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Abstract

LLMs excel at code generation from English
prompts, but this progress has not extended to
low-resource languages. This paper addresses
the challenge of Bangla-to-Python code
generation by introducing BanglaCodeAct,
an agent-based framework that leverages
multi-agent prompting and iterative self-
correction. Unlike prior approaches that rely
on task-specific fine-tuning, BanglaCodeAct
employs an open-source multilingual LLM
within a Thought–Code–Observation loop,
enabling the system to dynamically generate,
test, and refine code from Bangla instructions.
We benchmark several prominent small-
parameter open-source LLMs and evaluate
their effectiveness on the mHumanEval
dataset for Bangla NL2Code. Our results
show that Qwen3-8B, when deployed
with BanglaCodeAct, achieves the best
performance, with a pass@1 accuracy of
94.0% on the development set and 71.6% on
the blind test set. These findings establish
a new benchmark for Bangla-to-Python
translation and highlight the potential of agent-
based reasoning for reliable code generation in
low-resource languages.. Experimental
scripts made publicly available at
github.com/jahidulzaid/PyBanglaCodeActAgent

1 Introduction
Large Language Models (LLMs) has created
a paradigm shift in software engineering,
automating complex coding tasks, and
democratizing programming for a larger audience
(Chen et al., 2021). Natural Language-to-Code
(NL-to-Code) generation (Yin et al., 2022), once a
distant goal, is now a tangible reality, with systems
capable of producing functional code from simple
English descriptions. The vast majority of
these advances remain linguistically monolithic,
centered almost exclusively on English, leaving
other languages behind.. This linguistic bias

creates a significant accessibility gap for millions
of learners worldwide whose primary language
is not English. For speakers of low-resource
languages like Bangla, the seventh most spoken
language globally.

To address this critical issue, we introduce the
BanglaCodeAct Agent, a ReAct agent framework
designed for cross-lingual code generation from
Bangla instructions into executable Python.
Instead of relying on task-specific fine-tuning,
our approach leverages the emergent multilingual
reasoning capabilities of a general-purpose open-
source LLMs within an iterative, self-correcting
loop.

We address 3 research questions:

1. RQ1: How can an agent-based framework
be designed to generate Python code from
natural language instructions in Bangla?

2. RQ2: Can a general-purpose, multilingual
LLMs be effectively prompted to perform
cross-lingual code generation in a zero-shot
setting, without the need for task-specific
datasets?

3. RQ3: How does incorporating an iterative
Thought-Code-Observation loop within a
robust execution environment affect the
reliability and correctness of the generated
code?

2 Related Work

This research is positioned at the confluence of
several rapidly advancing domains: automated
code generation, the development of specialized
large language models for programming, and
the specific challenges within Natural Language
Processing (NLP) for low-resource languages like
Bangla. Our work synthesizes insights from these
areas to address a novel problem: agent-driven,

566

https://github.com/jahidulzaid/PyBanglaCodeActAgent


cross-lingual code generation from a low-resource
language.

The introduction of the Transformer architecture
(Vaswani et al., 2017) created major progress in
this field. This led to the development of Large
Language Models (LLMs) trained on vast web-
scale corpora. Models like OpenAI’s Codex,
the engine behind GitHub Copilot (Chen et al.,
2021), and DeepMind’s AlphaCode (Li et al.,
2022a), which achieved competitive performance
in programming contests. However, a significant
limitation of this era has been a reliance on English-
centric data and evaluation benchmarks.

Building on the success of general-purpose
LLMs, a new wave of models has been specifically
trained or fine-tuned for programming tasks.
Notable examples include CodeLlama (Roziere
et al., 2023); StarCoder (Li et al., 2023); and
DeepSeek Coder (Guo et al., 2024).

To reduce hallucination and improve factual
grounding, Retrieval-Augmented Generation
(RAG) retrieves relevant documents from an
external knowledge base and supplies them as
context to the LLMs(Lewis et al.). Corrective
RAG (CRAG) introduces a lightweight retrieval
evaluator to augment retrieved documents,
improving the correctness of the generation
process (Yan et al., 2024).

Bangla NLP faces persistent gaps that make
NL2Code especially challenging. First, data
scarcity: large-scale parallel corpora of Bangla
programming instructions and code are virtually
absent (Zhong et al., 2024; Raihan et al., 2025a).
Second, morphological complexity: Bangla’s
rich inflectional system makes natural language
instructions harder to parse into precise logical
forms compared to English (Bhattacharjee et al.,
2023). Prior LLM-based approaches, trained or
fine-tuned primarily on English or multilingual
data, often fail to capture these nuances, resulting
in low accuracy and unstable performance in
Bangla NL2Code tasks (Chen et al., 2021; Li et al.,
2022b).

Our work addresses these gaps by introducing
BanglaCodeAct, which directly leverages the
multilingual reasoning abilities of general-purpose
LLMs in a self-correcting loop, without requiring
costly Bangla-specific fine-tuning or large
annotated datasets.

3 Dataset and Evaluation Metrics
The task involves translating Bangla natural
language programming instructions into Python
code, ensuring functional correctness by passing
associated test cases. This setup mirrors typical
NL2Code challenges but places a specific
emphasis on low-resource language understanding
and algorithmic reasoning in Bangla (Raihan
et al., 2025c). To evaluate this translation process,
we employ the mHumanEval dataset (Raihan
et al., 2025a), which is tailored for Bangla-to-
Python code generation. The dataset consists
of natural language programming problems in
Bangla, each paired with a corresponding Python
implementation and unit test cases that serve as an
objective correctness signal. It covers a wide range
of fundamental programming concepts, including
algorithmic reasoning, control structures, data
manipulation, and function design. The sample
structure of the dataset is presented in Table 1.

3.1 Evaluation Metric
The primary metric for our evaluation is pass@1
on the HumanEval benchmark (Raihan et al.,
2025a). A generated code snippet is considered
a “pass” if it executes without error and satisfies
all provided assertions in the ‘test_list‘ for that
problem.

pass@k := Eproblems

[
1−

(
n−c
k

)
(
n
k

)
]

4 Methodology
In this work we introduce an agent framework,
BanglaCodeAct Agent, for cross-lingual code
generation. The primary objective is to translate
natural language programming instructions
articulated in a low-resource language, Bangla
(Bengali), into executable Python code. The
methodology hinges on a powerful multilingual
Large Language Models (LLMs) integrated into
an iterative reasoning and self-correction loop,
enabling it to bridge the semantic gap between
Bangla prose and Python’s formal syntax.

4.1 Models and Baselines
We compare the performance of our proposed
BanglaCodeAct Agent against several baselines
to evaluate the contribution of its components
and to situate its performance relative to other
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ID Instruction (Bengali) Test Cases

1 একিট ফাংশন Ǭলখুন যা পরীক্ষা করেব àদত্ত িƻং পয্াǬলন-
েØাম িকনা। খাǬল িƻংক পয্াǬলনেØাম িহেসেব গণয্ হেব।
Example: is_palindrome(s)

assert is_palindrome(“TENET”) == True
assert is_palindrome(“Bangla”) == False
assert is_palindrome(“ ”) == True

2 একিট ফাংশন Ǭলখুন যা একিট িƻং-এর মেধয্ থাকা শƁগ‍ু-
েলােক উেƕা কের সাজােব।
Example: reverse_words(string)

assert reverse_words(“hello”)==“hello”
assert reverse_words(“ a b ”) == “b a”
assert reverse_words(“hello world”) ==“world hello”

3 একিট পাইথন ফাংশন Ǭলখুন যা িদেয় দইুিট পূণর্সংখয্ার িব-
পরীত িচহ্নআেছ িকনা তা পরীক্ষা করা যায়।
Example: opposite_Signs(n1, n2)

assert opposite_Signs(1,-2) == True
assert opposite_Signs(3,2) == False
assert opposite_Signs(-10,-10) == False

Table 1: The dataset for Shared Task 2 (Code Generation) includes Bengali programming instructions, the
corresponding Python code implementations, and test cases designed for validation.

approaches. First, Zero-Shot Prompting serves
as a direct baseline where the model is given
only the system prompt and the user task (Bangla
instruction plus test cases) and is asked to
generate the solution in a single turn. This
approach achieves varying results across models:
Qwen/Qwen3-8B obtains 36%, Qwen-Coder-7B
reaches 51%, TigerLLM-1B-it (Raihan et al.,
2025b) it achieves 11%, and Llama-3.1-8B
performs the best at 77%. Next, Few-Shot
Prompting provides the model with a small
number of solved examples in the prompt to
help it generalize to new problems. Performance
here also varies, with Qwen3-8B achieving 46%,
Qwen2.5-Coder-7B reaching 51%, and Llama-3.1-
8B again performing strongly at 77%. DeepSeek-
Coder-V2-Lite shows competitive results with a
pass@1 of 73.0%. The Self-Consistency method
leverages Qwen/Qwen3-8B to generate multiple
independent solutions for the same problem and
selects the final answer through majority voting,
without using any iterative feedback loop. Finally,
our full proposed framework, the BanglaCodeAct
Agent, based on Qwen/Qwen3-8B, significantly
outperforms these baselines with a 94% success
rate. This agent employs an iterative Thought-
Code-Observation loop, allowing it to self-correct
based on execution feedback until all test cases are
satisfied.

The experiments were executed with inference
controlled by the hyperparameters presented in
Table 2.

The agent’s core is the Qwen/Qwen3-8B model,
a multilingual LLM capable of zero-shot Bangla-
to-logic translation and reasoning. To enable
efficient multi-turn reasoning, we deploy it with
the vLLM inference engine, leveraging tensor
parallelism and prefix caching for reduced
latency and high throughput (Kwon et al., 2023).

Parameters Value
Max tokens 8192
Temperature 0.7
Top-p 0.9
Best-of 1
Repetition penalty 1.05 (CoT)
Decoding Self-consistency (n = 5)
Num paths 16 / 5 (SC)
Seed 42
Timeout 5 Seconds
Retries 25

Table 2: Inference hyperparameters. These decoding
and sampling parameters control output length,
diversity, reproducibility, and error handling.

4.2 Cross-Lingual BanglaCodeAct Agent
Framework

We employ the Code Acting (CodeAct) paradigm
to structure the agent’s problem-solving process.
This approach transforms code generation
from a single-shot task into a dynamic, multi-
step dialogue between the agent and a code
interpreter. The agent operates on a Thought-
Code-Observation cycle (as illustrated in Fig.
1):

1. Thought: The agent generates an internal
monologue, outlining its understanding and
plan for the task in <thought>, showcasing
reasoning in Bangla before code generation.

2. Code Generation: The agent produces
Python code based on the plan, enclosed in
<code> with test assertions for immediate
self-verification.

3. Execution and Feedback: The code runs in
a sandboxed PythonREPL with a timeout.
Errors, like TypeError, provide feedback
for iterative self-correction, refining the
solution until valid or a max iteration is
reached, with the result in <answer>.
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Figure 1: Thought-Code-Observation Cycle in the
BanglaCodeAct Agent Framework. This diagram
illustrates the iterative process of generating code,
executing it, providing feedback, and refining the
solution based on self-correction, facilitating cross-
lingual code generation in Bangla.

To enhance reliability, we implement a retry
handler (safe_run) that re-initiates the reasoning
process if the agent produces an invalid or
empty response. The retry mechanism permits a
user-defined number of task attempts, improving
success rates by reducing sporadic failures.

Instruction (Bengali) Test Cases

িƻং েথেক àদত্ত অক্ষেরর
àথম এবং েশষ উপসগর্
মুেছ েফলুন। Example:
remove_Occ(s, ch)

remove_Occ(”hello”,”l”) == ”heo”
remove_Occ(”banana”,”a”) == ”bann”
remove_Occ(”abc”,”x”) == ”abc”

একিট àদত্ত ময্াȊĥেক
তার সািরগ‍ুǬলর েযাগফল
অনুযায়ী সাজান। Example:
sort_matrix(M)

sort_matrix([[1,2,3],[2,4,5],[0,1,1]])
== [[0,1,1],[1,2,3],[2,4,5]]

sort_matrix([[5,5],[2,2],[3,3]])
== [[2,2],[3,3],[5,5]]

Table 3: Illustrating error recovery in ambiguous and
complex cases.

For instance, “িƻং েথেক àদত্ত অক্ষেরর àথম
এবং েশষ উপসগর্ মুেছ েফলুন” (remove the first
and last occurrence of a given character from a
string). Initial attempts produced incomplete logic
(removing only one occurrence). (see Table 3).

5 Results and Analysis
Different models and experiments were conducted
during the development phase, which are reported
in 4.1. The experiment setup and hyperparameter

details are described in table 2.
The ‘pass@1‘ scores for all evaluated methods

on the mHumanEval dataset are summarized in
Table 4. Our proposed BanglaCodeAct Agent
achieves a ‘pass@1’ score of 94.0%, significantly
outperforming all other methods.

LLM Model Method pass@1
Qwen3-8B BanglaCodeAct 94.0
Qwen3-8B Self-Consistency 88.0
Qwen3-8B Majority Voting 66.0
Qwen3-8B Few-Shot 46.0
Qwen3-8B Zero-Shot 36.0
Qwen2.5-Coder-7B Few-Shot 51.0
Qwen2.5-Coder-7B Zero-Shot 44.0
Llama-3.1-8B Zero-Shot 39.0
Llama-3.1-8B Few-Shot 77.0
DeepSeek-Coder-V2-Lite BanglaCodeAct 73.8
DeepSeek-Coder-V2-Lite Few-Shot 73.0
DeepSeek-Coder-V2-Lite Zero-Shot 71.4
TigerLLM-1B-it Zero-Shot 11.0

Table 4: Comparison of pass@1 accuracy (%) for
different models and prompting strategies on the
mHumanEval dataset. Our proposed BanglaCodeAct
Agent (Qwen3-8B) achieves the highest score,
demonstrating the effectiveness of iterative self-
correction.

The results in Table 4, clearly demonstrate the
efficacy of our agent-based framework.

The experimental results demonstrate the
effectiveness of the proposed BanglaCodeAct
Agent in leveraging an iterative self-correction
mechanism for Bangla-to-Python code generation.
With the Qwen3-8B model, the agent achieves
a 94.0% pass@1 accuracy, significantly
outperforming Zero-Shot (36.0%), Few-Shot
(46.0%), and Majority Voting (66.0%) strategies
(Table 4). It ranked 17th on the test set (71.6%)
and 8th on the development set (94%).

These results underscore the agent’s ability
to correct common code generation errors using
REPL feedback, which distinguishes it from static
prompting approaches. The Qwen3-8B model
outperforms specialized models like Qwen2.5-
Coder-7B, highlighting the importance of
multilingual reasoning over code-specific training.
Primary failure cases occur with semantically
ambiguous or complex instructions, where the
agent may not converge within 10 iterations.

6 Limitations
Despite strong performance, BanglaCodeAct has
several limitations. The model’s effectiveness is
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limited by its size, and experiments with larger
LLMs (e.g., 32B parameters or more) were not
conducted due to GPU resource constraints. Such
models could potentially improve code generation
accuracy for more complex tasks.

Additionally, the current evaluation primarily
focuses on algorithmic and syntactic correctness.
The system’s ability to understand semantics and
handle ambiguous or context-dependent Bangla
instructions remains an open challenge. Moreover,
the system relies on high-quality test cases for
feedback, which may not always be available in
real-world scenarios. The performance could be
further limited by the absence of such reliable test
cases in practice.
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