PyBhasha at BLP-2025 Task 2: Effectiveness of Semantic-Aware
Translation and Ensembling in Bangla Code Generation

Foyez Ahmed Dewan®, Nahid Montasir Rifat*
Department of Computer Science and Engineering
Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
foyez.ruet767@gmail.com, nahidmuntasir2@gmail.com

Abstract

In this paper, we present our submission to Task
2 of the BLP-2025 shared task on code genera-
tion from Bangla instructions. Our approach fo-
cused on enhancing instruction quality through
translation and improving model performance
with a two-stage ensemble strategy. We evalu-
ated two proprietary and several open-source
models under three instruction settings: orig-
inal Bangla instructions, Bangla instructions
translated into English using Facebook NLLB,
and instructions rewritten in English with GPT-
4.1. Experimental results showed that GPT-4.1-
rewritten instructions consistently achieved the
highest accuracy across models. For final pre-
dictions, we used a two-stage ensemble, achiev-
ing a pass@ 1 score of 80.0% on the hidden
test set and securing 12th place on the offi-
cial leaderboard. Additionally, we conducted a
qualitative analysis of selected translations to
illustrate how variations in instruction phrasing
influenced model outputs.

1 Introduction

Code generation is the task of creating computer
programs automatically from natural language de-
scriptions. It allows users to write instructions in
plain language and have a model produce the cor-
responding executable code. Beyond practical ap-
plications, it has emerged as a key benchmark for
evaluating the reasoning and problem-solving per-
formance of large language models (LLMs). Re-
cent systems such as Codex, CodeLLaMA, and
DeepSeek-Coder have achieved strong results on
several English-centric programming benchmarks,
approaching state-of-the-art performance under fa-
vorable conditions (Roziere et al., 2024; Guo et al.,
2024). Yet, this success does not extend uniformly
to low-resource languages like Bangla, where code
generation remains underexplored due to limited
training data, inconsistent instruction formats, and

“Equal contribution.

unreliable translation quality. Consequently, mod-
els often misinterpret Bangla prompts, producing
syntactic errors or semantically incorrect code.

To address these challenges, we participate in
Task 2 of the BLP-2025 shared task, which focuses
on generating Python code from Bangla instruc-
tions. Our work investigates the role of instruction
formulation in improving code generation quality.
Specifically, we compare three input styles: raw
Bangla instructions, English translations generated
by Facebook NLLB, and refined English instruc-
tions rewritten by GPT-4.1. This analysis high-
lights how translation quality and semantic clarity
directly affect model performance. While instruc-
tion reformulation substantially improves model
outputs, we also explore a simple two-stage en-
semble strategy to further enhance accuracy and
robustness.

In summary, the main contributions of this work
can be outlined as follows:

* We provide a performance comparison of
proprietary, multilingual, and Bangla-centric
LLMs in a one-shot code generation setting.

* We demonstrate that high-quality English re-
formulations of Bangla instructions substan-
tially improve code generation outcomes.

* We introduce a simple yet effective two-stage
ensemble strategy that achieves higher accu-
racy than standalone models.

2 Related Work

Recent Bangla-centric work such as TigerCoder
(Raihan et al., 2025b) and Bongl.LaMA (Zehady
et al., 2024) demonstrates that targeted Bangla in-
struction datasets and language-specific fine-tuning
can improve Bangla text-to-code generation. While
these studies highlight the potential of multilingual
and Bangla-centric models, performance still lags

624

Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025), pages 624—628
December 23, 2025 ©2025 Association for Computational Linguistics



behind English benchmarks, leaving room for fur-
ther exploration of strategies to advance Bangla
code generation. Iskander et al. (2024) show that
dataset quality has a major effect on LLLM perfor-
mance: noisy or misaligned instruction—code pairs
degrade results, while filtered and curated subsets
lead to significant gains even with less data, un-
derscoring the importance of high-quality train-
ing data in low-resource scenarios. Vahtola et al.
(2025) demonstrate that GPT-4 is highly effective
at paraphrasing and following linguistic instruc-
tions, making it well suited for producing seman-
tically faithful reformulations in translation-based
workflows where clarity and fidelity are essential.
Brown et al. (2020) further show that in-context
learning improves code generation, with few-shot
setups often outperforming one-shot and zero-shot;
however, one-shot prompting remains widely used
because it provides minimal context while ensur-
ing consistency across models, making it suitable
for controlled comparisons. Ensembling has also
been explored in code generation, with systems like
AlphaCode boosting pass rates through candidate
reranking (Li et al., 2022). However, lightweight
fallback ensembles remain largely unexplored in
low-resource contexts such as Bangla. Building
on these findings, our work investigates how in-
struction reformulation and ensemble strategies can
improve Bangla code generation under a one-shot
setup, addressing both the challenges of translation
quality and the limitations of low-resource settings.

3 Task Description

The primary objective of this shared task (Raihan
et al., 2025¢) is to develop systems capable of gen-
erating Python code from Bangla programming
instructions. Participating models must synthesize
accurate Python solutions that satisfy the corre-
sponding unit tests. Evaluation is performed strictly
based on whether the generated code passes all test
cases. By linking Bangla-language instructions to
executable Python programs, this task advances
research in multilingual code generation and con-
tributes to building robust systems for low-resource
languages.

3.1 Dataset Description

The dataset for this task was released in three splits:
trial set, dev set, and test set. The sample distribu-
tion is summarized in Table 1. Each sample con-
sists of a Bangla instruction describing a program-

Model Inference

Qwen2.5-Coder-3B-Instruct

Qwen2.5-Coder-7B-Instruct

Instruction

Variants Qwen2.5-Coder-14B-Instruct

Meta-LLaMA-3.1-8B-Instruct

{ Claude Sonnet 4

- )

GPT-4.1

Figure 1: Model inference pipeline using three instruc-
tion styles (Original Bangla, Facebook NLLB, GPT-4.1)
across multiple models.

ming problem. The trial set additionally provides
reference solutions together with the complete set
of unit tests. In contrast, neither the dev set nor
the test set contains reference solutions. The dev
set includes the full unit test suite, while the test
set offers only a single visible test case, with the
remaining cases kept hidden for final evaluation.

Data Splits | Total Samples
trial 74

dev 400

test 500

Table 1: Overview of the Task 2 dataset splits.

The dev and test sets use a subset of Bangla-
translated versions of the original English mHu-
manEval and MBPP datasets, as introduced in (Rai-
han et al., 2025a,b).

4 Experiments

We conducted a series of experiments to identify ef-
fective strategies for Bangla-to-Python code gener-
ation. All experiments were carried out on Kaggle
using an NVIDIA P100 GPU with 16 GB memory.
To enable efficient evaluation of large models (up
to 14B parameters) within this limited hardware
budget, we performed inference using 4-bit quan-
tization through the bitsandbytes library. The
subsequent subsections detail the model selection
process, the instruction variants we explored, and
our proposed ensemble approach.

4.1 Model Selection

We evaluated a set of open-source and propri-
etary LLMs on the dev set and test set under one-
shot prompting, as presented in Figure 1 . One-

625



Model Name Dev Phase Test Phase
Original NLLB GPT-4.1 | Original NLLB GPT-4.1
TigerLLM-9B-it 72.5 65.5 71.3 58.6 56.8 63.6
Qwen2.5-Coder-3B-Instruct 52.0 57.0 67.0 47.0 48.4 56.2
Qwen?2.5-Coder-7B-Instruct 62.0 66.0 73.0 59.8 64.4 69.2
Qwen2.5-Coder-14B-Instruct 77.0 76.0 82.0 67.2 68.2 76.0
Meta-LLaMA-3.1-8B-Instruct 48.0 50.0 56.0 45.6 47.2 52.0
Claude Sonnet 4 - - 82 - - 72.4
GPT-4.1 - - 77.8 - - 71.0
Two-Stage Ensemble - - - - - 80.0
(Qwen2.5-Coder-14B-Instruct +
Claude Sonnet 4)

Table 2: pass@ [ scores across three instruction variants (Original Bangla, Facebook NLLB translation, and GPT-4.1

rewriting) in both dev and test phases.

shot prompting was selected to provide minimal
context while ensuring consistency across mod-
els, thereby enabling a fair comparison of their
code generation capabilities. The models con-
sidered included Bangla-centric models such as
TigerLLM-9B-it, and multilingual models includ-
ing Qwen2.5-Coder-3B/7B/14B-Instruct (Hui
et al., 2024), Meta-Llama-3.1-8B-Instruct, as
well as proprietary models Claude Sonnet 4 and
GPT-4.1. This evaluation allowed us to compare
the effectiveness of models specifically tailored for
Bangla against those trained on broader multilin-
gual corpora.

4.2 Instruction Variants

To investigate the effect of instruction formulation
on model performance, we experimented with three
variants of the input instructions during the dev
phase: (i) the original Bangla instructions provided
in the dataset, (ii) English translations generated us-
ing the Facebook NLLB translation model, and (iii)
English instructions rewritten from Bangla using
GPT-4.1. For fairness, all models were evaluated
under the same experimental setup across these
three variants. This design enabled us to gain a
deeper understanding of how different instruction
styles influenced code generation quality.

4.3 Ensemble Approach

To maximize code generation success, Wwe
employed a two-stage ensemble strategy
using the Dbest-performing models from
the dev phase, as illustrated in Figure 2.
Qwen2.5-Coder-14B-Instruct was used as the
primary model to generate Python code for all
instructions. Any samples that failed their unit
tests were then re-generated by Claude Sonnet
4, enabling the secondary model to recover from

Generated Passes
Code Unit Tests

Qwen2.5-Coder- Unit Test
14B-Instruct Evaluation
Fails
Unit Tests

Claude
Sonnet 4

Final Output J

Unit Test
Evaluation

Generated
Code

Input
Prompt

Figure 2: Two-stage ensemble strategy: The primary
model (Qwen2.5-Coder-14B-Instruct) generates a code
response which is evaluated via unit tests. If the code
fails, the same prompt is passed to a secondary model
(Claude Sonnet 4) for regeneration.

errors made by the primary. This sample-level
ensemble leveraged complementary strengths to
increase the overall success rate.

5 Results and Analysis

5.1 Initial Evaluation

We evaluated all models using the pass rate
(pass@ ) metric. Each model was tested in three
types of instructions as described in Section 4.2

Results are reported on both dev sets and test
sets, with evaluations performed against complete
unit test suites. As shown in Table 2, among
proprietary models, Claude Sonnet 4 achieved
the highest accuracy on both the dev and test
sets when paired with GPT-4.1-translated instruc-
tions. Similarly, among the open-source models,
Qwen2.5-Coder-14B-Instruct consistently out-
performed others, even surpassing proprietary mod-
els. This highlights the strong generalization ca-
pability of Qwen when paired with high-quality
instruction translations.

Other open-source models, such
as Meta-Llama-3.1-8B-Instruct and
TigerLLM-9B-it, also showed marked im-

626



id ‘ Bangla Text

‘ Facebook NLLB

| GPT-4.1

33 | NS QKO AIB AT | Write a Python function Write a Python function
CaeI xor A (9P to find the sum of all the | to find the sum of the
e (91tT aHTD 213 numbers in the given XOR of all pairs of
HIF %‘@I array. numbers in a given array.

131 | @35 g7 23 spdoa Write a function to find a | Write a function to find
QAP YT (IS AT cornered side area. the lateral surface area of
I fergd| a cone.

Figure 3: Examples of translation quality, showing how GPT-4.1 preserves semantic intent more accurately than

Facebook NLLB for complex Bangla instructions.

provements when paired with GPT-4.1-based
instructions, underscoring the importance of clear
and semantically rich prompts in instruction-to-
code generation tasks.

5.2 Ensemble Approach Outcome

We leveraged the two-stage ensemble strategy de-
scribed in Section 4.3 to further boost perfor-
mance. The ensemble approach achieved a pass
rate (pass@ ) of 80.0% on the hidden test set un-
der full unit test evaluation. This score represents
a measurable improvement over the standalone
performance of Qwen2.5-Coder-14B-Instruct
(76.0%) and Claude Sonnet 4 (72.4%). By se-
lectively routing failed generations from Qwen to
Claude, the ensemble effectively recovered addi-
tional correct outputs, confirming its utility in min-
imizing failure cases.

5.3 Impact of Instruction Formulation

To better understand why instructions translated
via GPT-4.1 consistently outperformed others, we
manually examined a few representative transla-
tions to assess how accurately and clearly each
model conveyed the original instruction’s meaning.
Two such examples from the dev set are presented
in Figure 3.

These examples demonstrate that GPT-4.1 trans-
lations more faithfully preserve semantic precision
than those produced by Facebook NLLB, partic-
ularly for mathematically or structurally complex
tasks. For instance, GPT-4.1 correctly interpreted
the Bangla term P S$ST " a5 “lateral surface
area,” whereas NLLB rendered it as “cornered side
area,” a phrase lacking geometric validity. Simi-
larly, in a case involving the XOR operation, GPT-
4.1 accurately preserved the intent to compute the
sum of XORs over all pairs, while NLLB reduced

the instruction to a basic summation task.

Bangla-native models such as TigerlLLM
achieved stronger performance when paired
with either the original Bangla instructions or
GPT-4.1-translated English, likely due to the
increased semantic richness and clarity. In contrast,
NLLB-translated prompts introduced ambiguity,
leading to degraded outcomes. For all other models
(e.g., Qwen, LLaMA), we observed a consistent
performance ranking: GPT-4.1 > NLLB > Original
Bangla, reflecting their English-dominant training
distributions.

These findings suggest that, beyond simple lan-
guage alignment, the semantic clarity and task
specificity of instructions are critical for improving
code generation quality.

6 Conclusion

In this work, we explored the impact of instruc-
tion translation on Bangla code generation tasks,
with a focus on translation quality and ensemble
modeling. Our evaluation demonstrated that GPT-
4.1-translated instructions substantially improved
performance compared to both raw Bangla and
NLLB-generated instructions. We also conducted
qualitative analyses to explain model sensitivities
to different instruction styles. Future work will
focus on fine-tuning Bangla-native models using
high-quality synthetic prompts to further enhance
generalization.

Limitations

At the time of our experiments, the GPT-5 API
had not yet been publicly released; therefore, all
instruction-rewriting experiments were conducted
using GPT-4.1. While rewriting instructions in En-
glish with GPT-4.1 yielded clear improvements,
our approach was limited by the absence of fine-

627



tuning on Bangla-specific data. We expect that
performance could be further enhanced through tar-
geted fine-tuning of Bangla-centric models, as well
as multilingual models trained directly on Bangla
instructions. More broadly, our work highlights the
lack of large, high-quality Bangla code-generation
datasets; addressing this gap through dataset cre-
ation and model adaptation remains an important
direction for future research.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence. Preprint, arXiv:2401.14196.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5 oth-
ers. 2024. Qwen2.5-coder technical report. Preprint,
arXiv:2409.12186.

Shadi Iskander, Sofia Tolmach, Ori Shapira, Nachshon
Cohen, and Zohar Karnin. 2024. Quality matters:
Evaluating synthetic data for tool-using LLMs. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
4958-4976, Miami, Florida, USA. Association for
Computational Linguistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin
Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, and 7 others. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092-1097.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025a. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),

pages 11432-11461, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2025b. Tigercoder: A novel suite
of llms for code generation in bangla. Preprint,
arXiv:2509.09101.

Nishat Raihan, Mohammad Anas Jawad, Md Mezbaur
Rahman, Noshin  Ulfat, Pranav  Gupta,
Mehrab Mustafy Rahman, Shubhra Kanti Kar-
makar, and Marcos Zampieri. 2025¢c. Overview of
BLP-2025 task 2: Code generation in bangla. In
Proceedings of the Second Workshop on Bangla
Language Processing (BLP-2025). Association for
Computational Linguistics (ACL).

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, and
7 others. 2024. Code llama: Open foundation models
for code. Preprint, arXiv:2308.12950.

Teemu Vahtola, Songbo Hu, Mathias Creutz, Ivan Vuli¢,
Anna Korhonen, and Jorg Tiedemann. 2025. Analyz-
ing the effect of linguistic instructions on paraphrase
generation. In Proceedings of the Joint 25th Nordic
Conference on Computational Linguistics and 11th
Baltic Conference on Human Language Technolo-
gies (NoDaLiDa/Baltic-HLT 2025), pages 755-766,
Tallinn, Estonia. University of Tartu Library.

Abdullah Khan Zehady, Safi Al Mamun, Naymul Islam,
and Santu Karmaker. 2024. Bongllama: Llama for
bangla language. Preprint, arXiv:2410.21200.

628


https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2409.12186
https://doi.org/10.18653/v1/2024.emnlp-main.285
https://doi.org/10.18653/v1/2024.emnlp-main.285
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://arxiv.org/abs/2509.09101
https://arxiv.org/abs/2509.09101
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://aclanthology.org/2025.nodalida-1.75/
https://aclanthology.org/2025.nodalida-1.75/
https://aclanthology.org/2025.nodalida-1.75/
https://arxiv.org/abs/2410.21200
https://arxiv.org/abs/2410.21200

