BRACU_CL at BLP-2025 Task 2: CodeMist: A Transformer-Based
Framework for Bangla Instruction-to-Code Generation

Md. Fahmid-Ul-Alam Juboraj', Soumik Deb Niloy', Mahbub E Sobhani'+
Farig Yousuf Sadeque'*

IBRAC University

United International University

{md.fahmid.ul.alam. juboraj, soumik.deb.niloy}@g.bracu.ac.bd
msobhani2410011@mscse.uiu.ac.bd, farig.sadeque@bracu.ac.bd
x denotes corresponding author

Abstract

We propose CodeMist, a hybrid framework
for Bangla-to-Python code generation, focus-
ing on enhancing code accuracy through a
two-stage pipeline of generation and debug-
ging. In the development phase, standalone
models such as TigerLLM and StarCoder
achieved low accuracies of 27% and 24%,
respectively, while advanced models like
Gemini-1.5-flash and Gemma reached 60%
and 64%. Pairing Gemma with the GPT-0SS de-
bugger resulted in a substantial improvement
to 99.75%, emphasizing the importance of a
dedicated debugging stage. In the test phase
on unseen data, GPT-0SS alone achieved 67%,
which increased to 71% with self-debugging.
The highest performance of 84% was achieved
by combining Gemini-2.5-flash as the gen-
erator with GPT-0SS for debugging. These
results demonstrate that integrating a strong
generative model with an effective debug-
ging component produces superior and ro-
bust code generation outcomes, outperform-
ing existing approaches such as TigerLLM.
The full implementation of the framework is
publicly available at https://github.com/
fahmid-juboraj/Code_generation.

1 Introduction

Automated code generation has witnessed rapid ad-
vancement with the emergence of Large Language
Models (LLMs) such as CodeT5 (Wang et al.,
2021) and CodeGen (Nijkamp et al., 2022), which
achieve over 90% accuracy on benchmarks like
HumanEval (Raihan et al., 2025a). These mod-
els translate natural language instructions into ex-
ecutable code, substantially enhancing developer
productivity and software development efficiency.

Despite these successes, most LLMs are trained
primarily on English-based instructions, creating
a linguistic bias in code generation research (Rai-
han et al., 2025¢). This English-centric training
restricts accessibility for non-English-speaking de-

velopers and undermines the inclusivity of Al-
assisted programming tools. While languages such
as Chinese and Japanese have begun to receive
research attention, Bangla, the fifth most spoken
language globally with over 300 million speakers,
remains largely unexplored in this domain. Ex-
isting multilingual models struggle to generalize
Bangla semantics to programming constructs due
to the lack of high-quality Bangla—Python paral-
lel datasets and the absence of specialized bench-
marks for evaluation.

To address these limitations, this study intro-
duces CodeMist, a hybrid Bangla-to-Python code
generation framework that integrates generative
modeling with automated debugging which em-
ploys the Gemini API to generate Python code
from Bangla instructions and subsequently refines
it through GPT-OSS, a locally fine-tuned GPT-
based model capable of detecting and correcting
syntax and logical errors. This dual-stage frame-
work not only enhances the accuracy and correct-
ness of generated code but also demonstrates the
effectiveness of coupling code generation with an
adaptive debugging mechanism for non-English
programming tasks. The contribution lies in ex-
panding code generation research beyond English,
offering a foundational step toward linguistically
inclusive Al programming systems.

2 Related Work

BanglaBERT (Bhattacharjee et al., 2022) pio-
neered Bangla-specific language modeling and in-
troduced the BLEU benchmark for NLU evalua-
tion. Subsequent models such as TigerLLM (Rai-
han et al., 2025d) and TitulLMs (Ahmed et al.,
2025) improved reproducibility, coverage, and
transliteration handling. Community-driven ef-
forts like the BanglaLLM project (BanglaLLM
Organization, 2024) released open-source mod-
els such as Bangla-LLaMA-13B (Zehady and the

656

Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025), pages 656—662
December 23, 2025 ©2025 Association for Computational Linguistics

https://github.com/fahmid-juboraj/Code_generation
https://github.com/fahmid-juboraj/Code_generation

(b)

Instruction

a3fe T fgw I
WY gfS AR Gt
@A FA @

(Write a function to find the
sun of two integers.)

STy
Chain-of-Thought
Prompt

P -
Function Prototype 7 Ve

{ sum_of _numbers () pn}

Generated Code

Debugger

%

Accuracy

Solution

Q)

Pass@3

Figure 1: (a) A Chain-of-Thought prompt combines a natural-language instruction in Bangla with a function proto-
type, which is provided to the Generator to produce candidate implementations. (b) A Debugger constructs a Chain-
of-Thought prompt with failure details, and debugging LLMs are engaged to iteratively repair and re-evaluate the
generated code, where v denotes correct code and X denotes faulty code.

BanglaLLM Team, 2024), enabling wider exper-
imentation. Parameter-efficient fine-tuning ap-
proaches such as LoRA (Hu et al., 2021) have
been applied to resource-constrained models like
Gemma 2B (Dasgupta, 2024) and Bangla-LLaMA
(Saiful, 2023), demonstrating scalable adaptation
methods.

The BLEU benchmark (Bhattacharjee et al.,
2022) evaluates core Bangla NLU tasks, includ-
ing sentence classification and sequence labeling.
Later datasets introduced task-specific challenges
such as tense classification in Banglalense (Rah-
man et al., 2025) and sentiment analysis in BnSent-
Mix (Data Analytics Research Group, 2024). De-
spite these advances, standardized benchmarks
remain limited (Khan et al., 2025), restricting
cross-model comparison. Community reposito-
ries like (Bangla NLP Community, 2024) consol-
idate datasets, yet coverage of generative tasks,
especially code generation, is insufficient. mHu-
manEval addresses this gap with a massively mul-
tilingual benchmark, featuring prompts in 204
languages and solutions in 25 programming lan-
guages to evaluate cross-lingual coding perfor-
mance.

While LLMs achieve strong performance in En-
glish code generation (Chen et al., 2021; Nijkamp
et al., 2022), Bangla instruction-based code gen-
eration remains largely unexplored. Most Bangla
LLM:s target natural language understanding rather
than code synthesis. Only a few, such as Tiger-
Coder (Raihan et al., 2025b), focus on code gen-
eration, but they are limited by small datasets,
lack of standardized evaluation, and minimal error-
correction mechanisms. The absence of large-
scale Bangla—Python parallel corpora and the chal-
lenge of mapping Bangla semantics to program-

ming logic make reliable code generation non-
trivial. Our work addresses these limitations by cu-
rating a comprehensive Bangla-to-Python dataset
and developing a two-phase hybrid framework
combining code generation with iterative debug-
ging using models like GPT-OSS, achieving higher
accuracy and robust synthesis on both develop-
ment and unseen test sets.

3 Methodology

In this section, we outline the proposed pipeline for
generating Python code from Bangla instructions,
as shown in Figure 1.

3.1 Problem Formulation

We are studying the task of generating code
from instructions provided in the Bangla language.
Each problem consists of a Bangla instruction
set, denoted as INS = {insi,insa,...,ins,},
paired with a corresponding function prototype
set, FP = {fp1, fp2,..., fpn} and explicit CoT
prompt CP = {cp1,cpa,...,cpn}. The objec-
tive is to generate the correct Python code, rep-
resented as Y, for each pair (ins;, fp;). This
framework enables us to compare different mod-
eling approaches: code generator models that di-
rectly map from (ins;, fpi, cp;) to Y and code de-
bugger models that iteratively refine the generated
code. Throughout the execution of our CodeMist
pipeline, the parameters for all models were kept
frozen. The entire procedure can mathematically
be abbreviated as follows:

Y = LMgng([ep, LMgen(ins, fp,cp)]) (1)

3.2 Motivation

Automated code generation from Bangla instruc-
tions often faces errors due to linguistic ambigu-

657

Generation Debugging Accuracy(%)
StarCoder None 24.00
TigerLLM None 27.00
Qwen-1.5B None 27.00
TigerCoder None 33.00
TigerCoder GPT-OSS 53.00
Gemini-1.5-flash None 60.00
Gemma None 64.00
Gemma GPT-0SS 99.75

Table 1: Performance of Code Generation and Debug-
ging (Development Phase)

ity and model limitations. A pipeline that inte-
grates code generation with recurring debugging
enhances reliability while lowering manual effort.
This approach enhances the accuracy and usabil-
ity of generated programs, facilitating effective
Bangla-to-code translation and evaluation.

3.3 CodeMist

In this section, we provide the details of our code
generator-debugger pipeline.

3.3.1 Code Generator

The process begins with a CSV file containing mul-
tiple columns such as instruction, id, and other
contextual features. Each instruction is first pro-
cessed by a Prompt Design module, which trans-
forms the input text into a structured prompt op-
timized for the Gemini API. This module may in-
corporate additional contextual information from
the CSV, such as example inputs/outputs or con-
straints, to reduce ambiguity and improve model
comprehension. The quality and clarity of these
prompts are crucial, as they directly influence the
correctness and functionality of the generated code.
The prepared prompt is then sent to the Gemini
API, which returns the generated code through its
response interface. All outputs are stored in a
JSON file containing each id and its correspond-
ing response. The correctness of the generated
code is subsequently evaluated using a Python
script, Scoring. py. This evaluation informs both
performance metrics and areas where debugging
may be necessary.

3.3.2 Code Debugger

For cases where the generated code is incorrect
or suboptimal, CodeMist activates the Code De-
bugger pipeline. This phase begins by logging
errors and linking them with the corresponding
instructions and failure reasons in an updated

Generation Debugging Accuracy(%)

GPT-OSS None 67.00
GPT-OSS GPT-OSS 71.00
Gemini-2.5-flash GPT-OSS 84.00

Table 2: Performance of Code Generation and Debug-
ging (Test Phase)

CSV file. A local model interface is initial-
ized by downloading and configuring an appro-
priate model (e.g., GPT-OSS:20B) along with a
system prompt that combines the original instruc-
tion, contextual information, and the identified fail-
ure reason. This enriched prompt guides the lo-
cal model to produce corrected versions of the
code. By explicitly including both the original in-
struction and failure context, the debugger can re-
solve syntax, logical, and runtime errors more ef-
fectively. Each erroneous case is reprocessed to
generate improved outputs, which replace the pre-
vious responses and are saved in a new submis-
sion JSON file following the same schema (id,
response). The corrected codes are subsequently
evaluated using Scoring_V2.py to enable com-
parative performance analysis between the initial
Gemini-generated results and the refined open-
source LLM-based solutions.

4 Experimental Analysis

4.1 Dataset

We utilize two datasets provided by the BLP Work-
shop (Raihan et al., 2025¢c) for training, valida-
tion, and evaluation of Bangla-to-Python code
generation models. Both datasets contain Ben-
gali problem descriptions paired with correspond-
ing Python test cases but do not include ground-
truth solutions. The dev_v2.csv dataset com-
prises 400 tasks and is used for model devel-
opment and hyperparameter tuning, while the
test_vl.csv dataset includes 500 tasks and
serves as the held-out evaluation set. Each in-
stance contains three fields—id, instruction,
and test_list—where instruction provides
the problem statement in Bengali and test_list
defines the functional requirements in Python. To-
gether, these datasets enable systematic assess-
ment of code generation models’ ability to general-
ize from natural language to executable programs.

4.2 Performance Evaluation

During the development phase, predictions are
evaluated using a static checker that executes all

658

assertion-based test cases. The metric is defined
as:

Npass

Pass@14., =

where Npass denotes the number of tasks whose
generated code passes all test cases, and Ntotar is
the total number of evaluated tasks.

For the final evaluation phase, a runtime-based
evaluator with timeout and exception handling
computes the functional correctness as:

x 100% 2
NrtotaL ’ @

N,
Pass@] iy = ;ffft 3)
ota.

where Ncorreet Tepresents the number of tasks
whose generated programs pass all functional tests
under execution, and Ny, is the total number of
tasks evaluated.

4.3 Experimental Results

4.3.1 Quantitative Results

During the development phase, several code gen-
eration models were evaluated independently and
in combination with debugging support. As
shown in Table 1, TigerCoder (Raihan et al.,
2025b) achieved an accuracy of 33% without de-
bugging, which improved to 53% when paired
with the GPT-OSS (Community and Contribu-
tors, 2024) debugger. This illustrates the ben-
efit of an explicit debugging phase in correct-
ing syntax and logical errors in the generated
code. Similarly, other standalone generation mod-
els such as StarCoder (Li et al., 2023) and Owen-
1.5B (Team, 2024c) achieved relatively low accura-
cies of 24% and 27%, respectively, indicating lim-
ited capability in producing fully functional code
from Bangla instructions without assistance. In
contrast, more advanced models like Gemini-1.5-
flash (Team, 2024a) and Gemma (Team, 2024b)
achieved higher accuracies of 60% and 64%,
demonstrating improved contextual understanding
and code synthesis. The most notable improve-
ment was observed when Gemma was combined
with the GPT-OSS debugger, achieving a remark-
able accuracy 0f 99.75%. This underscores the sig-
nificant role of the debugging component in refin-
ing model outputs. Overall, these findings confirm
that integrating a powerful generator with a spe-
cialized debugger can dramatically enhance perfor-
mance.

Subsequently, in the test phase, models were
evaluated on unseen prompts to measure general-

ization. As shown in Table 2, GPT-OSS alone
achieved a baseline accuracy of 67%, which in-
creased to 71% with self-debugging (GPT-OSS +
GPT-0SS). The combination of Gemini-2.5-flash
(Team, 2024a) as the generator and GPT-OSS as
the debugger achieved the best performance of
84%, highlighting the robustness of cross-model
debugging.

4.3.2 Qualitative Analysis of Failures

To categorize failure types, we clustered failure de-
scriptions based on their top keywords and manu-
ally interpreted the resulting groups.

Logical Failures. Keywords such as testlist,
comma, and syntax indicate structural or parsing
errors caused by formatting mistakes or missing
elements.

Analytical Failures. Terms like character,
string, and execution reflect runtime or rea-
soning errors, requiring understanding of expected
program behavior.

Mathematical Failures. Keywords including
test, assertion, and exception correspond to
validation or computation errors such as failed as-
sertions or unmet conditions.

5 Conclusion

This study demonstrates the effectiveness of a hy-
brid LLM-based pipeline for Bangla programming
instruction understanding and Python code genera-
tion. By leveraging the Gemini API for initial syn-
thesis and a local Ollama model for targeted correc-
tion, our approach overcomes language-specific
limitations and achieves substantial performance
gains. The iterative design ensures both scalability
and adaptability, enabling error tracking, prompt
refinement, and systematic evaluation. The im-
proved accuracy underscores the value of integrat-
ing cloud-based and local models to enhance mul-
tilingual code generation. Future work will ex-
plore fine-tuning domain-specific Bangla LLMs,
expanding datasets with richer semantic coverage,
and applying reinforcement-based evaluation to
further optimize generation quality.

6 Limitations

While our study provides valuable insights into
Bangla to Python generation and the benefits of a
generator—debugger pipeline, it has several limita-
tions. First, all models were evaluated in a Chain-

659

of-Thought (Wei et al., 2022) setting without fine-
tuning, limiting our understanding of how training
or domain adaptation might affect results. Sec-
ond, we relied on fixed prompts and debugging
strategies, without exploring adaptive or iterative
prompting that could refine reasoning. Third, our
evaluation used a limited dataset, restricting con-
clusions about generalization and robustness. Fi-
nally, our assessment focused solely on automated
correctness metrics, without human or qualitative
analyses to capture broader usability and failure
patterns.

References

Khandaker Tahmid Ahmed, Mahir Rahman, Taufiq Is-
lam, and Sabbir Khan. 2025. Titullms: A family
of bangla 1lms with comprehensive benchmarking.
arXiv preprint arXiv:2502.11187.

Bangla NLP Community. 2024. Awesome datasets for
bangla language computing. GitHub Repository.

BanglaLLM Organization. 2024. Banglallm: Bangla
large language model. Hugging Face Model Hub.

Abhik Bhattacharjee, Tahmid Hasan, Wasi Uddin Ah-
mad, Yuan Li, Yong-Bin Kang, and Rifat Shahriyar.
2022. Banglabert: Language model pretraining and
benchmarks for low-resource language understand-
ing evaluation in bangla. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 1318-1327.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

OpenAl Community and Contributors. 2024. Gpt-oss:
Open-source gpt-like models for code understanding.
https://github.com/openai. Used as Debug-
ging Model.

Abhishek Dasgupta. 2024. Building a bangla llm by
finetuning gemma 2b 1lm using low-rank-adaptation.
Medium Blog Post.

Data Analytics Research Group. 2024. Bnsentmix:
A large-scale bengali-english code-mixed sentiment
analysis dataset.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Lowl[Irank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Sabbir Ahmed Khan, Md Arafatur Rahman, Md Sai-
ful Islam, and Kazi Sakib Ahmed. 2025. Evaluat-
ing llms’ multilingual capabilities for bengali. arXiv
preprint arXiv:2507.23248.

Raymond Li, Loubna Ben Allal, Peter Izsak, and
et al. 2023. Starcoder: A large language model
for code generation. https://huggingface.co/
bigcode/starcoder. BigCode Project.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2022. Codegen: An open large
language model for code with multi-turn program
synthesis. In International Conference on Learning
Representations.

Md Mahfuzur Rahman, Md Saiful Islam, Kazi Sakib
Ahmed, and Sabbir Khan. 2025. Banglatense: A
large-scale dataset of bangla sentences categorized
by tense. Data in Brief, 53:110132.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025a. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 11432—-11461, Albuquerque, New Mex-
ico. Association for Computational Linguistics.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025b. Tigercoder: A novel suite of
llms for code generation in bangla. arXiv preprint
arXiv:2509.09101.

Nishat Raihan, Mohammad Anas Jawad, Md Mezbaur
Rahman, Noshin Ulfat, Pranav Gupta,
Mehrab Mustafy Rahman, Shubhra Kanti Kar-
makar, and Marcos Zampieri. 2025c. Overview of
BLP-2025 task 2: Code generation in bangla. In
Proceedings of the Second Workshop on Bangla
Language Processing (BLP-2025). Association for
Computational Linguistics (ACL).

Nishat Raihan, Joanna CS Santos, and Marcos
Zampieri. 2025d. Tigerllm - a family of bangla large
language models. arXiv preprint arXiv:2503.10995.

Mohammed Saiful. 2023. Bangla llama: Finetune
bangla llama model using lora approach. GitHub
Repository.

Google DeepMind Team. 2024a. Gemini 1.5: Unlock-
ing multimodal capabilities in long contexts. https:
//deepmind.google/technologies/gemini/.
Accessed: 2025-09-27.

Google DeepMind Team. 2024b. Gemma: Lightweight
open models from google deepmind. https://ai.
google.dev/gemma. Accessed: 2025-09-27.

Qwen Team. 2024c. Qwenl.5: A comprehensive
multilingual large language model. https://
huggingface.co/Qwen. Accessed: 2025-09-27.

660

https://huggingface.co/BanglaLLM
https://huggingface.co/BanglaLLM
https://github.com/openai
https://medium.com/@abhishek20dgp/building-a-bangla-llm-by-finetuning-gemma-2b-llm-using-low-rank-adaptation-lora-73bad579f0a4
https://medium.com/@abhishek20dgp/building-a-bangla-llm-by-finetuning-gemma-2b-llm-using-low-rank-adaptation-lora-73bad579f0a4
https://datanalytics101.com/bangla-language-datasets-for-sentiment-analysis-and-ner/
https://datanalytics101.com/bangla-language-datasets-for-sentiment-analysis-and-ner/
https://datanalytics101.com/bangla-language-datasets-for-sentiment-analysis-and-ner/
https://huggingface.co/bigcode/starcoder
https://huggingface.co/bigcode/starcoder
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://github.com/saiful9379/Bangla_LLAMA
https://github.com/saiful9379/Bangla_LLAMA
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://ai.google.dev/gemma
https://ai.google.dev/gemma
https://huggingface.co/Qwen
https://huggingface.co/Qwen

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code

understanding and generation. arXiv preprint
arXiv:2109.00859.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Abdullah Khan Zehady and the BanglaLLM Team.
2024. Bangla llama 13b instruct v0.1. Hugging
Face model card, https://huggingface.co/
BanglaLLM/bangla-1lama-13b-instruct-v0.
1. Open-source Bangla instruction-tuned large
language model (13B parameters).

661

https://huggingface.co/BanglaLLM/bangla-llama-13b-instruct-v0.1
https://huggingface.co/BanglaLLM/bangla-llama-13b-instruct-v0.1
https://huggingface.co/BanglaLLM/bangla-llama-13b-instruct-v0.1

A Appendix

A.1 Dataset Sample

This table provides a few representative samples from our dataset. Each row shows the sample ID, the
corresponding task instruction in Bangla, and the Python assertions used to verify the expected output.

Table 3: Sample instances from the Dataset

ID | Instruction Test List (Sample)

1 | a3 wiea Bigm a M@ ¢edl @rel TF | [assert max_chain length([Pair(5, 24),
o Al AR A *JeeT | Pair(15, 25)]) == 3]

2 | 93 eme Ph-9 AW 5[FAgS %7 [| [assert first repeated char(“abcabc”) ==

FEA |

”a”s]

3 | @fb e 7149 T n €T GW (=G AN | [Cassert get_ludic(10) ==[1, 2, 3, 5, 7]’]
O35 FTF A @ FAE |

4 | 93 ewe PG U3 *FeEE ot T | [assert reverse_words(”’python program”) ==
cears forg | ”program python”’]

5 | aws o4t a3 B Giferss < 6 ©f ABIE | [“assert prime_num(13) == True’]
A

A.2 Sample of Generated Failed With Details

This table shows the first five samples from failed_with_details_test.csv. Each row lists the sam-
ple ID, the type of failure encountered during testing, the task instruction in Bangla, and the corresponding
Python test list that caused the failure.

Table 4: Samples from failed_with_details_test.csv

ID | Failures Instruction Test List

3 | XIIX]IX][X] Failed to | @f6 s foigq A «@l6 | [assert count_common
parse test list: invalid | S FACHC FA«Ee N0 40 | (['red’,’green’, black’],
syntax near “,”. (9 96 [’green’,’white’,’red’]) ==

2’]

5 | XIXIIX][X] Failed to | «f6 FGws (=6 orwca @@ | [assert split_lowerstring
parse test list: invalid | S99 & GF0 FieA 137 | ("AbCd”) ==["bC’,’d’]’]
syntax near “]”.

6 | X]X][X][X] Failed to | @f6 i fo1gm e @O | [assert
parse test list: invalid | SFCIE TN 40X ATSN A | text lowercase underscore
syntax near “_”. (’aab_cbbbc”) == True’]

8 | [XIIX][X][X] Failed to | @25 TG (tF faeR G | [assert str to list (“probass-
parse test list: invalid | ©sf¥e wrwaef Yoz e curve”, ”pros”) =
syntax near “(”. [’b”,7a”,’c”,u”,"’v”,’e”]’]

15 | [X] Error in function def- O30 gwe SIETe W{% <l | [’assert find Product
inition: unexpected char- | 28q TAMMelE @eEa FdT | ([1,1,2,3],4) = 6]
acter. LA

662

