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Abstract

This paper presents our approach for the BLP
Shared Task 1, where we implemented Lin-
ear Probing of Pre-trained Transformer-based
Models for Bangla Hate Speech Detection. The
goal of the task was to customize the existing
models so that they’re capable of automatically
identifying hate speech in Bangla social me-
dia text, with a focus on YouTube comments.
Our approach relied on fine-tuning several pre-
trained BERT models, adapting them to the
shared task dataset for improved classification
accuracy. To further enhance performance, we
applied linear probing on three of the fine-tuned
models, enabling more effective utilization of
the learned representations. The combination
of these strategies resulted in a consistent top-
15 ranking across all subtasks of the competi-
tion. Our findings highlight the effectiveness
of linear probing as a lightweight yet impactful
technique for enhancing hate speech detection
in low-resource languages like Bangla.

1 Introduction

The rapid growth of numerous online platforms has
amplified the prevalence of offensive and harmful
content, making automatic hate speech detection a
pressing challenge in Natural Language Processing
(NLP). For low-resource languages like Bangla, the
problem is further complicated by the limited avail-
ability of large, high-quality annotated datasets.

To advance research in this direction, the orga-
nizers of the BLP Shared Task 1 (Hasan et al.,
2025a) curated one of the largest annotated cor-
pora for Bangla hate speech detection. Within this
framework, transformer-based architectures such
as BanglaBERT (Bhattacharjee et al., 2022) have
shown considerable promise, owing to their abil-
ity to capture nuanced contextual information in
Bangla text.

Our work builds upon these advancements by
leveraging fine-tuned transformer models alongside

Subtask  Train Dev Test Task & Num of Classes
1A Single-label (6)

1B 35,522 2,512 10,200 Single-label (5)

1C Multi-label: (6, 3, 5)

Table 1: Dataset Statistics Across Subtasks

linear probing, a lightweight yet effective technique
to exploit learned representations for classification.
Through systematic experimentation, we demon-
strate that this hybrid approach not only improves
generalization but also achieves competitive results,
securing consistent top-15 rankings across all sub-
tasks of the competition. This paper details our
methodology, experimental setup, and key findings,
offering insights into the role of linear probing in
enhancing hate speech detection in Bangla.

2 Dataset Details

2.1 Task and Dataset Description

The primary objective of this shared task (Hasan
et al., 2025a,b) is to advance robust Bangla hate
speech detection through multitask learning. This
benchmark aims to capture the deeper linguistic
and social dimensions of hateful content in Bangla
by requiring models to predict not just the presence
of hate, but also its type, intensity, and target group.

The shared task consists of three subtasks:
Among the three subtasks both 1A and 1B
follow a TSV format with columns id, text, and
label. The subtask 1C is annotated with three
attributes—hate_type, hate_severity, and
to_whom. The severity dimension is categorized
into Little to None, Mild, and Severe.

Subtask 1A: Given a Bangla text, the model must
identify the type of hate expressed in it. The possi-
ble categories include Abusive, Sexism, Religious
Hate, Political Hate, Profane, and None.

Subtask 1B: This subtask focuses on identifying
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the target group of hate speech. The label space
includes Individuals, Organizations, Communities,
and Society.

Subtask 1C: The final subtask integrates all previ-
ous dimensions in a joint learning setup where hate
severity is the new addition to the classification
task.

Such a multi-dimensional design encourages the
development of systems capable of deeper contex-
tual reasoning rather than keyword-based detection.
The data were split into training, validation, and test
subsets, maintaining balanced class distributions
across all subtasks to support fair and meaningful
evaluation.

3 Methodology

3.1 Linear Probing Fine-Tuning

Kumar et al. (Kumar et al., 2022) introduced Lin-
ear Probing Fine-Tuning (LP-FT), a hybrid train-
ing method that combines the benefits of linear
probing and full fine-tuning. Their work showed
that while full fine-tuning of a model—where
both the backbone ¢;; and classifier head ¢¢ are
jointly trained—performs well on in-distribution
(ID) tasks, it often fails to generalize to out-of-
distribution (OOD) settings. In contrast, linear
probing freezes the backbone ¢, and trains only
the classifier ¢, offering better OOD performance
but limited adaptability. LP-FT addresses this by
first training only the classifier ¢ with the frozen
backbone ¢,/, and then fine-tuning both ¢p; and
the pre-trained ¢¢ jointly on the downstream task.
This two-step process improves performance across
both ID and OOD scenarios.

3.2 FPT based Linear Probing-Fine Tuning

To adapt the model more effectively to our dataset,
we leverage the Linear Probing Fine-Tuning (LP-
FT) method (Kumar et al., 2022). Since the
pre-trained backbone ¢j; may not fully capture
domain-specific knowledge, we first apply a Fur-
ther Pre-Training (FPT) step using a Masked Lan-
guage Modeling (MLM) objective. This step is
motivated by insights from BanglaTLit (Fahim
et al., 2024) and prior ITPT-based winning strate-
gies (Fahim, 2023).

In MLM, a portion (m%) of the input tokens
are randomly masked and replaced with a special
token [MASK]. The model is then trained to predict
the original tokens using contextual cues from the

unmasked tokens. This procedure yields a domain-
adapted backbone, denoted as qbﬂp T

Following FPT, we apply LP-FT using qﬁﬂp T
and a classification head ¢o. We consider two-
stage training for FPT-based LP-FT. In the first
stage, qﬁf/lp T is frozen and only ¢ is trained on
the downstream task. Once the classifier has been
optimized, in the second stage, we jointly fine-tune
both ¢ﬂp T and ¢, allowing the entire model (ex-
cluding any frozen parameters) to adapt to task-
specific features.

4 Experiment Setup

Experimented Models We experimented with
multiple transformer architectures, including
BanglaBERT (Bhattacharjee et al., 2022),
VACBERT (Bhattacharyya et al., 2023), XLM-
RoBERTa (Conneau et al., 2020), and IndicBERT
(Dabre et al., 2021). For comparison, we also
implemented non-transformer baselines using
LSTM and Bi-LSTM architectures with attention
mechanisms.

Model Configuration Models were trained for
6 epochs using the AdamW optimizer with be-
tas=(0.9, 0.999), epsilon=1e-6, and weight decay
regularization. We set learning rate for the encoder
to 2e-5. The batch size was set to 4 for larger
transformer models to accommodate memory con-
straints, while smaller models used a batch size of
16. All inputs were truncated/padded to 256 tokens
maximum length.

For all the subtasks, we implemented a cosine learn-
ing rate scheduler with warmup steps, gradually de-
creasing from the initial learning rate to a minimum
of le-6. For Sub-Task 1C specifically, the training
loop utilized BCEWithLogitsLoss for multi-label
classification and saved the best-performing model
based on validation score. Our code implementa-
tion featured differentiated parameter optimization,
applying layer-specific learning rates and excluding
bias/LayerNorm parameters from weight decay.

Linear Probing Model Configuration For the lin-
ear probing setup, we employed an MLM archi-
tecture where approximately 13% of the input to-
kens were randomly masked. The cross-entropy
loss between the predicted and true tokens was
used as the optimization objective. For all coding
and model training processes, the PyTorch frame-
work has been used. All experiments were con-
ducted on Kaggle’s P100 GPU infrastructure. We
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Models Sub-Task 1A Sub-Task 1B Sub-Task 1C
Precision Recall F1 Score Precision Recall F1Score Precision Recall F1 Score
Deep Learning Models
Non Transformer based
LSTM 26.19 21.58 18.17 21.02 20.99 18.31 45.68 44.21 44.18
Bi-LSTM 36.97 28.45 28.77 47.21 28.13 29.32 49.43 46.47 46.13
LSTM + Attention 35.83 38.63 36.08 43.07 44.73 43.79 48.79 46.98 47.55
Bi-LSTM + Attention 31.70 33.21 30.10 47.75 45.03 45.57 51.19 47.39 48.44
Transformer based LMs
IndicBERT 48.46 41.99 64.86 52.24 46.78 65.08 48.39 45.30 46.78
VACBERT 61.07 36.93 62.06 47.53 46.40 63.02 50.26 43.22 45.45
XLM-RoBERTa 54.23 50.64 70.95 56.45 57.22 70.09 52.29 50.38 51.68
BanglaBERT 5541 51.82 70.23 61.70 52.54 71.06 54.29 51.54 52.67
Linear Probing Models
VACBERT-MLM
+ Linear Probing 45.34 35.87 61.82 50.13 41.39 61.26 47.38 42.71 44.93
+ Linear Probing-FT 46.58 37.90 63.35 51.10 42.72 63.79 49.43 44.46 46.21
IndicBERT-MLM
+ Linear Probing 48.56 46.38 64.81 51.35 49.27 65.43 52.36 50.17 50.24
+ Linear Probing-FT 50.54 48.65 66.77 53.60 50.97 67.60 54.29 51.54 52.67
BanglaBERT-MLM
+ Linear Probing 61.37 53.76 70.58 59.24 53.26 70.03 56.41 51.68 53.62
+ Linear Probing-FT 62.32 55.31 70.88 60.70 54.35 71.23 57.59 52.17 54.22

Table 2: Model benchmarking results on the Test split of the SHARED TASK 1 dataset are reported.
the highest-performing model and submitted during the competition, while

for each metric across the model types.

employed a training approach consisting of Fur-
ther Pre-Training (FPT) using Linear Probing Fine-
Tuning (LP-FT).

5 Result and Analysis

Non-Transformer based DL Models. For the non-
transformer-based deep learning models, we con-
sider both LSTM and Bi-LSTM architectures. We
observe that the Bi-LSTM consistently outperforms
the standard LSTM across all subtasks, achieving
approximately a 10% improvement in F1 score for
Subtask 1A, 11% for Subtask 1B, and 2% for Sub-
task 1C.

Following the approach proposed by (Yu et al.,
2020), we incorporate an attention mechanism on
top of both LSTM and Bi-LSTM models for text
classification. The addition of attention leads to
further performance gains. For the LSTM-based
model, F1 scores nearly double for Subtask 1A,
and improve by approximately 10% for Subtask 1B
and 2% for Subtask 1C. Similarly, the Bi-LSTM
model with attention shows improvements of 2%
for Subtask 1A, around 15% for Subtask 1B, and
2% for Subtask 1C.

Pretrained L.Ms Performance We also present
a comparative analysis of various transformer-

highlights
marks the best-performing models

based pretrained language models across all three
subtasks. Among the models evaluated, XLM-
RoBERTza achieves the highest F1 score for Sub-
task 1A (70.95), showing a balanced performance
in both precision and recall. BanglaBERT also per-
forms competitively, particularly in Subtask 1B and
Subtask 1C, where it achieves the highest F1 scores
(71.06 and 52.67, respectively), along with strong
precision and recall values. VACBERT and In-
dicBERT show competitive results in precision for
Subtask 1A but comparatively lower recall, leading
to a moderate F1 score. IndicBERT, while show-
ing consistent performance across subtasks, lags
behind in terms of overall F1 scores.

These results demonstrate the effectiveness
of multilingual transformer models like XIL.M-
RoBERTa and domain-specific models like
BanglaBERT in tackling nuanced classification
tasks in Bangla.

Impact of Linear Probing For the linear probing
experiments, we first further pretrained the mod-
els using MLLM, as described in Section 3.2. The
models evaluated were VACBERT, IndicBERT, and
BanglaBERT. We then applied two training strate-
gies: linear probing alone, and linear probing fol-
lowed by fine-tuning (FT).
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Figure 1: Error analysis of BanglaBERT variants for hate speech classification, comparing base model, linear
probing (LP), and linear probing with full fine tuning (LP-FT) across hate type categories and target demographics.

The results show that linear probing by itself gen-
erally underperforms compared to the standard fine-
tuning approach presented earlier. However, when
linear probing is combined with fine-tuning, the
models achieve substantial performance improve-
ments, often surpassing the standard fine-tuning
baseline across most models.

Notably, BanglaBERT-MLM with linear prob-
ing followed by fine-tuning achieved the highest
F1 scores across all subtasks—70.88 for Subtask
1A, 71.23 for Subtask 1B, and 54.22 for Sub-
task 1C—alongside superior precision and recall in
most cases. IndicBERT-MLM also showed notable
gains with this combined strategy, consistently out-
performing both linear probing alone and standard
fine-tuning. Although VACBERT-MLM improved
with the combined approach, it still lagged behind
the other two models in overall performance.

Therefore, our benchmarking highlights
two optimal models tailored to the subtasks:
XLM-RoBERTa excels in Subtask 1A, while
BanglaBERT-MLM with linear probing followed
by fine-tuning (LP-FT) outperforms others in
Subtasks 1B and 1C. This suggests that although
a powerful multilingual transformer like XLM-
RoBERTa is effective for certain tasks, leveraging
a monolingual, language-specific model with
targeted training strategies such as LP-FT can yield
superior results for nuanced tasks in low-resource
languages like Bangla. We also provide the result
for the validation set in SHARED TASK 1 in Table
3 in the Appendix A.

6 Error Analysis

Figure 1 highlights model confusions across hate
type, target, and severity using a representative
example. The errors mainly arise from overlap-
ping categories—such as political and abusive
hate—and ambiguous phrasing that blurs target

boundaries between individuals and communities.
The base model often misinterprets these subtleties,
while LP improves class awareness through better
feature separation. LP-FT further refines contextual
understanding, reducing cross-category confusion
and capturing implicit hate cues more effectively,
thereby aligning predictions closer to human inter-
pretation.

7 Conclusion

In this work, we systematically evaluated Lin-
ear Probing followed by Full Fine-Tuning (LP-
FT) combined with Further Pre-Training (FPT)
for Bengali hate speech classification. Our results
demonstrate that BanglaBERT-MLM with LP-FT
achieves notable performance gains, highlighting
the effectiveness of this two-stage adaptation strat-
egy. This finding establishes that progressive fine-
tuning, beginning with a stabilized feature space,
is a powerful paradigm for enhancing model ro-
bustness in low-resource language contexts, paving
the way for more effective and responsible content
moderation.
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A Result on Validation Set

Table 2 presents a comprehensive comparison
of model performances on the validation split
of the SHARED TASK 1 dataset, spanning non-
transformer deep learning models, transformer-
based language models, and linear probing vari-
ants.

Among the non-transformer models, the addition
of an attention mechanism significantly improves
performance. Specifically, Bi-LSTM with attention
achieves the highest F1 scores within this group
across all subtasks, demonstrating the value of in-
corporating attention for sequence modeling.

Transformer-based models outperform all non-
transformer counterparts, with XLLM-RoBERTa
achieving the best F1 score in Subtask 1B (57.24),
and strong performance across the other subtasks.
BanglaBERT shows competitive results as well,
particularly excelling in recall metrics, which sug-
gests effective representation learning for Bangla
text.

The linear probing experiments further highlight
the benefits of task-specific adaptation. While lin-
ear probing alone improves over some baseline
transformer models, the combination of linear prob-
ing with fine-tuning (LP-FT) yields the best results
overall. BanglaBERT-MLM with LP-FT achieves
the highest F1 scores for Subtasks 1A (56.75) and
1C (55.23), and remains highly competitive in Sub-
task 1B. IndicBERT-MLM also benefits from this
training strategy, consistently improving across
metrics.

Highlighted cells denote the best-performing
models within each experimental category, as well
as the top scores overall. These findings under-
score the effectiveness of combining pretrained
transformer architectures with targeted fine-tuning
approaches, especially for challenging tasks in low-
resource languages like Bangla.
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Sub-Task 1A Sub-Task 1B Sub-Task 1C

Models
Precision Recall F1 Score Precision Recall F1Score Precision Recall F1 Score
Deep Learning Models
Non Transformer based
LSTM 9.62 16.66 12.20 12.22 20 15.17 13.50 17.80 15.10
Bi-LSTM 41.85 18.13 15.24 36.94 22.15 19.20 38.24 28.50 29.81
LSTM + Attention 35.28 34.12 32.44 40.71 41.04 40.63 45.29 43.93 44.79
Bi-LSTM + Attention 43.62 40.28 42.45 44.19 46.38 47.74 43.51 42.49 43.17
Transformer based LMs
IndicBERT 46.04 40.86 43.00 51.53 47.16 49.02 47.92 4431 45.69
VACBERT 43.42 40.46 41.66 46.97 46.38 46.55 47.62 45.07 45.74
XLM-RoBERTa 60.44 54.28 56.58 57.03 57.65 57.24 53.74 51.62 52.67
BanglaBERT 56.59 54.90 54.44 59.66 52.81 54.77 54.14 54.60 54.25
Linear Probing Models
VACBERT-MLM
+ Linear Probing 47.35 38.73 41.57 51.68 43.54 45.18 47.43 43.89 45.74
+ Linear Probing-FT 48.55 39.42 42.65 52.29 44.20 47.19 49.75 44.79 46.67
IndicBERT-MLM
+ Linear Probing 53.47 47.39 51.78 52.19 49.63 51.27 53.72 50.16 51.47
+ Linear Probing-FT 54.16 50.98 52.37 53.41 50.83 52.00 55.15 51.00 52.11
BanglaBERT-MLM
+ Linear Probing 56.78 55.49 55.87 60.17 53.98 56.24 52.87 57.61 54.97
+ Linear Probing-FT 57.50 56.89 56.75 60.55 54.27 56.72 53.98 58.21 55.23

Table 3: Model benchmarking results on the Validation split of the SHARED TASK 1 dataset are reported. Blue
highlights the highest-performing model and submitted during the competition, while Cyan marks the best-
performing models for each metric across the model types.
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