a mixed corpus com-
prising both the original English alignment
dataset and its selectively translated Hindi
counterpart. We use an English SFT corpus
with approximately 200k examples, compris-
ing various tasks as outlined in (Adler et al.,
2024). This mixed approach is crucial for re-
taining the model’s English capabilities, adapt-
ing it to Hindi’s linguistic nuances, and ensur-
ing correct handling of non-translatable con-
tent like code and mathematical expressions
across both languages.

The SFT process is performed using a stan-
dard cross-entropy loss function, optimizing
the model’s parameters to predict the correct
response given an instruction. This stage is
followed up by the subsequent preference-
based optimization.

71



Figure 2: Overall training pipeline comprising translation, filtering, SFT, and DPO stages.

• Direct Preference Optimization (DPO): Fol-
lowing SFT, we apply DPO to further re-
fine the model’s alignment with human pref-
erences and improve its ability to generate
helpful and harmless responses. DPO is a re-
inforcement learning from human feedback
(RLHF) alternative that directly optimizes a
policy to align with human preferences with-
out requiring a separate reward model.

For the DPO stage, we construct preference
datasets consisting of pairs of responses (one
preferred, one rejected) for a given prompt.
Similar to SFT, these preference datasets are
also derived from a combination of original
English preference data and selectively trans-
lated Hindi preference data. The DPO algo-
rithm directly optimizes the policy by max-
imizing the log-probability of preferred re-
sponses and minimizing the log-probability
of dispreferred responses, effectively aligning
the model with the implicit reward signal en-
coded in human preferences. This final stage
fine-tunes the model to produce responses that
are not only accurate but also preferred by
users in both high-resource and low-resource
language settings.

Across both SFT and DPO stages, we utilized 64
A100 GPUs. The learning rate was set with a max-
imum of 5e-6 and a minimum of 9e-7, employing
a cosine annealing schedule. The batch size for

SFT and DPO was set to 1024 and 512, respec-
tively. The models were trained for 2 epochs in
both stages using Nemo Aligner (Shen et al., 2024).
The overall training process is highlighted in Figure
2.

3.2 Selective Translation

Conventional translation of SFT or DPO data typi-
cally involves translating entire text segments with-
out specific consideration for their inherent struc-
ture or non-linguistic components. This approach,
while broadly useful for general text, often faces
significant limitations when applied to specialized
datasets crucial for LLM alignment. Specifically,
it struggles to accurately preserve critical elements
such as programming code, URLs, file paths, email
addresses, highly formatted data (e.g., tables, lists),
examples where direct translation would alter their
original meaning or usefulness, special charac-
ters, mathematical symbols, technical abbrevia-
tions, and HTML/XML tags. This can lead to
corrupted data that loses its functional integrity,
rendering it less effective or even counterproduc-
tive for training LLMs on tasks requiring precise
understanding of such structured or technical con-
tent.

Selective translation using LLMs is a technique
where a Large Language Model is specifically in-
structed to translate only the linguistically adapt-
able portions of a given text, while meticulously
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preserving certain non-translatable elements. This
approach, unlike conventional translation, pre-
vents the corruption of critical content such as
programming code, URLs, file paths, email ad-
dresses, highly formatted data (tables, lists), exam-
ples where meaning would be lost, special char-
acters, mathematical symbols, technical abbrevia-
tions, and HTML/XML tags. By following precise
rules, which are specified as part of the prompt, the
LLM intelligently identifies and skips these spe-
cific segments, ensuring they remain unchanged in
the output. Furthermore, unlike typical machine
translation solutions that translate line by line, the
selective translation approach used in this work
processes the entire prompt or response at once,
thereby maintaining crucial inter-sentence coher-
ence. The goal is to produce naturally flowing
translated sentences that maintain their original
structure and accurately retain all functional or
context-sensitive non-linguistic information. This
enables high-fidelity multilingual data generation,
which is especially crucial for technical or struc-
tured content. The exact prompt used for selective
translation is presented in the Appendix A.

3.3 Quality Filtering
The process of generating translated data, particu-
larly through LLM-based approaches, inherently
introduces the risk of noisy or erroneous transla-
tions. Such noise can significantly impede the
downstream alignment process of LLMs, poten-
tially leading to the propagation of errors, reduced
model performance, and a suboptimal learning ex-
perience for the target language. Therefore, a ro-
bust quality filtering mechanism is crucial to ensure
that only high-fidelity translated samples are used
for SFT or DPO.

To address this, we implement a FAITH-based
filtering mechanism utilizing LLMs. FAITH con-
siders five crucial aspects for comparing original
and translated samples: Fluency, Accuracy, Id-
iomaticity, Terminology, and Handling of Format.
This approach leverages the generative and evalu-
ative capabilities of a separate LLM to assess the
quality of the translated outputs against the orig-
inal source sentences. The LLM acts as an auto-
mated evaluator, scoring translations across these
critical dimensions. The prompt used for this eval-
uation is presented in the Appendix A. The Llama-
3.1-Nemotron-70B-Instruct model was used for
FAITH-based filtering; we only retain examples
that receive full scores of 5 across all the parame-

ters from the judge LLM.
Following the FAITH-based filtering, we apply

an additional layer of alignment-based filtering.
This process specifically measures how well the
translated prompt and its corresponding translated
response align with each other post-translation. It
evaluates the logical consistency and coherence
between the translated query and its response, us-
ing metrics such as Helpfulness, Correctness, Co-
herence, Complexity, and Verbosity. Each metric
is scored on a scale of 1 to 5, ensuring that the
retained data not only exhibits high translation fi-
delity but also maintains the intended relationship
and quality between the prompt and response, fur-
ther refining the training corpus for optimal align-
ment.

3.4 Safety Data Considerations
The SFT and DPO datasets incorporate unsafe sam-
ples. These samples refer to queries and responses
that contain harmful, biased, or inappropriate con-
tent, and are crucial for training the model to appro-
priately refuse or handle such questions. While con-
temporary LLMs often inherently refuse to trans-
late unsafe content, traditional translation solutions
like GCP typically translate these queries without
refusal.

Therefore, we adopt a hybrid approach for safety-
critical data. Initially, a Safety-Guard LLM, specif-
ically Llama-Nemotron-Safety-Guard-v22, is em-
ployed to classify prompts and responses as either
safe or unsafe. All identified unsafe samples are
then consistently translated using GCP. This en-
sures that even within the LLM-translated data,
unsafe examples are processed via GCP, allowing
the model to learn refusal behaviors from these
translated unsafe queries. It is important to note
that unsafe samples constitute approximately 5%
of our total dataset. The full pipeline for the hybrid
approach is shown in Figure 3.

3.5 Experimental Design
Our experimental design is structured to system-
atically evaluate the effectiveness of LLM-based
selective translation for multilingual alignment, ad-
dressing the key research questions outlined in
the introduction. We compare different translation
methodologies, assess the impact of English align-
ment data, and investigate the benefits of filtering
noisy translations.

2https://huggingface.co/nvidia/llama-3.
1-nemoguard-8b-content-safety
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Figure 3: Hybrid approach for selective translation-based data curation pipeline with safety considerations. The
unsafe queries contain harmful, biased, or inappropriate content that LLMs typically decline to translate.

Figure 4: A/B comparison of translation quality, judged
by Llama-3.1-Nemotron-70B-Instruct. The graph illus-
trates the percentage preference for LLM, GCP, both, or
neither across various SFT dataset categories.

• GCP vs Llama-3.1-405B Translation: This
experiment empirically compares the perfor-
mance of models aligned using data trans-
lated by Google Cloud Platform (GCP)
against those aligned with data generated
via Llama-3.1-405B based selective transla-
tion. To achieve this, we perform SFT on
the Nemotron-4-Mini-Hindi-4B-Base model.
The SFT process utilizes a fixed set of 200k
English data samples, combined with vary-
ing subsets of translated + filtered Hindi
data. The Hindi filtered data subsets con-
sist of 20K, 40K, 60K, 80K, and 100K sam-
ples, each randomly selected from a pool
of 100K filtered examples. The unfiltered
subset comprises 200K samples. Follow-
ing SFT, the fine-tuned models are bench-
marked for their performance across various
Hindi test sets, including MTBench, IFEval,
and GSM8K, to provide a comprehensive
comparison. The Llama-3.1-405B was se-
lected for this study as it represents the largest
and highest-quality LLM available for Hindi

Figure 5: Percentage of LLM and GCP translated SFT
data filtered by the Llama-3.1-Nemotron-70B-Instruct
judge model, representing samples not achieving full
scores.

translations, with human annotators consis-
tently rating its translation quality superior
to other competitor models like Llama-3.3-
70B-Instruct and Nemotron-4-340B-Instruct.
We note that while larger contexts can some-
times lead to "sentence-drop" issues in trans-
lation, this is not a concern here as we trans-
late entire prompts and responses, ensuring
coherence. Furthermore, larger LLMs like
Llama-3.1-405B exhibit greater resilience to
the sentence drop issue and a larger context
length of 128k.

• Impact of English Alignment Data: This
experiment aims to assess the necessity of in-
cluding English data during the SFT phase, or
if Hindi data alone is sufficient to achieve the
desired performance in the target low-resource
language. In this experiment, we perform SFT
using only Hindi data. The results from these
experiments are then compared against the
previous experiments, where both English and
Hindi data were incorporated during the SFT
process, allowing us to quantify the contribu-
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tion of English alignment data.

• Impact of Filtering Noisy Translations:
This experiment investigates the impact of re-
ducing the dataset size through quality filter-
ing on the overall model performance. We
compare the performance of the SFT + DPO
model with and without applying a filtering
step to the training data. Both the SFT and
DPO datasets were subjected to this quality
filtering process. Post-filtering, the LLM-
translated SFT corpus was reduced from its
original 200k samples to 100k samples. Simi-
larly, the LLM-translated DPO corpus also
underwent a reduction in size from 200k
to 100k samples after filtering. The GCP-
translated SFT and DPO corpus is reduced to
90k and 80k, respectively. The comparison
will highlight the benefits of data quality over
quantity in multilingual alignment.

• Fluency Analysis: To evaluate the fluency of
LLM-based selective translation and GCP out-
puts, the Llama-3.1-Nemotron-70B-Instruct
model is employed as an automated evalua-
tor. It is recognized that line-by-line trans-
lation, often characteristic of methods like
GCP, can lead to inter-sentence disfluencies.
Therefore, the assessment specifically targets
the naturalness and coherence of the Hindi
responses. The Llama-3.1-Nemotron-70B-
Instruct model, serving as a Hindi-proficient
evaluator, rates responses on a scale of 1-5
across four key criteria: Grammar and Syntax,
Fluency and Naturalness, Pacing and Read-
ability, and Cohesion and Coherence. These
individual ratings, along with an overall flu-
ency score, are provided, facilitating a quanti-
tative comparison of translation fluency. The
prompt used for fluency evaluation is pre-
sented in the Appendix A.

3.6 Evaluation Datasets
The evaluation of conversational abilities in large
language models typically relies on extensive En-
glish datasets like IFEval, MTBench, and GSM8K.
For Hindi, however, available options such as
MILU (Verma et al., 2024), and Global MMLU
(Singh et al., 2024) are more limited, primarily
focusing on foundational model assessment rather
than advanced conversational nuances. Direct trans-
lation of English datasets into Hindi often over-

looks cultural nuances and linguistic structures,
leading to grammatical errors and compounding in-
herent errors in the translation process. To address
this, we adopt a multi-step approach incorporating
human oversight to ensure accurate assessment of
Hindi language capabilities. The following datasets
introduced in (Kamath et al., 2025) were used to
benchmark the aligned models trained in this work.

• SubjectiveEval: The Hindi SubjectiveEval
dataset comprises 91 open-ended questions
covering diverse Indian domains, science and
technology, mathematics, and thinking ability
(Joshi et al., 2024). It includes hypothetical
scenarios designed to assess analytical reason-
ing and problem-solving. Model responses
are evaluated using an LLM as a judge, specif-
ically GPT-4o, with responses rated on a 1-5
scale.

• IFEval-Hi3: The Hindi IFEval dataset con-
tains 848 prompts to evaluate the instruction-
following ability of LLMs in Hindi. Struc-
tured similarly to its English counterpart, it
features "verifiable instructions" with heuris-
tically validated responses. These prompts
are natively curated by Hindi-proficient spe-
cialists to capture local linguistic nuances and
Indian cultural context.

• GSM8K-Hi4: Hindi-GSM8K is the GCP-
translated version of the English GSM8K test
set. Its samples are meticulously reviewed
and corrected by human annotators for quality
improvement. These problems typically re-
quire 2 to 8 steps to solve, primarily involving
elementary arithmetic calculations.

• MT-Bench-Hi5: The Hindi MTBench dataset
consists of 200 multi-turn prompts designed
to evaluate the conversational ability of Hindi
LLMs. Eighty percent of its samples are na-
tively created by Hindi specialists, with the
remaining 20% translated from the English
version, ensuring a balanced and comprehen-
sive evaluation. For this work, we use a subset
of 40 samples from MTBench-Hi, focusing on
classes such as coding, STEM, math, reason-
ing, and multiturn interactions. The evaluation
is conducted by GPT-4o, with responses rated

3https://huggingface.co/datasets/nvidia/IFEval-Hi
4https://huggingface.co/datasets/nvidia/GSM8K-Hi
5https://huggingface.co/datasets/nvidia/MT-Bench-Hi
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Training Config SubjectiveEval GSM8K-Hi IFEval-Hi MTBench-Hi

200K En – 3.71 30.10 44.17 3.44

200K En + 20K Hi
LLM 4.12 38.67 45.44 4.32
GCP 4.02 36.32 43.77 4.10

200K En + 40K Hi
LLM 4.29 40.79 45.92 4.67
GCP 4.24 37.45 44.65 4.37

200K En + 60K Hi
LLM 4.29 42.15 45.44 4.30
GCP 4.13 38.36 45.04 4.26

200K En + 80K Hi
LLM 4.23 40.26 45.28 4.66
GCP 3.92 39.58 45.12 4.04

200K En + 100K Hi
LLM 4.15 40.86 46.39 4.62
GCP 3.98 40.71 44.65 4.17

200K En + 200K Hi
LLM 4.18 43.44 43.77 4.43
GCP 4.05 44.50 46.63 4.55

Table 1: Comparison of GCP and Llama-3.1-405B selective translation performance on downstream Hindi tasks.
The table details results from SFT models trained on a full English corpus alongside varying percentages of Hindi
data. SubjectiveEval is a rating between (1-5), GSM8K-Hi and IFEval-Hi are accuracy (%), and MTBench-Hi is a
rating between (1-10).

Training Config SubjectiveEval GSM8K-Hi IFEval-Hi IFEval-En

20K Hi 4.02 29.49 36.56 34.53
20K Hi + En 4.12 38.67 45.44 50.84

40K Hi 4.17 34.72 41.24 40.77
40K Hi + En 4.29 40.79 45.92 50.00

60K Hi 4.21 36.09 44.09 44.00
60K Hi + En 4.29 42.15 45.44 50.96

80K Hi 4.35 35.71 45.44 46.28
80K Hi + En 4.23 40.26 45.28 50.96

100K Hi 4.16 38.97 45.12 45.68
100K Hi + En 4.15 40.86 46.39 50.84

Table 2: The experiments to investigate the impact of
training SFT models on either Hindi-only data or a com-
bination of English and Hindi data. Downstream scores
are then computed for models trained with different pro-
portions of Hindi content.

on a scale of 1-10. It is noted that the scores
obtained are on the lower side, as this subset
represents areas where Hindi models typically
do not excel.

4 Results and Discussion

This section presents the results of our empiri-
cal study comparing LLM-based selective trans-
lation and GCP-based regular translation, utiliz-
ing Nemotron-4-Mini-Hindi-4B-Base as the base
model for all experiments. The base model un-
derwent Supervised Fine-Tuning (SFT) and Di-
rect Preference Optimization (DPO) on various
data combinations as detailed in the Section 3.5.
Model performance was evaluated on SubjectiveE-
val, GSM8K-Hi, IFEval-Hi, and MTBench-Hi
datasets. The key findings and best practices are

shown in Figure 6.

• GCP vs Llama-3.1-405B Translation: The
results of this comparison are presented in
Table 1. We observe three key findings:

– Models trained on Llama-3.1-405B trans-
lations consistently outperform models
trained on GCP translations across all
benchmark datasets.

– The inclusion of Hindi data alongside
English data during training significantly
improves performance compared to train-
ing on English data alone. Even a small
amount, specifically 20k Hindi samples,
demonstrates a notable boost in accuracy.

– As the quantity of Hindi data in the SFT
datablend increases, the model’s accu-
racy continues to improve, reaching satu-
ration around 60k samples.

• Impact of English Alignment Data: Table 2
illustrates the impact of incorporating both En-
glish and Hindi data during SFT, as opposed
to using only Hindi data. While it might seem
desirable to align Hindi LLMs solely with
the Hindi corpus, our findings indicate that
the addition of English data significantly en-
hances the model’s capabilities in mathemat-
ics, instruction following, and overall Hindi
language proficiency.

• Impact of Filtering Noisy Translations: Ta-
ble 3 presents the results regarding the impact
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Training Config SubjectiveEval GSM8K-Hi IFEval-Hi MTBench-Hi Fluency

Filtered SFT - Filtered DPO
LLM 4.37 43.44 55.51 4.97 4.50
GCP 4.37 43.44 55.67 4.62 4.39

Unfiltered SFT - Unfiltered DPO
LLM 4.39 44.28 57.10 4.51 4.50
GCP 4.24 43.59 58.84 5.01 4.42

Table 3: Experiments to study the impact of quality filtering on the performance of downstream Hindi tasks. SFT
and DPO training were performed using a comprehensive English corpus, in combination with either filtered or
unfiltered Hindi translated data. The fluency score is a rating between (1-5).

For LLM alignment in low-resource languages,
• LLM-based selective translation significantly improves model performance.
• Mixing translated low-resource data with original English data is crucial for robust alignment.
• Filtering translated data for quality is effective and can make training more efficient.
• Even small amounts of high-quality translated data offer notable performance gains.

Figure 6: Summary of key insights and best practices

of filtering noisy translated SFT and DPO data.
Approximately 50% of the translated data was
discarded in this process. We observe that
models trained on this filtered data perform
competitively with those trained on the full,
unfiltered dataset. This suggests that filtering
can make the training process more efficient
by reducing the data volume without signifi-
cantly compromising accuracy. Furthermore,
keeping noisy data does not necessarily de-
grade performance on downstream tasks.

• Translation Quality Analysis: The fluency
analysis results are detailed in Table 3. We
observe that LLM-based selective translations
consistently receive higher fluency scores
from the LLM-Judge. Figure 4 further
supports this, showing that a judge LLM
(Llama-3.1-Nemotron-70B-Instruct) consis-
tently prefers LLM-based selective transla-
tions over GCP translations. This preference
is particularly pronounced for instruction-
following, coding, and tool-calling samples.
Furthermore, Figure 5 highlights that a greater
amount of data is discarded for GCP transla-
tions than for LLM, suggesting lower initial
quality or adherence to filtering criteria. For
comparative results, we make sure that the
amount of LLM and GCP translated data is
equal. Consequently, for the reported compar-
ative results, we standardized the amount of
LLM and GCP translated data.

5 Conclusion

This study systematically investigated LLM-based
selective translation for aligning large language
models to low-resource languages, with a spe-
cific focus on Hindi. Our experiments consistently
demonstrated that this approach significantly en-
hances model performance compared to traditional
GCP translation.

A key finding was the substantial accuracy im-
provement achieved by incorporating even a small
quantity of selectively translated Hindi data. We
also found that blending translated Hindi data with
original English data is crucial for comprehen-
sive alignment, leading to notable advancements
in mathematical reasoning, instruction-following,
and general Hindi language proficiency. The su-
perior fluency and consistent preference for selec-
tively translated outputs, as judged by an LLM-
based evaluator, further validate the efficacy of our
method. These findings collectively highlight the
immense potential of LLM-based selective transla-
tion in developing more linguistically inclusive and
robust AI systems for low-resource environments.

Limitations

The scope of this study is focused on the English-
to-Hindi language pair, and its findings’ gener-
alizability to other linguistic contexts merits fur-
ther validation. The methodology’s reliance on
a resource-intensive "teacher" model (Llama-3.1-
405B) also presents practical considerations for
computational accessibility. Furthermore, the eval-
uation framework is subject to the potential biases
of LLM judges and is focused on a specific set of
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technical benchmarks, while the mixed outcomes
from data filtering warrant additional investigation.
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You are a Hindi translation assistant. Your task is to translate the following text into Hindi,
while applying the following rules to determine when to skip translation for specific parts:

- Skip translating the following if they appear in the sentence:
1. **Programming or coding content** (e.g., code snippets, commands) — retain this exactly as it is.
2. **URLs, file paths, or email addresses** — leave these unchanged.
3. **Strongly formatted data** such as tables, lists, or bullet points — maintain their structure and content as is.
4. **Examples or phrases** where translation would alter their original meaning or usefulness.
5. **Special characters, mathematical symbols, or technical abbreviations** — do not change these.
6. **HTML/XML tags or other formatting markers** — keep these intact and unaltered.

As you translate, ensure that the output flows naturally and maintains the overall structure of the sentence.
Retain non-translatable elements exactly as they are, while translating the rest into Hindi.

Translate the following text:

Text: {{english_text}}

Only return the translated text!
If translation is not needed, return the input text as it-is!

Figure 7: LLM-based selective translation prompt. This is used to translate the entire prompt or response.

Given the following sentences:

- Source : {{english_text}}
- Target [Hindi]: {{hindi_text}}

Please evaluate the translation using the FAITH metric. For each category, provide a score from 1 to 5 (1 = poor, 5 = excellent).
Only return the evaluation in the following JSON format:

{
"Fluency": score,
"Accuracy": score,
"Idiomaticity": score,
"Terminology": score,
"Handling_of_Format": score

}

Here are the categories:

1. **Fluency (1-5)**: Does the translation read naturally in the target language, free from grammar or syntax errors?
- 1: Very poor fluency, difficult to understand.
- 2: Somewhat fluent but with major grammatical issues.
- 3: Generally fluent with a few errors.
- 4: Mostly fluent but may have minor grammatical issues.
- 5: Perfect grammar, native-like fluency.

2. **Accuracy (1-5)**: How well does the translation preserve the meaning of the source sentence?
- 1: Meaning significantly changed or lost.
- 2: Major inaccuracies, important meanings are omitted.
- 3: Some meaning preserved, but there are notable inaccuracies.
- 4: Meaning mostly preserved with minor issues.
- 5: Meaning fully preserved.

3. **Idiomaticity (1-5)**: Are the phrases idiomatic and natural for the target language,
fitting its cultural context?
- 1: Literal translation, very awkward for native speakers.
- 2: Some idiomatic phrases but mostly awkward.
- 3: Mixed idiomaticity, some phrases fit while others don't.
- 4: Mostly idiomatic, with a few non-native phrases.
- 5: Completely idiomatic and culturally appropriate.

4. **Terminology (1-5)**: Are any specialized terms translated accurately?
(If no specialized terms, note as N/A.)
- 1: Significant errors in terminology.
- 2: Some incorrect terminology affecting understanding.
- 3: Mostly correct terminology but with some inconsistencies.
- 4: All terms correctly translated with minor inconsistencies.
- 5: All terms correctly and consistently translated.

5. **Handling of Format (1-5)**: Is the formatting (punctuation, capitalization, non-translatable elements) correctly maintained?
- 1: Significant formatting errors or omissions.
- 2: Major formatting issues that affect readability.
- 3: Some formatting errors, but generally readable.
- 4: Minor formatting issues but mostly preserved.
- 5: Format fully preserved.

In case there is no translation provided, give -1 to all the categories! If case of non-applicable score, make the score=0

Only return the evaluation JSON! No explanation!

Figure 8: FAITH-based translation quality filtering prompt
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You are an evaluator tasked with assessing the quality of a response to a query using five key metrics:
Helpfulness, Correctness, Coherence, Complexity, and Verbosity. Provide a score for each metric on a scale of 1-5,
where 1 indicates poor performance and 5 indicates excellent performance. Then, summarize your reasoning for each score in a brief comment.

Query: {{hindi_prompt}}
Response: {{hindi_response}}

#### Definitions of Metrics and Scoring Guidelines:
- **Helpfulness**: Measures how useful and actionable the response is in addressing the query.

- 1: Completely unhelpful or irrelevant.
- 2: Slightly helpful but misses key aspects of the query.
- 3: Moderately helpful but lacks depth or usability.
- 4: Mostly helpful with minor gaps in utility.
- 5: Extremely helpful, fully addressing the query with clear, actionable information.

- **Correctness**: Evaluates whether the response is factually accurate and free of errors.
- 1: Contains major factual inaccuracies or misleading information.
- 2: Includes some accurate information but has notable errors.
- 3: Mostly accurate but with minor errors or omissions.
- 4: Accurate with negligible issues.
- 5: Completely accurate and reliable.

- **Coherence**: Assesses whether the response is logically structured and easy to follow.
- 1: Illogical, disorganized, or hard to understand.
- 2: Poorly structured with noticeable issues in logical flow.
- 3: Somewhat coherent but with occasional disorganization.
- 4: Mostly coherent and well-organized with minor issues.
- 5: Perfectly coherent, logically structured, and easy to follow.

- **Complexity**: Measures whether the response appropriately balances depth and complexity for the query.
- 1: Overly simplistic or excessively complicated without justification.
- 2: Either too simple or too complex, with limited balance.
- 3: Moderately balanced but could improve in complexity or simplicity.
- 4: Mostly balanced, with only minor adjustments needed.
- 5: Perfectly balanced, with the right level of complexity for the query.

- **Verbosity**: Evaluates whether the response is concise and avoids unnecessary elaboration.
- 1: Excessively verbose or overly terse, failing to strike a balance.
- 2: Somewhat verbose or overly brief with noticeable issues.
- 3: Moderately concise but could improve in eliminating redundancy or brevity.
- 4: Mostly concise with minor verbosity or brevity issues.
- 5: Perfectly concise, providing just the right amount of information.

#### Output Format:
Provide the evaluation in the following JSON format:
{

"Helpfulness": score,
"Correctness": score,
"Coherence": score,
"Complexity": score,
"Verbosity": score

}

In case there is no translation provided, give -1 to all the categories!
If case of non-applicable score, make the score=0

Only return the evaluation JSON! No explanation!

Figure 9: Alignment-based quality filtering prompt
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You are a helpful Evaluator. Your task is to critically assess the fluency of responses given by a model to user questions in Hindi.

You will be presented with a chat containing user question and bot response pairs in Hindi.
Your goal is to evaluate the fluency of the response on a scale of 1-5, with 1 being the lowest and 5 being the highest.
You are proficient in the Hindi language, so you should consider the nuances and context of the language in your evaluation.
Your evaluation should be based on the following criteria:

1. Grammar and Syntax: Is the response grammatically correct and properly structured in Hindi?
2. Fluency and Naturalness: Does the response sound natural and fluent, as if it were written or spoken by a native Hindi speaker?
3. Pacing and Readability: Is the response paced well and easy to read or understand for a Hindi-speaking audience?
4. Cohesion and Coherence: Are the ideas logically connected, and does the response flow smoothly?

You will rate each criterion individually and then provide an overall fluency rating from 1 to 5.

Here is the chat:

User Question:
{hindi_prompt}

Bot Response:
{hindi_response}

At the end, provide the ratings in a JSON format with appropriate keys and values.

Example JSON format:
"grammar_and_syntax": 4,
"fluency_and_naturalness": 5,
"pacing_and_readability": 4,
"cohesion_and_coherence": 5,
"overall": 4

Return the JSON object with the above 5 parameters, with all ratings as integers.
Do not include anything else.

Figure 10: Fluency evaluation prompt
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