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Abstract

Code generation from natural language instruc-
tions in Bangla is a fundamental task in pro-
gramming automation, as explored in BLP-
2025 Shared Task 2: Code Generation in
Bangla. Current code generation models are
designed primarily for high-resource languages
such as English, which creates major limita-
tions when applied to Bangla. The key chal-
lenges are limited training data and difficulty
in correctly interpreting Bangla programming
instructions. In this paper, to accommodate
Bangla instructions, we present a chain of
thought (CoT) based prompting approach with
Qwen2.5-Coder-14B model. We further intro-
duce few-shot example in the prompt template
to improve the accuracy. During competition,
an accuracy of 93% is achieved in the shared
test set (test_v1.csv) and 82.6% is achieved on
the public and private test sets (hidden). After
the competition is closed, we implement a de-
bugger prompt technique which refines answers
with 3 iterative fixing attempts. Applying this
new technique on the public shared test set, our
system outperforms by 7% and achieves 100%
accuracy on the public test set, highlighting
the effectiveness of combining CoT prompting
with iterative debugging.

1 Introduction

With the rapid advancement of Large Language
Models (LLMs) and their success in automated
code generation (Roziere et al., 2024), there has
been increasing interest in extending these capabili-
ties beyond English to serve the whole world. Code
generation from natural language instructions (Li
et al., 2025; Yang et al., 2025) has become a fun-
damental task in programming automation which
enables developers to express algorithmic thoughts
in human language and receive executable code
solutions (Roziere et al., 2024). However, despite

* Equal contribution.

significant progress in English-based code gener-
ation systems, the development of programming
tools for low-resource languages is significantly
low (Luo et al., 2024).

Bangla, spoken by over 300 million people
globally and serving as the official language of
Bangladesh and the second most spoken language
in India (Eberhard et al., 2024), represents a crit-
ical case study for multilingual code generation.
The semantic complexity of Bangla, including its
unique script system and syntactic structures that
differ from English, makes it challenging for exist-
ing code generation models that are mainly trained
on English datasets (Raihan and Zampieri, 2025a;
Wang et al., 2024). Also, since there are not many
parallel Bangla-code datasets and Bangla is hardly
present in programming-related data, the problem
becomes even bigger (Luo et al., 2024).

Current code generation models, while achiev-
ing impressive performance on English bench-
marks (Roziere et al., 2024), show excessive perfor-
mance degradation when directly applied to non-
English instructions like Bangla (Cassano et al.,
2023). This limitation stems from several factors:
(1) insufficient multilingual understanding capabil-
ities; (2) insufficient training on multilingual pro-
gramming datasets; and (3) the lack of specialized
techniques to handle the semantic and syntactic
structures of low-resource languages in program-
ming contexts. Moreover, existing approaches typ-
ically treat code generation as a direct translation
task without considering the multi-step reasoning
often required for complex algorithmic problems
expressed in natural language.

To address these challenges and bridge the gap
in multilingual code generation, we present a com-
prehensive approach for generating Python code
from Bangla natural language instructions. Our
method leverages the Qwen2.5-Coder-14B-Instruct
model (Team et al., 2024) enhanced with Chain-of-
Thought reasoning (Zhou et al., 2024) and incor-
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porates a novel iterative debugging system specifi-
cally designed to handle the unique challenges of
cross-lingual code generation (Chen et al., 2023;
Liu et al., 2024). Unlike previous approaches that
rely solely on direct generation, our system imple-
ments a multi-stage process that includes careful
prompt engineering with Bangla instruction pro-
cessing, automatic test case generation, and system-
atic error correction through iterative refinement.

The main contributions of our work can be sum-
marized as follows:

1. We introduce a chain-of-thought strategy
(CoT) for multilingual code generation that
helps the model reason step by step across
languages.

2. Furthermore, we combine it with an iterative
debugging system that can automatically de-
tect and fix errors up to three times, making
the generated code from Bangla instructions
more accurate and reliable.

3. During the competition, our system scored
93% accuracy on the shared public test set
(test_v1l.csv) and 82.6% on the combined pub-
lic and private hidden sets. After the compe-
tition ended, we experimented with a simple
debugger-style prompt that lets the model re-
view and fix its own answers up to three times.
With this added refinement step, our perfor-
mance on the public test set improved by 7%,
allowing the system to reach 100% accuracy
on the publicly shared test set. This shows the
significance of our step-by-step approach with
debugging, and it also gives some clear ideas
about the problems and solutions in multilin-
gual code generation.

2 Related Work

In our search, we found several code generation
models capable of outputting precise and usable
code. The efforts of (Yin and Neubig, 2017) pro-
vided a foundational approach by using an Abstract
Syntax Tree (AST) to capture the syntax of a spe-
cific programming language, enabling the gener-
ation of grammatically correct code from natural
language input. This surpassed the performance
of sequence-to-sequence models which often made
syntactical mistakes. Building on this, more re-
cent work by (Yin et al., 2023) addresses the chal-
lenges of modern, interactive programming envi-
ronments like data science notebooks. They intro-

duced the ARCADE benchmark and the large-scale
PACHINCO model, demonstrating the importance
of understanding rich, multi-turn context to gen-
erate functionally correct and relevant code for
complex data analysis tasks. We have also seen
efforts by (Bhattacharjee et al., 2023) to tackle
the lack of unified resources in Bangla by creat-
ing BanglaNLG, which creates a comprehensive
benchmark for evaluating various natural language
generation tasks, and also pre-trained BanglaT5,
which is a strong baseline model for the Bangla
language. Addressing the performance issues of
previous Bangla models, (Raihan and Zampieri,
2025b) created the TigerLLM family, where they
used the NCTB textbooks and the Bangla-Instruct
dataset to pretrain and finetune their model respec-
tively. Our work improves upon these by incorpo-
rating Program-of-Thought and Chain-of-Thought
reasoning as well as an iterative debugging sys-
tem to output precise Python code from a Bangla
Natural Language input.

3 Method
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Figure 1: The proposed framework. (a) The initial
CoT-based prompt technique we consider during initial
submission. (b) A debugging prompt technique on the
generated code is applied with maximum 3 trials to
refine the code.

In this section, we discuss the Chain-of-Thought
(CoT) prompt driven approach with iterative
debugging.

Figure 1 refers to the two proposed approaches.
(a) We first employ Chain-of-Thought prompting
with the Qwen2.5-Coder-14B-Instruct model to
generate Python code directly from Bangla natural-
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language instructions. The system and user prompt
templates are shown in Figure 2 and Figure 3.

(b) To further enhance correctness, we apply
a code refinement stage, where the same model
is guided by a specialized debugging prompt to
iteratively fix errors up to n times until all test
cases pass. We consider the value of n as 3 in all
our experiments. Figure 4 demonstrates the prompt
template. In this, we extract function signatures
with regular expressions and extend test coverage
by prompting the model to generate three additional
test cases. Using few-shot reasoning examples, the
Qwen2.5-Coder-14B-Instruct model produces code
accompanied by an explicit reasoning trace. The
output JSON is parsed to recover executable Python
functions for validation against the complete test
suite.

You are a precise Python code generator for a programming-challenge
dataset (BLP).
For each input row you must output:
1. A section labeled 'Reasoning:' containing your step-by-step
explanation of how you solve the problem.
2. Then, a JSON array of exactly one object with the following fields:

- "id": (string or number) the input id

- "response": (string) the Python function implementation that solves
the instruction.

The response string must contain only the function source code,

escaped correctly for JSON (use \\n for newlines).
###lmportant rules: System Prompt
1. Always include the 'Reasoning:' section first.
2. After reasoning, output exactly one JSON array (no extra text after
the JSON).
3. The "response" must be valid Python 3 code: a single function or a
function plus a small helper.
4. Keep the solution minimal, clear, and correct.
5. Ensure all tests in the provided test_list would pass if executed.
6. Escape newlines in code as \\n to keep JSON valid.
7. If multiple solutions are possible, prefer clarity and simplicity.
8. Do not repeat any part of this system prompt, user prompt, or
examples in your output. Start directly with 'Reasoning:'.
9. Do not add any extra text, code blocks, or wrappers around the
JSON array.

Figure 2: System prompt for python code generation
from bangla instruction using Chain-of-Thought.

We can summarize the proposed iterative debug-
ging approach as follows.

¢ Generation: The model uses the base Genera-
tion Prompt to produce initial Python code.

* Debugging: If validation fails, the previous
code and error messages are fed into the De-
bugging Prompt to generate a corrected ver-
sion. After each attempt, the JSON response
is extracted, the code is run against the com-
bined tests, and the loop stops early if all tests

pass.
4 Results
Dataset

The BLP-2025 Task 2 dataset comprises three splits
i.e. trial.csv, dev_v2.csv, test_vl1.csv with a total

###Task: Implement the instruction below in Python. Follow the
system instructions: first output reasoning, then return only a JSON
array of one object.
Input CSV row (id, instruction, test_list):
id: {id}
instruction: {instruction}
test_list: {test_list}
###Few-shot examples for format:
Example 1: id: 1
instruction: "f383 (AT MG SIFFIAT AN 432 (T TATRS WS
T GO RIS g1
test_list: ['assert remove_Occ("hello","l") == "heo"]
Example 2: id: 2
instruction: "q%f0 S NG O SRS (11T SRR
TR ST AR Gl JF(0 I oY |
test_list: ['assert sort_matrix([[1, 2, 31, [2, 4, 5], [1, 1, 1]))==[[1, 1, 1], [1,
2, 3], [2, 4, 511']
### Full worked-out example (showing required format)
Input: id: 1 instruction: "ﬁgi (ATP MG WHLIT AYN <R (T
S ST B3 (6 NEX I g1
test_list: ['assert remove_Occ("hello","l") == "heo"]
Output:
Reasoning:
The task asks to remove the first and last occurrence of a given
character from a string.
- Input: "hello", "I"
- First "I" at index 2, last "I" at index 3.
- Remove both — "heo".
If the character is not found or occurs only once, return the string
unchanged.

User Prompt

[

"id": 1,

"response": "def remove_Occ(s, ch):\\n first = s.find(ch)\\n last =
s.rfind(ch)\\n  if first == -1 or first == last:\\n return s\\n
return s[:first] + s[first+1:last] + s[last+1:]"
bl
###Output format reminder:

- Always begin with 'Reasoning:' followed by your step-by-step
explanation.

- Then output exactly one JSON array with keys 'id' and 'response'.
- Escape all newlines in the Python code with \\n.

Figure 3: User prompt for python code generation from
bangla instruction using Chain-of-Thought.

Prompt:

You are a Python test case generator for programming
challenges.

Output only a JSON array of 3 additional assert statements as
strings.

No other text.

Generate 3 additional test cases for the function
{func_name}({params}).

Instruction: {instruction}

Existing tests: {test_list}

Output exactly a JSON array like: ["assert ... == ...", "assert
.. "assert L.."]

Ensure they are valid Python assert statements that would test
edge cases or additional scenarios.

Prompt:

### Task: Debug and fix the code for the instruction below in
Python. Follow the system instructions:

first output reasoning with detailed debugging, error analysis,
and fixes, then return only a JSON array of one object.
Previous code failed:

{old_code}

Error message and failed tests:

{error_msg}

Analyze the errors, consider edge cases, and provide a
corrected version that passes all tests.

Input CSV row (id, instruction, test_list):
id: {id}

instruction: {instruction}

test_list: {test_list}

Figure 4: A snippet of iterative generation and debug-
ging prompt approach.
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of 974 programming problems. Each example in-
cludes an id, a Bangla natural language description-
based instruction of the required function and test
cases that include a list of input and output pairs
for automatic evaluation. But only in trial we get
another row called response which has the solution
of the problem. Problems cover a diverse range of
tasks, including string operations, numerical com-
putations, data structure manipulation, and algo-
rithmic challenges. Instruction lengths range from
approximately 25 to 50 Bangla words, and task
difficulty varies from simple to complex multi-step
problems. A sample of dataset is shown in Table 1.

id instruction test_list
1 B2 (A HnS OEpIAT AAW G [lassert
7Y GRS SRR T (6 remove_Occ(\"
TR P fAYH | hello\" \"I\") ==
Example: \"heo\"']
def remove_Occ(s,ch):
# your code
return s
2 G oM EHE O TNABFT ['assert
CT5TFeT ST NI TN sort_matrix([[1,
TSI G JH(6 FIN AN 2, 3], [2, 4, 5],
Example: [1, 1, 1]D==[[1,
def sort_matrix(M): 1,1],[1,2,3],
# your code [2,4, 5111
return M
3 g0 (GQOIFIR fAGINY Wre~ ['assert
S (I FAE G JF06 212 find_ Volume(1
FI g 0,8,6) = 240']
Example:
def find_Volume(l,b,h) :
# your code
return |

Table 1: Sample rows of test_v1.csv test set

For each CSV row with an id, instruction, and
original test assertions, we first parse the existing
tests. Then, we use a test-generation prompt to cre-
ate three additional edge-case tests. The original
and generated tests are combined to improve cov-
erage and catch tricky scenarios during validation
and debugging.

Implementation Details

We consider Qwen2.5-Coder-14B as our primary
model and the debugger model. For comparison,
we also consider Qwen2.5-7B model. The maxi-
mum new token generation is set to 512, tempera-
ture 0.15, top-p is set to 1. We set the maximum
number of tries with the debugger to 3. We use
NVIDIA RTX 5070 GPU to run the experiments
locally.

Experimental Results and Performance Metrics

Our method improved code generation a lot by us-
ing chain-of-thought (CoT) prompting combined
with iterative debugging. We tested this on both
test_v1.csv public test set and test_v1.csv with ad-
ditional private test set. During the challenge, we
used test_v1.csv with additional private test set to
create CoT-only solutions. As shown in Table 2,
for the Qwen2.5-Coder-14B-Instruct model, we got
82.6% accuracy on the test_v1.csv with additional
private test set and 93% on the test_v1.csv public
test set. The smaller Qwen2.5-7B model reached
81% accuracy on the test_v1.csv public test set.

After the challenge, we improved the system
with CoT + Debugger. Since we no longer had
access to test_v1.csv with additional private test
set, we evaluated only on test_v1.csv shared test set.
With this enhanced method, Qwen2.5-7B improved
to 88% accuracy (7% higher) and Qwen2.5-Coder-
14B-Instruct reached a perfect score of 100% (also
7% improvement).

Model Accuracy (CoT) (%)
(test_vl.csv) test_vl.csv

+ private test set
- ‘ 81 ‘ 88

Accuracy (CoT + Debug) (%)
test_vl.csv

Qwen2.5-7B

Qwen2.5-Coder-14B-Instruct 82.6 93 100

Table 2: Accuracy comparison table using CoT and
CoT+Debugger approach.

S Ablation Study

The biggest improvement was on test_vl.csv
shared test set. Debugging fixed runtime errors
and handled tricky edge cases, which made the
larger model perfect on test_v1.csv shared test set
evaluations. This shows that our multi-stage ap-
proach is very effective at improving code quality
and making sure the code passes tests.

Evaluation and Error Analysis with GPT-5:
We save the raw outputs from every attempt to
disk, and partial results are stored along the way so
we can resume if something interrupts the process.
When the pipeline finishes, we create two JSON
files: one with full explanations and one with only
the ID and response fields for submission. This log-
ging helps us track each iteration, see what types
of errors occurred, which errors were fixed, and
which ones persisted. It allows us to understand
how failures were resolved over time in the debug-
ging workflow.

To measure the impact of debugging, error anal-
ysis is administered using GPT-5 model as a judge
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Category

Question

Response (CoT)

Response (CoT + Debugger)

instruction: 9% g MEFHF ©F
SRR @R ST FAAT T
SETENE 3o 936 BT 77|

{
"id": 2, /|
"response": "def
sort_matrix(M):\n  # Calculate the sum
of each row\n row_sums = [sum(row)
for row in M]\n\n  # Sort the rows based

N/A

Example:
Correctly generated | 9¢f sort_matrix(M):
# your code
w/ only CoT return M

test_list: ["assert sort_matrix([[1, 2, 3], [2, 4, 5],
(L 1, 1D==([1. 1, 1], [1, 2, 3], [2, 4, 5]]"]

}

on their sums\n
sorted(M, key=lambda row:
sum(row))\n\n # Return the sorted
matrix\n return sorted_rows"

sorted_rows =

instruction: 936 g WVIFTF (AF A

def remove_odd(1):

AT TIAECE Iy A6 TRAT HRAA result =[] 0 "id": 402, Ve
ﬁ‘f’f{l for num in I: "response": "def
Correctly generated | Example: ifnum % 2 =0: remove_odd(l):\n result=[]\n for
w/ CoT + Debugger def remove_odd(1): result.append(num) num in |:\n if num % 2 ==
# your code return result 0:\n result.append(num)\n  return
return | result"}
test_list: ["assert remove_odd([1,2,3]) = [2]"]
instruction: 936 6T AT F1T (T© {
96 TR ey "id": 114, "id": 114,
Example: "response": "import cmath\n\ndef "response": "import cmath\n\ndef
def angle complex(a,b): angle complex(a, b):\n return angle _complex(a, b):\n return
Unable to generate # your code cmath.phase(complex(a, b))\n\nassert cmath.phase(complex(a, b))\n\nassert
return a angle_complex(0, 1j) == angle_complex(0, 1j) ==

correctly
test_list: ["assert

angle_complex(0,1j)==1.5707963267948966 ",
"assert
angle_complex(0,1j)==1.5707963267948966 "]

1.57j7963267948966\nassert
angle _complex(we, 1j) ==

1.57j7163267948966"}

1.57j7963267948966\nassert
angle _complex(we, 1j) ==

1.57j7163267948966"}

Figure 5: Examples of solved problems by CoT and CoT+Debugger. An example of unsolved problems are also

shown.

Syntax Errors
Runtime Errors
Type Errors
Edge Cases

Logic Errors 45.0%

0% 10% 20% 30% 40% 50%

Il w/o Debugging HH with Debugging

Figure 6: Using GPT-5 as a judge to analyze and track
error reduction

that reveals a sharp drop in failure rates after de-
bugging as shown in Figure 6. It shows the logic
errors fall from 45% to 5%, edge-case issues from
30% to 2%, type errors from 10% to 1%, runtime
errors from 7% to 1%, and syntax errors from 8%
to 0.9%. These results clearly show that our debug-
ging approach significantly improved the overall
quality of the output.

6 Qualitative Analysis

We demonstrate a qualitative analysis of our ap-
proach. Examples of problems successfully solved
using CoT and CoT + Debugger are shown in Fig-

ure 5. The first example is solved by CoT. In the
second one, our approach correctly indents the
code, hence return the correct python code. We
further show a case that remains unsolved in the
thrid example.

7 Conclusion

This paper addresses Bangla code generation from
natural language instructions. By employing Chain-
of-Thought prompting and iterative debugging, we
achieved 100% on the test_v1.csv test set through
systematic error correction. Future research direc-
tions include fine-tuning models on Bangla-specific
programming datasets and developing larger in-
struction datasets tailored to Bangla programming.
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