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Abstract

The Rigveda, among the oldest Indian texts
in Vedic Sanskrit, employs a distinctive pitch-
accent system : udātta, anudātta, svarita
whose marks encode melodic and interpre-
tive cues but are often absent from mod-
ern e-texts. This work develops a paral-
lel corpus of accented-unaccented ślokas and
conducts a controlled comparison of three
strategies for automatic accent placement in
Rigvedic verse: (i) full fine-tuning of ByT5, a
byte-level Transformer that operates directly
on Unicode combining marks, (ii) a from-
scratch BiLSTM-CRF sequence-labeling base-
line, and (iii) LoRA-based parameter-efficient
fine-tuning atop ByT5.

Evaluation uses Word Error Rate (WER) and
Character Error Rate (CER) for orthographic
fidelity, plus a task-specific Diacritic Error
Rate (DER) that isolates accent edits. Full
ByT5 fine-tuning attains the lowest error across
all metrics; LoRA offers strong efficiency-
accuracy trade-offs, and BiLSTM-CRF serves
as a transparent baseline. The study under-
scores practical requirements for accent restora-
tion - Unicode-safe preprocessing, mark-aware
tokenization, and evaluation that separates
grapheme from accent errors - and positions
heritage-language technology as an emerging
NLP area connecting computational model-
ing with philological and pedagogical aims.
Results establish reproducible baselines for
Rigvedic accent restoration and provide guid-
ance for downstream tasks such as accent-
aware OCR, ASR/chant synthesis, and digital
scholarship.

1 Introduction

The Rigveda, an ancient collection of r. k-s (hymns)
composed in Vedic Sanskrit, encodes its recita-
tional tradition through a sophisticated accent sys-
tem. Words in Vedic Sanskrit bear accented sylla-
bles, and each Veda has its own set of accent mark-
ers, with some shared across Vedic corpora. The

detailed list of accent markers used in the Vedas is
standardized in ISO/ISCII_Ammex-G.1

Rigvedic phonology distinguishes three tones:
Udātta (high tone, normally unmarked), Anudātta
(low tone, shown by a mark below the character;
U+0952), and Svarita (rising-falling tone, marked
above the character; U+0951). These accent signs
guide chanting and preserve tonal precision in oral
tradition.
These markers prescribe tone or pitch for recitation,
and are also embedded semantic units: a change
in accent can alter the meaning of a word. The
phonetic rules governing accents are described in
the Prātiśākhya-s and Śiks. āśāstra texts, with the
R. gveda Prātiśākhya serving as the authoritative
source for Rigvedic phonology. The Nighan. t.u pro-
vides a lexicon of Vedic words, and fully appre-
ciating why a syllable bears a particular accent
typically requires expertise in Sanskrit grammar,
chandas (metrics), nirukta (etymology), and pho-
netics.
Despite its linguistic centrality, many searchable
e-texts and NLP resources omit accents due to
encoding limitations or design choices prioritiz-
ing searchability (Unicode Consortium, 2025a,b;
Cologne Sanskrit Lexicon, 2020). This omission
hampers philological research, chanting pedagogy,
and speech systems that depend on tonal cues (Hell-
wig et al., 2020; Kumar et al., 2025). Accent dis-
tinctions are essential for oral instruction, yet learn-
ers using unaccented corpora cannot reconstruct
melodic contours. In speech technology, ASR or
TTS systems trained on unaccented data fail to
capture prosody vital for faithful recitation. Auto-
matic accent restoration therefore represents both a
technical challenge-a low-resource sequence label-
ing task on metrical Sanskrit verse with pervasive
sandhi-and a cultural-heritage challenge vital to

1For descriptive overviews see Extended Character Set for
Vedic IS 13194:1991; for phonetic discussion of the indepen-
dent svarita, see Beguš (2016).
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preserving an oral tradition.
Recent NLP advances make such restoration fea-
sible. Byte- and character-level transformers re-
store diacritic-like markers without brittle tokeniza-
tion (Xue et al., 2022), and parameter-efficient
fine-tuning lowers adaptation cost for niche low-
resource domains (Houlsby et al., 2019; Hu et al.,
2022). Parallel work on Arabic, Hebrew, and
Yorùbá shows the effectiveness of normalization-
aware pipelines and diacritic-sensitive architectures
(Alqahtani et al., 2020; Gershuni and Pinter, 2022;
Rosenthal and Shaked, 2024; Cohen et al., 2024;
Olawole et al., 2024), suggesting methodological
transferability even though Vedic accent remains
unexplored.
This study investigates whether modern AI mod-
els can automatically accent unaccented Rigvedic
hymns without expert linguistic rules. We con-
struct a parallel corpus of accented-unaccented
verse pairs and evaluate three strategies: (i) full
ByT5 fine-tuning (Xue et al., 2022), (ii) a BiLSTM-
CRF sequence labeler (Huang et al., 2015), and
(iii) LoRA-based ByT5 tuning (Hu et al., 2022).
Evaluation using Word, Character, and Diacritic
Error Rates (WER, CER, DER) shows full ByT5
achieves the lowest errors, LoRA balances accuracy
and efficiency, and BiLSTM-CRF provides a repro-
ducible baseline. Our released corpus and code aim
to advance accent-aware OCR, ASR, and pedagogy
for Vedic studies (Tsukagoshi et al., 2025; Kumar
et al., 2025).

2 Related Work

Computational Sanskrit and Vedic resources:
Sanskrit NLP has focused on segmentation, sandhi
splitting, morphology, and syntax - foundations
for accent restoration. Early tools such as SAN-
SKRITTAGGER and sentence boundary detectors
processed punctuation-light text (Hellwig, 2010,
2016). Neural methods advanced segmentation via
character-CNN/LSTM and graph inference (Hell-
wig and Nehrdich, 2018; Krishna et al., 2016). The
Sanskrit Heritage platform, distributed processing
stacks, and the UD-style Vedic Treebank supply
lexical and syntactic supervision useful for accent
diagnostics (Goyal et al., 2012; Huet, 2003–; Hell-
wig et al., 2020). Indian research further formal-
ized dependency relations for Sanskrit grammar
(Kulkarni et al., 2020). Recent work introduces
accent-aware OCR and ASR benchmarks for Vedic
Devanagari, defining a new context for restoration

(Tsukagoshi et al., 2025; Kumar et al., 2025).

Standardization of Vedic characters: The ex-
tended character repertoire for Vedic scripts defined
in Annex G of Extended Character Set for Vedic
IS 13194:1991 (ISCII) provided the initial frame-
work for digital representation of Vedic accents and
combining marks. This early standard, based on an
8-bit encoding scheme, served as the foundation for
later Unicode integration. Its specifications were
incorporated into the Unicode Vedic Extensions
block (U+1CD0-U+1CFX), ensuring compatibility
with Devanagari and related Brahmic scripts and
enabling cross-platform rendering of accents and
tonal signs. This standardization has been central to
developing searchable, accent-preserving corpora
and tools for computational Vedic studies (Unicode
Consortium, 2025a,b).

Diacritics and accents beyond Sanskrit: Ara-
bic, Hebrew, and Yorùbá diacritic restoration of-
fer methodological parallels. Accuracy correlates
with modeling capacity and domain adaptation,
from multitask setups to "diacritics-in-the-wild"
corpora (Alqahtani et al., 2020; Elgamal et al.,
2024). Hebrew and Yorùbá studies use compact
character LSTMs or transformer variants (NAKDI-
MON, MenakBERT, D-Nikud, T5) (Gershuni and
Pinter, 2022; Cohen et al., 2024; Rosenthal and
Shaked, 2024; Olawole et al., 2024).

Modeling choices: Byte and character-level
transformers avoid fragile tokenization in diacritic-
rich scripts; the T5 variant used here is ByT5-
Sanskrit ((Nehrdich et al., 2024)), a byte-level
model trained specifically for Sanskrit NLP tasks,
which avoids fragile tokenization in diacritic-rich
scripts and performs strongly on UTF-8 text.
Parameter-efficient transfer (adapters, LoRA) low-
ers cost for low-resource tasks such as Rigvedic
accenting (Houlsby et al., 2019; Hu et al., 2022).
BiLSTM-CRF remains a transparent baseline for
sequence labeling (Huang et al., 2015).

3 Dataset

An in-house, validated Rigveda corpus developed
at C-DAC is used, comprising 10,552 hymns orga-
nized into 10 man. d. alas and 1,028 sūktas. From this
resource, a parallel corpus of 22,740 aligned verse
pairs is constructed: each entry pairs an unaccented
verse with its diacritically marked counterpart for
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supervised training and evaluation.2

Provenance fields (man. d. ala-sūkta-r.c identifiers) ac-
company each record.
Example:
Unaccented

Accented

The accented form adds pitch cues via combining
marks while core graphemes remain unchanged
- motivating CER for orthography and DER for
accent-specific edits.

Splits: Train / test / dev (validation) partitions
are drawn from the in-house Rigveda corpus, with
stratification by man. d. ala and sūkta length to mit-
igate topical leakage. From the total of 22,740
aligned verse pairs, we adopt the train / validation /
test split, as shown in Table 1.

Table 1: Train / development / test split of the aligned
corpus (22,740 verse pairs).

Split Verse pairs Percentage
Train 19,329 85%
Development 2,274 10%
Test 1,137 5%
Total 22,740 100%

4 Methodology

We evaluate three models:

1. Full Fine-tuning (ByT5): The multilingual
ByT5 model was fine-tuned end-to-end. We
used learning rate 3e−5, batch size 32, and
trained for 10 epochs.

2. BiLSTM-CRF: This model used 256-d em-
beddings, a 2-layer BiLSTM (hidden size
512), and a CRF decoding layer. Dropout
0.3 was applied. Training used Adam (lr =
1e−3) for 20 epochs.

3. LoRA Fine-tuning (ByT5): LoRA with rank
8 and α = 16 was applied to the self-attention
projection matrices. Only 0.5% of parameters
were updated.

2The C-DAC Rigveda parallel corpus will be made avail-
able through the Indian Knowledge Base platform at https:
//indianknowledgebase.in/.

5 Evaluation Metrics

System performance is assessed using three com-
plementary string-level metrics designed to capture
lexical, orthographic, and diacritic-specific accu-
racy.

• Word Error Rate (WER) measures token-
level edit distance (Insertions, Deletions, Sub-
stitutions), reflecting overall lexical fidelity. It
is normalized by the number of reference to-
kens.

• Character Error Rate (CER) computes
character-level edit distance, excluding
whitespace. This metric is sensitive to fine-
grained orthographic deviations, making it
suitable for morphologically rich Sanskrit
text.

• Diacritic Error Rate (DER) isolates errors in
accent symbols (diacritics) alone, disregard-
ing base characters. It quantifies the precision
of accent placement (tonal correctness), nor-
malized over the total diacritic instances in the
reference.

Together, these metrics provide complementary
views of model behavior: WER captures global
token accuracy, CER measures character integrity,
and DER specifically reflects accent restoration
performance at the sub-character level.

6 Results and Discussion

Method WER CER DER
Full FT (ByT5) 0.1023 0.0246 0.0685
BiLSTM–CRF 0.2367 0.0448 0.3197
LoRA FT (ByT5) 0.3614 0.1042 0.1598

Table 2: Performance of Sanskrit accent placement mod-
els. Best scores in bold.

Our findings highlight three insights:

Transformer advantage: Full ByT5 fine-tuning
outperforms alternatives by a wide margin, confirm-
ing that large pretrained models adapt well even to
heritage tasks with limited training data.

Diacritic modeling challenge: BiLSTM–CRF
achieves tolerable WER and CER but fails dramati-
cally in DER. This suggests that traditional models
cannot capture pitch diacritic patterns without ex-
plicit linguistic priors.
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Efficiency vs. fidelity: LoRA reduces trainable
parameters by orders of magnitude but suffers
in WER/CER. Interestingly, its DER surpasses
BiLSTM–CRF, indicating that localized diacritic
learning may be partially preserved.
Beyond metrics, these results matter for applica-
tions: chanting synthesis requires low DER, while
digital philology may tolerate higher CER if se-
mantic accents are preserved.

7 Error Analysis

To examine model behavior beyond aggregate
metrics, we manually analyzed 200 mispredicted
verses from the test set, comparing error tenden-
cies across ByT5 (full fine-tuning), BiLSTM–CRF,
and ByT5-LoRA. Four categories emerged: accent
misplacement, omission or over-generation, accent-
type confusion, and boundary errors.

Accent Misplacement :The dominant category
(46.8%) involved accents shifted by one mora
within the correct syllabic span (e.g., devam

¯
r. tvijam

→ devamr. t
¯
vijam). ByT5 had the lowest misplace-

ment rate (18.2%), while BiLSTM–CRF (41.5%)
and LoRA (33.4%) showed weaker morphemic
control, suggesting that ByT5’s byte-level encod-
ing captures compound co-occurrence patterns,
whereas LoRA underfits longer phonological se-
quences.

Omission and Over-generation: These formed
26.3% of all errors, mostly in verses with multi-
ple enclitic particles (ha, ca, u). BiLSTM–CRF
tended to over-generate (14.8%), while LoRA fa-
vored omission (11.2%), reflecting a conservative
decoding bias from low-rank adaptation.

Accent-Type Confusion: About 15.1%) in-
volved udātta–svarita swaps, common in redupli-
cated or rhythmic verb forms, indicating a need for
explicit tone hierarchy modeling.

Boundary and Tokenization Errors: A smaller
share (8.7%)) arose from accent drift across pāda or
punctuation boundaries. BiLSTM–CRF was most
affected due to fixed segmentation, whereas ByT5’s
byte-level representation mitigated drift.

Cross-Metric Correlation: Diacritic Error Rate
(DER) correlated strongly with Character Error
Rate (CER) (r = 0.82) but weakly with Word Error
Rate (WER) (r = 0.39), confirming accent restora-
tion as a sub-character orthographic task.

Qualitative Observations: Mid-frequency stems
(agní, soma, indra) were accented correctly across
models, while rare words like purus. t.uta showed
erratic realizations.

8 Conclusion

We introduced the first benchmark for automatic
accent restoration in Rigvedic Sanskrit, evalu-
ated with Word Error Rate (WER), Character Er-
ror Rate (CER), and the task-specific Diacritic
Error Rate (DER) focused on accent deviations.
Full fine-tuning of ByT5 achieves the strongest
results, LoRA balances efficiency and accuracy,
and BiLSTM–CRF serves as a transparent base-
line. This work demonstrates that modern NLP
methods can be effectively adapted to heritage-
language processing despite data sparsity and do-
main constraints. Beyond restoration accuracy, the
framework holds promise for enabling systematic
prosodic annotation of Vedic corpora, thereby facil-
itating deeper linguistic and chanting analyses. Its
interpretability could further support explainable
AI approaches to modeling oral–textual correspon-
dences.
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10 Limitations

Our study has the following limitations:

1. Data size: The corpus is relatively small com-
pared to modern NLP benchmarks, restricting
model generalization and robustness.

2. Evaluation metrics: We use WER, CER, and
DER, which measure surface accuracy but do
not capture alignment with deeper metrical
or phonological rules described in traditional
sources.

3. Model coverage: We evaluate three
approaches (ByT5, LoRA, BiLSTM–
CRF). Other architectures, such as non-
autoregressive transformers, graph-based
methods, or phonology-aware encoders, are
not explored.
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