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Abstract
Grammatical error correction for Indic lan-
guages faces limited supervision, diverse
scripts, and rich morphology. We propose an
augmentation-free setup that uses instruction-
tuned large language models and conserva-
tive decoding. A 12B GEMMA 3 model is
instruction-tuned in bnb 4-bit precision with
parameter-efficient fine-tuning (PEFT) and
Alpaca-style formatting. Decoding follows a
deterministic, constraint-aware procedure with
a lightweight normaliser that encourages min-
imal, meaning-preserving edits. We opera-
tionalise inference, subsequent to instruction
fine-tuning (IFT), via a fixed, language-specific
prompt directly synthesised from a determinis-
tic error classifier’s taxonomy, label distribu-
tions, and precedence ordering computed on
the training corpus.

Under the official untuned GLEU evaluation,
the system scores 92.41 on Malayalam, sixth
overall, and 81.44 on Hindi, third overall.
These results indicate that classifier-informed
prompt design, adapter-based instruction tun-
ing, and deterministic decoding provide a re-
producible and computationally efficient alter-
native to augmentation-centred pipelines for
Indic GEC. The approach also motivates future
work on stronger morphosyntactic constraints
and human centered evaluation of conservative
edits.

1 Introduction

Grammatical error correction for Indic languages
remains limited by scarce supervision, complex
morphology, and script diversity. Many recent
systems improve performance through large syn-
thetic corpora and augmentation-based training of
sequence-to-sequence models. While these ap-
proaches are effective in high-resource environ-
ments, they are costly to reproduce for languages
such as Hindi and Malayalam and tend to be brittle
when the available supervision falls below a thou-
sand examples per language (Luhtaru and Fishel,

2024; Omelianchuk et al., 2024; Sharma and Bhat-
tacharyya, 2025).
Complementary work by Bhattacharyya and Bhat-
tacharya (2025) introduces a Bangla GEC pipeline
that defines a twelve-class error taxonomy, collects
native speaker data, and applies rule-based noise in-
jection to generate erroneous sentences from clean
references. The resulting dataset, “Vaiyakarana”
(Bhattacharyya and Bhattacharya, 2024), demon-
strates that linguistically motivated error invento-
ries combined with targeted synthetic generation
can bootstrap meaningful supervision and support
effective LLM-based correction. In contrast, our
study focuses on Hindi and Malayalam under strict
data limits and develops an augmentation-free ap-
proach emphasizing minimal-edit instruction fine-
tuning and deterministic decoding. Rather than
expanding the corpus, we use a deterministic er-
ror classifier to analyze existing data and to guide
prompt design.
This work adopts a metric-driven, augmentation-
free design suited to the BHASHA IndicGEC
benchmark, where systems are ranked by the
GLEU metric.1 Instead of creating pseudo-parallel
pairs, we cast GEC as an instruction-following
problem and adapt a general-purpose model us-
ing instruction fine-tuning and prompt optimiza-
tion. The system employs Alpaca-style supervi-
sion formatting2 and parameter-efficient adapters
through Unsloth,3 trained on fewer than one thou-
sand human-annotated examples per language. De-
coding and post-processing are designed to produce
conservative, meaning-preserving edits that maxi-

1We report the “GLEU without tuning” variant (Napoles
et al., 2016) for consistency with the shared task.

2Alpaca is a documented instruction-tuning framework de-
rived from LLaMA and trained on 52k instruction–response
pairs using the Self-Instruct method (Taori et al., 2023; Stan-
ford Tatsu Lab, 2023).

3Unsloth is an open-source fine-tuning framework opti-
mized for low-VRAM LoRA and QLoRA training (Unsloth
AI, 2025).
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mize n-gram alignment with reference sentences.
The overall design emphasizes: (i) simplicity—a
single-stage instruction-tuning setup using con-
cise prompts instead of multi-step augmenta-
tion; (ii) adaptability—instruction-following be-
havior improves resilience to mixed-script and do-
main variation common in Indic text; and (iii)
efficiency—adapter-based training and compact
prompts reduce memory and compute require-
ments. We evaluate this setup on Hindi and
Malayalam datasets, analyzing where instruction-
based adaptation narrows or maintains the gap
with high-resource or multilingual-transfer base-
lines (Luhtaru and Fishel, 2024; Omelianchuk et al.,
2024).

Evaluation protocol (GLEU). Consistent with
IndicGEC evaluation, corpus-level GLEU is used
as the primary metric, applying the “without tun-
ing” variant (Napoles et al., 2016). To align mod-
eling with the metric, the system (a) limits edits to
preserve reference n-grams, (b) normalizes punctu-
ation and script-specific conventions such as danda
and whitespace, and (c) calibrates decoding on de-
velopment data to prevent overcorrection or para-
phrastic drift that reduces GLEU.(Omelianchuk
et al., 2024).
Contributions.

• A GenAI-based, augmentation-free frame-
work for Hindi and Malayalam GEC opti-
mized for GLEU under sub-thousand supervi-
sion.

• Instruction-tuned prompts and adapter strate-
gies that favor minimal, meaning-preserving
edits consistent with reference overlap objec-
tives.

• A disciplined evaluation setup using the offi-
cial GLEU metric with systematic comparison
against multilingual and augmentation-based
baselines.

2 Dataset

The official Hindi and Malayalam grammatical
error correction (GEC) datasets released by the
AACL–IJCNLP 2025 BHASHA Workshop serve
as the primary supervision source for the IndicGEC
shared task.4 The task specifies sentence-level

4Workshop site: https://bhasha-workshop.github.
io/. Shared task page: https://bhasha-workshop.github.
io/sharedtask.html. Repository: https://github.com/
BHASHA-Workshop/IndicGEC2025/.

GEC with single-reference gold outputs and eval-
uates systems using the GLEU metric on held-out
test sets (Napoles et al., 2016). The shared task doc-
umentation defines GLEU as the official scoring
metric and provides language-specific data direc-
tories containing train.csv and dev.csv, while
test-only inputs are released subsequently for fi-
nal leaderboard evaluation (bha, 2025; BHASHA-
Workshop, 2025).

Format and schema. Each split is a CSV with
two columns: Input sentence (possibly erroneous)
and Output sentence (the corrected reference).
This layout supports minimal edit modeling and
straightforward metric computation via n gram
overlap (BHASHA-Workshop, 2025).

Preprocessing. Identical script-aware normaliza-
tion is applied to both languages, comprising: (i)
elimination of zero-width and other non-visible
Unicode artifacts, (ii) normalization of whitespace,
(iii) script-specific punctuation and orthographic
normalization, including standardized danda treat-
ment, and (iv) removal of null entries and exact
duplicate pairs. No oversampling or synthetic
augmentation is introduced prior to training, en-
suring that the experimental setting remains au-
thentically low-resource (bha, 2025; BHASHA-
Workshop, 2025).

Splits and sizes. We adopt the official splits and
report the counts used in our experiments:

Language Train Dev Test

Hindi 600 107 236
Malayalam 300 50 102

Gold references for the test sets are withheld by
the organizers. Leaderboard scoring uses GLEU
without tuning as stated on the shared task site
(Napoles et al., 2016; bha, 2025).

3 Methodology

3.1 Why Gemma 3 for Indic GEC

The Gemma 3 family is employed as the model
backbone due to its strong cross-lingual align-
ment and architectural efficiency, both of which
are essential for Indic grammatical error correc-
tion. Gemma 3 incorporates a revised tokenizer and
post-training stack with expansive coverage over
more than 140 languages, enabling robust treat-
ment of scripts such as Devanagari and Malayalam.
These scripts exhibit ligatures, vowel diacritics, and
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script-specific punctuation that complicate n-gram
fidelity under GLEU-based evaluation. The refined
tokenizer demonstrably mitigates token fragmenta-
tion and enhances the accuracy of edit-preserving
corrections.
Gemma 3 also supports long-context inference (up
to 128K tokens, except for the 1B variant) with
optimized KV-cache management. This capability
allows for batched evaluation, structured prompt
scaffolding, and transparent post-hoc analysis with-
out heavy memory costs. Finally, its instruction-
tuned checkpoints are released with open weights
and standardized chat templates, enabling seam-
less integration for edit-constrained prompting and
reproducible, deterministic experimentation.

3.2 System Overview
Our pipeline operates in two coordinated
stages. Stage 1 conducts Instruction Fine-
Tuning (IFT) on a quantized 12B backbone
using Alpaca-style supervision with Un-
sloth + PEFT/LoRA on the 4-bit checkpoint
unsloth/gemma-3-12b-it-unsloth-bnb-4bit
(Team, 2025; Hu et al., 2021; Dettmers et al.,
2023, 2021; Wang et al., 2022). Stage 2 performs
deterministic inference followed by a light
post-processing normalizer. All reported results
are obtained from Stage 2 using the frozen
inference templates derived from the analysis in
§3.5.5

3.3 Stage 1: Instruction Fine-Tuning (Alpaca
SFT on Unsloth + PEFT/LoRA)

Backbone and quantization: The Gemma 3
12B model is fine-tuned in 4-bit precision through
Unsloth and bitsandbytes, following the QLoRA
configuration (Team, 2025; Dettmers et al., 2021,
2023). This preserves instruction-following ability
while minimizing compute overhead.

Adapter setup: LoRA adapters are inserted on
attention projections with frozen base weights (Hu
et al., 2021), providing efficiency and stability for
iterative fine-tuning under limited resources.

Supervision schema: Training follows the Al-
paca Instruction–Input–Response format (Wang
et al., 2022), but with explicit constraints for edit-
only correction: make the fewest possible changes,
avoid paraphrasing or translation, preserve nu-
merals and named entities, and use appropriate

5Final inference prompts and Alpaca prompts are available at: https:
//github.com/Akhilrajeevp/GEC-bhasha/tree/main.

sentence-final punctuation. The Alpaca-style IFT
prompt templates used in our experiments are in-
cluded in §3.5.

3.4 Stage 2: Deterministic Inference and
Post-Processing

Inference model. The inference stage uses the IFT-
adapted Gemma 3 12B model with LoRA adapters
active. No additional fine-tuning or hyperparam-
eter search is applied at this stage. Decoding pol-
icy. Generation uses greedy decoding (no sam-
pling) with left padding and truncation to main-
tain consistent causal batching (Wolf et al., 2020).
This ensures predictable, locality-preserving edits.
Normalization. A lightweight normalizer refines
whitespace, punctuation spacing, and sentence-
final marks (periods or question marks), and re-
moves prompt echo. This step is strictly surface-
level and does not modify meaning.

3.5 Deterministic Error Analysis → Prompt
Design

A deterministic classifier labels each sentence pair
with one of nine error categories: Null/Empty, No
Error, Punctuation/Whitespace, Word Order, Miss-
ing/Extra Word, Syntax/Agreement, Morphology,
Spelling/Orthography, or General Grammar. De-
tails of its logic and precedence rules are provided
in Appendix A. Category distributions are com-
puted on the training and development sets to cap-
ture dominant error tendencies. These distributions
then guide prompt construction: punctuation and
morphology are prioritized, while reordering and
deletion are explicitly deprioritized. The resulting
templates are fixed and reused for all inference runs,
ensuring consistency and interpretability. Code and
classifier implementation are publicly available in
the companion repository.

3.6 Error-Type Distributions (with Nulls)

We include Null/Empty cases so that totals align
with dataset sizes: Hindi train = 600, Malayalam
train = 300, Hindi dev = 107, Malayalam dev = 50.

4 Evaluation Metrics

Evaluation adheres strictly to the BHASHA work-
shop’s prescribed protocol, reporting corpus-level
GLEU as the authoritative metric, using the “with-
out tuning” configuration (Napoles et al., 2016),
with the JFLEG formulation serving as the canon-
ical reference benchmark (Napoles et al., 2017).
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Table 1: Hindi: with-null error-type counts.

Split (n) Null Punct/WS Order Miss/Extra Syn/Agree Morph Spell Grammar NoErr

Train (600) 1 199 15 129 130 43 22 8 53
Dev (107) 0 41 1 17 19 3 2 2 22

Table 2: Malayalam: with-null error-type counts.

Split (n) Null Punct/WS Order Miss/Extra Syn/Agree Morph Spell Grammar NoErr

Train (300) 4 151 84 20 1 14 8 16 2
Dev (50) 0 18 15 2 0 8 4 3 0

All evaluation scores are generated using the of-
ficial workshop harness, preserving case, script,
and punctuation conventions. To ensure coherence
between modeling and metric behavior, the sys-
tem: (i) enforces minimal edit operations to max-
imize reference n-gram retention; (ii) applies a
lightweight, non-semantic normalization of whites-
pace and terminal punctuation to minimize spuri-
ous n-gram divergences; and (iii) employs deter-
ministic decoding to prevent paraphrastic devia-
tion that would be penalized under GLEU. Given
the standardized evaluation setting, no alternative
scoring or heuristic re-weighting is introduced; for
completeness, ablation studies consistent with stan-
dard GEC methodology are reported alongside the
primary GLEU results.

5 Results and Discussion

5.1 Leaderboard outcomes

On the BHASHA final-phase test leaderboards,
our system achieved a GLEU of 92.41 on Malay-
alam, placing 6th, and a GLEU of 81.44 on Hindi,
placing 3rd. These scores follow the workshop’s
standardized evaluation protocol that designates
corpus-level GLEU as the official metric and uses
the workshop harness for scoring

5.2 Cross-language performance

The relative ranking contrast—Malayalam: 6th
at 92.41 vs. Hindi: 3rd at 81.44—is consistent
with the distinct error profiles we observed in
development analysis. Hindi exhibits a large
mass of punctuation/whitespace and syntax/case/a-
greement issues, where minimalist edits and
auxiliary/morphology-first repairs align well with
GLEU’s n-gram preservation bias. Malayalam,
by contrast, shows a heavier proportion of punc-
tuation/whitespace and word-order phenomena;
our design deliberately discourages reordering un-

less grammatically obligatory, which preserves
reference n-grams and yields very high GLEU,
yet the track appears more competitive at the top
end—hence a strong absolute score paired with a
lower rank.
Three ingredients were most influential under the
BHASHA protocol. (i) Minimal-edit prompting
kept the model from paraphrastic drift, thereby
protecting reference n-grams that GLEU rewards.
(ii) Deterministic decoding (greedy, bounded)
suppressed stochastic variation and avoided over-
corrections that often reduce overlap on short sen-
tences. (iii) Non-semantic post-normalization
(whitespace collapse, single terminal punctuation,
removal of prompt echo) reduced spurious n-gram
mismatches without altering meaning—precisely
the kind of “surface” alignment that improves
GLEU consistency. These choices mirror estab-
lished practice for GLEU-based GEC evaluation
without tuning.
Category-wise inspection on development data sug-
gested that enforcing punctuation policy and priori-
tizing auxiliaries/morphology before any reorder-
ing delivered steady improvements for both lan-
guages. In Malayalam, resisting non-essential re-
ordering mitigated overcorrection on long clausal
spans, while the punctuation guardrails captured a
substantial share of benign mismatches. In Hindi,
the same guardrails and auxiliary/morphology em-
phasis addressed common agreement and case-
marking inconsistencies with very small token ed-
its—exactly the regime where GLEU is most re-
liable. (The deterministic classifier used for this
analysis is documented in Appendix A.)

6 Error Analysis

We evaluate model outputs relative to their in-
puts to characterize the nature and intent of
edits executed by the system. A determinis-
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tic, priority-ordered, single-label classifier (Ap-
pendix A) assigns each instance to an in-
terpretable error category. Language-specific
markers are romanized for clarity (e.g., Hindi
auxiliaries hai/hain/tha/the/thi, postposi-
tions ne/ko/se/mein/par/ka/ki/ke; Malayalam
auxiliaries aanu/illa/undu/aayirunnu, nomi-
nal/locative suffixes -il/-nte/-kk/-maayi).

Aggregate patterns. Edits cluster into three dom-
inant regions: (i) Punctuation and whitespace
(space normalization, terminal mark standardiza-
tion), (ii) Syntax, case, and agreement (auxiliary
selection, postpositions, nominal suffixes), and (iii)
Missing vs. superfluous tokens (removing repeti-
tions, restoring dropped function words). Malay-
alam exhibits a higher rate of word-order adjust-
ments, while Hindi concentrates more strongly in
auxiliary and case regularization. Across both lan-
guages, modifications remain local and conserva-
tive, reflecting the system’s design to avoid aggres-
sive rewriting in low-resource conditions.

Redundant, rectifying, and risky edits. We
further stratify edits by functional value: redun-
dant (purely surface-level), rectifying (linguis-
tically substantive yet local), and risky (unwar-
ranted global or reordering edits). The major-
ity of quality gains derive from rectifying ad-
justments—especially auxiliary/postposition cor-
rections in Hindi and short morpheme repairs in
Malayalam. Redundant punctuation corrections ap-
pear frequently but contribute primarily to surface
consistency. Risky behaviors are rare and largely
confined to long, syntactically dense Malayalam
clauses or Hindi sentences requiring coupled agree-
ment+morphology updates.

Dual-prediction synthesis. When two candidate
predictions are obtained, we compute: (i) a 9 ×9
category agreement table, (ii) a cross-matrix of re-
dundant, rectifying, risky, and (iii) union/intersec-
tion/conflict statistics. Empirically, both candidates
converge most often on punctuation/whitespace
repairs. Disagreement typically arises between
agreement/morphology repair and word-order
change, particularly for Malayalam. In such cases
we adopt a principled tie-break: prefer rectifying
edits over redundant ones, and among two plausi-
ble rectifications favor the variant with lower edit
distance and no gratuitous reordering.

Common failure modes. Observed errors fall
into three patterns: (i) over-zealous reordering on

long Malayalam clauses, (ii) partial Hindi updates
where agreement is corrected but accompanying
morphology is not, and (iii) trivial terminal-mark
flips without semantic effect.

Practical guardrails. To stabilize behavior un-
der a GLEU-oriented objective, we adopt the fol-
lowing controls: (1) enforce punctuation/whites-
pace normalization pre- and post-decoding, (2)
privilege auxiliary, case, and morphological fi-
delity before any reorder/delete operations, (3)
penalize word-order changes that preserve token
multisets, and (4) impose an edit-distance cap to
discourage paraphrastic drift. These constraints
directly operationalize the empirical error distri-
bution and help preserve faithfulness in resource-
constrained settings.

7 Conclusion

We presented a two-stage, edit-first GEC pipeline
for Hindi and Malayalam that is tightly aligned
to the BHASHA workshop’s standardized evalua-
tion, reporting corpus-level GLEU as the official
metric. On the final test leaderboards, our sys-
tem achieved 92.41 GLEU in Malayalam (6th) and
81.44 GLEU in Hindi (3rd), validating the effec-
tiveness of minimalist prompts, deterministic de-
coding, and non-semantic post-normalization under
a GLEU-oriented objective. The cross-language
pattern mirrors our error analyses: punctuation
and auxiliary/case repairs dominate Hindi, while
Malayalam benefits from strong punctuation con-
trol and conservative reordering. Looking ahead,
we plan to complement GLEU with targeted human
judgments and morphology-aware diagnostics to
better capture meaning preservation in cases where
surface n-gram overlap under-represents quality.
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9 Limitations

While the proposed pipeline is competitive un-
der the BHASHA protocol, several practical and
methodological limitations remain.
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(L1) Validation-time GLEU is not integrated
in-loop. Our training loop does not compute text-
generation metrics (e.g., GLEU) during validation
because the default SFT training stacks stream
logits/labels rather than full decoded hypothe-
ses into compute_metrics. Although Trainer
and TRL SFTTrainer expose a compute_metrics
hook (Wolf et al., 2020; trl), community reports
indicate that generation-aware metrics require cus-
tom evaluation loops or callbacks to pass decoded
text reliably (and have shown breakage across ver-
sions) (trl, 2024, 2023; uns, 2025a). As a result,
we validate with periodic offline GLEU runs rather
than truly on-line selection.

(L2) Multi-GPU training remains version-
and backend-sensitive. Unsloth’s multi-GPU
story has evolved: earlier releases displayed er-
rors or “beta” status for multi-GPU/DeepSpeed
(uns, 2024), whereas current documentation ad-
vertises multi-GPU via Accelerate/DeepSpeed
(DDP/FSDP) (uns, 2025b). In practice, distributed
setups can require manual sharding, launcher-
specific flags, and careful FSDP config; this in-
creases engineering overhead and narrows the set
of “drop-in” cluster environments that work seam-
lessly.

(L3) Metric coupling to GLEU biases the objec-
tive. GLEU (without tuning) is well-motivated
for reference-based GEC (Napoles et al., 2016,
2017), but it rewards surface n-gram overlap and
can under-credit semantically faithful reforms that
alter phrasing. Meta-evaluation work reiterates
this sensitivity and recommends complementary
views (Choshen and Abend, 2018; Kobayashi et al.,
2024). Our design (minimal edits, deterministic
decoding, punctuation normalization) is therefore
aligned to GLEU but may under-correct in cases
where a larger syntactic repair would be preferable.

(L4) Quantization and adapter constraints.
Operating a 12B model with 4-bit loading and
LoRA adapters is efficient but not unconstrained.
QLoRA demonstrates near-parity on many tasks,
yet accuracy and stability remain hyperparameter-
sensitive and task-dependent (Dettmers et al.,
2023). 8-bit optimizers likewise trade memory
for potential optimization quirks (Dettmers et al.,
2021).

(L5) Decoding and post-normalization trade-
offs. Greedy decoding improves determinism and
typically helps GLEU, but it can reduce recall

for multi-edit sentences and discourage beneficial
paraphrase. The non-semantic normalizer (whites-
pace/punctuation) systematically boosts surface
agreement; however, it can over-credit superfi-
cial fixes under an overlap-based metric and does
not guarantee deeper morpho-syntactic adequacy
(a known limitation of reference-overlap metrics
(Napoles et al., 2016, 2017)).

(L6) Error-driven prompt design may overfit
dev distributions. Our prompts are derived from
deterministic error distributions on dev and veri-
fied on validation; distribution shift at test time
(e.g., different punctuation or order profiles) could
weaken these guardrails. Without in-loop metric
feedback (L1), prompt revisions require external
evaluation cycles, slowing adaptation.

(L7) Data scale and label granularity. The train-
ing/dev sizes for both languages are modest, and
our classifier assigns a single dominant label per
pair. This simplifies analysis and prompt design but
collapses multi-error interactions; thus, some cross-
category dependencies (e.g., morphology+order)
may be under-explored.

(L8) Reproducibility. Small version changes in
TRL/Transformers/Accelerate/bitsandbytes
can affect generation hooks, metric plumbing, and
distributed training behavior (trl, 2024, 2023). We
therefore pin versions and release frozen prompts,
but portability to heterogeneous clusters may still
require per-site adjustments.
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A Appendix: Deterministic Error
Classifier — Pseudocode &
Explanation

Goal. Given an Input sentence and its Output sen-
tence (correction), the classifier assigns exactly one
dominant error label. The procedure is fully deter-
ministic, language-aware (Hindi/Malayalam), and
priority-ordered so that earlier tests short-circuit
later ones.

A. Categories (9 total)
1. Null/Empty Pair: either side is empty/blank

(including “nan”, “null”, “none”).

2. No Error: input and output strings are bit-
identical.
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3. Punctuation/Whitespace: only spacing
and/or punctuation differ; letters/digits are
identical after projection.

4. Word Order: same multiset of non-
punctuation tokens, but in a different se-
quence.

5. Missing/Extra Word: net insertions/dele-
tions of non-punctuation tokens without
stronger syntax signal.

6. Syntax/Case/Agreement (Hindi) / Syntax/A-
greement (Malayalam): changes involving
auxiliaries/copula/negation and (for Hindi)
postpositions/case markers.

7. Morphology (Inflection/Affix): suffixal
case/TAM6 changes with strong shared prefix
and altered suffix tails.

8. Spelling/Orthography: minor graphemic ed-
its (same script) with small Levenshtein dis-
tance.

9. Grammar/Syntax: structural corrections not
captured above (fallback).

B. Normalization and Token Views
• Whitespace collapse: internal test steps com-

pare strings after one-space normalization.

• Unicode & digit normalization: apply Uni-
code NFKC and map native numerals to a com-
mon representation (e.g., ASCII) before com-
parisons.

• Alphanumeric projection: remove punctu-
ation/symbols and collapse spaces; compare
only letters/digits. If these projections are
equal while the originals differ, the edit is
purely Punctuation/Whitespace.

• Tokenization: split into (i) script words, (ii)
digits (ASCII+native), and (iii) residual punc-
tuation/symbol tokens. Punctuation tokens are
ignored for word-order and multiset checks.

C. Precedence (Short-Circuit Order)
1. Null/Empty Pair

2. No Error

3. Punctuation/Whitespace (via alphanumeric-
projection equality)

6TAM = Tense–Aspect–Mood.

4. Word Order: compare multisets of non-
punctuation tokens; if equal but sequences
differ, return Word Order.

5. Alignment-based typing (see Section D)

6. Grammar/Syntax (fallback if alignment
yields no decisive signal)

D. Alignment-Based Typing (Core Resolution)

We align token sequences (Input vs. Output) to
obtain edit operations insert, delete, replace.

• Syntax touch: any edited segment that con-
tains an auxiliary/copula/negation, or (Hindi
only) a postposition/case marker, triggers the
“syntax” flag.

• Morphology vs. Spelling (within replace):

1. Same-script token pairs are compared
with a long common prefix test; if the
remaining tails differ and either tail ends
with a listed case/TAM suffix, mark Mor-
phology.

2. Otherwise, if the Levenshtein dis-
tance is small (threshold ≤ 2), mark
Spelling/Orthography.

Resolution rules (and priorities).

1. If any insert or delete is present:
If the syntax flag is set ⇒ Syntax/Case/A-
greement (Hindi) / Syntax/Agreement (Malay-
alam).
Else ⇒ Missing/Extra Word.
(Insert/Delete is resolved before considering
replace, by design.)

2. Else if any replace is present:
If the syntax flag is set ⇒ Syntax/Case/A-
greement (Hindi) / Syntax/Agreement (Malay-
alam).
Else if morphology marked ⇒ Morphology
(Inflection/Affix).
Else if spelling marked ⇒ Spelling/Orthogra-
phy.
Else ⇒ Grammar/Syntax.

3. Else: Grammar/Syntax (rare; e.g., alignment
yielded no informative ops).
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E. Tie-Breaking and Single-Label Policy
• The classifier always returns one label even if

multiple edit phenomena co-occur.

• Insert/Delete takes precedence over replace
(strong signal for Missing/Extra vs. Syntax).

• Within replace: Syntax > Morphology >
Spelling > Grammar. If both morphology
and spelling cues appear, the morphology la-
bel wins by priority.

• Earlier global checks (Null/Empty; No Error;
Punct/Whitespace; Word Order) short-circuit
alignment resolution.

F. Rationale for Design Choices
• Projection for punctuation: avoids false

lexical differences when only spacing/marks
change.

• Multiset comparison for word order: iso-
lates permutation-only edits without lexical
changes.

• Suffix-tail heuristic (long-prefix + suffix
cue): reliably captures case/TAM inflections
with minimal language-specific lists.

• Small-distance spelling: Levenshtein ≤ 2
captures typical typos/diacritic slips while
avoiding over-labeling.

• Insert/Delete precedence: net token pres-
ence/absence is a stronger indicator of Miss-
ing/Extra or Syntax than token substitutions.

G. Notes on Language-Specific Labeling
The logic is identical across languages; only re-
sources differ. The syntax label name is rendered as
Syntax/Case/Agreement for Hindi (to reflect post-
position/case markers) and as Syntax/Agreement
for Malayalam (where case is predominantly suf-
fixal). We call classify_pair(inp, out, L)
with L ∈ {HI, ML}.

Listing 1: Self-contained pseudocode (ASCII transliter-
ation for pdfLaTeX).
# NOTE: Lexica are transliterated to

ASCII so this snippet renders under
pdfLaTeX.

# --- Language profiles (compact;
extensible) ---

HI = { # Hindi
"name": "hi",

"token_regex": r"[A-Za-z0 -9]+|.",
# placeholder; real impl

uses Devanagari range
"digits_regex": r"[0-9]+",

# ASCII digits
"script_class": r"A-Za-z0 -9",

# placeholder for
script chars

# Auxiliaries/copula/negation (
transliterated):

"auxiliaries": {"hai","hain","thaa","
thii","the","rahaa","rahee","rahe"
,

"gayaa","gayee","gaye"
,"kiyaa","karta","
kartii","karte"},

# Postpositions/case (transliterated):
"postpositions": {"men","se","ko","kaa

","kii","ke","par","tak","liye","
jaise","yaa","aur"},

# Common suffix cues (case/TAM;
deduplicated , translit
placeholders):

"suffixes": ["on","en","iin","yaan","a
","e","ii","taa","tii","te","naa",
"ne",

"rahaa","rahee","rahe"]
}

ML = { # Malayalam
"name": "ml",
"token_regex": r"[A-Za-z0 -9]+|.",

# placeholder; real impl
uses Malayalam range

"digits_regex": r"[0-9]+",
"script_class": r"A-Za-z0 -9",
# Auxiliaries/negation (transliterated

):
"auxiliaries": {"aanu","alla","illa","

undu","aayi","ayirunnu","
yirikkunnu","irunnu","cheythu","
cheyyunnu"},

# Malayalam uses suffixes more than
postpositions:

"postpositions": set(),
# Case/TAM suffix cues (transliterated

):
"suffixes": ["il","yil","inte","yude",

"kku","l","um","vum","ichu","unnu"
,"ayirunnu","yirikkunnu"]

}

# --- Utilities (language -aware) ---
def nullish(x):

s = "" if x is None else str(x).
strip()

return s == "" or s.lower() in {"nan
","null","none"}

def normalize_text(s):
# Placeholder: apply Unicode NFKC ,

digit normalization , and space
collapse.

import re
s = str(s)
s = re.sub(r"\s+", " ", s).strip()
return s

def tokenize(s, L):
# Three -way split in real impl;
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simplified here to keep pdfLaTeX
happy

# Replace with language -script regex
in actual codebase.

s = normalize_text(s)
return [t for t in s.split() if t.

strip()]

def same_script(a, b, L):
# Placeholder: assume same script

for ASCII transliteration
return True

def is_punct(tok , L):
# ASCII -safe: treat tokens that are

purely punctuation as punct
return all(ch in r". ,;:!?()

[]{}<>\"'-_/\\|@#$%^&*+=~`" for
ch in tok)

def alnum_projection(s, L):
# Collapse spaces; keep only letters

/digits (ASCII -safe placeholder)
import re
s1 = re.sub(r"\s+", " ", str(s)).

strip()
return "".join(ch for ch in s1 if ch

.isalnum ())

def multiset_nonpunct(tokens , L):
from collections import Counter
return Counter ([t for t in tokens if

not is_punct(t, L)])

def levenshtein(a, b):
n, m = len(a), len(b)
if n == 0: return m
if m == 0: return n
dp = list(range(m+1))
for i in range(1, n+1):

prev , dp[0] = dp[0], i
for j in range(1, m+1):

cost = 0 if a[i-1] == b[j-1]
else 1

prev , dp[j] = dp[j], min(dp[
j]+1, dp[j-1]+1, prev+
cost)

return dp[m]

def suffix_tail_cha(a, b, suffixes):
# Long common prefix + different

tails w/ suffix cues
k = 0
for x, y in zip(a, b):

if x == y: k += 1
else: break

ta , tb = a[k:], b[k:]
if ta == tb: return False
return any(ta.endswith(s) or tb.

endswith(s) for s in suffixes)

def touches_syntax(segment , L):
return any(t in L["auxiliaries"] or

t in L["postpositions"] for t in
segment)

# --- Priority -ordered classifier (
returns 1 of the 9 categories) ---

def classify_pair(inp , out , L):
"""

Labels:
"Null/Empty Pair", "No Error", "

Punctuation/Whitespace", "Word
Order",

"Missing/Extra Word",
"Syntax/Case/Agreement" (hi) / "

Syntax/Agreement" (ml),
"Morphology (Inflection/Affix)", "

Spelling/Orthography", "
Grammar/Syntax".

"""
# (1) Null/Empty
if nullish(inp) or nullish(out):

return "Null/Empty Pair"

inp , out = str(inp), str(out)

# (2) No Error
if inp == out:

return "No Error"

# (3) Punctuation / Whitespace only
(alphanumeric projections equal)

if alnum_projection(inp , L) ==
alnum_projection(out , L):
return "Punctuation/Whitespace"

# (4) Word Order (same multiset of
non -punct tokens , different
order)

A, B = tokenize(inp , L), tokenize(
out , L)

if multiset_nonpunct(A, L) ==
multiset_nonpunct(B, L) and A !=
B:
return "Word Order"

# (5) Alignment -driven typing
from difflib import SequenceMatcher
ops = SequenceMatcher(a=A, b=B).

get_opcodes ()
SPELL_THR = 2
touched_syn = False
saw_insdel = False
saw_repl = False
saw_morph = False
saw_spell = False

for tag , i1, i2, j1, j2 in ops:
segA , segB = A[i1:i2], B[j1:j2]

if tag in {"insert", "delete"}:
if touches_syntax(segA , L)

or touches_syntax(segB ,
L):
touched_syn = True

saw_insdel = True

elif tag == "replace":
saw_repl = True
if touches_syntax(segA , L)

or touches_syntax(segB ,
L):
touched_syn = True

else:
# Morphology vs Spelling

for same -script (
assumed true here)

for ta , tb in zip(segA ,
segB):
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if suffix_tail_cha(
ta, tb, L["
suffixes"]):
saw_morph = True

elif levenshtein(ta,
tb) <=

SPELL_THR:
saw_spell = True

# Resolve (Insert/Delete): Syntax >
Missing/Extra

if saw_insdel:
if touched_syn:

return "Syntax/Case/
Agreement" if L["name"]
== "hi" else "Syntax/
Agreement"

return "Missing/Extra Word"

# Resolve (Replace): Syntax >
Morphology > Spelling > Grammar

if saw_repl:
if touched_syn:

return "Syntax/Case/
Agreement" if L["name"]
== "hi" else "Syntax/
Agreement"

if saw_morph:
return "Morphology (

Inflection/Affix)"
if saw_spell:

return "Spelling/Orthography
"

return "Grammar/Syntax"

# Fallback
return "Grammar/Syntax"
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