
Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025), pages 577–581
December 23, 2025 ©2025 Association for Computational Linguistics

Musafir at BLP_2025 Task 2: Generating Python Code from Bangla
Prompts using a Multi-Model Cascade and Unit Test Validation
Sakibul Hasan1, Md Tasin Abdullah1, Abdullah Al Mahmud1, Ayesha Banu1

1Department of Computer Science and Engineering,
Chittagong University of Engineering & Technology (CUET)

Correspondence:
u2004043@student.cuet.ac.bd, u2004059@student.cuet.ac.bd,

u2004057@student.cuet.ac.bd, ayesha.banu@cuet.ac.bd

Abstract

This paper presents our approach for the
BLP25 Task 2: Code Generation in Bangla.
To address the scarcity of Bangla–code train-
ing data, we adopt a two-stage pipeline. First,
Bangla problem statements are translated into
English using a neural translation model op-
timized for preserving technical semantics.
Then, the translated text is passed to a Qwen-
based code generation model to produce exe-
cutable solutions. This translation–generation
strategy leverages the strengths of English-
centric code models while ensuring fidelity
to the original Bangla instructions. Our sys-
tem achieved competitive performance on the
leaderboard, achieving the 3rd place with
a score of 91.8% while demonstrating that
translation-augmented pipelines are effective
for low-resource code generation tasks.
Keywords: Large Language Model, Qwen,
Unit Test.

1 Introduction

Natural language to code generation aims to trans-
late human-readable descriptions into syntactically
correct and semantically meaningful code. While
notable advances have been achieved in English
with large datasets and pretrained models, low-
resource languages like Bangla remain underex-
plored. This limitation prevents native Bangla
speakers from fully benefiting, as most exist-
ing code generation systems are not designed for
Bangla instructions.
Bangla holds immense potential for broader ac-

cessibility in computational tasks. (Nahin et al.,
2025) introduce TituLLMs, a family of Bangla
LLMs with extensive benchmarking across di-
verse tasks. (Bhattacharjee et al., 2022) pro-
pose BanglaBERT, a pretrained language model
and benchmark suite for low-resource Bangla un-
derstanding. (Kowsher et al., 2022) develop
a transformer-based Bangla-BERT optimized for

transfer learning and efficient Bangla language un-
derstanding. However, the lack of large, parallel
Bangla–code datasets hinders the direct training
and evaluation of Bangla code generation models.
This gap shows the need for new strategies to adapt
code generation systems to Bangla without large
language-specific resources.
In this work, we propose a two-stage pipeline to

address Bangla-to-code generation. First, Bangla
problem descriptions are translated into English,
enabling the use of pretrained English-centric code
models. The translated instructions are then pro-
cessed by a Qwen-based code generation model
to produce executable solutions. This translation–
generation framework mitigates the scarcity of
Bangla–code data while leveraging multilingual
modeling advances. Our system shows competi-
tive performance, demonstrating translation as an
effective bridge for low-resource code generation.

2 Related Work

Bangla is the seventh most spoken language in
the world, yet it remains underrepresented in LLM
research, particularly in code generation. The
lack of Bangla–code parallel data has hindered
systems that can natively process Bangla instruc-
tions. This gap has led to several recent initiatives
to create Bangla-specific benchmarks and LLMs.
(Yang et al., 2024) introduce Qwen2, the next-
generation models in the Qwen family, ranging
from 0.5B to 72B parameters in both dense and
Mixture-of-Experts (MoE) variants. The report
highlights improvements in multilingual coverage,
reasoning ability, and training efficiency, with
strong benchmark results across general language
understanding, coding, and instruction-following
tasks. Earlier, (Bai et al., 2023) presented the
first Qwen technical report, outlining the develop-
ment of large-scale multilingual models with spe-
cialized variants for chat, coding, andmathematics.

577

mailto:u2004043@student.cuet.ac.bd
mailto:u2004059@student.cuet.ac.bd
mailto:u2004057@student.cuet.ac.bd
mailto:ayesha.banu@cuet.ac.bd

Their work established Qwen as a versatile family
of open-source LLMs, demonstrating competitive
performance against contemporaneous models and
paving the way for subsequent expansions such as
Qwen2.
(Raihan et al., 2025a) and BLP-2025 Task 2

(Raihan et al., 2025c) provide systematic bench-
marks for evaluating Bangla code generation, re-
vealing that existing multilingual models perform
poorly on Bangla. Complementing these ef-
forts, TigerCoder (Raihan et al., 2025b) intro-
duces Bangla-specialized LLMs fine-tuned for
code generation using a large instruction–code
dataset built through translation and synthetic gen-
eration. Trained on the MBPP-Bangla bench-
mark, TigerCoder models outperform multilin-
gual baselines, achieving state-of-the-art results
in Bangla code generation. Our approach intro-
duces a two-stage translation–generation pipeline
where Bangla problem statements are translated
into English and processed by a Qwen-based
code model to generate Python solutions. Unlike
TituLLMs and TigerCoder which trains Bangla-
specialized LLMs on instruction–code datasets,
our method leverages powerful English-centric
models through translation to overcome data
scarcity. Based on these benchmarks and models,
we built our overall pipeline, shown in Figure 1, to
effectively tackle Bangla-to-code generation.

3 Methodology

3.1 Dataset Description

Table 1: Dataset distribution across phases

Phase No. of Samples in Dataset
Development phase 400
Testing phase 500

Each entry includes: Bangla natural language
programming task and a set of assert statements
or unit test cases used for designing, testing, and
iteratively refining the pipeline.

3.2 Bangla to English Translation
The process for generating code from non-English
instructions is illustrated in the accompanying fig-
ure 3. It begins with a Bangla Instruction, which
is the input prompt. This instruction is pro-
cessed by the Model Preparation stage, utilizing
the gemma-3-12bit-unsloth-bnb model. In our ap-
proach, gemma-3-12bit-unsloth-bnb was used in
a zero-shot inference setup with a custom prompt

template, not fine-tuned. It served as a translation
model to convert Bangla instructions into English
while preserving technical semantics. Crucially,
the model is provided with a Prompt Template to
enforce the desired function structure and signa-
ture. Finally, the model’s raw output is passed
through the Translation stage, which decodes the
model’s output to produce the final, executable
Python function. In short, the methodology shows
how a language-specific prompt is combined with
a structural template and processed by the Gemma
model to perform a focused code generation task.

Table 2: Comparison of Bangla and English transla-
tions with verdicts.

Bangla Transla-
tion

English Trans-
lation

Verdict

একিট িত্রভুেজর
পিরসীমা েবর করার
েপ্রাগ্রাম িলখ

Write a program
to find perimeter
of a triangle

Correct

একিট িস্ট্রং এর
দীঘর্তম পরবতীর্
সাধারণ ক্রম েবর
করার েপ্রাগ্রাম িলখ

Write a program
to find longest
common string

Incorrect

3.3 LLM Inference & Code Generation
The translated English instruction, along with a
specified code Prompt Template (defining the func-
tion signature), is fed into the Qwen 2.5-14B-
Instruct model. This 14.7-billion-parameter LLM
then performs the final, zero-shot code inference,
producing the required Python function.

3.4 Unit Testing
The unit testing framework follows a structured

workflow to ensure the correctness and reliabil-
ity of generated code. As illustrated in Figure 4,
the process begins with the Input stage, where pre-
defined test cases are supplied as benchmarks for
evaluating the code. These test cases are designed
to cover a range of scenarios and edge cases, en-
suring comprehensive assessment. In the Execu-
tion phase, the code is run within a dedicated, iso-
lated environment, which guarantees secure and in-
dependent execution without interference from ex-
ternal processes. During the Testing stage, the out-
puts are parsed, validated, and compared against
the expected results. The Evaluation phase further
assesses consistency, correctness, and adherence
to functional requirements, highlighting any devi-
ations or unexpected behavior. Finally, the Deci-
sion stage categorizes each result as pass or fail, in-
dicating whether the code satisfies the predefined

578

Figure 1: The overall pipeline describing thewholemethodology covering the translation process to code generation
with unit testing and model evaluation.

Table 3: Bangla and English prompts with corresponding code examples.

Bangla Instruction English Instruction Code Result
একিট প্রদত্ত ময্াট্রিক্সেক তার
সািরগুিলর েযাগফল অনুযায়ী
ক্রমবধর্মান ক্রেম সাজােনার জনয্
একিট ফাংশন িলখুন।

Write a function to sort a given
matrix in ascending order based
on the sum of its rows.

def sort_matrix(M):
return sorted(M, key=sum)

Pass

একিট িত্রভুজাকার িপ্রজেমর আয়তন
খঁুেজ েবর করার জনয্ একিট পাইথন
ফাংশন িলখুন।

Write a Python function to
find the volume of a triangular
prism.

def find_Volume(l, b, h):
base_area = (l * b) / 2
volume = base_area * h
return volume

Pass

প্রদত্ত সংখয্ািট কােঠর বল িকনা তা
পরীক্ষা করার জনয্ একিট ফাংশন
িলখুন।

Write a function to check if a
given number is aWoodall num-
ber.

def is_woodall(x):
if x < 1:

return False
n = 1
while (2 ** n - 1) * n <= x:

if (2 ** n - 1) * n == x:
return True

n += 1
return False

Fail

Figure 2: Dataset Used in Development Phase

requirements. Passing outcomes confirm that the
solution meets the expected behavior, while fail-
ures reveal discrepancies that require correction.
This structured approach provides a robust mecha-

Figure 3: Bangla to English translation using gemma-3-
12bit-unsloth-bnb model to generate the prompt in En-
glish.

nism for automated verification, enabling reliable
benchmarking of generated code in low-resource
language scenarios.

4 Experiment & Analysis

There are two evaluation metrics for the task:

1. Pass@1 (Passing rate)- Number of hidden
test cases that pass.

2. Tie-breaker- Shorter mean solution length.

579

Table 4: Comparison of Pass@1 on different prompting methods between some Open-Source LLMs and our pro-
posed solution.

Model Zero-Shot Few-Shot Instruction-Tuned
Qwen2.5-Coder-14B-Instruct 82.7% 79.2% 81.4%
codegemma-7bit 76.8% 75.1% 75.7%
gpt-oss-20b 78.4% 76.9% 77.8%
Phi-4-reasoning 71.7% 67.8% 70.6%
CodeLlama-13b-Python 74.8% 72.3% 73.7%
Qwen2.5-14B + codegemma-7bit + gpt-oss-20B + phi-4-14B 91.5% 88.5% 90.4%

Table 5: Comparative Analysis of LLM Models: With vs Without Translation.

Model With Translation (%) Without Translation (%)
Combined 91.5 87.5
Qwen2.5-Coder-14B-Instruct 82.7 80.0
codegemma-7bit 78.4 75.0
Phi-4-reasoning 76.8 73.0

Figure 4: Unit testing framework to ensure the correct-
ness and reliability of the code.

Figure 5: Comparative analysis on different prompting
methods across models.

The table 4 compares the pass@1 of different
models across three configurations: Zero-Shot,
Few-Shot, and Instruction-Tuned. Among them
Qwen2.5-14B, codegemma-7b, gpt-oss-20B, and
phi-4-14B, achieves the highest performance, with
an impressive 91.5% in Zero-Shot, 88.5% in Few-
Shot, and 90.4% in Instruction-Tuned, demonstrat-
ing the effectiveness of the multi-model approach.

Figure 6: Comparative Analysis on Basis of Translation
across Models.

The table 5 presents a comparative analysis of var-
ious LLM models with and without translation.
The Combined model achieves the highest perfor-
mance with 91.5% using translation, compared to
87.5% without it, showcasing benefits of transla-
tion. The results are also graphically represented
in figure 5 & 6.

5 Conclusion

The paper presents an effective two-stage
translation-generation pipeline to address the
challenge of low-resource code generation in
Bangla for the BLP25 Task 2. By first translating
Bangla problem statements into English using a
model optimized for technical semantics , and then
passing the translated text to an English-centric
Qwen-based code generation model , the approach
successfully leverages the strengths of existing,
powerful models designed for English. This
strategy mitigates the scarcity of large, parallel

580

Bangla-code datasets and demonstrates that a
translation-augmented framework is competitive
for these tasks, achieving 3rd place with a score
of 91.8% on the leaderboard.

Limitations

The proposed two-stage translation–generation
pipeline shows promise for Bangla code gener-
ation but has limitations. It relies on English-
centric models, which may miss technical nuances
in Bangla prompts, and translation errors can af-
fect output quality. Evaluation is limited to spe-
cific tasks, so testing on more diverse, real-world
problems is needed to assess generalizability.

1

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023. Qwen technical report.
arXiv preprint arXiv:2309.16609.

Abhik Bhattacharjee, Tahmid Hasan, Wasi Uddin Ah-
mad, Kazi Samin Mubasshir, Md Saiful Islam,
Anindya Iqbal, M. Sohel Rahman, and Rifat Shahri-
yar. 2022. Banglabert: Language model pretraining
and benchmarks for low�resource language under-
standing in bangla. In Findings of the Association
for Computational Linguistics: NAACL 2022, pages
1318–1327.

M. Kowsher, Abdullah As Sami, Nusrat Jahan Prot-
tasha, Mohammad Shamsul Arefin, Pranab Kumar
Dhar, and Takeshi Koshiba. 2022. Bangla-bert:
Transformer-based efficient model for transfer learn-
ing and language understanding. IEEE Access,
10:91855–91870.

Shahriar Kabir Nahin, Rabindra Nath Nandi, Sagor
Sarker, Quazi Sarwar Muhtaseem, Md Kowsher,
Apu Chandraw Shill, Md Ibrahim, Mehadi Hasan
Menon, Tareq Al Muntasir, and Firoj Alam. 2025.
Titullms: A family of bangla llms with comprehen-
sive benchmarking. In Findings of the Association
for Computational Linguistics: ACL 2025, pages
24922–24940, Vienna, Austria.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025a. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 11432–11461, Albuquerque, New Mex-
ico. Association for Computational Linguistics.

1Code is available here

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025b. Tigercoder: A novel suite of
llms for code generation in bangla. arXiv preprint
arXiv:2509.09101.

Nishat Raihan, Mohammad Anas Jawad, Md Mezbaur
Rahman, Noshin Ulfat, Pranav Gupta,
Mehrab Mustafy Rahman, Shubhra Kanti Kar-
makar, and Marcos Zampieri. 2025c. Overview of
BLP-2025 task 2: Code generation in bangla. In
Proceedings of the Second Workshop on Bangla
Language Processing (BLP-2025). Association for
Computational Linguistics (ACL).

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others.
2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671.

581

https://doi.org/10.18653/v1/2022.findings-naacl.98
https://doi.org/10.18653/v1/2022.findings-naacl.98
https://doi.org/10.18653/v1/2022.findings-naacl.98
https://doi.org/10.1109/ACCESS.2022.3197662
https://doi.org/10.1109/ACCESS.2022.3197662
https://doi.org/10.1109/ACCESS.2022.3197662
https://doi.org/10.18653/v1/2025.findings-acl.1279
https://doi.org/10.18653/v1/2025.findings-acl.1279
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://github.com/Sakib-2004043/BLP_25_Task_2

