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Abstract

Bangla is a low-resource language for code
generation, lacking large-scale annotated
datasets and tools to transform natural
language specifications into executable pro-
grams. This makes Bangla-to-code generation
a challenging task requiring innovative
solutions. To address this, we introduce
BanglaForge, a novel framework for gener-
ating code from Bangla function descriptions.
BanglaForge leverages a retrieval-augmented
dual-model collaboration paradigm with self-
refinement, combining in-context learning,
llm-based translation, systematic prompt
engineering, and iterative self-refinement
based on execution feedback, where a coder
generates initial solutions and a reviewer
enhances them for robustness. On the BLP-
2025 Bangla Code Generation benchmark,
BanglaForge achieves a competitive Pass@1
accuracy of 84.00%, demonstrating the
effectiveness of retrieval, model collaboration,
and self-refinement for low-resource Bangla
code generation.

1 Introduction

Large language models (LLMs) have shown
strong capabilities in code generation, where nat-
ural language descriptions are automatically trans-
formed into executable programs. Models such as
Codex, CodeT5, and StarCoder, trained on large-
scale codetext corpora, can produce syntactically
valid and semantically correct solutions, perform-
ing well on benchmarks like HumanEval (Chen
et al., 2021). These advances reduce the gap be-
tween human intent and code, making program-
ming more accessible. However, most existing
systems are designed for English inputs, leav-
ing low-resource languages underserved. Models
often struggle with informal structures, domain-
specific terms, and semantic nuances, resulting in
incorrect or brittle outputs.

We introduce BanglaForge, a framework for gen-
erating executable code from Bangla task descrip-
tions. Each input is represented as a triple:
the Bangla description, its English translation,
and unit test assertions. This structure lever-
ages the models stronger English understanding
while retaining Bangla context. BanglaForge com-
bines retrieval-augmented prompting, iterative
self-refinement with execution feedback, and a
dual-model coderreviewer pipeline. Our system
achieves a Pass@1 accuracy of 84% on BLP-
2025 Bangla Code Generation Benchmark (Rai-
han et al., 2025c), demonstrating the potential of
practical low-resource code generation.
Our contributions can be summarized as follows:
• A retrieval-augmented few-shot prompting ap-

proach using TF-IDF to select relevant Bangla–
Python pairs, improving in-context learning de-
spite limited labeled data.

• A LLM-based translation component that trans-
lates Bangla instructions into English with the
help of a glossary to enable accurate cross-
lingual code generation.

• An iterative self-refinement protocol that lever-
ages execution feedback to detect and correct er-
rors across refinement cycles.

• A dual-model architecture where a generator
model focuses on functional correctness and a
reviewer model enhances robustness, style, and
coverage of edge cases.

We release our implementation of BanglaForge at
https://github.com/mahirlabibdihan/
BanglaForge to facilitate reproducibility and
further research.

2 Related Works

Research in Bangla NLP has evolved from early
word embeddings to specialized LLMs. Initial
efforts such as BnVec introduced embeddings
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Figure 1: Workflow of the proposed BanglaForge framework. A Bangla instruction (Pb) is translated into English
(Pe) and, together with unit tests, used to retrieve top-k bilingual examples. The Coder LLM then generates
Python code and additional test cases. The Reviewer LLM validates, refines, and re-prompts upon errors until all
tests (original and generated) are passed, yielding the final code.

like fastText, Word2Vec, and GloVe trained on
diverse corpora, with customized fastText out-
performing multilingual baselines in classifica-
tion tasks (Kowsher et al., 2021, 2022; Mo-
jumder et al., 2020). Recent advances include
Bangla LLMs and benchmarks such as Tiger-
Coder (Raihan et al., 2025b) and BanglaByT5
(Bhattacharyya and Bhattacharya, 2025), which
advanced code generation and tokenization strate-
gies. However, existing work largely focuses on
pretraining and benchmarking without complete
generation pipelines. Our work addresses these
gaps by introducing retrieval-augmented prompt-
ing, iterative self-refinement, and a dual generator-
reviewer design. A detailed discussion is provided
in Appendix A.

3 Dataset

We build on the resources introduced for Bangla
code generation across recent shared tasks and
benchmarks. Our dataset comes from the Bangla
Code Generation shared task (Task 2) at BLP-
2025 (Raihan et al., 2025c), where the objective is
to translate Bangla natural language programming
prompts into Python functions that satisfy hidden
unit tests. The dataset is distributed through an
official starter kit1, which also provides baseline
code and evaluation scripts.

Each entry is a JSON object containing four
fields: an id, a Bangla instruction describing the
task, a response field with the reference Python

1https://noshinulfat.github.io/blp25_code_
generation_task/#/get-started

Figure 2: Example data point

implementation (training only), and a test_list
field of assert-based unit tests.

Split Purpose Size
Trial Initial experiments 74
Development Validation 400
Test Final evaluation 500

Table 1: Dataset Split Statistics for Bangla Code Gen-
eration

For development and testing, we adopt two ex-
ternal Bangla code generation benchmarks. The
mHumanEval-Bangla dataset (Raihan et al.,
2025a), a Bangla extension of HumanEval, is used
during the development phase, enabling program-
matically testable evaluation on held-out prompts.
The MBPP-Bangla dataset (Raihan et al., 2025b),
adapted from MBPP as part of the TigerCoder
framework, is used during both development and
test phases, providing diverse programming prob-
lems in Bangla with associated unit tests.

4 Methodology

We propose BanglaForge, a retrieval-augmented
dual-LLM framework for generating Python
code from Bangla natural language specifications.
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The system tackles low-resource code genera-
tion through structured prompt design, bilingual
translation, example retrieval, and a two-stage
generation-review process involving a Coder LLM
and a Reviewer LLM. Together, these components
ensure both functional correctness and stylistic re-
liability, even in underrepresented languages like
Bangla. An overview of the complete workflow is
shown in Figure 1 and in Algorithm 1 (Appendix).
Each stage is described in detail below.

4.1 Problem Formulation and Input
Representation

Each task in the dataset consists of a Bangla in-
struction Pb and its corresponding public unit tests
T = {t1, . . . , tn}. To enable code synthesis,
the instruction is translated into English using a
translation model equipped with a controlled glos-
sary for mathematical and algorithmic terms (e.g.,
GCD, LCM, sum). The glossary is curated by
the authors which was motivated from the pro-
vided dataset and commonly seen technical terms
in code related works. The translated instruction
Pe retains the semantic fidelity of the Bangla in-
struction while ensuring syntactic clarity for code
generation. The systems objective is to synthesize
a Python function f such that all ti ∈ T are sat-
isfied given the constraints in Pb. Function proto-
types are normalized to valid Python syntax, align-
ing argument and return types with unit test defini-
tions.

4.2 Retrieval-Augmented Example Selection.

To enhance contextual understanding, both Bangla
and English task descriptions are used to retrieve
semantically similar solved examples from a bilin-
gual database D = {(pbi , pei , ci, Ti)}Ni=1. Each
entry contains the Bangla and English prompts,
the reference code (ci), and associated test cases
(Ti). Both Pb and Pe are embedded using TF-IDF
unigram bigram representations. We chose TF-
IDF due to its high computational efficiency and
strong performance on smaller datasets, as dense
retrievers typically require a large training corpus
to be effective (Arabzadeh et al., 2021). For our
task, TF-IDF’s strength in matching exact, high-
signal technical keywords (e.g., GCD,” factorial”)
is paramount. This lexical precision provides a
fast and more reliable baseline for retrieving anal-
ogous code problems than a dense model’s gener-
alized semantic understanding (Karpukhin et al.,
2020). The top-k examples (typically k = 5)

are selected and inserted into the prompt as few-
shot exemplars. For experiments on the Devel-
opment set, the database D consists of the Trial
set. For experiments on the Test set, we use the
combined Trial+Development sets as the database.
This bilingual, retrieval-augmented setup enables
contextual grounding and helps the model capture
problem-solving patterns from similar tasks. The
retrieved example format is provided in Appendix
C.

4.3 Stage 1: Code Generation by Coder
LLM.

The Coder LLM receives a composite input con-
sisting of the Bangla instruction Pb, English
translation Pe, the retrieved top-k example pairs
(pbi , p

e
i , ci, Ti), and the provided unit tests T .

Based on this augmented prompt, the Coder LLM
generates a Python code candidate c0 intended to
satisfy T , and additional synthetic test cases Tc de-
signed to cover potential edge or missing cases.
This stage focuses on functional code generation
guided by contextual analogies from retrieved ex-
amples. The output (c0, Tc) is then passed to
the Reviewer LLM for refinement. The detailed
prompt for Coder LLM is provided in Appendix
C.

4.4 Stage 2: Code Review and Refinement by
Reviewer LLM.

The Reviewer LLM acts as a validator and refiner.
It takes as input the code and test cases generated
by the Coder LLM along with the original task de-
scription and unit tests. Its responsibilities include
running static and logical checks on c0, correcting
syntax or runtime issues, improving variable nam-
ing, structure, and input validation, generating an
additional set of refined unit tests Tr to ensure cov-
ering edge cases. If any error or inconsistency is
detected, the Reviewer LLM suggests an explicit
fix and the process is repeated up to a maximum
of M iterations (M = 5). The detailed prompt for
Reviwer LLM is provided in Appendix C.

4.5 Iterative Self-Refinement Protocol.

The refinement loop is formally defined as: ci+1 =
R(ci, ei,P), whereR denotes the Reviewer LLM,
ei is the detected error, and P represents the aug-
mented prompt containing feedback. The cycle
continues until all test casesoriginal (T ), coder-
generated (Tc), and reviewer-generated (Tr)are
successfully passed, or until the retry limit M is
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Model Few Shot # Examples Translation # Unit Tests Pass@1
Dev Set

Gemma-1B N/A 0 No 0 27.25%
GPT-OSS-20B Manual 3 No 0 60.25%
GPT-OSS-20B Manual 5 No 0 61.25%
DeepSeek-R1-Llama-70B Manual 5 Yes 0 57.75%
Gemini-2.0-Flash Manual 3 Yes 0 60.00%
Gemini-2.0-Flash Manual 5 Yes 0 62.50%
Lg Exaone Deep 32B Manual 5 Yes 1 85.25%
Lg Exaone Deep 32B Manual 5 Yes 3 94.25%
Lg Exaone Deep 32B RAG (Trial) 5 Yes 3 95.50%

Test Set
Lg Exaone Deep 32B RAG (Trial+Dev) 5 Yes 1 80.60%
Gemini-2.5-Pro RAG (Trial+Dev) 5 Yes 1 84.00%

Table 2: Pass@1 accuracy of models on the BLP-2025 Development and Test sets.

reached. This multi-level testing ensures that the
final solution generalizes beyond the given test
cases. The errors and suggested fixes are provided
in Appendix C.

5 Experiment

5.1 Evaluation Metrics

We evaluate performance using the Pass@1 ac-
curacy metric, which measures the proportion of
problems solved correctly in the first iteration.
This metric provides a clear and direct assessment
of the systems accuracy in solving problems with-
out requiring further refinements.

5.2 Models

We evaluate several large language models
(LLMs) for Bangla code generation. The models
tested on the Development set include Gemma-
1B (Gemma, 2024), GPT-OSS-20B (Initiative,
2024), DeepSeek-R1-Llama-70B (AI, 2025),
Gemini-2.0-Flash (DeepMind, 2024), and Lg
Exaone Deep 32B (Research, 2024), with dif-
ferent prompting strategies and unit-test settings.
For the final evaluation on the Test set, we se-
lect Lg Exaone Deep 32B (Research, 2024) and
Gemini-2.5-Pro (DeepMind, 2025) under their
best-performing configurations within a retrieval-
augmented dual-stage pipeline.

5.3 Results

We evaluate our system on the BLP-2025 Bangla
code generation benchmark. Our experiments are
conducted in two stages: first on the Develop-
ment set to explore different models and prompt-
ing strategies, and then on the Test set to report fi-
nal results. Table 2 presents the Pass@1 accuracy

for various models and configurations across both
sets.

The development set results reveals that small-
scale models such as Gemma-1B achieve only
27.25% Pass@1, underscoring the challenge
of Bangla-to-code translation without contextual
guidance. Larger open-source models like GPT-
OSS-20B shows improvements (60.25-61.25%)
under few-shot prompting, though performance
gains taper off with additional in-context exam-
ples. Introducing translation-based prompting fur-
ther improves comprehension of Bangla instruc-
tions, as seen with DeepSeek-R1-Llama-70B
(57.75%) and Gemini-2.0-Flash (60-62.5%).

A major performance leap is observed with the
Lg Exaone Deep 32B model, which combines
translation and lightweight unit-test feedback. Ac-
curacy rises from 85.25% with one visible test to
94.25% with three tests, highlighting the benefit
of guided reasoning through intermediate valida-
tion. When enhanced with our RAG pipeline on
the trial set, the model achieves 95.5% Pass@1
on the development benchmarkdemonstrating con-
sistent improvements through contextual retrieval
and refinement.

On the held-out test set, the RAG-augmented
Lg Exaone Deep 32B achieves 80.6% Pass@1,
while the more recent Gemini-2.5-Pro model fur-
ther pushes performance to 84.0%. These re-
sults confirm that retrieval augmentation com-
bined with multilingual comprehension yields ro-
bust generalization across unseen Bangla program-
ming tasks.

6 Conclusion

In this paper, we presented a retrieval-augmented
dual-model framework for generating Python code
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from Bangla instructions. Combining struc-
tured prompting, iterative self-refinement, and a
generator-reviewer design, our system achieved
Pass@1 accuracy of 84% on the BLP-2025 bench-
mark. The approach consistently outperforms
baselines, showing the effectiveness of retrieval
augmentation and feedback-driven refinement for
low-resource code generation. Future work will
expand the framework to other languages and in-
corporate reinforcement-based refinement. Ad-
ditionally, improvements in RAG corpus and
Bangla-to-English translation quality are expected
to further enhance the overall performance of the
pipeline.

7 Limitations

While BanglaForge demonstrates strong perfor-
mance on the BLP-2025 Bangla code generation
benchmark, several limitations remain. First, the
system relies heavily on high-quality bilingual
translation; inaccuracies in Bangla-to-English
mapping or glossary coverage can propagate er-
rors to the generation stage. Second, the re-
trieval component depends on TF-IDF, which cap-
tures lexical overlap but may miss deeper se-
mantic similarities, especially in complex algo-
rithmic prompts. Third, the framework assumes
well-structured Bangla input; informal phrasing
or dialectal variations could reduce translation fi-
delity and retrieval relevance. Additionally, self-
refinement cycles are limited to a fixed num-
ber of iterations and do not incorporate adap-
tive stopping or learning from prior refinements.
Finally, since the dataset itself originates from
machine-translated English sources, true Bangla-
native problem framing and linguistic diversity re-
main under-represented. Future work should ex-
plore human-curated datasets, semantic retrieval
models, and reinforcement-based refinement to ad-
dress these limitations.
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A Related Works

The trajectory of research in Bangla NLP
has shifted from foundational embeddings and
lightweight classification models to full-fledged
Bangla LLMs and, more recently, toward modu-
lar architectures that integrate retrieval and feed-
back. In the early days, emphasis was placed on
crafting vector representations tailored to Banglas
morphological richness and vocabulary distribu-
tion. The BnVec project, for instance, introduced
Bangla-specific fastText, Word2Vec, and GloVe
embeddings that placed importance on vocabu-
lary coverage and representation quality (Kowsher
et al., 2021). Later work showed that embed-
dings trained on Bangla corpora outperform mul-
tilingual embedding baselines in text classifica-
tion and related tasks (Kowsher et al., 2022; Mo-
jumder et al., 2020). Meanwhile, the Vacaspati
corpus and derived models such as Vac-FT and
Vac-BERT demonstrated that diversifying corpus
domains and scaling data can boost embedding
and language model utility beyond standard fast-
Text baselines (Bhattacharyya et al., 2023).

As the field progressed, researchers began de-
veloping Bangla-centric pretrained language mod-
els for both understanding and generation. A no-
table early example is BanglaBERT, introduced by
Bhattacharjee et al., which is a BERT (ELECTRA-
discriminator)style model pretrained on a 27.5 GB
Bangla corpus (Bangla2B+) and evaluated on a
suite of Bangla NLU benchmarks that include
classification, NLI, NER, and QA tasks under
the BLUB benchmark (Bhattacharjee et al., 2022).
BanglaBERT outperforms multilingual baselines
on those tasks, showing that language-specific pre-
training brings tangible gains in low-resource set-
tings. Building on that, more recent works such
as enhanced sentiment analysis pipelines fine-tune
and hybridize BanglaBERT with lexicon/rule com-
ponents (Mahmud and Mahmud, 2024), or apply it
for domain tasks like hyperpartisan news detection
with semi-supervised learning and explainability
(Hasan et al., 2025). Alongside, general-purpose
monolingual models for Bangla (e.g. Bangla-Bert-
Base by Sagor Sarker et al.) have also been
proposed and used across classification and NER
tasks (Sarker, 2020).

Complementing these, newer model lines push

647

https://doi.org/10.3390/app12062848
https://doi.org/10.3390/app12062848
https://doi.org/10.14419/ijet.v10i2.31538
https://doi.org/10.14419/ijet.v10i2.31538
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://www.lgresearch.ai/model/exaone-deep-32b
https://www.lgresearch.ai/model/exaone-deep-32b
https://github.com/sagorbrur/bangla-bert
https://github.com/sagorbrur/bangla-bert


toward generative and evaluation capacities in
Bangla. TigerLLM, is a suite of Bangla LLMs
trained on large Bangla corpora and shows gains
over prior open and proprietary models across
Bangla benchmarks (Raihan and Zampieri, 2025).
In the programming domain, TigerCoder intro-
duces dedicated Bangla code LLMs (1B and 9B)
and the MBPP-Bangla benchmark, reporting 11 to
18 % Pass@1 improvement over multilingual base-
lines (?). In evaluation, BenLLMEval provides a
wide evaluation of off-the-shelf LLMs (GPT-3.5,
LLaMA-2, Claude, etc.) on Bangla tasks (sum-
marization, QA, paraphrase, classification), reveal-
ing substantial performance gaps in zero-shot set-
tings (Kabir et al., 2023). The BEnQA benchmark
offers parallel BengaliEnglish QA and reasoning
tasks derived from exam questions; it shows that
chain-of-thought prompting helps reasoning tasks
and that including English context can improve
performance in Bengali (Shafayat et al., 2024).

Despite advances in modeling, most existing
works treat the language model as a single-step
generator without built-in mechanisms for ground-
ing, correction, or iteration. In broader NLP and
code domains, however, robust generation systems
increasingly incorporate retrieval-augmented ar-
chitectures (e.g. RAG), cross-lingual retrieval for
low-resource grounding, retrievalaugmented data
augmentation (RADA), multi-stage or hierarchical
retrieval (e.g. for code), and iterative refinement
via coderreviewer loops or test-driven feedback.
These techniques have been shown to reduce hal-
lucination, improve factual grounding, and correct
logical or syntactic errors in generated outputs.

These retrieval, review, and iteration techniques
remain underexplored in Bangla and especially
in Banglacode generation. In this work, we ex-
plicitly address that gap by combining Bangla-
focused models (e.g. TigerLLM, TigerCoder)
with retrieval-based prompt augmentation, a sepa-
rate reviewer module, and iterative self-refinement.
This hybrid design aims to boost reliability and
real-world usability in Bangla code generation sys-
tems.

B Experimental Setup

All models were configured with the following de-
fault generation parameters: temperature = 0.7,
top_p = 0.9, and max_new_tokens = 1024. Each
query generated n = 1 output sample per decoding
pass.

C Model Prompts

This section details the prompts used in our
Bangla2Py framework. The prompts are designed
to guide the Large Language Models (LLMs)
through the code generation, refinement, and re-
view stages. Placeholders like {instruction} are
dynamically populated by the pipeline.

C.1 Coder Model Prompts

The Coder LLM is the first stage of our system
and is responsible for writing the initial Python so-
lution. It receives both the Bangla task description
and its English translation, along with a set of re-
trieved examples and the provided unit tests. The
coder’s system prompt clearly defines its role as a
Python code generator and instructs it to produce
only executable code no explanations or com-
ments (Figure 3). The main task prompt includes
several few-shot examples followed by the current
problem. Each example shows the task instruction
(in both languages), the correct solution, and unit
tests (Figure 4). If the generated code fails any
test, the coder receives a short feedback message
describing the error type (e.g., syntax error, time-
out, or assertion failure) along with a fix hint (Fig-
ure 5). It then regenerates an improved version in
the next iteration. This feedback-guided prompt-
ing helps the coder LLM progressively refine its
output and produce cleaner, test-ready code with a
built-in main() function for validation.

C.2 Reviewer Model Prompts

The Reviewer LLM acts as the second stage and
takes the code produced by the coder, along with
the original BanglaEnglish instructions and all test
cases (both given and generated). Its prompt de-
fines the role of a code reviewer focusing on im-
proving correctness, readability, and coverage of
edge cases without changing the function signa-
ture. The reviewer checks for logical mistakes, in-
efficient loops, missing validations, or weak test
coverage. It then returns a refined version of the
code, adds extra corner-case tests, and ensures the
final version passes both visible and hidden cases.
If errors are still detected, the reviewer can repeat
this process with updated feedback until all tests
are passed or a retry limit is reached.

C.3 Few-Shot Example Template

To help both LLMs generalize better, we use
retrieval-augmented few-shot examples in the
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System Prompt for Coder Model

You are a Python programming assistant.
The user will provide a function stub where the original docstring is written in Bangla
with a translated version and a unit test case.
Your task is to read the Bangla + English (Translated) docstring and the unit test case,
understand the requirement, function parameters, return type, and complete the function
implementation in Python.
Your response must be in English, not Bangla, and must only contain valid Python code.
Do not add explanations, comments, or extra text. Just return the code solution.
Your main task is to carefully read the Bangla + English (Translated) docstring and the
unit test case and infer:
1. The expected number of parameter and their types
2. The expected return type
3. The correct implementation logic
Important guidelines:
1. The function signature is already provided in the instruction. Implement the function
as specified.
2. Include a main function (using def main():) in your code that contains
necessary unit tests or example calls to validate your function.
3. Do not call main() anywhere in your code. This will be executed externally.
4. Try to keep the code as simple as possible.
5. Your response should contain only one python block enclosed in a code block like:
“‘python
# your code here
“‘

Figure 3: System prompt for the coder model.

prompts. The system retrieves the top-k most sim-
ilar problems from the bilingual database using
both Bangla and English task texts. Each example
includes:

• The Bangla and English instructions,

• The reference Python solution, and

• The corresponding unit tests.

These examples are formatted in a consistent tem-
plate and placed before the current task in the
prompt (see Figure 8). This structure lets the mod-
els recognize patterns in how Bangla instructions
map to Python logic, guiding them to produce cor-
rect and well-structured code even for unseen prob-
lems.

D Error Refinement

The iterative feedback follows an augmentation
protocol as outlined in Table 3.

E Ablation Study

To analyze the contribution of each component in
BanglaForge , we perform ablation experiments
using the Lg Exaone Deep 32B model on the BLP-
2025 development set. The best full configura-
tion achieves a Pass@1 accuracy of 95.5%, and

Error Type Feedback Hint / Guidance
Syntax Error Check indentation, missing colons, or

parentheses; ensure valid Python syn-
tax.

Runtime Error Ensure variables are initialized and ref-
erenced correctly; verify data types and
control flow.

Assertion Failure Compare expected vs. actual outputs;
review logical steps and boundary con-
ditions.

Timeout Error Optimize loops or recursion; include
clear termination conditions.

System Exit Avoid abrupt exits; allow the program
to complete execution normally.

Table 3: Error categories and corresponding feedback
hints used in prompt augmentation.

all reported variations are measured relative to this
setting. Each ablation disables or modifies a sin-
gle module while keeping the rest of the pipeline
fixed.

E.1 Effect of English Translation

We first evaluate the role of bilingual translation.
When the system relies solely on Bangla instruc-
tions without their English counterparts, compre-
hension drops significantly. The LLM often fails
to parse algorithmic phrases and control keywords
written in Bangla. As shown in Table 4, removing
the translation stage reduces Pass@1 accuracy by
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Main Prompt Template for Coder

{examples}
» Your Task
> Instruction
“‘python
def {function_call}:
"""{instruction}"""
"""Translated: {instruction_en}"""
"""{docstring}"""
“‘
Now complete the python code for the function ’{function_name}’ and add a
’main’ function with unit tests. You should use the ’check’ function for unit tests,
which is helpful for debugging. For example:
“‘python
def {function_call}:
# Your code

def check(test_id, test_val, expected):
assert test_val == expected, f"Test {test_id}: Expected {expected}, got
{test_val}"

def main():
{check_example}
# Add more unit tests
“‘

Figure 4: Main prompt template for the coder, which includes few-shot examples and the current task.

Failed Attempt Feedback Template

» Last failed code
> Response:
{last_response}
> Error:
{last_error}
> Suggested Fix:
{fix_instructions}

Figure 5: Template for providing feedback to the coder model after a failed execution attempt. This is appended to
the main prompt during the self-refinement loop.

nearly 22 percent, confirming that current models
still struggle to reason directly over Bangla-only
text.

Setting Pass@1 (%)

Full Model (Bangla + English) 95.5
Bangla Only 73.6

Table 4: Effect of English translation on Pass@1 accu-
racy (Lg Exaone Deep 32B, Dev Set).

E.2 Effect of Glossary-based Translation
We also analyze the impact of the controlled trans-
lation glossary used for mathematical and algorith-
mic terms. Without this glossary, the translation
model often produces inconsistent or incorrect ter-
minology, confusing the Coder during reasoning.

As shown in Table 5, removing the glossary results
in a notable performance drop of over 7 points,
confirming that LLMs struggle to translate some
Bangla words properly, leading to incorrect func-
tion generation.

Setting Pass@1 (%)

With Glossary (Full Model) 95.5
Without Glossary 88.2

Table 5: Effect of using the controlled translation glos-
sary.

E.3 Effect of Feedback Loop
Next, we disable the iterative self-refinement
mechanism. Without execution feedback or re-
prompting, the model cannot correct runtime or
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System Prompt for Reviewer Model

You are a Python code reviewer and programming assistant.
The user will provide a function stub or implementation where the original docstring
is written in Bangla with a translated English version, along with unit test cases.
Your task is to:
1. Do not alter the given function signature.
2. Review the implementation for correctness, clarity, efficiency, and robustness.
3. Refactor or improve the implementation if needed, but the function signature must
remain identical.
4. Ensure the function works correctly not only for the provided tests but also for
hidden test cases and corner cases (e.g., empty inputs, boundary values,
invalid values, very large inputs).
5. Add a main function with unit tests that use the provided check function.
6. Include the given test cases and add additional edge/corner case tests that a
hidden evaluator might check.
7. Do not add explanations, comments, or extra text. Just return the code solution.

Important guidelines:
1. The function signature is already provided. Implement or refactor the function
as specified.
2. Include a main function (using def main():) that contains both the given
unit tests and extra corner/hidden-case tests you find necessary.
3. Do not call main() anywhere in your code. It will be executed externally.
4. Keep the code clean, correct, and as simple as possible while ensuring it passes
all tests, including edge and hidden cases.
5. Your response must be only one valid Python code block enclosed in triple backticks:
“‘python
# your code here
“‘

Figure 6: System prompt for the reviewer model.

Main Prompt Template for Reviewer

» Your Task
The following function is already implemented:
"""{instruction}"""
"""Translated: {instruction_en}"""
“‘python
{existing_code}
“‘

Figure 7: Main prompt template for the reviewer model.

logic errors, leading to a steep performance drop.
Table 6 shows that accuracy declines by more than
25 percent, emphasizing that feedback-driven cor-
rection is vital for reliable synthesis.

Setting Pass@1 (%)

Full Model 95.5
Without Feedback Loop 69.8

Table 6: Impact of feedback-driven refinement.

E.4 Effect of Reviewer LLM

To measure the Reviewers contribution, we bypass
the second-stage review and directly execute the

Coder output. Although the generated code re-
mains mostly functional, it lacks stylistic polish
and robustness on edge cases. Table 7 shows a
moderate decline of about 5 percent, verifying that
the Reviewer mainly improves coverage and relia-
bility.

Setting Pass@1 (%)

Full Model 95.5
Without Reviewer 90.4

Table 7: Effect of disabling the Reviewer LLM.
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Few-shot Example Template

» Example {idx}:
> Instruction
“‘python
def {function_call}:
"""{instruction}"""
"""Translated: {instruction_en}"""
"""{docstring}"""
“‘
> Solution
“‘python
{solution}

def check(test_id, test_val, expected):
assert test_val == expected, f"Test {test_id}: Expected {expected}, got
{test_val}"

def main():
{test_main}
“‘

Figure 8: Template for formatting each of the k-nearest examples for retrieval-augmented generation.

System Prompt for Translator Model

Translate the following Bangla Python Code Instruction to English and only return the
English translation. Do not change the example function and parameter names and only
update the function parameter types and return variable types of Example function
prototype to actual python syntax based on the provided unit test. Do not give the full
code implementation. Just give the updated prototype.

Use the following glossary for translation: {glossary}

Unit Test: {test}

Figure 9: System prompt for the translator model.

E.5 Number of Feedback Iterations

We vary the maximum feedback iterations (M ) to
observe convergence behavior. As shown in Ta-
ble 8, fewer iterations significantly reduce success
rate since many tasks require multiple refinement
cycles. Beyond five iterations, improvements satu-
rate.

Max Iterations (M ) Pass@1 (%)

1 84.1
3 92.4
5 95.5
7 95.5

Table 8: Effect of limiting feedback iterations (M ).

E.6 Effect of Retrieval Augmentation (RAG)

We compare our retrieval-augmented setup against
a manually few-shot configuration. In the manual
setup, the examples are fixed and not selected dy-

namically based on similarity, while the RAG vari-
ant retrieves the top-k relevant bilingual examples
for each new task. As Table 9 shows, retrieval aug-
mentation provides a small but consistent improve-
ment of about 1.3 points, indicating that example
relevance matters more than sheer quantity.

Setting Pass@1 (%)

With RAG (Full Model) 95.5
Manual Few-shot (Fixed Examples) 94.2

Table 9: Comparison between manual few-shot and
RAG-based prompting.

E.7 Number of Retrieved Examples (k)

Finally, we study the impact of the retrieval con-
text size. As Table 10 shows, removing examples
(k = 0) severely hampers the models grounding
ability, dropping performance below 70%. Accu-
racy improves steadily up to k = 5, after which
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Figure 10: Glossary for the translation prompt

marginal gains diminish due to context saturation.

Number of Examples (k) Pass@1 (%)

0 (No Examples) 69.3
3 88.9
5 (Full) 95.5
7 94.7

Table 10: Effect of retrieved example count (k).

E.8 Comprehensive Summary
Table 11 consolidates all variants. The results con-
firm that English translation and the feedback loop
contribute the largest performance boosts, while
the glossary, reviewer, and RAG components fur-
ther improve consistency, code quality, and gener-
alization.

F Algorithm

Algorithm 1 shows the pseudocode of our
pipeline.

G Failure Cases and Dataset Limitations

The dataset for Bangla-to-Python code genera-
tion was created by translating existing English

datasets MBPP (Mostly Basic Python Problems)
and HumanEval into Bangla using machine trans-
lation. While this approach enables rapid dataset
construction, it introduces several limitations that
affect both dataset quality and model performance.

G.1 Semantic and Syntactic Translation
Errors

Machine translation occasionally produces Bangla
sentences that are grammatically incorrect or se-
mantically ambiguous. Such translations may hin-
der a models ability to correctly interpret the input
and generate the intended Python code. For exam-
ple:

• The English adjective “even” was translated
as এমনকি instead of the more contextually

accurate জোড় in cases where even refers
to parity in numbers. This leads to semantic
confusion and misinterpretation of the ques-
tion context.

G.2 Incorrect or Misleading Terminology for
Programming Concepts

Programming terms often lack direct equivalents
in Bangla. Machine translation systems attempt to
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Configuration Translation Glossary Feedback Loop Reviewer RAG Pass@1 (%)

Full BanglaForge Pipeline Yes Yes Yes Yes Yes 95.5
Without Translation No Yes Yes Yes Yes 73.6
Without Glossary Yes No Yes Yes Yes 88.2
Without Feedback Loop Yes Yes No Yes Yes 69.8
Without Reviewer Yes Yes Yes No Yes 90.4
Manual Few-shot (No RAG) Yes Yes Yes Yes No 94.2
Fewer Iterations (M = 1) Yes Yes Yes Yes Yes 84.1
Fewer Examples (k = 3) Yes Yes Yes Yes Yes 88.9
No Examples (k = 0) Yes Yes Yes Yes Yes 69.3

Table 11: Comprehensive ablation results on the BLP-2025 development set using Lg Exaone Deep 32B.

Algorithm 1 Algorithm of BanglaForge

1: Input: BanglaInstruction Pb, PublicUnitTests T
2: Output: ExecutableCode
3: M ← maximum retry limit
4: attempt← 0
5: EnglishInstruction, Pe← TranslatorLLM.translate(Pb)
6: Examples, E ← Database.retrieveExamples(Pb, Pe)
7: PromptCoder← constructPrompt(Pb, Pe, T , E)
8: while attempt < M do
9: attempt← attempt+ 1

10: (c, Tc)← CoderLLM.generate(PromptCoder)
11: PromptReviewer← constructReviewPrompt(c, Tc)
12: (cr,Tr)← ReviewerLLM.refine(PromptReviewer)
13: Result← executeCode(cr, T ∪ Tc ∪ Tr)
14: if Result.allTestsPassed then
15: return cr
16: else
17: Feedback← generateFeedback(Result.errors)
18: PromptCoder← updatePromptWithFeedback(PromptCoder, Feedback)
19: end if
20: end while

generate literal translations, but these often fail to
capture technical meaning. For example:

• The English term “Map” was translated
to মানচিত্র (meaning a geographic map in
Bangla), instead of referring to Map as in a
data structure such as HashMap or dictionary.
This causes ambiguity, making it challenging
for both humans and models to interpret cor-
rectly.

• Similarly, terms like stack, queue, hashmap,
or dictionary may be incorrectly translated,
or not translated at all, resulting in inconsis-
tent terminology across the dataset.

G.3 Loss of Context or Intent
Machine translation may fail to preserve the pre-
cise context or intent of the original English in-
structions. Programming problems often rely on

subtle nuances, and even small changes in word-
ing can alter the meaning of a problem. This is-
sue is exacerbated when the translated text uses
uncommon or unnatural phrasing, reducing clarity
for model training.

G.4 Lack of Standardized Technical
Vocabulary

Bangla currently lacks standardized technical vo-
cabulary for many programming concepts, lead-
ing to inconsistent translations. In some cases, the
same English term is translated differently across
dataset entries. This inconsistency makes it diffi-
cult for a model to reliably learn the intended map-
ping from Bangla instructions to Python code.
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G.5 Impact on Model Performance
These translation-related issues contribute to no-
table failure cases in Bangla-to-Python code gener-
ation. Models trained on such data may misinter-
pret problem statements, produce incorrect code,
or fail to generalize to unseen examples. Address-
ing these limitations would require:

• Careful human curation of translations for
correctness and consistency.

• Development of a standardized Bangla pro-
gramming lexicon.

• Use of bilingual glossaries to retain original
technical terms where necessary.
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