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Abstract
In this paper, we propose a system for gen-
erating Python code from Bangla prompts.
Our approach fine-tunes open-source models
with parameter-efficient techniques and lever-
ages proprietary models via prompting. To
enhance the reasoning of smaller models, we
adopt a Chain-of-Thought (CoT) augmented
fine-tuning, enabling them to learn intermedi-
ate reasoning steps before generating code. A
self-refinement loop further improves perfor-
mance by iteratively critiquing and correcting
code based on execution feedback. We also
employ few-shot prompting to guide inference
more effectively. Applied to both open-source
and proprietary models, this pipeline achieved
its best results with Gemini 2.5 Pro, where our
system ranked 4th on the competition leader-
board with a Pass@1 score of 0.85. We con-
clude with a detailed analysis of these findings.

1 Introduction
LLMs have rapidly advanced natural language pro-
cessing and reasoning, achieving strong results in
machine translation (Zhu et al., 2023; Feng et al.,
2024), summarization (Zhang et al., 2024), dia-
logue (Wang et al., 2024), and complex reasoning
(Lai et al., 2024). Their ability to interpret natural
language and produce contextually appropriate out-
puts has opened new possibilities for both research
and applications.

Within this broader progress, code generation
has emerged as a promising direction. By trans-
lating natural language instructions into executable
programs, LLMs can accelerate development, sup-
port education, and lower the barrier to program-
ming. Benchmarks such as HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) show
that state-of-the-art models can generate correct
code from English prompts, underscoring their po-
tential as programming assistants.

However, this progress is largely confined to
high-resource languages, leaving languages like

Bangla remain overlooked (Joel et al., 2024). The
lack of datasets and tools limits training and evalu-
ation, and direct translations often introduce errors
or miss linguistic nuances. Closing this gap is vi-
tal for fairness, inclusivity, and broader access to
programming. In this paper, we present a system
for Bangla prompt to Python code generation. Our
key contributions are:

• Adapting a pretrained LLM with LoRA for
lightweight specialization.

• Expanding limited training data through a
silver-to-gold augmentation strategy that gen-
erates and verifies high-quality examples.

• Enriching LLM training with two styles of
chain-of-thought: concise hint-style and de-
tailed step-by-step reasoning.

• Designing an iterative execution-feedback
loop that allows the model to debug and im-
prove its own solutions across multiple refine-
ment steps.

2 Related Work

Large language models (LLMs) have transformed
code generation, moving from rule-based sys-
tems (Gulwani, 2011) to Transformer architectures
(Vaswani et al., 2017). Pretrained models like
Codex (Chen et al., 2021), CodeT5 (Wang et al.,
2021), and CodeGen (Nijkamp et al., 2022) set the
paradigm of mapping natural language directly to
executable code, establishing new program synthe-
sis benchmarks.

Beyond full fine-tuning, parameter-efficient ap-
proaches such as LoRA (Hu et al., 2022) allow
task adaptation with minimal overhead. Instruc-
tion tuning with synthetic data, including Evol-
Instruct and CodeAlpaca (Luo et al., 2023; Chaud-
hary, 2023), further improves generalization. Rein-
forcement learning with human or execution feed-
back also aligns outputs with functional correct-
ness (Ouyang et al., 2022; Le et al., 2022).
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In parallel, code-focused LLMs such as Code
Llama (Roziere et al., 2023), StarCoder (Li et al.,
2023), DeepSeek-Coder (Guo et al., 2024), and
WizardCoder (Luo et al., 2023) show that domain
adaptation significantly boosts performance over
general-purpose LLMs. Yet, most advances tar-
get high-resource languages like English. Mod-
els perform far worse with low-resource languages
such as Bangla (Joel et al., 2024). Translation-
based methods, multilingual pretraining, and cross-
lingual prompting offer partial solutions (Zhu et al.,
2023; Feng et al., 2024). Recently, Raihan et al.
(2025b) introduced TigerCoder, a Bangla code
LLM that surpassed multilingual baselines and
showed translation alone cannot close the gap, em-
phasizing the need for native-language resources.

3 Task and Dataset
3.1 Task Overview
The Code Generation shared task (Raihan et al.,
2025c) required generating Python programs from
Bangla problem prompts. A solution was correct if
it passed all hidden unit tests, with evaluation per-
formed in a sandbox environment under resource
constraints. Systems were ranked by Pass@1, the
percentage of prompts solved correctly.

3.2 Dataset Overview
Participants were provided with trial, dev (Rai-
han et al., 2025a), and test (Raihan et al., 2025b)
datasets. Each entry included a Bangla instruction,
a reference Python solution (trial set only), and unit
tests in the form of assert statements. During train-
ing, reference solutions and public tests were avail-
able, while at evaluation, only prompts were given.
Appendix B shows an example of data and datasets
distribution.

4 System Description
Our submission is built upon TriGen (Think, Re-
fine, Generate), a multi-strategy approach that
leverages both parameter-efficient fine-tuning of
open-source models and advanced prompt engi-
neering of large-scale, proprietary models. We de-
scribe our two primary systems below.

4.1 System A: Fine-tuning of Open Source
models

4.1.1 Base Model Selection
We began by evaluating several open-source,
instruction-tuned models, including Llama3 (3B)

and Qwen3 (4B), to establish a performance base-
line. As shown in Table 2, the Qwen3-4B-Instruct
model demonstrated superior initial performance
and was selected as the base model for our later
experiments. We utilized LoRA (Hu et al., 2022),
to train only a small set of adapter layers, keeping
the base model’s weights frozen. This approach re-
duces computational requirements while maintain-
ing high performance.

4.1.2 Data Augmentation and Translation
To expand our limited training data, we adopted a
“silver-to-gold” data augmentation strategy (Riyad
et al., 2023). We used a powerful proprietary
model, Gemini 2.5 Pro, to generate high-quality
solutions for the entire dev set. We then executed
these generated solutions against the provided test
cases and filtered for only those that passed, creat-
ing a verified dev set. This high-quality dataset was
then merged with the original trial set to create an
augmented training corpus (trial + verified_dev).
To investigate the impact of language alignment
with our model’s English pre-training, we created
a pure-English version of our augmented training
set using Gemini 2.5 Pro for translation.

4.1.3 Chain-of-Thought (CoT) as Hint and
Step

To further improve the model’s logical reason-
ing, we integrated CoT into our fine-tuning pro-
cess. The core idea behind CoT is that prompt-
ing a model to generate intermediate reasoning
steps improves its ability to solve complex prob-
lems (Wei et al., 2022; Gonzalez et al., 2024). We
extend this concept to “reasoning-augmented fine-
tuning” (Chung et al., 2024). The hypothesis is
that by training the model on examples that explic-
itly include a reasoning plan (Instruction + Plan ->
Code), the model internalizes the process of algo-
rithmic decomposition. We used LLMs to generate
two distinct styles of reasoning:

• Hint-style CoT: Strategy-level cues (e.g., “di-
vide the number”, “compute gcd”, “apply
multiplication”), without revealing intermedi-
ate solutions or the final output.

• Step-by-Step (SbS) CoT: Detailed, sequen-
tial reasoning steps that explicitly describe the
path toward the solution.

We then integrated the training set with this rea-
soning plan. Our results showed that while the hint-
style CoT, which provides only high-level cues, led
to a modest improvement, fine-tuning with explicit
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SbS-style CoT produced a substantial gain in accu-
racy.

4.1.4 Few-Shot Prompting
We designed a system prompt to enforce the com-
petition’s strict output requirements and guide the
model’s logic. The prompt explicitly instructs the
model to follow the function name and signature,
handle edge cases, produce self-contained code,
and generate necessary helper classes. We utilized
a few-shot approach within the system prompt by
providing a concrete example of the desired re-
sponse.

4.1.5 Self-Refinement Loop
We implemented a self-refinement loop (Figure 1)
inspired by (Madaan et al., 2023).

Figure 1: Execution and self-refinement loop

Think (Initial Generation): The model pro-
duces an initial code solution, which is executed
against the provided public test case.

Refine (Self-Correction): For failed solutions,
we construct a refinement prompt containing the
original instruction, the failed code, and the cor-
responding error message or failed assertion from
the execution environment. The model is then
prompted to act as a debugger and generate a cor-
rected solution.

Generate (Final Output): The refined code
produced in the previous step becomes the new can-
didate solution. Iterating this loop up to three times
yielded the best results.

4.2 System B: Gemini 2.5 Pro with few-shot
and self-refinement

While our System-A performed well, we achieved
our top-performing result by leveraging a large-
scale model, Gemini 2.5 Pro. We combined few-
shot prompting with self-refinement loop (Section-
4.1.4 and Section-4.1.5). This approach achieved

a final Pass@1 score of 0.85 on the hidden test set,
outperforming all of our locally fine-tuned models.

5 Results
We began by fine-tuning several models on the trial
set to establish a baseline. Among them, Qwen3-
4B-Instruct achieved the best initial performance
with a Pass@1 of 0.58 on the dev set (Table 2), so
we used it for the later experiments.

Our first key finding was that translating the
dataset to English, contrary to our initial hypothe-
sis, resulted in a slight performance degradation to
0.50, suggesting that potential semantic shifts dur-
ing translation outweighed the benefits of aligning
with the model’s primary pre-training language.
We therefore proceeded with the Bangla-centric
dataset for all subsequent fine-tuning experiments.

As shown in Table 1, each subsequent strat-
egy yielded incremental gains. Augmenting the
training data with a verified dev set improved
the Pass@1 score to 0.54. Integrating Chain-of-
Thought (CoT) as high-level hints provided a fur-
ther boost to 0.56, while the more detailed Step-
by-Step (SbS) CoT was significantly more effec-
tive, raising the score to 0.59. Our best fine-tuned
system, which applied a self-refinement loop to
the CoT-enhanced model’s outputs, achieved a fi-
nal Pass@1 of 0.62.

In parallel, we evaluated Gemini 2.5 Pro, a state-
of-the-art proprietary model. A single-pass gener-
ation using a robust few-shot prompt achieved a
score of 0.84. Applying our self-refinement loop
to this model yielded our overall best result of 0.85,
which placed our team 4th on the official competi-
tion leaderboard.

6 Discussion
6.1 Error Analysis
A qualitative analysis of the failures reveals system-
atic challenges in both model reasoning and dataset
construction. We categorize these errors into four
primary themes, with detailed examples for each
presented in Appendix C.

6.1.1 Ambiguous Instruction
A significant portion of errors originated from am-
biguous or misleading problem statements. Se-
mantic ambiguity, where the instruction was un-
derspecified (Appendix C.1); misleading instruc-
tions, where the prompt suggested a simple algo-
rithm but the test case required a more complex
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System / Method Training Data Pass@1
Baseline (Qwen3) trial (English) 0.50
Baseline (Qwen3) trial (Bangla) 0.51
+ Data Augmentation trial + verified_dev 0.54
+ CoT Fine-Tuning trial + verified_dev + CoT (Hint) 0.56
+ CoT Fine-Tuning trial + verified_dev + CoT (SbS) 0.59
+ CoT Fine-Tuning (Self-Refinement) trial + verified_dev + CoT (SbS) 0.62
Gemini 2.5 Pro (Single-Pass) N/A (Few-Shot) 0.84
Gemini 2.5 Pro (Self-Refinement) N/A (Few-Shot) 0.85

Table 1: Pass@1 Performance of different systems on hidden test set.

one (Appendix C.2); and poor translation quality,
which introduced ambiguity (Appendix C.3).

6.1.2 Failures of Constraint Adherence
Another major failure mode occurred when a
model understood the general problem but failed
to adhere to crucial, explicit constraints. This man-
ifested as test case ignorance, where models, par-
ticularly smaller fine-tuned ones, prioritized a stan-
dard algorithm over the specific logic demanded
by the test case (Appendix C.4). It also appeared
as memorization bias, where models defaulted to
common pre-trained patterns (e.g., a harmonic sum
to 𝑛) instead of following a specific constraint (a
sum to 𝑛 − 1) in the prompt (Appendix C.5).

6.1.3 Algorithmic Deficiencies
These errors represent Test case overfitting and
reasoning failures. Models often produced hard-
coded solutions that passed the visible test case but
lacked generalizability (Appendix C.6); employed
sub-optimal or greedy algorithms that failed in
hidden test cases (Appendix C.7); and exhibited se-
mantic inconsistency, resulting in runtime errors
(Appendix C.8).

6.1.4 Inherent Dataset Challenges
Finally, a notable number of failures originated
from structural flaws within the dataset itself:
Incorrect ground truth in the test cases (Ap-
pendix C.9); Incorrect test syntax that would not
be evaluated as intended by a standard Python inter-
preter (Appendix C.10); Floating-Point Precision
issues (Appendix C.11); and conflicting function
signatures between the instruction’s example and
the test case (Appendix C.12).

6.2 Findings
Our experiments yield several key insights. First,
while the “silver-to-gold” augmentation consis-
tently improved performance, translating the
dataset back to English slightly degraded the re-
sults (Table 3), probably due to loss of semantic

fidelity during the round-trip translation. This sug-
gests that for our base model, which was already
pre-trained on a large Bangla corpus, in-domain
language consistency was more critical than align-
ment with its primary English pre-training. Sec-
ond, our CoT experiments revealed a clear hier-
archy of reasoning. The superior performance of
Step-by-Step (SbS) plans over abstract hints indi-
cates that models benefit more from explicit, struc-
tured problem decomposition. We conclude that
SbS-style CoT provides a more effective learning
signal, forcing the model to internalize a repeatable
algorithmic workflow. Third, self-refinement en-
abled the model to reflect on execution errors and
perform targeted repair, helping it resolve difficult
edge cases that single-pass generation missed. Fi-
nally, as detailed in Section 6.1, many failures orig-
inated from the model’s misinterpretation of am-
biguous or misleading instructions, suggesting that
clearer problem specifications could yield signifi-
cant performance gains.

7 Limitations

Although TriGen achieves strong results, several
limitations remain. The training data is relatively
small, and part of it depends on silver-to-gold aug-
mentation using a proprietary model, which may
introduce bias. While the step-by-step reason-
ing and self-refinement loop improve performance,
they rely heavily on the quality of the unit tests.
When tests are incomplete, ambiguous, or contain
errors, the refinement process can still converge on
incorrect but test-passing solutions. Finally, the
pipeline is optimized for single-function tasks, so
its generalizability to more complex and diverse
programming tasks has not yet been evaluated.

Conclusion

In this paper, we presented our TriGen system
for Bangla prompt to Python code generation.
Our experiments showed that combining data aug-
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mentation, chain-of-thought reasoning, and self-
refinement led to our best fine-tuned system,
while Gemini with few-shot prompting and self-
refinement achieved the strongest overall result.
Our analysis also reveals that limited training
data and instruction ambiguity still constrain sys-
tem reliability. In addition, our CoT supervision
was generated automatically with Gemini and not
manually validated. Even partial human inspec-
tion could provide higher-quality signals. In fu-
ture work, we aim to expand high-quality Bangla
code datasets, explore richer test case contexts dur-
ing training and refinement to improve generaliza-
tion, and extend TriGen to other low-resource lan-
guages.
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A Performance on Dev-set and Language
Impact

Model Pass@1
TigerLLM-1B-it 0.15
Llama-3.2-3B-Instruct 0.25
Qwen2.5-Coder-3B-Instruct 0.51
Qwen3-4B-Instruct 0.58

Table 2: Pass@1 performance of different instruction-
tuned models on the dev-set.

Model Dataset English Bangla
Llama3 Dev-set 0.18 0.25
Qwen3 Test-set 0.50 0.51
Gemini 2.5 Pro Test-set 0.82 0.85

Table 3: Impact of language (English vs. Bangla) on
Pass@1 performance across models trained on trial set.

Table 2 shows Pass@1 performance of different
models on the dev-set. Table 3 shows impact of
language (English vs. Bangla) on Pass@1 perfor-
mance.

B Dataset
The dataset was provided in JSON format, where
each object contained a unique identifier, a Bangla
instruction, an optional reference solution, and a
list of test cases. Table 4 presents a sample entry,
while Table 5 summarizes the number of instances
in each set.

C Error Analysis - Examples
This appendix provides detailed examples for each
category of error discussed in Section 6.1.

C.1 Semantic Ambiguity
Example 1

• ID: 15 (dev-set)

• Instruction: “একিট àদত্ত টɊপল টɊপল এর সংখয্ার গড় মান

খুঁেজ েপেত একিট ফাংশন Ǭলখুন।”
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Field Example
id 231
instruction àদত্ত অয্াের েথেক সমান উপাদান েজাড়া

গণনা করার জনয্ একিট পাইথন ফাংশন

Ǭলখুন।

response def count_Pairs(arr,n):
cnt = 0;
for i in range(n):

for j in range(i + 1,n):
if (arr[i] == arr[j]):

cnt += 1;
return cnt;

test_list ['assert
count_Pairs([1,1,1,1],4) ==
6', 'assert
count_Pairs([1,5,1],3) == 1',
'assert
count_Pairs([3,2,1,7,8,9],6)
== 0']

Table 4: An example entry from the Bangla code gener-
ation dataset.

Dataset Number of Data
trial-set 74
dev-set 400
verified_dev 392
trial + verified_dev 466
test-set 500

Table 5: Distribution of datasets used in our experi-
ments.

• Analysis: The instruction is ambiguous. It
could refer to an overall average, row-wise av-
erages, or column-wise averages. Only the
test case clarified that column-wise averages
were required.

Example 2

• ID: 66 (test-set)

• Instruction: “একিট আয়তেক্ষেÛ বগর্েক্ষেÛর সংখয্া গণনা

করার জনয্ একিট পাইথন ফাংশন Ǭলখুন।”

• Model Response:
```python
def count_Squares(m,n):

return (m*n)
```

• Analysis: The problem is naturally inter-
preted as “how many 1×1 squares fit”. That
leads to m * n. But the test case clarified that
it’s about counting all possible squares (of all
sizes).

C.2 Misleading Instruction
• ID: 5 (test-set)

• Instruction: “একিট িƻংেক েছাটঅক্ষের িবভğকরারজনয্

একিট ফাংশন Ǭলখুন।”

• Analysis: The instruction suggests we should
just separate lowercase letters. However, the
test case split_lowerstring("AbCd") ==
['bC', 'd'] reveals that a more complex
logic is needed, where each new substring
starts with a lowercase letter.

C.3 Translation Quality
Example 1

• ID: 15 (test-set)

• Instruction: “একিট àদত্ত অয্ােরেত পুনরাবৃǬত্ত না হওয়া

উপাদানগ‍ুǬলর পণয্িট খুঁেজ েপেত একিট পাইথন ফাংশন Ǭলখুন।”

• Analysis: The data point contains incorrect
translation, where “product” was translated to
‘পণয্’. It has no contextual meaning.

Example 2

• ID: 67 (test-set)

• Instruction: “একিট পাইথন ফাংশন Ǭলখুন যােত সম এবং

অŠȕত অİগ‍ুǬলর েযাগফেলর মেধয্ পাথর্কয্ খুঁেজ পাওয়া যায়।”

• Analysis: The literal translation is incorrect
in the mathematical context, where ‘েজাড়’ and
‘েবেজাড়’ should have been used instead of ‘সম’
and ‘অŠȕত’.

C.4 Test Case Ignorance
• ID: 91 (test-set)

• Instruction: “àদত্ত অয্ােরেত k-তম উপাদান খুঁেজ েপেত

একিট ফাংশন Ǭলখুন।”

• Test Case:
assert kth_element
([12,3,5,7,19], 5, 2) == 3

• Analysis: Models often defaulted to the stan-
dard “k-th smallest” algorithm (which would
yield 5). They failed to adhere to the test case,
which specified a positional lookup (the ele-
ment at the second position of the unsorted
array is 3).
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C.5 Memorization Bias
• ID: 238 (test-set)

• Instruction: “n-1 এর হারেমািনক সমȋ গণনা করার জনয্

একিট ফাংশন Ǭলখুন।”

• Model Response: The model generated code
to calculate the harmonic sum of ‘n’.

• Analysis: The model defaulted to the most
common version of the harmonic sum prob-
lem, ignoring the specific ‘n-1’ constraint in
the prompt. It defaulted to the patterns seen
during pretraining.

C.6 Overfit Logic
• ID: 338 (test-set)

• Instruction: “একিট ফাংশন Ǭলখুন যা àদত্ত ৈদেঘর্য্র

Ëমগ‍ুǬল গণনা কের যার অ-েনিতবাচক উপসগর্ েযাগফল রেয়েছ যা

àদত্ত মান Ćারা উত্পŭ হেত পাের।”

• Test Case: ‘assert bin_coff(4) == 2’

• Model Response (Qwen3):
```python
def bin_coff(n):

if n <= 0: return 0
if n == 1: return 1
return 2

```

• Analysis: The smaller fine-tuned model gen-
erated a hardcoded solution that passes the
single public test case but contains no gener-
alizable algorithm.

C.7 Sub-optimal Algorithm Choice (Greedy
Approach)

• ID: 29 (test-set)

• Instruction: “একিট àদত্ত িƻং এর অক্ষরগ‍ুেলােক পুনরায়

সাজােনা যায় িকনা তা পরীক্ষা করারজনয্ একিটফাংশন Ǭলখুন যােত

এেক অপেরর সােথ সংলī দিুট অক্ষর িভŭ হয়।”

• Analysis: This problem requires careful han-
dling of character frequencies to avoid getting
‘stuck.’ The optimal solution often involves a
max-heap to prioritize placing the most fre-
quent characters first. Our fine-tuned mod-
els often defaulted to a simpler but incorrect
greedy approach that failed on more complex
hidden test cases (e.g., “aaabc”).

C.8 Example: Semantic Error
• ID: 116 (test-set)

• Instruction: “দিুট àদত্ত সংখয্ার সাধারণ িবভাজকগ‍ুǬলর

েযাগফল খুঁেজ েবর করার জনয্ একিট পাইথন ফাংশন Ǭলখুন।”
def sum(a, b):

# your code
return a

• Analysis: The model generated a function
named ‘sum’, which shadows the built-in
Python ‘sum()’ function. The subsequent call
to ‘sum()’ inside the function now refers to
the function itself, not the Python built-in,
causing an infinite recursion and a ‘Recursion-
Error’ during execution. This represents a
failure to consider the broader context of the
programming language’s standard library.

C.9 Incorrect Ground Truth
• ID: 451 (test-set)

• Test Case:
assert upper_ctr('PYthon')

== 1

• Analysis: The expected count of uppercase
letters is incorrect (should be 2).

C.10 Incorrect Test Syntax
• IDs: 303, 426 (test-set)

• Test Cases:
assert pos_nos([-1,-2,1,2])

== 1,2

assert neg_nos([-1,4,5,-6])
== -1,-6

• Analysis: The right-hand side of these asser-
tions is not a valid tuple. Python’s ‘assert’
syntax is ‘assert expression, [message]’. Con-
sequently, the test ‘assert pos_nos(...) == 1,2’
is interpreted as ‘assert (pos_nos(...) == 1),
2’, where ‘2’ is the optional error message.
This means the test would incorrectly pass if
the function returned ‘1’. The correct syntax
should have enclosed the expected output in
parentheses, e.g., ‘== (1, 2)’.
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C.11 Floating-Point Precision Issues
• ID: 129 (test-set)

• Test Case:
assert circle_circumference(10)

== 62.830000000000005

• Analysis: The test case expects a very spe-
cific floating-point number. A solution using
Python’s more accurate ‘math.pi‘ would fail
this test. This forces the model to reverse en-
gineer a less accurate hardcoded value for 𝜋
(e.g., 3.1415) to pass the test, penalizing stan-
dard and correct programming practices in fa-
vor of a specific floating-point representation.

C.12 Conflicting Function Signatures
• ID: 338 (test-set)

• Instruction’s Example Signature:
def bin_coff(n, r):

# your code
return n

• Test Case:
['assert bin_coff(4) == 2']

• Analysis: The instruction provides an exam-
ple function signature with two parameters
(‘n’, ‘r’), while the test case invokes the func-
tion with only a single argument (‘n=4’). This
creates a direct conflict that the model must
resolve. A model that incorrectly prioritizes
the instruction’s example would generate a
two-parameter function, leading to an imme-
diate ‘TypeError’ at runtime when the single-
argument test case is executed.

D Data Pre-processing and
Augmentation Details

This section describes the data pre-processing, aug-
mentation, and formatting pipelines used in our ex-
periments.

D.1 Initial Data Cleaning and Normalization
Before any training, we applied several cleaning
steps to the raw ‘trial’, ‘dev’, and ‘test’ datasets.

• Newline Normalization: We observed that
some entries contained Windows-style new-
line characters (\r\n). All newlines were
standardized to the Unix-style (\n) to prevent
the model from learning and reproducing in-
consistent line breaks.

• Code Fence Enforcement: To ensure the
model learned the precise output format,
we programmatically verified that every re-
sponse in our training data was correctly en-
closed in a ```python ... ``` code fence.
Any responses missing these fences were au-
tomatically wrapped.

D.2 “Silver-to-Gold” Data Augmentation
To augment our training data, we generated a high-
quality, verified version of the ‘dev’ set.

1. Silver Data Generation: We used the Gem-
ini 2.5 Pro API to generate solutions for all
problems in the ‘dev’ set, creating our initial
“silver” dataset.

2. Execution-Based Verification: We then exe-
cuted each generated solution against its cor-
responding unit tests.

3. Gold Data Filtering: Only the solutions that
passed the test case were retained, resulting
in a high-fidelity ‘gold’ or ‘verified_dev’ set.
This set was then merged with the original
‘trial’ set to form our final augmented training
corpus.

D.3 Translation
To investigate the impact of language, we trans-
lated all Bangla instructions into English. For
translations, we compared the output of the
Googletrans library with the Gemini 2.5 Pro API.
Upon manual inspection, we found the Gemini-
generated translations to have higher semantic fi-
delity and contextual accuracy. All final transla-
tion experiments were therefore conducted using
the Gemini-translated datasets.

D.4 Dynamic Prompt Construction for
Fine-Tuning

we constructed the prompts during the data load-
ing phase to serve as a form of data augmentation
and to provide richer context to the model. Our
prompt construction function performed the fol-
lowing steps for each training example:
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1. Function Signature Extraction: The public
‘test_list’ was parsed to programmatically ex-
tract the correct function name and signature.
This information was explicitly added to the
prompt to mitigate errors from conflicting or
ambiguous signatures in the original instruc-
tion.

2. Final Formatting: The dynamically con-
structed user prompt was then formatted us-
ing the specific chat template of the model be-
ing trained (e.g., Qwen3 or Llama 3) to en-
sure proper tokenization and handling of spe-
cial roles like ‘system’, ‘user’, and ‘assistant’.

Finally, during the training process itself, we em-
ployed a loss mask to ensure the model only
learned from the assistant’s response tokens, ignor-
ing the prompt tokens. This focuses the model’s
learning entirely on the target output.

E Experimental Setup
This section provides a detailed overview of the
models, hyperparameters, and infrastructure used
for our fine-tuning and inference experiments.

E.1 Fine-Tuning Infrastructure and Model
Configuration

All fine-tuning experiments were conducted on a
single T4 GPU with 16GB of VRAM, provided
via Google Colab. To facilitate training on this
hardware, we leveraged the unsloth library for
memory-efficient model loading and optimization.

The base model for our fine-tuning experiments
was Qwen/Qwen3-4B-Instruct. It was loaded in
8-bit precision with a maximum sequence length of
1024 tokens. We then applied Parameter-Efficient
Fine-Tuning (PEFT) using the LoRA (Low-Rank
Adaptation) methodology with the following con-
figuration, as shown in Table 6.

LoRA Parameter Value
Rank (r) 16
Alpha (lora_alpha) 32
Dropout (lora_dropout) 0.0
Bias none

Table 6: LoRA configuration used for fine-tuning exper-
iments.

E.2 Training Hyperparameters
We used the SFTTrainer from the TRL library for
supervised fine-tuning. To prevent overfitting and

select the best model checkpoint, we split our train-
ing data into a 90% training set and a 10% valida-
tion set. We enabled early stopping with a patience
of 3 epochs, monitoring the eval_loss on the vali-
dation set. All models were trained for a maximum
of 10 epochs. The key training hyperparameters
are detailed in Table 7.

Hyperparameter Value
Learning Rate 5 × 10−5

Batch Size (per device) 4
Effective Batch Size 8
Optimizer AdamW (8-bit)
LR Scheduler Cosine
Warmup Ratio 0.1
Weight Decay 0.01
Precision FP16

Table 7: Key hyperparameters used for the SFTTrainer.

E.3 Inference Strategy
E.3.1 Fine-Tuned Model Inference
For generating solutions from our fine-tuned mod-
els, we employed a batched generation strategy to
maximize throughput. The tokenizer’s padding
side was set to ‘left’ to ensure correct output in a
batch context. We used deterministic decoding by
setting ‘do_sample=False’. A batch size of 8 was
used, with a maximum generation length of 1024
tokens.

E.3.2 API-Based Model Inference
For our experiments with the Gemini 2.5 Pro API,
we developed a separate inference script. This
script processed prompts sequentially but included
a retry mechanism with exponential backoff to han-
dle API rate limits and errors. To ensure persis-
tence and prevent data loss, results were saved to a
JSONL file after each successful API call, making
the process fully resumable. The generation was
performed with a low temperature of 0.1 to favor
deterministic and correct code.

E.4 Evaluation
The official evaluation metric for this shared task
is the pass rate, also referred to as Pass@1. This
metric is defined as the percentage of problems for
which a system’s generated code passes all hidden
unit tests when executed in a sandboxed environ-
ment. A higher pass rate corresponds to a higher
rank on the competition leaderboard. All scores
reported in this paper uses Pass@1.
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F Prompts Used for Generation and
Refinement

This section details the system and user prompts
employed for our experiments.

F.1 System Prompt for Initial Code
Generation

Figure 2 shows the system prompt that was used
for the “Think” (initial generation) stage. It is de-
signed to enforce strict output formatting and guide
the model’s logic.

F.2 User Prompt Template for Initial
Generation

The user prompt was dynamically constructed for
each problem, providing the instruction and the
public test case as structured input (Figure 3).

F.3 System Prompt for Self-Refinement
For the “Refine” (self-correction) stage, a different
system prompt was used to frame the task as a de-
bugging and code review exercise (Figure 4).

F.4 User Prompt Template for
Self-Refinement

The user prompt for the refinement loop was dy-
namically constructed to include the execution
feedback (Figure 5).
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You are an expert, competition-focused Python programmer.
Your task is to generate lean, correct, and executable Python code to solve the given problem.

**Core Requirements:**
- Your entire response MUST be a single, fenced code block starting with ```python and ending with

```.
- Only generate the function or class requested. Do not include example usage or print statements.
- The code must be self-contained and runnable.
- The function must use the exact name and signature from the provided instruction or test cases.
- If helper classes are required by the test cases, you must define them.

**Code Style Requirements:**
- **No Explanations:** Do not add comments that explain your reasoning, translate the instruction, or

describe basic Python functionality.
- **Minimal Docstrings:** If you include a docstring, it MUST be a single line explaining the

function's high-level purpose. Do not use multi-line docstrings or describe arguments (Args/
Returns).

- **Example of desired style:**
```python
def add_numbers(a, b):

\"\"\"Returns the sum of two numbers.\"\"\"
return a + b

```

**Logic Requirements:**
- If the instruction is ambiguous, the provided test cases are the source of truth.
- Prioritize correctness and efficiency. Do not generate pseudo-code.

Figure 2: System Prompt

{instruction}

You must implement the solution strictly following the function signature in the instruction. If any
helper classes or methods are needed to run the following test cases, you must define them as
well.

Test cases:
{test_list}

Figure 3: User prompt
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You are an expert Python code reviewer and debugger.
Your task is to fix a flawed Python function that failed to solve a programming problem.

You will be presented with:
1. The original problem description.
2. Your previous, incorrect code submission.
3. The specific error message or failed test case that caused the failure.

**--- Your Goal: Analyze and Correct ---**
- **Analyze the Error:** Carefully examine the failed test case or error message. This is the most

important clue to understanding the mistake.
- **Identify the Flaw:** Compare the failed test case with your incorrect code to pinpoint the

logical flaw.
- **Implement the Fix:** Write a new, corrected version of the Python code that directly addresses

the identified flaw and will pass the test case.
- **Generalize:** Ensure the corrected solution is robust and handles other potential edge cases, not

just the single failed test.

**--- Output Requirements ---**
- Your entire response MUST be a single fenced code block beginning with ```python and ending with

```.
- Do not include any text, explanations, or apologies before or after the code block.
- Provide only the corrected, complete, and self-contained Python code.

**Example of the ONLY acceptable output format:**
```python
def add_numbers(a, b):

\"\"\"Returns the sum of two numbers.\"\"\"
return a + b

```

Figure 4: Self-refinement System prompt

**Problem:**
{instruction}

**Your Incorrect Code:**
{failed_code}

**Reason for Failure:**
{error_info}

Based on the error, provide a corrected and complete Python code
that solves the problem and passes the failed test case.

Figure 5: Self-refinement user prompt
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