
Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025), pages 561–565
December 23, 2025 ©2025 Association for Computational Linguistics

Troopers at BLP-2025 Task 2: Reward-Selective Fine-Tuning based
Code Generation Approach for Bangla Prompts

Musa Tur Farazi Nufayer Jahan Reza
Department of Computer Science and Engineering (CSE)

Department of Biomedical Engineering (BME)
Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

{musatur330,nufayerjahanreza8}@gmail.com

Abstract

We present a formally grounded description of
a reward-selective fine-tuning (RSFT) pipeline
for code generation from Bangla natural-
language prompts. The implemented system
mines candidate programs via temperature and
nucleus sampling, executes candidates in a
sandbox and retains programs that pass all unit
tests, performs supervised fine-tuning (SFT)
on winners using parameter-efficient Low rank
adaptation (LoRA) adapters, and augments ro-
bustness through fuzzed asserts. We specify the
exact objectives and estimators used, provide a
Bangla-aware preprocessing recipe, prove sim-
ple properties of the sampling budget, and re-
port an ablation showing the effect of inference
sample budget K on accuracy. We also include
a threat model for safe execution. Our codes
are available on GitHub.1

1 Introduction

We investigate reward-selective fine-tuning (RSFT)
of Bangla-to-Python code, a light-weight gen-
erate–execute–select–SFT loop that only keeps
execution-checked contenders and fine-tunes with
maximum likelihood. Unlike RLHF-style pol-
icy optimization, RSFT avoids reward modeling
and on-policy credit assignment, avoiding instabil-
ity and engineering overhead. Our system com-
bines stochastic discovery with sandboxed unit
tests and fuzzed asserts for safety, and uses LoRA
for parameter-efficient adaptation. We then ana-
lyze the sample budget K, showing why returns
saturate, and see PASS@1/PASS@k ablations as
predicted by the theory. Our main contributions in
this instance are an industrial RSFT pipeline for
Bangla code, fuzzed asserts hardening execution
harness, and a slim theory–experiment bridge for
the sample budget role.

1https://github.com/Musa-Tur-Farazi/
BLP-Code-Genenation-Task.git

2 Related Work

Policy-gradient methods and RLHF optimize non-
differentiable or preference rewards but are com-
plex and unstable (Ranzato et al., 2016; Paulus
et al., 2018; Stiennon et al., 2020; Ouyang et al.,
2022).Generate–filter–finetune schemes avoid pol-
icy gradients by selecting high-quality samples
(RAFT/RSFT; STaR) or by converting preferences
into supervised loss (DPO) (Dong et al., 2023; Ze-
likman et al., 2022; Rafailov et al., 2023). LoRA
updates a tiny fraction of weights and pairs natu-
rally with RSFT (Hu et al., 2021). For code mod-
els, large-scale supervised/instruction tuning and
verification-guided training underpin systems such
as Codex, AlphaCode, Code Llama, and CodeRL
(Chen et al., 2021; Li et al., 2022; Rozière et al.,
2023; Le et al., 2022).We adopt the RSFT recipe
with execution correctness as the filter and LoRA
for efficient updates.

3 Problem Statement

Let P be the set of Bangla prompts and Y the
set of syntactically valid Python programs (token
sequences). With parameters θ,

Pθ(y | p) =
L∏

t=1

Pθ

(
yt | p, y<t

)
, (1)

where y = (y1, . . . , yL).
Each prompt p has a unit-test suite Tp. We use a

binary reward

r(y;Tp) = 1{y passes all tests in Tp}, (2)

and optionally a fractional reward rfrac(y;Tp) ∈
[0, 1].

4 Bangla-aware Preprocessing

Unicode normalization. Prompts are normalized
to NFC following the Unicode standard to harmo-
nize visually identical but canonically distinct se-
quences (The Unicode Consortium, 2024).

561

https://github.com/Musa-Tur-Farazi/BLP-Code-Genenation-Task.git
https://github.com/Musa-Tur-Farazi/BLP-Code-Genenation-Task.git

Script and punctuation. We preserve Bangla dig-
its and punctuation; ASCII punctuation present in
prompts is retained (no transliteration) to avoid
corrupting code-like tokens in the target.
Tokenization. Subword tokenization jointly covers
Bangla prompts and Python targets using Sentence-
Piece/BPE (Kudo and Richardson, 2018), a choice
consistent with recent Bangla language modeling
work(Bhattacharjee et al., 2022; Sennrich et al.,
2016). We refrain from code-specific token surg-
erto avoid introducing off-policy artifacts.

5 Mining by Sampling and Sandboxed
Execution

Candidates are sampled stochastically and executed
under isolation.

Decoding. Let zt be logits at step t. Temperature
T > 0 rescales logits to zt/T . Nucleus (top-p)
sampling restricts sampling to the smallest token
set with cumulative probability at least p. The
miner distribution is πold(· | p).
Discovery statistics. Under πold,

psucc(p) = Pr
y∼πold(·|p)

[
r(y;Tp) = 1

]
. (3)

With K independent draws, E[winners] =
K psucc(p) and

Pr(at least one winner) = 1−
(
1− psucc(p)

)K
.

(4)

Threat model and sandboxing. Execution oc-
curs in a restricted environment with no network,
including CPU, memory, time limits, constrained
file-system and without modules and system calls.
Unit tests run solely within this enclave to evaluate
r(y;Tp).

6 RSFT Dataset and Supervised
Fine-tuning

From the sampled candidates, winners are retained.
Let Sp be the multiset of winners for p. The in-
duced empirical RSFT distribution is

Q(y | p) = πold(y | p) r(y;Tp)

Z(p)
,

Z(p) = Ey∼πold(·|p)
[
r(y;Tp)

]
.

(5)

Supervised fine-tuning minimizes the negative log-
likelihood on Drsft = {(p, y)}:

LMLE(θ) = −
∑

(p,y)∈Drsft

logPθ(y | p). (6)

Training on samples from Q corresponds to mini-
mizing

Ep[KL(Q(· | p) ∥Pθ(· | p))] .

7 Parameter-efficient Fine-tuning

We use LoRA adapters to reduce trainable parame-
ters. For weight matrix W ∈ Rdo×di ,

W ′ = W +∆W, ∆W = BA, (7)

with A ∈ Rr×di , B ∈ Rdo×r, r ≪ min(di, do).
Only A and B are updated.

8 Robustness using Fuzzed Asserts

To discourage brittle solutions, some test suites
are augmented with perturbed inputs and mutated
asserts. If T ′

p denotes the augmented set,

r′(y; T ′
p) = 1{y passes all tests in T ′

p},

which tightens the correctness predicate and im-
proves selection precision.

9 Evaluation Metrics

We report PASS@1 with greedy decoding and
PASS@k with stochastic sampling following the
HumanEval/Codex protocol (Chen et al., 2021).
Given n samples with c correct,

̂pass@k = 1−
(
n−c
k

)
(
n
k

) , n ≥ k, (8)

the standard unbiased estimator under sampling
without replacement. For uncertainty we use exact
Clopper–Pearson or Wilson score intervals (Clop-
per and Pearson, 1934; Wilson, 1927).

10 Formal Properties of the Sampling
Budget K

Let p = psucc(p) for brevity. The function f(K) =
1− (1− p)K (Eq. 4) is:

• Monotone in K for any p ∈ (0, 1].

• Concave in K (diminishing marginal returns),
since f ′′(K) = −(1− p)K ln2(1− p) ≤ 0.

• To attain Pr(≥ 1 winner) ≥ 1 − δ, it suffices
that

K ≥ ln δ

ln(1− p)
≈ 1

p
ln
1

δ
for small p.

These properties explain the empirical concavity
with the change in K.

562

Figure 1: RSFT pipeline: sampling→ sandboxed execution→ winner selection→ SFT with LoRA→ evaluation.

11 Pseudocode (RSFT Mining & SFT)

Algorithm 1: RSFT Mining
Input: Prompt set P; generator πold(· | p);

sandboxed executor Tp; optional
scorer s(p, y);

Output: Mined supervision pairs Drsft
Drsft ← ∅
foreach p ∈ P do

Sample y(1:K) ∼ πold(· | p)
S ← { y(j) : PASS(Tp(y

(j))) }
if s is provided then

choose W ⊆ S of size m
maximizing s(p, y)

else
choose W ⊆ S of size m

end
Drsft ← Drsft ∪ {(p, y) : y ∈W}

end
return Drsft

Algorithm 2: Fine-tuning
Input: Base model fθ with LoRA adapters;

dataset Drsft; optimizer O; batch
size B; epochs E

Output: Adapted parameters θ⋆

for e← 1 to E do
for mini-batch B ⊂ Drsft of size B do

compute LMLE(θ;B) =
−

∑

(p,y)∈B
log pθ(y | p)

backpropagate∇θLMLE; update
LoRA parameters using O

end
end
return θ⋆

12 Datasets

We follow the BLP-2025 Task 2 split (Raihan et al.,
2025c) with an organizer-provided trial set for for-
mat checks, mHumanEval-Bangla for development
(Raihan et al., 2025a), and MBPP-Bangla for held-
out evaluation (Raihan et al., 2025b). All prompts
are Bangla (instruction); unit tests are Python
snippets stored in test_list and executed in a
sandbox. The test split contains hidden tests avail-
able only at scoring time.
Each row contains an id, a Bangla prompt
instruction, optional response (trial), and
Python tests in test_list.

Datasets Row Count Columns
Trial 74 id, instruction, response, testlist
Dev 400 id, instruction, testlist
Test 500 id, instruction, testlist

Table 1: Dataset splits and schema.

13 Experimental Findings

We varied the inference sampling budget K and
evaluated PASS@1 locally:

Sample Budget K Passes Total PASS@1 (%)

10 176 500 35.20
20 192 500 38.40
50 227 500 45.40
100 245 500 49.00

Table 2: Ablation on inference sampling budget K
(higher is better). Results reported as number of tasks
passed out of 500 and PASS@1 (%).

563

Figure 2: Ablation: accuracy vs. inference sampling
budget K.

However, we could achieve a maximum PASS
@ 1 score of 31. 6 % (with K = 100) in the online
hidden test environment, suggesting that our gen-
erated codes were vulnerable to many other edge
cases to execute properly.

All experiments ran on an NVIDIA GeForce
RTX 3050 GPU with limited capacity. Unless
otherwise stated, we kept mining temperature/top-
p, number of mining samples per prompt, LoRA
rank and target modules, learning rate, batch size,
and epochs constant across the ablation.

Parameter Value

Max Sequence Length 1024
Batch Size (Train/Eval) 16
Gradient Accumulation Steps 4
Max Steps 60
Learning Rate 5× 10−5

Weight Decay 0.04
Warmup Steps 10%
Optimizer AdamW (8-bit)
LR Scheduler Cosine
Precision BF16
Seed 3407

Table 3: Hyperparameters used for training, RSFT, and
inference.

We observe four recurring classes of failures dur-
ing development inference for several runs locally:

• Type-1. Specification misinterpretation: par-
tial or incorrect adherence to the Bangla prompt
(e.g., missing edge conditions, misread con-
straints).

• Type-2. I/O contract violations: mismatch be-
tween required and produced interfaces (return
vs. print, extra prompts, stray debug output).

• Type-3. Numerical/algorithmic edge cases:
brittle handling of boundary values (integer vs.

Figure 3: Observed failure modes (Types 1–4) across
400 samples. Labels show percentage and counts.

float semantics, off-by-one loops, corner-case
arithmetic).

• Type-4. Resource/pathological behavior: non-
terminating or superlinear routines that exceed
time/memory limits under hidden tests.

14 Conclusion

We introduced a compact RSFT pipeline for
Bangla-to-Python code generation that integrates
sampling, sandboxed execution, winner-only super-
vision, and LoRA-based adaptation. On this task,
we observed diminishing returns with larger sam-
pling budgets and identified recurrent failure modes
that motivate tighter verification. The approach is
simple, reproducible, and safety-conscious via unit-
test gating and fuzzed asserts. Future work includes
stronger test generation, adaptive mining of K by
prompt difficulty, and richer program-analysis sig-
nals to improve generalization.

15 Limitations and Ethics

Model quality is bounded by the coverage and rigor
of unit tests hence behaviors outside the test distri-
bution may persist, and mining can overfit to arti-
facts of a particular decoding configuration (e.g.,
temperature/top-p), favoring shorter or more ver-
bose programs. The generate–execute–select loop
also induces selection bias toward easily verifiable
solutions and may under-represent semantically
correct but slow or non-deterministic code. Al-
though execution occurs in a hardened sandbox,
residual risks remain (e.g., resource exhaustion).
We therefore adopt defense-in-depth and strict
time/memory limits. Due to our limited compute
resources, results are further constrained, which re-
stricts hyperparameter sweeps and ablation breadth
and may increase variance.

564

References
Abhik Bhattacharjee, Tahmid Hasan, Wasi Uddin

Ahmad, Kazi Samin, Md Saiful Islam, Anindya
Iqbal, M. Sohel Rahman, and Rifat Shahriyar. 2022.
Banglabert: Language model pretraining and bench-
marks for low-resource language understanding eval-
uation in bangla. Preprint, arXiv:2101.00204.

Mark Chen and 1 others. 2021. Evaluating large lan-
guage models trained on code. arXiv:2107.03374.

Charles J. Clopper and Egon S. Pearson. 1934. The use
of confidence or fiducial limits illustrated in the case
of the binomial. Biometrika, 26(4):404–413.

Yao Dong and 1 others. 2023. RAFT: Reward
ranked finetuning for generative foundation models.
arXiv:2304.06767.

Edward J Hu and 1 others. 2021. LoRA: Low-rank adap-
tation of large language models. arXiv:2106.09685.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
In Proceedings of EMNLP: System Demonstrations,
pages 66–71.

Hung Le and 1 others. 2022. Coderl: Mastering code
generation through pretrained models and deep rein-
forcement learning. In NeurIPS.

Yujia Li and 1 others. 2022. Competition-level code
generation with alphacode. Science, 378(6624):1092–
1097.

Long Ouyang and 1 others. 2022. Training language
models to follow instructions with human feedback.
arXiv:2203.02155.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Rafael Rafailov and 1 others. 2023. Direct preference
optimization: Your language model is secretly a re-
ward model. In NeurIPS.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025a. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 11432–11461, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2025b. Tigercoder: A novel suite of
llms for code generation in bangla. arXiv preprint
arXiv:2509.09101.

Nishat Raihan, Mohammad Anas Jawad, Md Mezbaur
Rahman, Noshin Ulfat, Pranav Gupta,
Mehrab Mustafy Rahman, Shubhra Kanti Kar-
makar, and Marcos Zampieri. 2025c. Overview of
BLP-2025 task 2: Code generation in bangla. In
Proceedings of the Second Workshop on Bangla
Language Processing (BLP-2025). Association for
Computational Linguistics (ACL).

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR.

Baptiste Rozière and 1 others. 2023. Code llama: Open
foundation models for code. arXiv:2308.12950.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of ACL.

Nisan Stiennon and 1 others. 2020. Learning to summa-
rize with human feedback. In NeurIPS.

The Unicode Consortium. 2024. Unicode standard an-
nex #15: Unicode normalization forms. Version cur-
rent at time of writing.

Edwin B. Wilson. 1927. Probable inference, the law of
succession, and statistical inference. Journal of the
American Statistical Association, 22(158):209–212.

Eric Zelikman, Yuhuai Wu, Noah D Goodman, and
Tomer Holzman. 2022. Star: Bootstrapping reason-
ing with reasoning. In NeurIPS.

565

https://arxiv.org/abs/2101.00204
https://arxiv.org/abs/2101.00204
https://arxiv.org/abs/2101.00204
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/

