CodeAnubad at BLP-2025 Task 2: Efficient Bangla-to-Python Code
Generation via Iterative LoRA Fine-Tuning of Gemma-2

Soumyajit Roy
roysoumyajit@icloud.com

Abstract

This paper presents our submission for Task
2 of the Bangla Language Processing (BLP)
Workshop, which focuses on generating Python
code from Bangla programming prompts in a
low-resource setting. We address this challenge
by fine-tuning the gemma-2-9b instruction-
tuned model using parameter-efficient fine-
tuning (PEFT) with QLoRA. We propose an
iterative self-improvement strategy that aug-
ments the extremely limited training data (74
examples) by reusing verified correct predic-
tions from the development set, alongside
LoRA rank experiments (8, 16, 32), observ-
ing a clear correlation between rank and accu-
racy, with rank 32 delivering the best results.
Compared to translation-based and retrieval-
augmented baselines, our approach achieves
significantly higher accuracy, with a pass rate
of 47% on the development set and 37% on the
hidden test set. These results highlight the ef-
fectiveness of combining iterative data augmen-
tation with rank optimisation for specialised,
low-resource code generation tasks.

1 Introduction

The ability of large language models (LLMs)
to generate code has significantly advanced soft-
ware development and computer science education.
However, most progress has been concentrated on
high-resource languages like English. The BLP
Task 2 (Raihan et al., 2025¢) presents a valuable
challenge: extending these capabilities to Bangla, a
language spoken by more than 230 million people
yet underrepresented in mainstream NLP research.
The task requires a system to take a programming
prompt written in Bangla and generate a Python
script that passes a set of hidden unit tests.

This task is particularly challenging due to two
factors: the need for models to comprehend nu-
anced, procedural instructions in a non-English
language, and the extremely limited size of the ini-
tial training dataset (74 examples). Our work aims

to tackle this by adapting a powerful, pre-trained
LLM and introducing a novel training strategy to
overcome data scarcity.

Our primary contributions are as follows:

* We introduce an iterative self-improvement
pipeline that uses the model’s own correct
generations on the development set to aug-
ment the training data, progressively boosting
performance without external data.

* We provide a comparative analysis of different
base models (Gemma-2, Code Llama, Star-
Coder) and LoRA configurations, identifying
Gemma-2-9b-it model with a rank of 32 as
the most effective combination.

* Our approach achieves a final pass rate of 37%
on the official test set and 47% on the devel-
opment set, showcasing a viable method for
low-resource code generation.

2 Related Work

2.1 Large Language Models for Code
Generation

Large Language Models (LLMs) have transformed
automated code generation. Codex (Chen et al.,
2021), powering GitHub Copilot, showcased the
potential of training on large-scale code corpora,
followed by open-source models like StarCoder
(Li et al., 2023) and Code Llama (Touvron et al.,
2023). While highly effective in languages such as
Python and JavaScript, their performance on low-
resource natural languages like Bangla remains un-
derexplored.

Recent efforts target multilingual code genera-
tion. Benchmarks such as HumanEval-XL. (Peng
et al., 2024) and CRUXEval-X (Xu et al., 2025)
evaluate cross-lingual generalization and reason-
ing, while works like Li et al. (2025) and Liu
et al. (2025) study zero-shot transfer and retrieval-
augmented generation. However, most approaches

556

Proceedings of the Second Workshop on Bangla Language Processing (BLP-2025), pages 556560
December 23, 2025 ©2025 Association for Computational Linguistics

rely on translation or parallel resources, leaving
open challenges for direct adaptation in severely
low-resource settings. Our work addresses this
through iterative fine-tuning on Bangla-specific
prompts.

2.2 Parameter-Efficient Fine-Tuning (PEFT)

Fully fine-tuning multi-billion parameter models is
computationally prohibitive for most researchers.
PEFT methods have emerged as a solution. Low-
Rank Adaptation, or LoORA, was introduced by Hu
etal. (2021), who proposed freezing the pre-trained
model weights and injecting small, trainable low-
rank matrices into the transformer layers. This
reduces the number of trainable parameters by or-
ders of magnitude. Dettmers et al. (2023) later
proposed QLoRA, which applies LoRA on top of
a quantized base model, such as 4-bit, making it
possible to fine-tune massive models on a single
GPU.

2.3 Low-Resource NLP

NLP for low-resource languages like Bangla faces
persistent data scarcity, which is even more acute
for specialised tasks such as code generation. We
address this with an iterative self-improvement ap-
proach related to pseudo-labeling, where a model’s
own predictions are reused as training data. Tra-
ditional pseudo-labeling assigns high-confidence
predictions to unlabeled data and retrains with
thresholds to limit errors (Lee, 2013), while self-
training incorporates pseudo-labels without verifi-
cation (Yarowsky, 1995). In contrast, our method
augments training data only with verified predic-
tions from the development set—confirmed via
pass rates against hidden unit tests—thereby re-
ducing error propagation in procedural tasks like
Bangla-to-Python generation. Unlike general self-
training, which risks amplifying noisy labels, our
approach establishes a targeted feedback loop that
curates high-quality, in-domain pairs without exter-
nal data, emphasizing execution-based validation
over probabilistic confidence for syntactic and se-
mantic accuracy.

3 Dataset and Data Augmentation
Strategy

The dataset provided for the task consists of a
small training split with 74 samples and a develop-
ment split with 400 samples (Raihan et al., 2025a),
whereas the test dataset consisted of 500 samples

(Raihan et al., 2025b). Each sample is a JSON ob-
ject that contains a Bangla instruction (instruction),
a corresponding Python solution (response), and
other metadata.

Given the extremely small size of the ini-
tial training set, we designed an iterative self-
improvement strategy to augment our data using
the model’s own predictions on the development
set. This process was executed in the following
stages:

e Initial Training: The base model was first
fine-tuned on the original 74 training samples.
This initial model achieved a pass rate of 38%
in the 400-sample development set.

* Data Augmentation: We identified the 152
correct predictions (38% of 400) from the
development set. These high-quality, model-
verified instruction-response pairs were then
added to the original training data, creating an
augmented set of 226 samples.

* Iterative Re-training: The model was re-
trained from its original checkpoint using this
new, larger dataset. This step, combined with
training at a higher LoRA rank, improved the
development set pass rate from 38% to 42%.
A final re-training with an optimised LoRA
rank further boosted this score to 47%.

This iterative data curation strategy was central
to our ability to improve performance despite the
initial data scarcity.

4 Methodology

Our approach is centered around the supervised
fine-tuning of a pre-trained LLM using an itera-
tive data augmentation strategy. All training was
conducted on a single NVIDIA A6000 GPU, with
each run completing in under five minutes due to
the small dataset and an early stopping callback
monitoring validation loss.

4.1 Base Model Selection

We conducted preliminary experiments with sev-
eral open-source models to select the best foun-
dation for our task. Using the development
set for evaluation, we found that StarCoder (Li
et al., 2023) achieved a pass rate of only 13%,
while CodelLlama-3.1-8B-it (Touvron et al., 2023)
reached 32%. The Gemma-2-9b-it model demon-
strated a superior baseline performance, reaching
an accuracy of 38%, justifying its selection.

557

Model Configuration Dev Set Pass Rate
Translation-based (mBART + Gemma-2) 6%
RAG (Retrieval-Augmented) 11%
StarCoder (Base) 13%
CodeLlama-3.1-8B-it 32%
Gemma-2-9B-it (r=8) 38%
Gemma-2-9B-it (r=16) 42%
Gemma-2-9B-it (r=32) 47%

Table 1: Performance comparison between different
models.

We hypothesise that its strong performance
stems from a robust instruction-following capabil-
ity derived from its pre-training, providing a better
foundation for interpreting Bangla prompts. We
also attempted to use larger 30B+ parameter mod-
els, but they overfit rapidly on the small dataset.

In addition to evaluating specialised code gen-
eration models, we explored simpler baseline ap-
proaches to establish the necessity of our itera-
tive fine-tuning strategy in this low-resource set-
ting. First, we implemented a translation-based
method, where Bangla prompts were translated
to English using a pre-trained translation model
like mBART (Tang et al., 2020) before feeding
them into the base gemma-2-9b-it model for code
generation. This approach yielded a pass rate
of only 6% on the development set, highlighting
the challenges of cross-lingual transfer without
targeted adaptation. Second, we tested a RAG
pipeline using SentenceTransformer (’paraphrase-
multilingual-MiniLM-L12-v2’) and a FAISS index.
Using CodeLlama-7b as the generator, this k=3
few-shot approach achieved only an 11% pass rate,
limited by the scarcity of relevant Bangla-aligned
retrieval data. These results underscore the inade-
quacy of off-the-shelf methods for Bangla-specific
code generation, justifying our parameter-efficient
fine-tuning method with iterative self-improvement,
which significantly outperforms these baselines by
achieving up to 47% on the development set.

4.2 Fine-Tuning with QLoRA
We applied QLoRA (Dettmers et al., 2023) to

enable efficient fine-tuning of the selected base
model.

Quantization. The base model was loaded in 4-
bit precision using NF4 quantization from bitsand-
bytes, with computation performed in bfloat16.

LoRA Configuration. Following the LoRA
framework (Hu et al., 2021), we experimented with
ranks of 8, 16, and 32, observing pass rates of 38%,

Training and Validation Loss Over Steps

Training Los:
Validation Loss

10 20 EY 40 50 60 70
Steps

Figure 1: Convergence Graph

42%, and 47% respectively. Our final model used a
rank (r) of 32 and a lora_alpha value of 64, applied
to all attention and feed-forward layers.

4.3 Training

We used the SFTTrainer for finetuning the model.
Key parameters included:

* Optimizer: Adam (paged_adamw_8bit)

* Learning Rate: 5x 10~° with a cosine sched-
uler

 Effective Batch Size: 8 (2 per device x 4
gradient accumulation steps)

e Precision: bfloat16 with flash attention for
faster training

Training was configured with early stopping on
validation loss (patience=3), which consistently
triggered after a short period, indicating rapid con-
vergence on the small dataset.

5 Results

Our final model achieved a pass rate of 47% on
the development set and 37% on the final hidden
test set. The iterative data augmentation strategy
and experimenting with LoRA rank was critical to
our performance, improving the development set
pass rate from an initial 38% to 47%—a relative
improvement of 24%.

The training and validation loss curve for our
final training run in Figure 1 shows that the model
began to overfit after approximately 60 steps, and
our early stopping mechanism correctly identified
the optimal checkpoint, preventing performance
degradation.

5.1 Qualitative Analysis

The success of our final model over other configu-
rations can be attributed to two synergistic factors:

558

¢ Superior Base Model Foundation: The
gemma-2-9b-it model’s superior performance
compared to code-specific models like Code
Llama and StarCoder suggests that its ro-
bust general instruction-following capabili-
ties, honed during pre-training, provided a
better foundation for interpreting the nuanced
Bangla prompts. It was more adaptable to the
cross-lingual, instructional nature of the task.

» Targeted Data Strategy: The iterative self-
improvement method was highly effective be-
cause it directly addressed the core problem: a
lack of training data. Instead of relying on syn-
thetic data from another model, we used our
own model’s evolving capabilities to curate a
high-quality, in-domain dataset. This created
a positive feedback loop where each training
iteration made the model a better data cura-
tor for the next, leading to significant perfor-
mance gains that would have been impossible
with the original 74 samples alone.

5.2 LoRA Rank Experimentation

A key part of our experimentation was finding the
optimal LoRA rank (). We observed a clear cor-
relation between the rank and performance on this
dataset:

* A rank of 8 yielded a 38% pass rate.

* A rank of 16 combined with the augmented
dataset yielded a 42% pass rate.

* A rank of 32 on this same augmented dataset
yielded a 47% pass rate.

Our final and best-performing model used the
iterative data augmentation strategy combined with
a LoRA rank of 32. This submission achieved a
47 % pass rate on the development set and a 37 %
pass rate on the final hidden test set.

5.3 Successful Generations

Analysis of our model’s 400 predictions on the
development set reveals distinct patterns of success
and failure.

The model demonstrated a strong capability for
generating complex, multi-part algorithms that re-
quire more than just pattern matching. For instance,
in problem ID 35, the model was tasked with im-
plementing heap sort. It correctly generated the
full algorithm, including a logically sound nested
heapify helper function.

def heap_sort(lst):
def heapify(arr, n, i):
... (correct heapify logic)

... (correct main sort logic)
heap_sort_util(lst, len(lst))
return lst

This suggests that the fine-tuning process suc-
cessfully elicited the base model’s underlying algo-
rithmic reasoning capabilities.

5.4 Error Analysis

The 213 failed test cases on the development set
can be categorized into several groups. The most
common failure mode was the omission of neces-
sary dependencies. For example, in problem ID 26
(calculating a triangle’s area), the model generated
the mathematically correct formula (n*n*sqrt(3))/4
but failed with a NameError because it did not in-
clude the required from math import sqrt statement.
Similar NameError failures occurred for other li-
braries like itertools (ID 91) and re (ID 222). Other
frequent errors included TypeError (e.g., trying to
perform tuple arithmetic), IndexError, and logical
flaws leading to AssertionError. These errors in-
dicate that while the model is adept at generating
the core logic, it struggles to consistently produce
complete, self-contained, and executable scripts.

6 Conclusion

In this paper, we presented an efficient approach to
Bangla-to-Python code generation by fine-tuning
Gemma-2-9B with QLoRA and an iterative self-
improvement strategy that augments scarce train-
ing data using the model’s verified outputs. LoRA
rank experiments revealed higher ranks improve
performance, outperforming translation-based and
retrieval-augmented baselines. Our findings high-
light iterative fine-tuning and hyperparameter opti-
misation as practical for low-resource code genera-
tion tasks.

For future work, we propose two main directions.
First, generating a larger, higher-quality augmented
dataset could provide a stronger foundation for
training. Second, exploring alternative model archi-
tectures, such as dedicated encoder-decoder mod-
els, may yield better results for this cross-lingual
translation-like task.

Limitations

While our approach demonstrates a viable method
for this low-resource task, we acknowledge several

559

key limitations that constrained performance and
highlight directions for future work.

Our iterative strategy is fundamentally depen-
dent on the quality and diversity of the small initial
dataset (74 samples), which risks amplifying initial
data biases. This data scarcity also constrained our
model choice to a 9B model, as larger 30B+ pa-
rameter models quickly overfit. Furthermore, our
study is limited in its baseline comparisons. We
did not compare our approach to methods using
synthetic data distilled from stronger models, nor
did we perform an ablation study to isolate the per-
formance impact of QLoRA quantization against
full-precision fine-tuning.

A final limitation, evident from error analysis, is
the model’s tendency to generate logically correct
but syntactically incomplete code, most often caus-
ing NameError from missing imports (e.g., failing
to include import math). This highlights a gap be-
tween learning core algorithms and the scaffolding
(imports, class definitions, etc.) needed for exe-
cutable scripts.

References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique de Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Lilian Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, and 38 others. 2021. Eval-
uating large language models trained on code. arXiv
preprint arXiv:2107.03374.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen.
2021. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685.

Dong-Hyun Lee. 2013. Pseudo-label : The simple and
efficient semi-supervised learning method for deep
neural networks.

Mingda Li, Abhijit Mishra, and Utkarsh Mujum-
dar. 2025. Bridging the language gap: Enhanc-
ing multilingual prompt-based code generation in
Ilms via zero-shot cross-lingual transfer. Preprint,
arXiv:2408.09701.

Raymond Li, Loubna Ben Allal, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Ferrandis,
Rohan Ghosh, Niklas Muennighoff, Pratik Mishra,
Manan Dey, Rachel Bawden, Ankur Dey, Yacine
Jernite, Nouamane Tazi, Julien Launay, Margaret

Mitchell, Thomas Wolf, Harm de Vries, Alexan-
der M Rush, and Teven Le Scao. 2023. Starcoder:
may the source be with you! arXiv preprint
arXiv:2305.06161.

Wei Liu, Sony Trenous, Leonardo F. R. Ribeiro, Bill
Byrne, and Felix Hieber. 2025. Xrag: Cross-
lingual retrieval-augmented generation. Preprint,
arXiv:2505.10089.

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.
Humaneval-xl: A multilingual code generation
benchmark for cross-lingual natural language gen-
eralization. Preprint, arXiv:2402.16694.

Nishat Raihan, Antonios Anastasopoulos, and Marcos
Zampieri. 2025a. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 11432-11461, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2025b. Tigercoder: A novel suite of
Ilms for code generation in bangla. arXiv preprint
arXiv:2509.09101.

Nishat Raihan, Mohammad Anas Jawad, Md Mezbaur
Rahman, Noshin Ulfat, Pranav Gupta,
Mehrab Mustafy Rahman, Shubhra Kanti Kar-
makar, and Marcos Zampieri. 2025c. Overview of
BLP-2025 task 2: Code generation in bangla. In
Proceedings of the Second Workshop on Bangla
Language Processing (BLP-2025). Association for
Computational Linguistics (ACL).

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with extensi-
ble multilingual pretraining and finetuning. Preprint,
arXiv:2008.00401.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Ruiyang Xu, Jialun Cao, Yaojie Lu, Ming Wen, Hongyu
Lin, Xianpei Han, Ben He, Shing-Chi Cheung, and
Le Sun. 2025. Cruxeval-x: A benchmark for multi-
lingual code reasoning, understanding and execution.
Preprint, arXiv:2408.13001.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Pro-
ceedings of the 33rd Annual Meeting on Associa-
tion for Computational Linguistics, ACL *95, page
189-196, USA. Association for Computational Lin-
guistics.

560

https://api.semanticscholar.org/CorpusID:18507866
https://api.semanticscholar.org/CorpusID:18507866
https://api.semanticscholar.org/CorpusID:18507866
https://arxiv.org/abs/2408.09701
https://arxiv.org/abs/2408.09701
https://arxiv.org/abs/2408.09701
https://arxiv.org/abs/2505.10089
https://arxiv.org/abs/2505.10089
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://arxiv.org/abs/2008.00401
https://arxiv.org/abs/2008.00401
https://arxiv.org/abs/2408.13001
https://arxiv.org/abs/2408.13001
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684

