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Abstract

Large language models (LLMs) have recently
demonstrated strong performance in generating
code from natural-language prompts. However,
current benchmarks are primarily focused on
English, overlooking low-resource languages
like Bangla. This creates a critical research
gap, as there are no well-established resources
or systematic evaluations of code generation
from Bangla instructions. To address the gap,
we present a system that generates executable
Python code from Bangla instructions. We de-
sign a two-stage pipeline: the Bangla instruc-
tions are first translated and refined into a clear
English version to reduce ambiguity, and then
the Python code is generated from the refined
instructions through iterative error correction.
For both instruction refinement and code gener-
ation, we used the open-source GPT-20B OSS
model. On the official test set, our system
achieves competitive results. We also analyze
common errors such as unclear instructions,
logical mistakes, runtime issues, and the need
for external knowledge beyond the model’s
training data. Overall, our findings show that a
simple translation—refinement pipeline can be
an effective, low-cost approach to code genera-
tion in low-resource languages.

1 Introduction

Large Language Models (LLMs) have recently ad-
vanced automatic code generation, enabling sys-
tems to produce executable programs directly from
natural-language instructions. Early progress was
achieved with general-purpose models such as GPT-
3 (Brown et al., 2020), followed by code-specific
extensions such as Codex (Chen et al., 2021),
CodeT5 (Wang et al., 2021), and PolyCoder (Xu
et al., 2022), which significantly improved perfor-
mance. Benchmarks such as HumanEval (Chen
et al., 2021), APPS (Hendrycks et al., 2021), and
CodeXGLUE (Lu et al., 2021) have since become
standard for evaluating English-to-code generation.

However, progress in low-resource languages re-
mains limited. Multilingual models such as XLLM-
RoBERTa (Conneau et al., 2020) and mBERT (De-
vlin et al., 2019) demonstrate cross-lingual trans-
fer in NLP, but their application to code genera-
tion remained underexplored. In particular, Bangla,
one of the most widely spoken languages globally,
lacks systematic benchmarks and studies for code
generation. While resources like BanglaBERT
(Bhattacharjee et al., 2022) and other NLP bench-
marks have supported Bangla text understanding
they do not extend to executable code generation.
Broader studies show that English-trained mod-
els often underperform on low-resource languages
(Blasi et al., 2022). While proprietary systems
(e.g., GPT-4, Claude 3) (OpenAl et al., 2023; An-
thropic, 2024) and open-source initiatives (e.g.,
Aya, LLaMA-3) (Ustiin et al., 2024; Grattafiori
et al., 2024) expand multilingual coverage, sys-
tematic evaluation of Bangla instruction-to-code-
generation remains absent.

To address this gap, benchmarks such as mHu-
manEval (Raihan et al., 2025a) and MBPP-Bangla
(Raihan et al., 2025b) provide initial resources for
Bangla-to-Python evaluation. Building on these,
we develop a two-stage pipeline that translates and
refines Bangla instructions into structured English,
and then generates Python code from the refined
instructions using iterative test-driven error correc-
tion. The critical contributions of the work are
summarized as follows:

* We present the first systematic study on
Bangla-to-Python code generation using open-
source LLMs.

* We introduce a two-stage pipeline that lever-
ages instruction translation, one-shot prompt-
ing for refinement, and zero-shot prompting
for code generation.

* We incorporate a test-driven automatic cor-
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rection loop to ensure the reliability of the
generated code.

* We conduct comparative experiments on the
official test datasets.

All resources and code used in this study
are available at: https://github.com/
Hasan-Mesbaul-Ali-Taher/BLP_25_
Task_2 to support reproducibility and
transparency.

2 Related Work

Although several studies have been conducted on
code generation in high-resource languages, this
issue is at a rudimentary stage in Bengali. Chen
et al. (2022) introduced CodeT, a method that uses
the same pretrained LMs to auto-generate test cases
and then select the best code by running samples
and checking dual execution agreement and im-
proved pass@1 across benchmarks without manual
test creation. Wang and Chen (2023) reviewed
LLM-based code generation and highlights both
applications and evaluation methods. This also em-
phasizes that while LLMs significantly improved
developer productivity, the assessment of generated
code remains underexplored, with limited quality
measures considered. Nahin et al. (2025) intro-
duced TituLLMs, the first Bangla LL.Ms (1B, 3B),
which are trained on 37B tokens with an extended
tokenizer and evaluated on five new benchmarks.
TituLLMs outperformed the initial multilingual
models. Besides, they have made the TituLLMs
models and benchmarking datasets publicly avail-
able. A recent study (Bhowmik et al., 2025) iden-
tified NLP challenges, evaluated 10 LLMs across
eight translated datasets, found performance gaps
between Bengali and English, highlighted weak-
nesses in smaller models, and highlighted the need
for better benchmarks and datasets.

Recent works have begun to address the lack of
benchmarks for Bangla-to-code generation. The
mHumanEval benchmark (Raihan et al., 2025a)
extends the HumanEval dataset to over 200 natu-
ral languages, including Bangla, and uses machine
translation and expert validation for 15 languages.
This resource highlights LLMs’ multilingual ca-
pabilities and enables cross-lingual evaluation for
code generation. Complementing this, the Tiger-
Coder suite (Raihan et al., 2025b) introduced the
first dedicated family of Bangla code LLMs (1B
and 9B parameters) with a curated Bangla code in-
struction dataset and the MBPP-Bangla benchmark.

Their models achieved 11- 18% higher Pass@1
accuracy than existing multilingual baselines and
demonstrated that carefully curated data can sub-
stantially improve performance even for smaller-
scale LLMs.

3 Task Description

The primary objective of this task is to automati-
cally generate executable Python code from natu-
ral language instructions written in Bangla as de-
scribed in the paper (Raihan et al., 2025¢). Un-
like traditional classification tasks, this problem
requires models to bridge the gap between infor-
mal Bangla text and structured programming logic.
A successful system must be able to (i) interpret
the intent of the Bangla instruction, (ii) transform
the intent into a well-defined problem specification,
(iii) generate Python code that adheres to this spec-
ification, and (iv) ensure functional correctness by
passing the provided test cases. This task is par-
ticularly challenging due to the scarcity of Bangla
resources, the ambiguity of instructions, and the
need to produce both syntactically valid and seman-
tically correct code.

3.1 Dataset Description

The shared task organizers provided four datasets
for development and evaluation at different stages.
During the competition, we received the Trial and
Development (Dev) datasets. After the task con-
cluded, the Test vI and Test Full datasets were re-
leased for final benchmarking. Table 1 summarizes
the key characteristics of these datasets.

Dataset Rows Instr. Resp. Tests
Trial 74 Yes Yes 2-3
Dev 400 Yes No 3
Test vl 500 Yes No 1
Test Full 500 Yes Yes 3

Table 1: Overview of datasets.

4 Methodology

The proposed approach follows a two-stage
pipeline that reliably generates executable Python
code from Bangla instructions. In the first stage,
Bangla problem statements are translated into En-
glish and refined into well-structured specifications
using a text-to-text generation model with one-shot
prompting. In the second stage, these refined in-
structions are passed to a text-to-code generation
model, which produces candidate Python solutions.
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For both of the stages, we have used the open-
source GPT-20B OSS model. To ensure functional
correctness, the generated code is validated against
provided test cases, and a retry mechanism is em-
ployed when failures occur. The codes are then
stored in the final solution set. The overview of the
entire methodology have presented in Figure 1.
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Figure 1: Overview of the proposed two-stage pipeline
for Bangla instruction to Python code generation.

4.1 Instruction Translation and Refinement

Bangla instructions b are often informal, ambigu-
ous, and stylistically diverse, which makes direct
code generation difficult. To address this, we em-
ploy a translation-refinement strategy. Each in-
struction b is first translated into English instruc-
tion e using Google Translate, which provides a
literal but sometimes noisy version. The Bangla
instruction b, its English translation e, and the test
cases 7' are then concatenated into a single input.
This input is passed to a text-to-text generation
model with one-shot prompting, where an exam-
ple guides the model to convert slightly noisy in-
structions into a refined instruction r that forms a
well-structured specification. The refined output r

explicitly defines the function name, parameters,
return type, and task requirements. As illustrated
in Algorithm 1, this refinement step ensures that
the instructions fed into the code generation stage
follow a consistent structure, reduce ambiguity, and
support reliable code generation.

Algorithm 1 Pseudo-code of the Proposed Method-

ology
Input: Bangla instruction b, test list 7’
Output: Verified Python code C'
1: Translate b into English instruction e using
Google Translate.
2: Concatenate {b, e, T'} into a single input.
3: Generate refined instruction r using a text-to-
text model (one-shot).
4: Initialize loop counter cnt < 0.
5: repeat
6:  Generate candidate code ¢ from 7 using a
text-to-code model.
Execute c against the test list 7.
if all tests pass then

: C<+c
10: break
11:  else
12: Update the prompt with error feedback.
13:  end if

14: ent <—cent + 1
15: until C is valid or ent = 5
16: return C'

4.2 Code Generation and Validation

The refined instruction r obtained from the pre-
vious stage is passed to a text-to-code generation
model, which is prompted in a zero-shot setting to
produce Python code c¢. The prompt is carefully
structured to guide the model to generate only the
function definition and the required logic, and to
avoid unnecessary explanations or comments. This
ensures that the output ¢ remains concise and di-
rectly executable. Once a candidate solution c is
generated, it is executed against the provided test
list T'. If the solution passes all test cases, it is
accepted and stored as solution code C. If any
test fails, the system captures the corresponding
traceback and uses it to prompt the code generation
model again. This retry mechanism is repeated up
to 5 iterations, as illustrated in Algorithm 1 and
Figure 1. If all test cases pass at any step, the can-
didate solution c is stored as the solution code C
immediately. Otherwise, after five iterations, the
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final candidate solution c is stored regardless of
outcome. This error-driven re-generation increases
the likelihood of producing functionally correct
solutions.

4.3 Experimental Setup

All experiments were conducted on Kaggle using a
Tesla T4 GPU (16 GB VRAM), 30 GB RAM, and
a dual-core CPU, running Ubuntu and Python 3.10
with preinstalled PyTorch, CUDA, and Hugging
Face Transformers. This environment ensured re-
producibility with minimal setup. Table 2 summa-
rizes the hyperparameters. The prompt limit (512)
sets the maximum input size, and the generation
limit (1024) controls reasoning and code output
length. Reasoning capacity was kept low to avoid
long chains that exceeded token limits. The batch
size was restricted to 2 due to GPU constraints. A
low temperature (0.1) ensured deterministic out-
puts, and a top-p (0.9) temperature balanced diver-
sity, avoiding unlikely tokens.

Hyperparameter Value
Prompt Token Limit 512
Generated Token Limit 1024
Reasoning Capacity Low
Batch Size 2
Temperature 0.1
Top-p 0.9

Table 2: Hyperparameters used in the Kaggle T4 GPU
experiments.

5 Results and Analysis

To evaluate our system, we conducted experiments
across five folds of the test set, each consisting of
500 instances. At each fold, the model generated
a candidate code per instruction, and the results
were normalized by dividing the number of correct
codes by 500. For evaluation, codes were first vali-
dated against a single test case; if at least one can-
didate passed, it was then checked against all test
cases. When multiple candidates passed all tests,
the shortest solution (measured in character length)
was selected for final validation. We adopt this
criterion because shorter programs generally use
fewer tokens. This choice reduces the likelihood
of unnecessary complexity and of including redun-
dant or unintended operations that do not affect the
program’s functional correctness. Moreover, select-
ing the shortest candidate discourages the model
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from relying on specific patterns that may satisfy
the test cases by accident, without truly general-
izing. This makes the evaluation more consistent
and keeps the comparison focused on the essential
logic rather than stylistic variations.

During the shared task evaluation phase, the
proposed system initially achieved an accuracy
of 0.370. This was primarily due to indentation
errors in the generated code, which caused only
single-line return statements to be accepted. Af-
ter addressing this issue, we observed a significant
improvement in performance as shown in Table 3.
The results are reported under three experimental
settings.

1. Bangla Instruction + Test Cases: Raw
Bangla instructions with provided test cases
passed directly to the code generation model.

2. Refined Instruction: Translated and refined
English instructions containing explicit func-
tion definitions, parameter types, return val-
ues, and test cases.

3. Refined Instruction + Error Log: The re-
fined instruction is further augmented with
error feedback from failed generations, allow-
ing iterative re-generation.

Model F1 | F2 | F3 | F4 | F5
Bangla Instr.
+ Test 0.104 | 0.108 | 0.108 | 0.112 | 0.128
Cases
Refined

. 0.860 | 0.870 | 0.876 | 0.876 | 0.884
Instruction
Refined Instr.

0.860 | 0.904 | 0.910 | 0.920 | 0.924

+ Error Log

Table 3: Accuracy across folds (F1-F5). Each fold
corresponds to 500 test instances.

Table 3 reports fold-wise accuracies for the three
evaluation settings. Performance is measured
across five folds of 500 instances each, using the
same candidate-generation and test-case—based val-
idation procedure described earlier. It also high-
lights the steady improvement from one setting to
the next and reports a peak accuracy of 0.924.

5.1 Ablation Study

To quantify the individual contributions of each
component in our pipeline, we conduct an ablation



across three variants: (1) Raw Bangla Instruction
+ Test Cases, (2) Refined Instruction, and (3) Re-
fined Instruction + Error Log. The results are
presented in Table 3. Each setting introduces ex-
actly one additional step and allows us to isolate the
impact of instruction refinement and error-driven
regeneration. As shown in Figure 2, the refinement
step yields the largest performance gain, taking a
massive leap in the accuracy from an average of
~0.112 to ~0.873. This demonstrates that translat-
ing and restructuring the instruction into a precise
English specification drastically reduces the ambi-
guity of the Bangla prompts. Adding error logs
provides a further boost in the accuracy, achiev-
ing a peak accuracy of 0.924 in the fifth fold. The
improvement is consistent across all folds. This
demonstrates that the error feedback helps correct
runtime and logical mistakes that persist even after
the refinement step.

Ablation Study: Effect of Instruction Refinement and Error Logs
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Figure 2: Ablation study comparing accuracy across
folds for different pipeline variants.

Overall, the ablation indicates that instruction
refinement is the most influential component of
the pipeline, whereas the error-driven regeneration
provides complementary gains. Together, these
components make our two-stage pipeline highly
effective for Bangla-to-Python code generation in
low-resource settings.

6 Conclusion

This study introduced a two-stage pipeline for
Bangla-to-Python code generation. The pipeline
first translates and refines Bangla instructions, then
generates code with test-driven correction. Exper-
iments on shared-task datasets showed that direct
Bangla-to-code generation gave suboptimal results.
In contrast, the proposed refinement and error feed-

back loop led to substantial improvements, reach-
ing an accuracy of up to 0.924. This work is the
first systematic approach to Bangla code gener-
ation and shows that translation and refinement
are effective for low-resource programming tasks.
Future work may extend this approach to larger
multilingual large language models and more com-
prehensive Bangla code benchmarks. Task-specific
models could be evaluated to enhance translation,
refinement, and code generation. For example, the
current system uses the same GPT 20B OSS model
for both instruction refinement and code generation.
Future research could investigate using a special-
ized text-oriented model to refine instructions and
another model optimized for code generation. Such
specialization may yield significant performance
gains. The pipeline could also be adapted to sup-
port more programming languages and complex
tasks. Model selection may be broadened to in-
clude smaller yet more capable models, such as the
Qwen family, which could achieve high accuracy
with reduced computational resources. Advanced
methodologies, such as Al agents operating sequen-
tially to refine instructions and generate code, may
also be explored to improve automation and overall
system performance.

Limitations

This study comes with several shortcomings. First,
the translation step relies on an external tool, i.e.,
Google Translate, which may introduce noise or se-
mantic shifts in Bangla instructions and may poten-
tially affect downstream code generation. Second,
the experiments were constrained by limited com-
putational resources and conducted in small batch
sizes and restrictive hyperparameters. Third, our
evaluation was conducted exclusively on the avail-
able shared-task datasets, which remain limited in
scale and diversity. Moreover, the framework has
only been tested with a single open-source model,
GPT-20B OSS, and its generalizability to other
large language models or programming languages
has not yet been explored.
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