AlphaBorno at BLP-2025 Task 2: Code Generation with Structured
Prompts and Execution Feedback

Mohammad Ashfaq Ur Rahman!, Muhtasim Ibteda Shochcho', Md Fahim?3
Independent University, Bangladesh
2Center for Computational & Data Sciences
3Penta Global Limited
{imashfagfardin, sho25100, fahimcse381}@gmail.com

Abstract

This paper explores various prompting strate-
gies in the BLP-2025 Shared Task 2, utiliz-
ing a pipeline that first translates Bangla prob-
lem descriptions into English with GPT-4o,
then applies techniques like zero-shot, few-shot,
chain of thought, synthetic test case integra-
tion, and a self-repair loop. We evaluated four
LLMs (GPT-40, Grok-3, Claude 3.7 Sonnet,
and Qwen2.5-Coder 14B). Our findings reveal
that while traditional methods like few-shot
and chain-of-thought prompting provided in-
consistent gains, the integration of explicit unit
tests delivered a substantial performance boost
across all models. The most effective strategy
combined zero-shot prompting with these syn-
thetic tests and a self-repair loop, leading GPT-
40 to achieve a top Pass@1 score of 72.2%.
These results represent the value of using ex-
plicit constraints and iterative feedback in code
generation, offering a solid framework that im-
proves the model’s code generation capabili-
ties.

1 Introduction

Automatic code generation is a key research area in
natural language processing (NLP). This research
is driven by benchmarks like HumanEval (Chen
etal., 2021) and MBPP (Austin et al., 2021), which
evaluate how well systems can turn natural lan-
guage descriptions into executable programs.
Recent large language models (LLMs) have
shown strong results on English-focused bench-
marks. However, applying these methods to under-
resourced languages like Bangla is challenging
(Kabir et al., 2023; Ahmed et al., 2025; Raihan
et al., 2025b). Previous studies highlight the dif-
ficulties in building effective NLP systems for
Bangla (Bhattacharjee et al., 2022; Islam et al.,
2021). These challenges arise from limited re-
sources, diverse domains, and ambiguous text
forms. To bridge this gap, recent work has intro-
duced multilingual and Bangla-specific resources

for code generation. Raihan et al. (2025a) pre-
sented mHumanEval, a multilingual extension of
HumanEval covering over 200 languages, includ-
ing Bangla, highlighting performance gaps be-
tween high and low-resource languages. Building
on this, Raihan et al. (2025b) proposed MBPP-
Bangla alongside TigerCoder, a suite of Bangla-
focused LLMs, reporting improvements on Bangla
code generation tasks.

The Bangla Language Processing (BLP) Work-
shop 2025 has further advanced this area through
a shared task dedicated to Bangla code generation
(Raihan et al., 2025¢). In this task, participants
are required to create Python programs based on
Bangla problem descriptions. Evaluation is con-
ducted using a hidden set of unit tests, with systems
receiving credit only if their outputs successfully
pass all test cases. This setup presents several chal-
lenges: first, the problem descriptions may be lin-
guistically ambiguous or domain-specific; second,
no reference solutions are available at the time of
testing; and third, models must be able to gener-
alize to hidden tests that go beyond the visible
examples. These factors make the task a rigorous
benchmark for multilingual program synthesis.

To address these challenges, we explore various
prompting strategies for LLMs in a shared task con-
text. We created a pipeline that translates Bangla
instructions into English with GPT-4 and uses sev-
eral prompting techniques for code generation. Our
study focuses on instruction-only prompting, syn-
thetic test cases, chain-of-thought reasoning, and
self-repair loops using execution feedback. We
evaluate four models: Qwen2.5-Coder 14B, GPT-
40, Grok-3, and Claude 3.7 Sonnet within these
frameworks. Through this comparison, we aim to
illuminate how translation and prompting choices
affect performance on hidden test cases, provid-
ing a practical foundation for future research in
multilingual code generation.

615

Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025), pages 615-623
December 23, 2025 ©2025 Association for Computational Linguistics

2 Background

The Bangla Language Processing (BLP) Work-
shop 2025 introduced Task 2: Code Generation in
Bangla, where the objective is to synthesize Python
programs from Bangla natural language instruc-
tions (Raihan et al., 2025c). The task follows an
execution-based evaluation: systems are credited
only if the generated code passes all hidden unit
tests. This setting requires models to generalize
beyond visible examples and to handle ambiguous
or underspecified problem statements, which are
common in real-world competitive programming
tasks.

For our experiments, we used the official devel-
opment and test datasets released for the shared
task. The development set contains 400 problem:s,
while the test set includes 500 problems. Each prob-
lem consists of (i) a Bangla instruction describing
the task, (ii) one public test list provided in the form
of Python assertions, and (iii) hidden test cases
used for leaderboard evaluation. The datasets build
upon prior multilingual code generation resources,
including mHumanEval (Raihan et al., 2025a) and
MBPP-Bangla (Raihan et al., 2025b), which ex-
tend HumanEval-style and MBPP-style problems
to Bangla.

3 Method

We developed our pipeline using a systematic,
staged approach, as illustrated in Figure 1. The
process starts with an initial Bangla programming
instruction. GPT-40 then performs two tasks in
parallel: translating the instruction into English
and generating synthetic test cases for edge behav-
iors. The translated instruction is combined with a
selected prompting strategy (e.g., Zero-shot, Few-
shot, CoT, or Zero-shot with synthetic tests) and
provided to a large language model (LLM) for code
generation. The solution is evaluated through run
tests, and if it fails, the code enters a self-repair
loop for up to three attempts before producing the
final code. This design allowed us to effectively
assess the contributions of each component.

3.1 Translation Step

We started by running inference on native Bangla
instructions using the closed-source model Qwen
2.5-Coder 14B, but performance was limited, with
many outputs failing to meet expectations. This
confirmed our hypothesis that the model struggled
with Bangla programming instructions.

To address this, we introduced a translation step,
converting problem instructions to English via GPT-
40, known for its multilingual capabilities. Testing
this with Qwen 2.5-Coder 14B revealed improved
accuracy: 40.4% for original Bangla instructions
versus 46.4% for those translated by GPT-40. This
improvement led us to adopt translation as a stan-
dard procedure in our experiments to enhance eval-
uation reliability and support our structured prompt-
ing and self-repair mechanisms.

3.2 Prompting Strategies

We experimented with five prompting setups af-
ter establishing translated baselines. Each setup
received translated instructions and was evaluated
using Pass@1. Below, we illustrate each strategy
with a representative problem from the dataset.

Zero-shot. The baseline tests how well the model
can generate code from instructions without exam-
ples, using a strict format to evaluate its problem-
solving ability separately from in-context learning.

Zero-shot Prompt

System prompt:
You are a Python code generator.

STRICT RULES:
- Output ONE fenced code block only:
T python N

- Inside: exactly ONE function
definition.

- Function name + args must match
instruction/tests.

- No helpers/classes unless required

- No comments,

explanations, or text
outside code.
- Only standard library. No I/O.

- Return values only.

User prompt:

Instruction:

Write a function to calculate the
sum of the digits of each number
in a given list.

. J

Few-shot. In this baseline, we provide the model
with a few complete task-solution examples after
giving it the actual problem statement. This tech-
nique tests the model’s in-context learning abil-
ity, allowing it to infer patterns from the provided
demonstrations. Find the prompt in the Appendix
Al

Chain of Thought (CoT). This method prompts
the model to follow structured thinking steps be-
fore generating code. By explicitly guiding it to

616

Prompting Strategies

Translate Step (GPT-40)
Bangla - English

Bangla Programming
Instruction

Synthetic Test Case
Generation (GPT-40)

- --------- =) Chain of Thought }-«{

Zero Shot with Public
+ Synthetic Tests

Code Generation with
LLMs

Code Generation with
LLMs

Run Test

Final Code

Self-Repair Loop
Run Test R
(Max 3 Iterations)

Figure 1: An overview of the complete code generation pipeline. From an initial Bangla programming instruction,
GPT-40 performs English translation while also generating synthetic test cases to capture edge behaviors. The
translated instruction is then combined with a selected Prompting Strategy (e.g., Zero-shot, Few-shot, CoT, or
Zero-shot with synthetic tests). This combined prompt is fed to an LLM for Code Generation. The resulting code is
evaluated by Run Test. If the tests fail, the code enters a Self-Repair Loop (for up to three iterations), where the
model attempts to correct its errors. After that, the Final Code is produced.

consider edge cases and constraints, we encourage
the model to build a more robust mental plan, lead-
ing to a more reliable final implementation. Find
the prompt in the Appendix A.2

Zero-shot with public + synthetic tests. This
technique provides the model with the problem
instruction, with a public test case and a set of
synthetic unit tests. Instead of solved examples,
these tests act as explicit specifications, guiding the
model by defining correct behavior and edge cases.

Zero-shot with Public + Synthetic Tests

System prompt:
[Same STRICT RULES as abovel]

User prompt:

Instruction:

Write a Python function to remove
the first and last

occurrence of a given character from
a string.

You must satisfy the following tests
Public test from dataset

assert remove_Occ("hello”,
heo”

nln) —

Synthetic edge cases (robustness
checks)

assert

assert

nn nyn nn

remove_Occ("",

remove_Occ("a"

assert remove_Occ("aaaa",

assert remove_Occ("abc”,
abc”

won —— nn
a") ==

"non ——

z ==

Extra requirements:

- Handle empty inputs, negatives,
duplicates, and large values.

- Preserve ordering if required.

- Ensure deterministic output.

_ J

~
- Match exact return types (e.g.,
int vs float, string casing).
OUTPUT :
One fenced Python code block with
the function only.
\ J

3.3 Synthetic Hidden Test Generation

To strengthen generalization to the hidden Cod-
abench evaluator, we expanded each problem with
an additional set of synthetic test cases. We gen-
erated these test cases using GPT-40, which we
prompted to propose inputs that capture edge con-
ditions not covered by the public assertions. We
instructed the model to consider empty inputs, ex-
treme numerical values, unusual string structures,
type-boundary behaviors, and other corner cases
that commonly expose weaknesses in naive imple-
mentations. For each problem, GPT-40 produced
eight candidate tests. To maintain consistency, we
used a standard prompt template when instructing
GPT-40 to augment the test set. Here is the prompt
we used to generate the test cases:

Test Case Generation Prompt

Generate a set of synthetic Python
assert statements based on a
provided "function_signature”

a list of "public_tests”.

and

Your goal is to create additional
tests that cover failure-prone
scenarios not addressed by the
public tests, including empty/
null inputs, boundary conditions,

type mismatches, data-specific
cases (e.g., unusual strings,
large numbers, list variations),
and any semantic corner cases.

617

CRITICAL: You must not repeat any of
the provided "public_tests” and
must return your response only as
a valid JSON object containing a
single key, "synthetic_tests”,
which holds an array of strings,
where each string is a complete,
runnable Python assert statement.

INPUT:
function_signature: "def bell_Number
(n):n
public_tests: "['assert bell_Number
(2) == 2', 'assert bell_Number (3)
== 5', 'assert bell_Number (4) ==
15!]"

EXPECTED OUTPUT FORMAT:

T json

{

"synthetic_tests"”: [
"assert bell_Number (@) == 1",
"assert bell_Number (1) == 1",
"assert bell_Number (5) == 52",
"assert bell_Number (6) == 203",
"assert bell_Number (10) ==
115975"

(& J

After the synthetic tests were generated, they
were finalized and reused across all models: GPT-
40, Grok-3, Claude 3.7 Sonnet, and Qwen 2.5-
Coder. This ensured that every system was eval-
uated under the same augmented constraints. In
practice, these tests made the required behaviors
much clearer and improved the models’ robustness
by providing more explicit signals regarding the
expected handling of edge cases.

3.4 Self-repairing Loop

When generated code fails the provided unit tests,
we initiate a self-repair loop. The model is provided
with the specific AssertionError and prompted to
revise its code. This feedback cycle repeats for a
maximum of three attempts, allowing the model to
iteratively correct its own mistakes based on the
test outcomes.

Self-repairing Loop

Your previous attempt failed this
assertion:

AssertionError:
(0) ==

Please correct the code while
keeping the same

function name.

assert sum_of_digits

3.5 Evaluation Protocol

We report Pass@1, defined as the percentage of
problems for which the generated solution passed
all asserts. Two levels of evaluation were used:

* Public asserts included in the dataset (to
check immediate consistency).

e Hidden tests on the Codabench leaderboard
(to assess generalization).

4 Experiments and Results

We evaluated our pipeline on four models: three
closed-source (GPT-40, Grok-3, Claude 3.7 Son-
net) and one open-source baseline (Qwen2.5-Coder
14B). Our evaluation metric is Pass@1, defined as
the proportion of problems where the generated
solution passed all hidden test cases on the Cod-
abench leaderboard.

4.1 Results & Findings

The results, presented in Table 1, reveal the clear
effect of prompt design on model performance.
Our analysis highlights several key findings. First,
baseline prompting strategies produced inconsis-
tent and often suboptimal outcomes. While Claude
3.7 Sonnet achieved the highest zero-shot score
(56.6%), the conventional techniques of few-shot
and Chain-of-Thought (CoT) prompting did not
guarantee improvements. For instance, few-shot
prompting substantially degraded performance for
Qwen2.5-Coder (from 46.4% to 41.2%), and CoT
underperformed relative to the zero-shot baseline
in three out of four models.

Second, the most remarkable performance gain
came from providing explicit requirements through
synthetic tests. Augmenting the zero-shot prompt
with unit tests caused a substantial improvement for
all models, with improvements ranging from +13.4
to +19.2 percentage points. This suggests that for
code generation, defining concrete behavioral con-
straints is far more effective than providing abstract
examples or reasoning hints.

Finally, the self-repair loop provided an addi-
tional, consistent boost to all models, pushing them
to their peak performance. This iterative refinement
process added a further 1.4 to 3.4 points. In the
final configuration, the top-performing models con-
verged, with GPT-40 achieving the highest score
at 72.2%, followed closely by Claude 3.7 Sonnet
(71.8%) and Grok-3 (71.4%).

618

Hidden Tests (Pass@1 %)

Prompting Strategy GPT-40 Grok-3 Claude 3.7 Son- Qwen2.5-Coder
net

Zero-shot 54.2 52.8 56.6 46.4

Few-shot 56.8 554 56.2 41.2

Chain of Thought (CoT) 56.2 532 54.6 434

Zero-shot + Synthetic Tests 70.2 68.8 70.4 65.6

Zero-shot + Tests + Self-Repair 72.2 71.4 71.8 69.0

Table 1: Results comparing prompting strategies across four models. Performance generally increases with more
sophisticated prompts, with the combination of explicit synthetic tests and a self-repair loop yielding the strongest

results.

4.2 Failure Analysis

The evaluation revealed three main categories of
failures: Code Generation Errors, Logical and Al-
gorithmic Flaws, and Source Prompt and Localiza-
tion Errors. Each category is discussed below.

Code Generation Errors

These failures occurred when the generated code
did not conform to the required interface, even
though the underlying logic was correct. A com-
mon case was when the model produced the
right implementation but used a different func-
tion name than the one expected by the test case.
For example, a function expected to be named
remove_dirty_chars was instead generated as
str_to_list, leading to a runtime error because
the required entry point could not be found.

Logical and Algorithmic Flaws

Most failures fell into this category. The code exe-
cuted without error but produced incorrect results
due to incomplete algorithms, mishandling of edge
cases, or inefficient approaches. As an example,
a task required a function to return -1 when no
duplicate element was present in an array. The
model’s implementation correctly identified dupli-
cates but returned None when none existed, causing
the output to fail against the expected test condition.
For additional failure analysis, please refer to the
Appendix A.3.

4.3 Error Analysis

To understand how prompting strategies affected
model performance, we analyzed common failure
modes and their resolution. Three categories of er-
rors were observed: (i) interface alignment, where
the logic was correct but mismatched function sig-
natures or formats caused failures; (ii) algorithmic
refinement, where initial solutions were incomplete

and improved once execution feedback clarified the
requirements; and (iii) edge-case handling, where
models overlooked inputs such as negative num-
bers, empty lists, or formatting constraints.

Zero-shot, few-shot, and CoT prompts often re-
vealed these weaknesses but rarely fixed them. By
contrast, adding synthetic test cases made the re-
quirements explicit and guided the models toward
outputs that matched the evaluator. Detailed case
studies with code transitions are provided in Ap-
pendix A.4.

5 Conclusion

This work reveals that a multi-stage pipeline, be-
ginning with machine translation and followed by
advanced prompting, is a useful strategy for Bangla
code generation. The subsequent use of synthetic
tests and self-repair achieved a peak Pass@1 score
of 72.2% with GPT-40. While this approach is
effective, considerable challenges remain in over-
coming the models’ tendency to misinterpret tech-
nically precise instructions, even when the code
generation instructions themselves are accurate.

Limitations

The pipeline’s effectiveness is primarily limited by
its reliance on the quality of the initial Bangla-to-
English translation, which can introduce errors or
lose important nuances. Additionally, there is a
more subtle yet noteworthy limitation that goes be-
yond handling prompts with inherent errors. The
failure analysis shows that models often struggle
with prompts that are factually correct but include
technically specific terms or constraints, which can
lead to misinterpretation. This highlights a key
challenge in ensuring that models accurately inter-
pret precise instructions.

619

References

Kawsar Ahmed, Md Osama, Omar Sharif, Eftekhar Hos-
sain, and Mohammed Moshiul Hoque. 2025. Bennu-
meval: A benchmark to assess llms’ numerical rea-
soning capabilities in bengali. In Findings of the As-
sociation for Computational Linguistics: ACL 2025,
pages 17782-17799.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Abhik Bhattacharjee, Tahmid Hasan, Wasi Uddin Ah-
mad, and Rifat Shahriyar. 2022. Banglanlg and
banglat5: Benchmarks and resources for evaluating
low-resource natural language generation in bangla.
arXiv preprint arXiv:2205.11081.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Khondoker Ittehadul Islam, Sudipta Kar, Md Saiful Is-
lam, and Mohammad Ruhul Amin. 2021. Sentnob: A
dataset for analysing sentiment on noisy bangla texts.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3265-3271.

Mohsinul Kabir, Mohammed Saidul Islam, Md Tah-
mid Rahman Laskar, Mir Tafseer Nayeem, M Sai-
ful Bari, and Enamul Hoque. 2023. Benllmeval: A
comprehensive evaluation into the potentials and pit-
falls of large language models on bengali nlp. arXiv
preprint arXiv:2309.13173.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025a. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 11432-11461, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2025b. Tigercoder: A novel suite of
Ilms for code generation in bangla. arXiv preprint
arXiv:2509.09101.

Nishat Raihan, Mohammad Anas Jawad, Md Mezbaur
Rahman, Noshin Ulfat, Pranav Gupta,
Mehrab Mustafy Rahman, Shubhra Kanti Kar-
makar, and Marcos Zampieri. 2025c. Overview of
BLP-2025 task 2: Code generation in bangla. In
Proceedings of the Second Workshop on Bangla
Language Processing (BLP-2025). Association for
Computational Linguistics (ACL).

A Appendix
A.1 Few-shot Prompt.

Few-shot Prompt

System prompt:
[Same STRICT RULES as abovel]

User prompt:

Instruction:

Write a Python function to remove
the first and last

occurrence of a given character from
a string.

Example 1:

Instruction: Write a function to
sort a given matrix in ascending
order.

Solution:

def sort_matrix(matrix):

[example implementation herel]

Example 2:
Instruction: Write a function that
counts the most common words in a
list.
Solution:
def most_common_word(words):
[example implementation here]

|\ J

A.2 Chain of Thought (CoT) Prompt.

CoT Prompt

System prompt:
[Same STRICT RULES as abovel]

User Prompt:
Instruction:
{instruction}

Guidance:

- Before coding, carefully consider
edge cases (empty input,
negatives, duplicates, large
values).

- Make sure return types exactly
match expectations (int vs float,

casing in strings, etc.).

- Then output only the final Python
function in one fenced code block

OUTPUT :
One fenced Python code block with
exactly one function.

(& J

A.3 Failure Analysis

Misinterpretation and Missed Constraints

A smaller but critical set of failures was caused
by the model’s misinterpretation of specific prob-
lem requirements, where the prompt was accurate

620

https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570

but the model either misunderstood a key techni-
cal term or ignored a formatting constraint. For
instance, when instructed to generate a function
for Woodall numbers (of the form n - 2 — 1), the
model produced a correct implementation for the
more common Mersenne numbers (of the form
2™ — 1), effectively missing the critical » multiplier
in the formula. In another case, the instruction to
"set all odd bits" presented an indexing ambigu-
ity; the model assumed 0-based indexing while the
evaluator expected 1-based, leading to failure. Sim-
ilarly, a task requiring explicit status strings like
"Found a match!" failed when the model returned
the raw search result, correctly solving the logic
but ignoring the strict output format. These cases
demonstrate that failures can stem from the model’s
misinterpretation of terminology or its tendency to
overlook precise specifications.

A.4 Error Analysis

This appendix provides detailed examples of how
prompting strategies influenced failure to success
transitions. We organize the errors into three cat-
egories: Interface Alignment Errors, Algorithmic
Refinement, and Edge-Case and Output-Type Han-
dling. For each, we show representative cases and
the corresponding code transitions, illustrating how
synthetic tests corrected baseline shortcomings.

1. Interface Alignment Errors

These tasks failed in the baseline prompts because
the function names or output formats did not match
what the evaluator expected. Synthetic tests clari-
fied the required interface, which led to corrections.

Example A: Removing digits from strings
Zero-shot / Few-shot / CoT: The -correct
logic was implemented in functions named
remove_digits_from_list, remove_digits, or
remove_digits_from_strings. The evaluator,
however, expected a function named remove, so
these solutions failed. Synthetic Tests: By making
the expected signature explicit, the function was
renamed to remove while retaining the same logic.

Wrong Code

- def remove_digits_from_list(strings
):

= return [''.join(filter(lambda c

not c.isdigit(), s)) for s in

strings]

621

Repaired Code

+ def remove(strings):

+ return [''.join(filter (lambda c
not c.isdigit(), s)) for s in
strings]

Example B: Converting tuples to strings Zero-
shot / Few-shot: Returned comma- or space-
separated strings (e.g., ’, ’.join(map(str,
tup))). CoT: Cast the tuple directly to a string,
which preserved parentheses and commas. Syn-
thetic Tests: Required concatenation without sep-
arators. The revised version used ”.join(tup1),
which matched the evaluation format.

Wrong Code

- def tup_string(tupl):

= return ' '.join(map(str, tupl)
)

- def tup_string(tupl):

= return '.join(map(str, tupl))

- def

tup_string(tupl):
return str(tupl)

\

Repaired Code

+ def tup_string(tupl):
+ return ''.join(tupl)

J

.

C

2. Algorithmic Refinement

In these tasks, the baseline prompts produced in-
complete or incorrect algorithms. Synthetic tests
made the requirements explicit, guiding the model
toward correct implementations.

Example A: Top-k frequent elements in nested
lists Zero-shot / Few-shot / CoT: Counted
only the outer list elements, failing when in-
put contained nested lists. Synthetic Tests:
The corrected version flattened the input, used
collections.Counter, and returned the top-% el-
ements with heapq.nlargest.

Wrong Code

- def top_k_frequent(nums, k):

- c = {3

= for n in nums:

= c[n] = c.get(n, @) + 1

= heap = [(-freq, num) for num,

freq in c.items()]
heapqg.heapify (heap)

= return [heapq.heappop(heap)[1]
for in range (k)]

\ J

Repaired Code

+ from collections import Counter
+ def func(nums, k):

+ if k <= 0:

+ return []

+ flattened_nums = [num for
sublist in nums for num in
sublist]

+ frequency_counter = Counter(
flattened_nums)

+ return heapq.nlargest(k,
frequency_counter.keys(),

+ key:

frequency_counter.get)

\ J

Example B: Splitting a string into a list Zero-
shot / Few-shot / CoT: Used 1ist(string), which
split into characters. Synthetic Tests: Showed that
the intended behavior was splitting into words, cor-
rected with string.split().

Wrong Code

- def string_to_list(string):
= return list(string)

Repaired Code

+ def string_to_list(string):
+ return string.split()

Example C: Sum of amicable numbers Zero-
shot: Double-counted amicable pairs. Few-shot:
Simplified divisor logic but still risked duplication.
CoT: Added a checked set but omitted a boundary
condition. Synthetic Tests: Added both a checked
set and a guard condition to avoid double counting
and ensure correct limits.

Wrong Code

- def amicable_numbers_sum(limit):
= total_sum = @

= for num in range(2, limit + 1):

= divisor_sum =
sum_of_divisors (num) + def decimal_To_Binary(N):

= if divisor_sum != num and T if N < 0:
sum_of_divisors(divisor_sum) == + return "-" +
num: decimal_To_Binary (-N)

= total_sum += num + elif N == 0:

- J (. J

= if divisor_sum <= limit
= total_sum +=

divisor_sum
= return total_sum

Repaired Code

+ def amicable_numbers_sum(limit):

+ total_sum = @

+ checked = set()

+ for num in range(2, limit + 1):
St if num not in checked:

+

div_sum =

sum_of_divisors (num)

+ if div_sum != num and
div_sum <= limit:

+ if sum_of_divisors(
div_sum) == num:

+ total_sum +=
num + div_sum

+ checked.add (num
)

+ checked. add(
div_sum)

+ return total_sum

.

3. Edge-Case and Output-Type Handling

These tasks failed in baseline prompts because
of missing sentinel values, inconsistent return
types, or overlooked corner cases. Synthetic tests
prompted the model to address these issues.

C

Example A: Decimal to binary Zero-shot / Few-
shot / CoT: Returned integers instead of strings
and did not handle negative inputs. Synthetic Tests:
Corrected by always returning strings and explicitly
handling zero and negative values.

Wrong Code

- def decimal_To_Binary(N):

= if N == 0:

= return "0"

- binary = ""

= while N > 0:

= binary = str(N % 2) +
binary

= N=NY// 2

= return int(binary)

\ J

Repaired Code

622

,
J

return "0"
binary = ""
while N > @:
binary = str(N % 2) +

+ + + +

binary
N=N// 2
+ return binary

+

. J

Example B: Maximum occurrence Zero-shot /
Few-shot / CoT: Returned only the element(s) or
None. Synthetic Tests: Corrected to return both the
element and its frequency.

Wrong Code

- def max_occurrences(nums):

= if not nums:

= return None

= count = Counter (nums)

= max_count = max(count.values())

= most_common_items = [item for
item, freq in count.items() if
freq == max_count]

= return most_common_items[@] if
len(most_common_items) == else
most_common_items

,
\

Repaired Code

+ def max_occurrences(nums):

+ from collections import Counter

+ if not nums:

+ return None, 0

+ count = Counter (nums)

+ max_item = max(count, key=count
.get)

+ return max_item, count[max_item

]

'
.

Example C: Returning long words Zero-shot /
Few-shot / CoT: Treated the input as a list of words,
failing when given a raw string. Synthetic Tests:
Corrected by splitting the string explicitly.

Wrong Code

- def long_words(n, words):
= return [word for word in words
if len(word) > nl

,
\

Repaired Code

+ def long_words(n, words):
+ return [word for word in words.
split() if len(word) > n]

r
\

623

