Retriv at BLP-2025 Task 2: Test-Driven Feedback-Guided Framework for
Bangla-to-Python Code Generation

K M Nafi Asib, Sourav Saha, and Mohammed Moshiul Hoque
Department of Computer Science and Engineering
Chittagong University of Engineering & Technology, Chittagong 4349, Bangladesh
{nafi.asib, sahasourav1170}@gmail.com; moshiul_240@cuet.ac.bd

Abstract

Large Language Models (LLMs) have ad-
vanced the automated generation of code from
natural language prompts. However, low-
resource languages (LRLs) like Bangla remain
underrepresented due to the limited availabil-
ity of instruction-to-code datasets and evalu-
ation benchmarks. To address this, the BLP
Workshop at IJCNLP-AACL 2025 introduced
a shared task on “Code Generation in Bangla”.
In this work, we propose a method that com-
bines instruction prompting with a test-driven,
feedback-guided iterative refinement process
using a fine-tuned Qwen2.5-14B model. The
model generates code from Bangla instruc-
tions, tests it against unit tests, and iteratively
refines any failing outputs through three evalu-
ation passes, using test feedback to guide each
step. This approach helped our team “Retriv”’
to secure 2™ place in the shared task with a
Pass@1 score of 0.934. The analysis high-
lights challenges in Bangla instruction under-
standing and Python code generation, empha-
sizing the need for targeted methods in LRLs.
We made experimental scripts publicly avail-
able for the community.'

1 Introduction

Automated code generation from natural language
has made significant progress with Large Lan-
guage Models (LLMs), which generate code snip-
pets tailored to meet user needs. These models,
trained on millions of open-source code reposi-
tories, perform best in high-resource languages
such as English, where large, aligned datasets
and benchmarks are available. In contrast, low-
resource languages such as Bangla have received
less attention due to the lack of high-quality
instruction-to-code datasets (Raihan et al., 2025a).
Recent work, including the TigerCoder mod-
els (Raihan et al., 2025b) and benchmarks such as

"https://github.com/NafiAsib/
Retriv-BLP25-Task-2

mHumanEval (Raihan et al., 2025a) and MBPP-
Bangla (Raihan et al., 2025b), has begun to ad-
dress this gap by providing standardized datasets
and evaluation protocols. Automated code gener-
ation in Bengali is important because it enables
more people to access programming tools and re-
sources in their native language, thereby support-
ing education and local software development.

To advance research, the BLP Workshop? at
IJCNLP-AACL 2025 introduced a shared task
on “Code Generation in Bangla” (Raihan et al.,
2025c), providing a benchmark for evaluating
models on Bangla instruction-to-Python code gen-
eration. This paper contributes to ongoing re-
search, and the key contributions are as follows:

* Proposed a lightweight and effective sys-
tem for Bangla-to-Python code generation
that combines QLoRA fine-tuning with a
feedback-guided inference loop and includes
a test-case-aware translation step to ensure se-
mantic alignment with expected input-output
behavior.

* Conducted a  systematic  evaluation

of several open-weight models, in-
cluding (ReasonFlux-Coder-14B,
phi-4, Llama-3.1-8B, Qwen3-14B,

Qwen2.5-Coder-14B) on Bangla-to-Python
code generation.

2 Related Work

Recent studies have sought to enhance the robust-
ness of code generation. Python Code Genera-
tion by Asking Clarification Questions (Li et al.,
2023) allows models to query ambiguous prompts,
improving correctness through interactive clarifi-
cation. Self-Debugging (Chen et al., 2023) pro-
poses a general framework where LLMs itera-
tively refine their own outputs by leveraging ex-

ecution feedback, showing improvements across

2https://blp-workshop.github.io/
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text-to-SQL, code translation, and text-to-Python
tasks. Similarly, the Large Language Model De-
bugger (LDB) (Zhong et al., 2024) incorporates
runtime execution signals and block-level debug-
ging, yielding gains on HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). Build-
ing upon recent work in enhancing code genera-
tion, efforts to assess LLM capabilities in Bangla
have led to the introduction of several benchmarks
and resources. For example, the mHumanEval-
Bangla dataset (Raihan et al., 2025a) extends Hu-
manEval (Chen et al., 2021) to Bangla, while the
MBPP-Bangla benchmark (Raihan et al., 2025b)
adapts MBPP with crowd-sourced Bangla instruc-
tions paired with Python solutions. In parallel,
modeling advances include TigerLLM (Raihan
and Zampieri, 2025), a family of Bangla LLMs
outperforming previous open alternatives, and Tit-
uLLMs (Nahin et al., 2025), which release pre-
trained Bangla models at 1B and 3B scales with
comprehensive benchmarking.

Despite the availability of these benchmarks
and improvements, code generation in Bangla re-
mains relatively underexplored. The TigerCoder
suite (Raihan et al., 2025b) is an early response to
this gap, introducing Bangla-focused multilingual
models and benchmarks. This work specifically
addresses the task of Bangla-to-Python code gener-
ation by proposing a test-driven, feedback-guided
refinement approach.

3 Task and Dataset Descriptions

The BLP Shared Task-2 tackled the challenge
of developing robust Bangla code generation sys-
tems. Organizers provided instruction-to-Python
code datasets for training (74 samples), develop-
ment (400 samples), and testing (500 samples). Ta-
ble 1 summarizes the structure and fields of each
sample.

Field Description

id A unique task identifier.

instruction A Bangla description of the program-
ming task.

response A Python code snippet implementing

the task (available only in the training
set).

A list of Python assert statements used
for verifying functional correctness dur-
ing development.

test_list

Table 1: Structure of each dataset sample.

4 System Description

Figure 1 illustrates the overview of our proposed
framework.
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Figure 1: Overview of the proposed framework

4.1 Base Model Benchmarking

We began by comparing a diverse set of
open-weight large language models (LLMs),
chosen for their strong performance in code

generation and multilingual understanding:
ReasonFlux-Coder-14B (Wang et al., 2025),
phi-4 (Abdin et al., 2024), Llama-3.1-8B

(Dubey et al., 2024), codegemma-7b (Team
et al., 2024), Qwen3-14B (Yang et al., 2025), and
Qwen2.5-Coder-14B (Hui et al., 2024). Each
model was tested in a two-shot setting, where
we prompted with two Bangla instructions and
their reference solutions. To evaluate robustness,
we repeated the same experiments using trans-
lated English instructions. Across both setups,
Qwen2.5-Coder-14B  consistently  produced
the most reliable and executable Python code,
making it the natural choice for our subsequent
fine-tuning.

4.2 Instruction Translation Strategy

Since the development dataset contained Bangla
instructions paired with English test cases, we in-
troduced an LLLM-based translation step to better
leverage English-centric code models. For each
instruction, the full test suite was included in the
prompt, allowing the translator to align the natural
language description with the intended input/out-
put behavior. This design helped preserve seman-
tic fidelity, especially in tasks where the Bangla
phrasing might otherwise be ambiguous. We used
Qwen2.5-Coder-14B as the translator for the full
dataset.

4.3 Fine-tuning with QLoRA

Given GPU memory constraints, we fine-tuned
the base model using Quantized Low-Rank Adap-
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tation (QLoRA) (Dettmers et al., 2023), which
combines 4-bit weight quantization with low-rank
adapters. This approach enabled us to adapt a 14B-
parameter model within our compute budget while
still leveraging its rich pretraining. For fine-tuning,
we additionally used the DeepMind MBPP dataset
(Austin et al., 2021) to supplement our training
data. We settled on a configuration with rank
r = 128, scaling factor « = 128, a learning rate of
2 x 1074, and a batch size of 1 with gradient accu-
mulation steps of 4. The training was performed
for 4 epochs with weight decay of 0.

4.4 Feedback-guided Inference

Finally, we introduced a feedback mechanism to
improve inference robustness. After the model
generated a candidate solution, we executed it
against all the test cases provided with a 30-second
timeout. If any test failed, we re-prompted the
model with the error trace, allowing it to itera-
tively refine its output. This loop was repeated up
to three times, gradually increasing the sampling
temperature (0.1 — 0.3 — 0.5) to encourage di-
verse candidate solutions. We found prompt de-
sign to be crucial here, and iteratively refined the
error-handling prompt over multiple development
runs.

5 Experiments

All experiments were conducted on a single
NVIDIA RTX 3090 Ti GPU with 24 GB of mem-
ory. We used the HuggingFace® transformers
library together with the PEFT framework and the
Unsloth* package for efficient training. Unless
otherwise stated, decoding was performed with a
maximum of 768 tokens and an initial temperature
of 0.1. This setup reflects a modest compute bud-
get, which influenced the design of our training
and inference strategies.

6 Results and Analysis

System performance was measured using the
Pass@1 metric, defined as the proportion of top-1
generated solutions that pass all hidden unit tests.
Leaderboard ranking was determined by Pass@1.

6.1 Few-shot on Bangla Instructions

We first evaluated all candidate models in a two-
shot setting using the original Bangla instructions.

3https ://huggingface.co/
*https://unsloth.ai/

As shown in Table 2, Qwen2.5-Coder-14B and
Qwen3-14B emerged as the strongest models, re-
flecting their multilingual pretraining. In con-
trast, models with weaker multilingual ground-
ing (phi-4, codegemma-7b) struggled to interpret
Bangla instructions reliably.

Model Pass@1 (Bangla)
ReasonFlux-Coder-14B 0.64
phi-4 0.20
Llama-3.1-8B 0.51
codegemma-7b 0.37
Qwen3-14B 0.67
Qwen2.5-Coder-14B 0.74

Table 2: Few-shot performance on Bangla instructions.

6.2 Few-shot on Translated Instructions

Next, we repeated the evaluation after translating
Bangla instructions into English using our LLM-
based pipeline. Table 4 shows that translation sub-
stantially boosted performance for most models,
with Qwen2.5-Coder-14B again leading at 0.81
Pass@1. This demonstrates that while multilin-
gual ability helps, aligning with English-centric
pretraining remains advantageous for code gener-
ation. Table 3 illustrates representative Bangla in-
structions from the dataset alongside their English
translations used for code generation.

6.3 Effect of Fine-tuning

Fine-tuning Qwen2.5-Coder-14B with QLoRA
yielded a notable improvement, raising Pass@1
from 0.81 to 0.90. The best configuration was ob-
tained with rank r = 128, scaling factor av = 128,
and O dropout. We found that any added dropout
degraded performance, suggesting that preserving
the full training signal was more important than
regularization under the limited dataset size. This
highlights the value of higher adapter ranks in cap-
turing nuanced mappings from translated instruc-
tions to executable logic.

6.4 Feedback-guided Inference

Incorporating the feedback mechanism further im-
proved performance to 0.94 Pass@1 (Table 5).
Relative to the few-shot baseline, this represents
a +16.05% absolute improvement, and a +4.44%
gain over fine-tuning alone.

Most recoveries came from correcting off-by-
one errors, handling edge cases, or aligning out-
puts with expected formats. However, failures
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Bangla Instruction

English Translation

L] TGN
TN G AIH
i o S O (< e (4]
GEa I EU T IR T
IGRCR

Write a Python func-
tion to find the min-
imum possible value
for a given arithmetic
sequence.

ane  SifeTdy  Beie

&y e @ e

o Fdfee W4
S (7ITS G0 T
foTg |

Write a function to
find the maximum
value in each tuple’s
list within a given list
and return the tuples
with their respective
maximum values.

Tba @32 FEw
T YA @ g0
il ©l9 I &y

@G Pl Ty |

Write a function to di-
vide two lists element-
wise using map and
lambda functions.

eve  fHeag
CoE O * olfeTt

Write a function to
replace all spaces in

@iE%y  *  Sffeid a given string with
WG ¢ Ol %20

3Gy * wiferl

oIEOGY ‘%20 cx

AfFTT & G

TR o1 |

@3 fi ©Iferel (2tF  Write a Python func-
GIFF He Y& (TS tion to extract num-

GFh AL T
foTg |

bers from a mixed list.

Table 3: Examples of Bangla instructions and their En-

glish translations.

caused by mistranslations or deeper reasoning
gaps were rarely resolved, underscoring the lim-
its of inference-time self-correction. The prompt
used for this task is provided in Appendix A.

6.5 Translation Error Analysis

Although the LLM-based translation pipeline pre-
served semantics in most cases, some instructions
suffered from semantic drift. A representative ex-

ample is shown below:

Original Bangla: “gPfo YW
AN Jerele] G woitas elforfas!

T O 9w A9 T @I A3

e 1Y

LLM Translation:

Write a Python

function to check whether the roots
of two quadratic equations are in

Model Pass@1 (English)
ReasonFlux-Coder-14B 0.73
phi-4 0.74
Llama-3.1-8B 0.59
codegemma-7b 0.42
Qwen3-14B 0.75
Qwen2.5-Coder-14B 0.81

Table 4: Few-shot performance on translated English
instructions.

Method Pass@1
QLoRA 0.90
QLoRA + Feedback mechanism 0.94

Table 5: Impact of feedback-guided inference.

competition with each other.

Here, “aferf@sl” (literally competition) was
mistranslated as in competition, while the in-
tended mathematical meaning was reciprocal.
This caused the generated code to implement in-
correct logic. Such cases highlight that while test-
case-aware prompting improves translation, bridg-
ing natural Bangla phrasing with precise program-
ming semantics remains challenging.

6.6 Shared Task Outcome

Our final system Qwen2.5-Coder-14B with
QLoRA fine-tuning and feedback-guided infer-
ence achieved Pass@1 score of 0.934 on the
blind evaluation set, ranking second overall in
the shared task leaderboard. This demonstrates
that with careful translation, parameter-efficient
fine-tuning, and inference-time self-correction,
open-weight LLMs can achieve state-of-the-art
performance on Bangla-to-Python code genera-
tion.

7 Conclusion

This work presents an LLM-based system for
generating Bangla-to-Python code. The sug-
gested approach integrates an LLM-based transla-
tion pipeline, parameter-efficient fine-tuning with
QLoRA, and a feedback-guided inference loop.
These components enabled the model to achieve
Pass@1 accuracies of 0.94 on the development
set and 0.934 on the blind test set. These re-
sults demonstrate that, with careful translation, ef-
ficient adaptation, and test-case-aware inference,
LLMs can match the performance of much larger
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or closed-source systems. The future aim is to
utilize fine-tuned, larger-parameter models, such
as those employing LoRA and other advanced
techniques, to capture more nuanced, task-specific
representations. We also aim to evaluate closed-
source LLMs available through APIs that bene-
fit from stronger hardware and training pipelines.
Improving translation fidelity, particularly for id-
iomatic Bengali expressions, remains a key chal-
lenge and a crucial step toward more robust multi-
lingual code generation.

8 Limitations

The system achieved competitive results, but sev-
eral limitations persist. ~Methodological chal-
lenges such as translation fidelity and error-driven
code correction, along with resource constraints
in training and deployment, remain. Addressing
these issues is essential to enhancing the robust-
ness and scalability of Bangla-to-Python code gen-
eration systems. Key limitations include:

¢ Hardware constraints restricted us to QLoRA
fine-tuning on a single GPU, which prevented
exploration of full-precision LoRA or larger
models that could offer additional improve-
ments.

» Although generally effective, the translation
pipeline occasionally introduced semantic
drift, particularly with idiomatic Bangla ex-
pressions and loanwords. These errors af-
fected code generation and were only par-
tially addressed by the feedback mechanism.

* The feedback-guided inference loop de-
pended on the quality of error traces. When
tracebacks did not identify issues, retries sel-
dom led to meaningful corrections.

* The experiments were limited to open-weight
LLMs, which excluded evaluation of poten-
tially stronger closed-source models that ben-
efit from larger-scale pretraining and infer-
ence resources.
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A Prompts

This appendix contains the prompts employed in
system development and testing, offering addi-
tional insight into our framework.

A.1 Translation Prompt

messages = [
{
"role”: "system”,
"content”: """You are a professional
translator specializing in technical and
programming content...

Translation Guidelines:

- Preserve Technical Accuracy: Maintain exact
meaning of programming concepts

- Keep Code Elements Intact: Preserve English
technical terms in standard form

- Maintain Instructional Clarity: Ensure natural
English coding instructions

- Precision Over Literal Translation: Focus on
exact intended meaning

Example:

Input: @36 FGe-q @ arslte RGe SPEE F99 &
@B P o1 932 @O TR IR T G99
T TIZAG A ([@F FF @A AJBFG T0E |
Output: Write a function to search for a literal
string within a main string and find the
position within the main string where the
pattern occurs using regex."""
}'
{

"role": "user",

"content”: f"Translate this Bangla
coding instruction to English: {
bangla_instruction}”

3

A.2 Few-shot Prompt (Bangla Instructions)

Listing 1: Few-shot prompt with translated English ex-
amples

system_message = """You are an expert Python
programmer. Your task is to generate clean,
efficient, and correct Python functions that
pass all given test cases.

CRITICAL RULES:

1. ALWAYS wrap your code in ~~“python ~~~ blocks

2. Write ONLY the function implementation, no
extra explanations

3. Use the EXACT function name from the example

4. Ensure the function passes ALL test cases

5. Handle edge cases and invalid inputs
appropriately

6. Use appropriate data types based on test case
patterns

Here are examples of how to solve different
types of problems:

EXAMPLE 1 - String Processing:
Task: 99f6 @we fF-q &AW F7RIge T Y& (ite 9Ffo

ABLT HIH forgeT 1
Test Cases:
assert first_repeated_char("abcabc”) == "a"
assert first_repeated_char("abc") == "None"
assert first_repeated_char(”123123") == "1"

Expected Solution:
T “python
def first_repeated_char(s):
seen = set()
for char in s:
if char in seen:
return char
seen.add(char)
return "None”

EXAMPLE 2 - Mathematical Function:
Task: @Wg 77 @b Gifers et fFar of s
AR T G0 Pl 14T |

Test Cases:

assert prime_num(13) == True
assert prime_num(7) == True
assert prime_num(-1010) == False

Expected Solution:
T python
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def prime_num(n):
if n < 2:
return False

return True
ifn%2==20:
return False
for i in range(3, int(n*x0.5) + 1, 2):
ifn%i
return False
return True

if n

Code Quality Standards:

- Write code with proper indentation

- Optimize for correctness first, then
efficiency

- Handle common edge cases (empty inputs, None
values, negative numbers, etc.)

nn

Return the exact data type shown in test cases

n

user_prompt = f"""Generate a Python function for
this problem:

Task: {instruction}

Test Cases:
{test_list}

Expected Function Name: {function_name}
Requirements:

Follow the examples shown in the system
message

Analyze the test cases carefully to understand

input/output patterns

Implement the function to pass ALL test cases
exactly

Return the appropriate data type as shown in
test cases

Handle edge cases gracefully (empty inputs,
invalid values, etc.)

Use efficient algorithms where applicable

Generate ONLY the Python function wrapped in
python blocks. No explanations needed.”"”

A.3 Few-shot Prompt (Translated
Instructions)

Listing 2: Few-shot prompt with translated English ex-
amples

system_message = """You are an expert Python
programmer. Your task is to generate clean,
efficient, and correct Python functions that
pass all given test cases.

CRITICAL RULES:
1. ALWAYS wrap your code in

“python ~~° blocks

2. Write ONLY the function implementation, no
extra explanations

3. Use the EXACT function name from the example

4. Ensure the function passes ALL test cases

5. Handle edge cases and invalid inputs

appropriately
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6. Use appropriate data types based on test case
patterns

Here are examples of how to solve different
types of problems:

EXAMPLE 1 - String Processing:
Task: Write a Python function to find the first
repeated character in a given string.

Test Cases:

assert first_repeated_char("abcabc")
assert first_repeated_char("abc") ==
assert first_repeated_char("123123")

nan

a
"None"

== ""

Expected Solution:
T python
def first_repeated_char(s):
seen = set()
for char in s:
if char in seen:
return char
seen.add(char)
return "None”
EXAMPLE 2 - Mathematical Function:
Task: Write a function to check if a given
integer is a prime number.

Test Cases:

assert prime_num(13) == True
assert prime_num(7) == True
assert prime_num(-1010) == False

Expected Solution:
T “python
def prime_num(n):
if n< 2:
return False
if n ==
return True
ifn%2==20:
return False
for i in range(3, int(n**x0.5) + 1, 2):
ifn%i
return False
return True

Code Quality Standards:

- Write code with proper indentation

- Optimize for correctness first, then
efficiency

- Handle common edge cases (empty inputs, None
values, negative numbers, etc.)

nn

Return the exact data type shown in test cases

n

user_prompt = f"""Generate a Python function for
this problem:

Task: {instruction}

Test Cases:
{test_list}

Expected Function Name: {function_name}
Requirements:

- Follow the examples shown in the system



message
- Analyze the test cases carefully to understand
input/output patterns
- Implement the function to pass ALL test cases
exactly

- Return the appropriate data type as shown in
test cases

Handle edge cases gracefully (empty inputs,
invalid values, etc.)

- Use efficient algorithms where applicable

Generate ONLY the Python function wrapped in
python blocks. No explanations needed.”"”

A.4 Feedback/Retry Prompt

Listing 3: Few-shot prompt with translated English ex-
amples

attempt_analysis = f"""

# PATTERN ANALYSIS FROM {len(previous_attempts)}
ATTEMPTS:

Attempt 1: {len(previous_attempts[0])}
characters

Latest: {len(previous_attempts[-1])}
characters

- Different approaches tried: {len(set(attempt

[:50] for attempt in previous_attempts))}

# AVOID REPEATING: The same logic pattern has
failed multiple times. Try a fundamentally
different approach.”"”

# Enhanced error analysis based on error
type
specific_guidance =
if failed_test['status'] == "'
ASSERTION_FAILED':
specific_guidance =
## ASSERTION FAILURE GUIDANCE:
- Check return data type (int, str, list, tuple,
bool)
- Verify exact return format matches expected
output
- Consider sorting if order doesn't matter
- Handle empty cases explicitly”""”
elif failed_test['status'] == 'RUNTIME_ERROR

nn

nnn

error_msg = failed_test['error'].lower()
if 'index' in error_msg or 'list' in
error_msg:
specific_guidance =
## INDEX/LIST ERROR GUIDANCE:
- Check for empty list/string handling
- Verify array bounds (@ to len-1)
- Handle edge case when input is empty
elif 'key' in error_msg or 'dict' in
error_msg:
specific_guidance =
## DICTIONARY ERROR GUIDANCE:
- Check if key exists before accessing
- Use .get() method with default values
- Initialize dictionaries properly"""
elif 'attribute' in error_msg:
specific_guidance = """
## ATTRIBUTE ERROR GUIDANCE:
- Check object types before method calls
- Verify variable is initialized

nnn

nnn

nnn

nnn

- Import necessary modules

# Create comprehensive error feedback
feedback = f"""

## PREVIOUS ATTEMPT FAILED - ADVANCED DEBUGGING:

- Error Type: {failed_test['status']}

Error Message: {failed_test['error']}

- Failing Test Case: {failed_test['test_case']}

- Failed at Test #{failed_test['index']} out of
{len([r for r in test_results if 'index' in

r1}

{specific_guidance}
{attempt_analysis}

# SYSTEMATIC DEBUGGING APPROACH:

1. ANALYZE INPUT/OUTPUT: What data types and
patterns do test cases show?

2. EDGE CASE CHECK: Empty inputs, single
elements, boundary values

3. ALGORITHM CHOICE: Is this DP, greedy, two-
pointer, sliding window, etc.?

4. IMPLEMENTATION: Step through the failing test
case manually

5. IMPORTS: Add math, re, collections, itertools

if needed

++

Original Task: {instruction}

H+

CRITICAL SUCCESS FACTORS:

- Function signature must match test case
exactly

Return type must match expected output
precisely

Handle ALL edge cases shown in test patterns

Use efficient algorithm for the problem type

GENERATE A COMPLETELY NEW APPROACH - Previous
attempts failed for a reason.”"”
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