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Abstract

Code synthesis from natural language problem
statements has recently gained popularity with
the use of large language models (LLMs). Most
of the available systems and benchmarks, how-
ever, are developed for English or other high-
resource languages, and a gap exists for low-
resource languages such as Bangla. Addressing
the gap, the Bangla Language Processing (BLP)
Workshop at AACL-IJCNLP 2025 featured a
shared task on Bangla-to-Python code genera-
tion. Participants were asked to design systems
that consume Bangla problem statements and
generate executable Python programs. A bench-
mark data set of training, development, and
test splits was provided, and evaluation utilized
the Pass@1 metric through hidden test cases.
We present here a system we developed, using
the state-of-the-art LLMs through a zero-shot
prompting setup. We report outcomes on sev-
eral models, including variants of GPT-4 and
Llama-4, and specify their relative strengths
and weaknesses. Our best-performing system,
based on GPT-4.1, achieved a Pass@1 score
of 78.6% over the test dataset. We address the
challenges of Bangla code generation, morpho-
logical richness, cross-lingual understanding,
and functional correctness, and outline the po-
tential for future work in multilingual program
synthesis.

1 Introduction

The intersection of program synthesis and natu-
ral language processing has witnessed significant
progress over recent years, with much of the work
being done by large language models (LLMs).
Code generation tasks, where a natural language
expression of a problem is automatically converted
into executable source code, have been explored
extensively in English and specific high-resource
languages (Lu et al., 2021; Chen et al., 2021; Austin
et al., 2021). Very little work has been conducted
on this task in low-resource languages, such as

South Asian languages like Bangla (Raihan et al.,
2025b), despite Bangla being one of the world’s
10 most widely spoken languages and the national
language in Bangladesh and second most widely
spoken language in the Indian subcontinent.

To bridge this gap, a Shared Task on Code Gen-
eration for Bangla was organized as a task at the
Bangla Language Processing (BLP) workshop at
AACL-IJCNLP 2025 (Raihan et al., 2025c). The
shared task entailed developing automatic systems
to generate Python source code from Bangla prob-
lem statements. The organizers released a bench-
mark dataset with Bangla problem descriptions and
corresponding Python solutions. The participants
were asked to develop models/pipelines with the
capacity to, upon being given a problem statement
in Bangla, generate correct and executable Python
programs.

This task is particularly challenging for several
reasons. First, Bangla is a resource-scarce and mor-
phologically dense language; thus, there are limited
large-scale annotated data resources available for
training. Second, we aim to bridge cross-lingual se-
mantic understanding (natural language in Bangla)
and code generation at its formal level (in Python),
which can result in translation errors leading to
syntactic or logical execution failures. Third, creat-
ing measures that capture more than surface-level
textual similarity and move towards the functional
correctness of code generation presents an addi-
tional level of challenge.

The shared task provides to the community a
standardized dataset, evaluation framework, and
collection of baseline results to promote orderly
progress in this new field. Beyond benchmarking,
it is desirable to stimulate the development of mul-
tilingual and cross-lingual code generation models
and to support broader efforts to make program-
ming more inclusive for speakers of Bangla and
other learners and programmers.
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2 Dataset

The datasets provided by the BLP-2025 Task 2
shared task organizers were used to develop the
code generation framework. The organizers first
provided a trial dataset to help understand the task
and the input/output formats. Next, a development
dataset (Raihan et al., 2025a) was provided by the
organizers for the code generation framework, and
a test dataset to evaluate its performance. The
trial dataset comprises 74 problem statements in
the Bengali language, each accompanied by corre-
sponding Python source code and three executable
test cases.

In the development dataset, there are a total of
400 problem statements in Bengali, with three test
cases provided for each statement. The test dataset
comprises 500 distinct problem statements in Ben-
gali, which are entirely separate from those in the
development dataset. This dataset is used to assess
the performance of the code generation framework.
To increase the challenge, the organizers only pro-
vided one test case for each problem statement in
the test dataset, as opposed to the three provided
in the development dataset. An example of the
data from both the development and test datasets is
shown in Figure 1.

Problem Statement: প্রথম n টি প্রাকৃ তিক সংখ্যার ঘনক্ষেত্রের
যোগফল খুঁজে বের করার জন্য একটি পাইথন ফাংশন লিখুন।
(T: Write a Python function to find the sum of the cubes of the first n
natural numbers.)
Exammple:
sum_Of_Series(n)

Test Cases: ['assert sum_Of_Series(5) == 225',
'assert sum_Of_Series(2) == 9', 'assert
sum_Of_Series(3) == 36']

Problem Statement: একটি প্রদত্ত ম্যাট্রিক্সকে তার সারিগুলির
যোগফল অনুযায়ী ক্রমবর্ধ মান ক্রমে সাজানোর জন্য একটি
ফাংশন লিখুন। (T: Write a function to sort a given matrix in
ascending order according to the sum of its rows.)
Example:
def sort_matrix(M):
    # your code
    return M

Test Case: ['assert sort_matrix([[1, 2, 3], [2, 4,
5], [1, 1, 1]])==[[1, 1, 1], [1, 2, 3], [2, 4,
5]]']

Ex - 1

Ex - 2

Figure 1: Example of development data (Ex-1) and test
data (Ex-2). The development data contains three test
cases, while the test data contains only one test case.

3 Methodology

This section provides a brief overview of the overall
methodology for code generation in the Bengali

language. To develop the framework, we utilized
state-of-the-art LLMs with a zero-shot setting.

Input problem statement (P)

একটি প্রদত্ত স্ট্রিং-এ প্রথম পুনরাবৃত্ত অক্ষর খুঁজে
পেতে একটি পাইথন ফাংশন লিখুন।

\nExammple:\nfirst_repeated_char(s)

Process Input Problem

txt = একটি প্রদত্ত স্ট্রিং-এ প্রথম পুনরাবৃত্ত অক্ষর
খুঁজে পেতে একটি পাইথন ফাংশন লিখুন।
func_def = first_repeated_char(s)

Prompt Design (Provide txt, func_def, and
test cases into the prompt)

You are a senior Python developer ...
....
...

... generate the exact python code only.

LLM Model (GPT/ Llama)

Process LLM output in proper format

def first_repeated_char(s):
    seen = set()
    for char in s:
        if char in seen:
            return char
        seen.add(char)
    return None

Figure 2: Overall framework of our code generation
system. The pipeline begins with processing the Bangla
problem statement and function definition, followed by
carefully designed prompts. These prompts are then
passed to an LLM, and the generated output is post-
processed into valid Python code.

Task Definition: Given a problem statement
P in the Bengali language, and test cases T =
{t1, t2, ..., tk}, where k is the number of test cases.
Our primary objective is to develop a pipeline or
framework that can accurately understand the Ben-
gali problem statement and generate Python code
that satisfies the test cases T .

Framework Description: The overall flow di-
agram of the framework is illustrated in Figure 2.
Given its state-of-the-art performance across vari-
ous tasks, such as machine translation, text summa-
rization, sentiment analysis, and many others, we
utilized LLMs, including GPT-4.x (OpenAI et al.,
2024) and Llama-4 (Touvron et al., 2023), as the
core of the framework.

In Figure 2, the first step involves processing
the input data provided by the organizers, which
consists of two components. The first component is
the problem statement, written in Bengali, followed
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by the text "\nExample\n", and then the function
definition, which includes the function name and
parameter list. This process is detailed in the ’Input
Problem Statement’ section of Figure 2.

We begin by processing the input data and stor-
ing it in two separate variables: one for the actual
problem statement and the other for the function
definition, along with its corresponding parame-
ter list. This will facilitate further processing and
prompt design.

The next phase involves designing the prompt.
Since LLMs are trained on a vast amount of data
and are capable of performing many complex NLP
tasks, we employed the zero-shot prompting strat-
egy (Brown et al., 2020; Kojima et al., 2022), where
no proper example of the input-output structure is
provided in the prompt. Each prompt was designed
to include the problem statement (in the original
Bengali text), the function definition, and parame-
ter list, allowing for the development of the desired
function. Along with the problem statement and
function definition, the test cases were provided in
the prompt so that the LLM could evaluate them
to check whether it correctly generated the desired
code. The prompt that was provided to the LLM
models to generate the Python source code is pro-
vided in Figure 3.

Each LLM model was accessed with its cor-
responding API keys. During the generation
of Python codes, the temperature value, top_p
value, and maximum token limit were set to 0.2, 1,
and 1024, respectively, across all LLM models.

Next, the generated Python code outputs were
further processed to remove common code-block
markdown markers ( eg, “``` Python” or “```”).
An example of generated Python code from a given
problem statement is provided in Figure 2.

4 Experiment and Result

4.1 Experimental Setup

All experiments were conducted in the Google Co-
laboratory environment using a non-GPU virtual
system with 12.7 GB of RAM. The GPT mod-
els were accessed via OpenAI’s official website
1, while the Llama-4 model was obtained from a
third-party provider, ‘Together.AI’ 2, utilizing
the appropriate API keys. The experiments were
set up in two configurations: one in which the LLM
models were instructed to translate the provided

1https://openai.com/
2https://www.together.ai/

You are a senior Python developer. Your task is to
write a single, well-structured Python function that
solves the user's problem.

Your output must contain only the code, with no
conversational text. Only generate the proper
executable code.

It is to be noted that the problem statement is
given in the Bengali language. You can translate the
problem statement into English before writing the
code.

Problem: {txt}.

The function definition, return type, and structure
of code should be as follows: {func_def}

There are test cases given in the program. Note
that the generated code should pass the given test
cases.

Test Cases: {test_cases}

Note that there might be other test cases also,
along with the given test cases. Your solution
should also be robust enough to handle other
hidden test cases.

Don't print the test cases. Only generate the
exact Python code.

Figure 3: Prompt that was provided to LLMs for gener-
ating Python source code from Bengali problem state-
ments. In this prompt, we instructed LLMs to translate
the Bengali problem statement to English.

Bengali problem statement into English (Figure 3),
and another in which the problem statements were
left in their original Bengali form 3.

In order to evaluate the framework’s perfor-
mance, the Pass@1 metric was used, which is the
percentage of hidden test cases that the generated
Python code passes. The experiments were per-
formed using different versions of GPT models,
including GPT-4-mini, GPT-4.1-mini, GPT-4.1,
and the Llama-44 model. To ensure a fair com-
parison, all the LLM models in both experimental
setups were executed with the same temperature,
top_p, and maximum token value as described in
Section 3.

4.2 Result
The results for the test dataset are presented in Ta-
ble 1 for both the translated and original Bengali

3Prompt for this experimental setup is provided in Ap-
pendix A

4Exact name is: Llama-4-Maverick-17B-128E-
Instruct-FP8
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LLM Model Pass@1 (%) Is translated
to English

GPT 4o-mini 72.0 ✓

GPT 4.1-mini 76.0 ✓

GPT-4.1 76.6 ✓

Llama-4 76.4 ✓

GPT 4o-mini 65.6 ✗

GPT-4.1-mini 74.0 ✗

GPT-4.1 78.6 ✗

Llama-4 75.6 ✗

Table 1: Performance of different LLMs on the shared
task test dataset, measured using the Pass@1 metric.
The result highlighted with Blue colour represents the
best performance when translating the Bengali problem
statement into English (Official shared task submission).
The result highlighted in Green colour represents the
best performance when using original Bengali problem
statements.

problem statement forms. From the table, it is evi-
dent that the GPT-4.1 model performs best across
both schemes, achieving Pass@1 scores of 76.6%
with the translated problem statement and 78.6%
with the original Bengali problem statement. The
Llama-4 model follows closely behind, obtaining
a Pass@1 score of 76.4% for the translated form
and 78.6% for the original form.

Notably, the GPT-4.1 model demonstrates supe-
rior performance with the original Bengali prob-
lem statement compared to the translated ver-
sion. This indicates a strong understanding of
the Bengali language for code generation by the
GPT-4.1 model. In contrast, other models such as
GPT-4o-mini, GPT-4.1-mini, and Llama-4 per-
formed better with the translated problem statement
and showed decreased performance when using the
original Bengali problem statement.

5 Conclusion and Future Work

This paper presents an LLM-based framework for
Python code generation from Bengali problem
statements. We used a zero-shot prompting strategy
with three variants of GPT models and the Llama 4
model across two experimental setups: one trans-
lating the Bengali problem to English and another
keeping the Bengali problem statement in its origi-
nal form. All experiments were conducted on the
development and testing datasets provided by the
BLP Task 2 organizers. Our experimental results
demonstrate that the GPT-4.1 model-based frame-

work outperforms all other frameworks in both ex-
perimental setups, particularly when using the Ben-
gali original problem statements, which achieved
the best result with a 78.6% pass@1 score.

Future directions would include experimenting
with other prompting strategies, such as few-shot or
chain-of-thought prompting, and making a compar-
ative analysis between different prompting strate-
gies. Additionally, we will also experiment with
other LLM models, such as DeepSeek (DeepSeek-
AI et al., 2025) or Gemini (Team et al., 2025), in
our future work.

Limitations

Our proposed work does have some potential lim-
itations. First, we only experimented with a zero-
shot prompting strategy and did not explore other
prompting techniques, such as few-shot learning
or chain-of-thought prompting. The performance
of our approach may be enhanced by using these
advanced strategies.

Second, our experiments were limited to only the
GPT and Llama-4 models. We chose these models
due to their relatively strong performance across
various NLP tasks. However, we have not explored
other LLMs, such as DeepSeek, Qwen, or Claude.
Financial constraints have prevented us from doing
so, as each model incurs costs for API calls.

Third, we did not conduct any explicit training
or fine-tuning due to resource limitations. The per-
formance could potentially improve if we fine-tune
an LLM model, especially for the code generation
task. We plan to attempt fine-tuning an LLM model
for code generation in our future work.
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A Appendix A: Prompt where no
translation was performed

You are a senior Python developer. Your task is to
write a single, well-structured Python function that
solves the user's problem.

Your output must contain only the code, with no
conversational text. Only generate the proper
executable code.

It is to be noted that the problem statement is
given in the Bengali language.

Problem: {txt}.

The function definition, return type, and structure
of code should be as follows: {func_def}

There are test cases given in the program. Note
that the generated code should pass the given test
cases.

Test Cases: {test_cases}

Note that there might be other test cases also,
along with the given test cases. Your solution
should also be robust enough to handle other
hidden test cases.

Don't print the test cases. Only generate the
exact Python code.

Figure A.1: Prompt to Bengali-to-Python code genera-
tion where the problem statement was kept in its original
Bengali form. No translation was conducted.
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