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Abstract

Large Language Models (LLMs) have shown
great code-generation capabilities, but their
performance in low-resource languages like
Bangla is largely unexplored. We participated
in BLP-2025 Task 2: Code Generation in
Bangla, where we built a pipeline to interpret
and execute Bangla instructions using GPT-5.
Extensive experiments were conducted with
proprietary (GPT-4o Mini, GPT-5 Mini, GPT-
5) and open-source (LLaMA 3-8B, TigerLLM-
1B-it) models under translation and assertion
settings. Results show that GPT-5, with trans-
lation and assertion, scored 83.8%, outper-
formed all baselines, while open-source mod-
els lagged due to limited Bangla adaptation.
Assertion-based prompting always improved
syntactic correctness, and fine-tuning reduced
hallucinations across open-source models. We
ranked 7th on the official leaderboard with an
approach which is competitive and generaliz-
able. Overall, our results show that transla-
tion quality, data normalization, and prompt
design are key components of low-resource
code generation. Furthermore, the proposed
BanglaCode benchmark and preprocessing ar-
chitecture provide a basis for further multilin-
gual code-generation research.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have made it possible to generate code
from natural language descriptions and changed
the landscape of software development (Brown
et al., 2020). Models such as GPT-3.5 and GPT-
4 have demonstrated high performance for a wide
range of programming tasks(Coello et al., 2024).
But the performance of these models is limited
in low-resource languages like Bangla, spoken
by more than 242 million people1. The gap in

*Equal contribution.
1https://en.wikipedia.org/wiki/Bengali_

language#cite_note-e28/ben/Bengali-1

Bangla NLP is mainly due to a lack of high-
quality, language-specific training datasets and
models(Zehady et al., 2024), which limits the per-
formance of existing multilingual LLMs when ap-
plied to Bangla.
This paper addresses these gaps by evaluating and
improvingBangla code generation through various
strategies like preprocessing, translation, prompt-
ing and fine-tuning. Specifically, this paper fo-
cuses on understanding how different approaches
impact the performance of LLMs when generating
code in Bangla.
Our contributions are:

• Preprocessing: Applied noise reduction tech-
niques like removing special characters and
repeated words to refine Bangla code instruc-
tions and improve model input and code gen-
eration accuracy.

• Translation: Translated Bangla code in-
structions to English using Google Translate,
facebook/nllb-200-distilled-600M, and GPT-
5 and checked if translation-induced semantic
loss affects code generation.

• Prompting and Fine-Tuning: We introduce
assertion-based prompting by varying the
number of assertions in input prompts and
fine-tune pre-trained models on a curated
Bangla code instruction dataset and optimize
for Bangla-specific tasks.

• Benchmark Comparison: Compare open-
source models (LLaMA 3, and TigerLLM-
1B-it) and proprietary models (GPT-4o Mini,
GPT-5 Mini, and GPT-5) on BanglaCode
benchmark and see the effect of translation,
preprocessing and assertion on code genera-
tion.

Through these, we want to create a new benchmark
for Bangla code generation and evaluate transla-
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tion, preprocessing and prompting strategies. By
providing an open-source benchmark and new pre-
processing and prompt optimization techniques,
we want to contribute to future research in Bangla
and other low-resource languages. This will not
only advance the understanding of code generation
in low-resource languages but also make LLMs
more effective for code generation in different lin-
guistic contexts.
Both our code and training corpus are publicly
available in the GitHub repository2.

2 Related Work

Large Language Models (LLMs) have made a lot
of progress in code generation with models like
Codex (Chen et al., 2021), StarCoder (Li et al.,
2023), and Code LLaMA (Roziere et al., 2023) do-
ing well on benchmarks like HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021).
However, these benchmarks and models are over-
whelmingly English-centric and not applicable in
multilingual or low-resource settings. In order to
assess LLMs on code creation from natural lan-
guage prompts in 204 languages, including Bangla,
mHumanEval (Raihan et al., 2024) established a
multilingual benchmark. Their findings demon-
strate that even the most advanced multilingual
LLMs, such as GPT-3.5 and GPT-4, perform much
worse on low-resource languages, which is known
as the language gap (Coello et al., 2024).
Bangla is severely underrepresented in code-
related NLP research despite being the 5th most
spoken language in the world. Existing multi-
lingual models like LLaMA 3 (Grattafiori et al.,
2024), BLOOM (Workshop et al., 2022), and AYA
(Üstün et al., 2024) have minimal Bangla content
in their training data and perform poorly when
prompted in Bangla (Raihan et al., 2024).Tiger-
Coder (Raihan et al., 2025a) is the first dedicated
Bangla code-generation LLM. It introduces three
new instruction datasets (self-instructed, synthetic,
and translated), and a Bangla version of the MBPP
benchmark (MBPP-Bangla), covering five pro-
gramming languages. TigerCoder models gain 11–
18% absolute over general-purpose Bangla LLMs
andmultilingual baselines, proving the importance
of domain-adapted training for code generation in
low-resource languages.

2https://github.com/ShifatIslam/BLP-Task-2

3 Task Description

Code generation is becoming more important in
natural language processing (NLP), and this work
aims to extend it to the Bangla language by ad-
dressing the challenges and proposing solutions.
Task 2 of the Bangla Language Processing (BLP)
(Raihan et al., 2025b) focuses on code generation
in Bangla by asking participants to develop sys-
tems that can translate Bangla prompts into Python
scripts that can pass hidden unit tests. Each dataset
instance contains a Bangla instruction describing a
programming problem, a reference Python imple-
mentation included in the trial dataset, and a set of
unit tests. By comparing different approaches in
terms of robustness and applicability, this task not
only shows the feasibility of Bangla code genera-
tion but also its potential for broader NLP applica-
tions, so that Bangla can be integrated into every-
day computational tasks and make the technologi-
cal landscape more inclusive and connected.

3.1 Dataset Description

The dataset (Raihan et al., 2024, 2025a) used in this
study was from the BLPWorkshop Task 2 on Code
Generation in Bangla. Table 1 shows the sample
of data from the given dataset. It was divided into
three parts: trial set, dev set, and test set, with 74,
400, and 500 samples, respectively. The trial.csv
was designed to fine-tune the model to capture the
Bangla language properties and nuances.

id instruction test_list

4

একিট িত্রভুজাকার িপ্রজেমর
আয়তন খঁুেজ েবর করার জনয্
একিট পাইথন ফাংশন িলখুন।
Example:
def find_Volume(l,b,h):

# your code
return l

['assert
find_Volume(10,8,6)
== 240']

8

প্রথম িস্ট্রং েথেক িদ্বতীয় িস্ট্রংেয়
উপিস্থত অক্ষরগুিল সিরেয় েফ-
লার জনয্ একিট ফাংশন িলখুন।
Example:
def str_to_list(string):

# your code
return string

['assert str_to_list
(\”probasscurve\”,
\”pros\”) ==
\'bacuve\']

Table 1: Bangla Instructions with Python Code and Test
Cases of Sample Data

Each sample in the dataset had four fields: id,
instruction, response, and test_list. The id column
was a unique identifier for each sample. The
instruction column was the main task in Bangla,
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which guided the code generation. The response
column was only in the trial set and contained the
target code solutions and was the ground truth
for fine-tuning. The test_list column contained
input–output pairs and was used to verify the
correctness of the generated code. The dev.csv
and test_full.csv did not have the response column.
They only had id, instruction, and test_list. These
subsets were only for code generation, where the
task was to generate programs that satisfy the
assertions in test_list according to the Bangla
instructions.

4 Experimental Setup

The overall methodology of our study is shown in
Figure 1. We prepare and translate the dataset, then
extract and align assertions to make the instruc-
tions clearer. Then we refine the inputs through
prompt tuning. Finally, we train and evaluate dif-
ferent models on BanglaCode to see how transla-
tion, assertions, and prompting affect code genera-
tion.

4.1 Dataset Preparation and Translation

The dataset had 3 fields: instruction, id, text_list.
Upon closer inspection, the instruction field had
discrepancies and irregularities among the texts.
These included erroneous texts, repetition of the
same words, and unnecessary texts. Direct trans-
lation was not possible. A preprocessing pipeline
was built to normalize the data and make the text
consistent.
After the dataset was cleaned, translation was done.
Several open-source models were tested: Google
Translate and Facebook/nllb-200-distilled-600M.
These models failed miserably with semantic er-
rors and synonym inconsistencies. GPT-5 was cho-
sen for the final translation step because it was the
best at fluency and semantic accuracy.

4.2 Assertion Extraction and Alignment

Translation alone was not enough to improve
the performance of the downstream code genera-
tion. To strengthen the dataset, assertions were ex-
tracted and appended to the translated instructions.
The raw assertions were problematic: mismatched
functions and syntax errors, extraneous commas,
irregular use of brackets, and misplaced quotation
marks. An algorithm was built to extract, clean
and align the assertions with the instructions. The

assertions provided clearer guidance for code gen-
eration and overall robustness.

4.3 Prompt Optimization

Prompt design was also experimented with. Short
and direct prompts outperformed longer prompts
with redundant or incorrect examples. This was
true across all models, including GPT-5. Prompt
engineering is key to code generation perfor-
mance.

4.4 Model Training and Evaluation

Multiple models were tried for the code gener-
ation task. Open-source models like LLaMA-3
and TigerLLM-9B were not accurate due to hard-
ware constraints, hallucinations, and their inability
to perform well due to their pretraining and size.
Fine-tuning was attempted on a curated dataset
(trial.csv) with 74 instruction–response pairs. Al-
though this improved consistency, the small sam-
ple size limited the performance gain. Proprietary
models via API: GPT-4-O Mini, GPT-5 Mini, and
GPT-5 were used. GPT-5 with translated texts and
appended assertions scored 83.4% and ranked 7th.

5 Result Analysis and Findings

From table 2, we can see the accuracy of different
models. As expected, the proprietary models per-
formed significantly better than the open-source
models. This comes as no surprise, as the paid
models are state-of-the-art models with better rea-
soning and size. However, there are some caveats.
The quality of performance boosted significantly
when we switched from without translation to
translation with assertions. However, even from
models such as GPT-5 the increase in accuracy is
significant, which goes from 60.69% to 83.80%.
We can see this trend in all the models, including
open-source models. This jump for GPT-5 shows
that even though LLM models are taking over the
world, there is significant improvement needed
for languages such as Bangla.

We finetuned the open-source models with
the trial dataset to reduce hallucinations, as accu-
racy remained low with occasional hallucinations
despite a strong system prompt, showing the
importance of model size for effective code gen-
eration. Additionally, we observed that prompt
tuning plays a critical role in boosting accuracy.
This was found by experimenting with small,
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Figure 1: Proposed Methodology

Model Type Specifications Model Name Accuracy

Proprietary Models

Without Translation
Gpt 4o mini 43.40%
Gpt 5 mini 55.20%
Gpt 5 60.69%

With Translation and Assertion
Gpt 4o mini 66.00%
Gpt 5 mini 81.80%
Gpt 5 83.80%

Opensource Models

Without Translation
LLama 3-8b 25.60%
md-nishat-008/TigerLLM-1B-it 18.00%

With Translation and Assertion
LLama 3-8b 32.40%
md-nishat-008/TigerLLM-1B-it 21.00%

Table 2: Model Comparison

moderate, and large prompts of equivalent seman-
tic reasoning. The resultant scores were 81.80%,
80.60%, and 80.40%, respectively, demonstrating
that prompts should be concise, well-rounded, and
generalizable. The System Prompts are shown in
the Appendix A.

6 Error Analysis

Our analysis shows that while larger proprietary
models like GPT do better than smaller open-
source models, data preprocessing is still key to
getting good results. Assertions improved perfor-
mance by a lot, and prompt tuning increased the
GPT-5 score from 80 to 83.8. Common errors were
syntactic (e.g. missing brackets, incorrect indenta-
tion), semantic (e.g. translating “গণনা কেরা” as
“print” instead of “calculate”), logical (e.g. return-
ing a single variable instead of the full function),
and hallucinations (e.g., introducing unnecessary
variables). Fine-tuning reduced hallucinations and
improved task generalization, but even state-of-

the-art models struggled with inconsistent or am-
biguous datasets. This shows that data quality and
consistency are as important as model choice for
Bangla code generation, and future work should fo-
cus on dataset generalization, synthetic assertions,
and refined prompt tuning.

7 Conclusion

In this paper, we have highlighted the findings
regarding code generation using Bangla instruc-
tions. We found that with a better and, more robust
dataset, along with a concise and accurate prompt,
the results of the generation can be boosted signif-
icantly. As noted, state-of-the-art and larger mod-
els have significantly outperformed open-source
models. While the choice of a better model leads
to better results, the gravity of a precise and factual
dataset is significantly important. For future work,
we will try more advanced prompting techniques
and bilingual training to further boost Bangla code
generation.
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Limitations

Our work is limited to code generation under spe-
cific Bangla instructions. This is promising but
not practical for real-world scenarios where you
need deeper semantic understanding with multi-
line projects. We only focus on code generation
and not on everyday applications where Bangla
can be translated or made accessible to non-Bangla
speakers. We only benchmarked a subset of state-
of-the-art models, so our comparison is not com-
prehensive. Hence, the results only show a part of
the model's capabilities, and there is room for fu-
ture work on more robust Bangla-instructed code
generation.
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A Appendix

A.1 small prompt
system_prompt = (
”You are a precise Python assistant.”
”Write a correct, concise solution in Python that satisfies the user's instruction. ”
”Create a generalized solution that strictly follows the given instructions and
also satisfies the assertion conditions.”
”Treat assertions as tests, not as the spec itself so that a more general solution is constructed.”
”Ensure the assertion condition is met.\n”
”<python code here>”
)

A.2 moderate prompt
system_prompt = (
”You are an expert Python assistant. ”
”Write a correct, concise Python solution that follows the user’s instruction exactly and handles common edge cases
(empty inputs, single items, negatives, large values). ”
”Treat assertions as test cases, and ensure they pass with a general solution. ”
”Avoid naive shortcuts (like suffix checks or hardcoded constants) unless explicitly required. ”
”If categorical outputs are required, return exactly the strings shown in the assertions (e.g., True/False, Yes/No,
Valid/None, Found a match!/Not matched!, Equal/Not equal, Even/Odd, Even Parity/Odd Parity). ”
”Return the correct value of the right type; otherwise return None (including on exceptions). ”
”For floats, match the decimal format in the assertion outputs. ”
”Use the exact function name and parameters given, and return the exact type/shape requested. ”
”Output only the function code (and tiny helpers if needed), nothing else.”
”<python code here>”
)

A.3 large prompt
system_prompt = (
”You are a precise Python assistant. ”
”Write a correct, concise Python solution that strictly follows the problem in the user's instruction.”
”and passes both the shown assertions and plausible hidden tests. ”
”Treat assertions as tests, not as the spec itself so that a more general solution is constructed. ”
”Ensure the assertion condition is met. ”
”Implement the natural language spec in the user's instruction. Handle standard edge cases.”
”(empty inputs, singletons, negatives, large values, mixed types) consistent with that spec. ”
”No prints, no input(), no files/network, no global state, no mutation of arguments. ”
”Ensure outputs are deterministic; if multiple valid answers exist, use a stable tie break.”
”(e.g., first occurrence or lexicographic order). ”
”Avoid oversimplified shortcuts (e.g., suffix checks, hardcoded constants, or pattern only guesses) ”
”unless explicitly required. Use logic that generalizes and covers edge cases. ”
”Be explicit about bools (exclude True/False from numeric logic unless the spec says otherwise). ”
”Avoid raising exceptions unless the spec requires it; return a neutral value instead (e.g., 0, [], None). ”
”Use exact integer math where possible; if floating point is required, define rounding/format (e.g., round(x, 2)). ”
”Use exactly the requested function name and parameters; return exactly the requested type/shape. ”
”Prefer O(n)–O(n log n); avoid unnecessary copies and heavy imports. ”
”Output only the function (and any tiny helper if essential). Do not include docstrings, comments, or extra text. ”
”Consider adversarial but spec consistent cases (empties, all equal, already sorted, duplicates, extreme values). ”
”Do not hardcode to the given assertion values. ”
”Output ONLY the function (and any tiny helper it calls). No extra text.\n”
”<python code here>”
)
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