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Abstract
Detecting hate speech on social media is es-
sential for safeguarding online communities,
yet it remains challenging for low-resource
languages like Bangla due to class imbalance
and subjective annotations. We introduce a
two-stage cascaded framework with k-fold en-
sembling to address the BLP Workshop 2025
Shared Task’s three subtasks: 1A (hate type
classification), 1B (target identification), and
1C (joint classification of type, target, and sever-
ity). Our solution balances precision and recall,
achieving micro-F1 scores of 0.7331 on 1A,
0.7356 on 1B, and 0.7392 on 1C, ranking 4th
on 1A and 1st on both 1B and 1C. It performs
strongly on major classes, although underrepre-
sented labels such as sexism and mild severity
remain challenging. Our method makes the
optimal use of limited data through k-fold en-
sembling and delivers overall balanced perfor-
mance across majority and minority classes by
mitigating class imbalance via cascaded layers.

1 Introduction

Social media’s growth has accelerated the spread
of hate speech, presenting major threats to online
safety and public welfare (Vogels, 2021). Despite
having a large speaker base, Bangla is still not well-
studied, even though automatic detection systems
have advanced in high-resource languages (Fortuna
and Nunes, 2018; Das et al., 2021). Subjectivity
in annotation, overlapping linguistic cues across
categories, and a stark class imbalance make the
task especially challenging (Vidgen and Derczyn-
ski, 2020).

To overcome these obstacles, we introduce a
two-phase cascaded framework with k-fold ensem-
bling in this paper (Tang and Dalzell, 2019). After
distinguishing between hate and non-hate content,
our method gradually improves predictions across
multiple categories. Our approach reduces overfit-
ting and stabilizes performance in imbalanced con-
ditions by using ensembling and cross-validation

(Mozafari et al., 2020). Our framework shows
strong results across all subtasks of the BLP shared
task 1 (Hasan et al., 2025b), demonstrating that
our divide-and-conquer tactics can successfully
maintain a balance between recall and precision
for Bangla hate speech detection.

2 Related Work

Recent studies approach hate speech detection in
low-resource languages using transformer mod-
els, hybrid architectures, and ensemble techniques.
(Saha, 2023) combined IndicBERT with a Naive
Bayes classifier and synthetic upsampling, achiev-
ing macro-F1 scores of 0.73 (Assamese), 0.68 (Ben-
gali), and 0.84 (Bodo). Their approach of data aug-
mentation using back translation tended to smooth
out language-specific features, reducing multi-class
separability in our study. (Ripoll et al., 2022) used
multilingual transformer models trained across k-
fold splits and ensembled via soft voting. Their
system ranked first place in contextual hate speech,
but lacks addressing class imbalance issues. (Das
et al., 2023) proposed a Hierarchical-BERT for
Bangla violence detection, where the first layer
identifies major classes and the second layer re-
fines them. However, misclassifications in the first
layer often propagate errors, whereas our cascading
design allows the second layer to revise initial mis-
predictions. (Veeramani et al., 2023) ensembled
three BERT-based models with distinct optimiza-
tion strategies such as extra classification heads
and masked language model pretraining. Their
system achieved F1 scores of 0.7347 for violence
and 0.7173 for sentiment. (Ababu et al., 2025) ap-
plied BiLSTM with FastText embeddings for bilin-
gual hate speech detection in Amharic and Afaan
Oromo, reaching 78.05% accuracy. While FastText
helped them deal with words that were out of their
vocabulary, its static nature hindered contextual un-
derstanding—a crucial component of multi-class
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hate classification.

3 Task Description

3.1 Task Overview

This shared task focuses on detecting hate speech
in Bangla social media content across three sub-
tasks: 1A - classify the type of hate (e.g., Abusive,
Sexism, Religious, Political, Profane, or None);
1B - identify the target (Individuals, Organizations,
Communities, or Society); 1C - jointly predict hate
type, severity (little to none, mild, severe), and
target in a multi-task setup. Subtasks 1A and 1B
are evaluated using the Micro-F1 score to address
class imbalance. Subtask 1C is evaluated using
the average Micro-F1 across the hate type, severity,
and target predictions.

3.2 Dataset Overview

We used the workshop’s (Hasan et al., 2025a)
YouTube comments dataset (35.5k rows), which
mirrors real-world trends where non-hate content
clearly dominates. Specifically, 56.28% of com-
ments fall under “None” for hate_type, 66.24%
are rated “Little to None” for severity, and
59.75% target no particular group. In contrast, the
rarest labels are Sexism at just 0.35%, Severe at
14.48%, and Society at 6.17%.
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Figure 1: Distribution of classes

4 Methodology

We used a cascading framework to boost confi-
dence and reduce error rates in major classes, rais-
ing the overall F1 score. Each subtask runs in two
stages. Stage 1 separates hate from non-hate con-
tent with a binary classifier. Stage 2 applies multi-
class classification to the samples labeled as hate
in Stage 1. This stage can also reclassify content
flagged as hate back into non-hate classes, giving
any false positives a second chance. This setup

helps the model generalize better across all cat-
egories. Because each level refines the previous
one instead of forming a strict hierarchy, we call it
cascading levels (Figure 2).

We selected evaluation metrics for each stage’s
needs. Stage 1’s binary classifier uses the F2-micro
score, prioritizing recall to reduce false negatives in
non-hate detection. Stage 2’s multi-class classifier
uses the F1-micro score to balance precision and
recall across all classes and ensure fair, accurate
label distribution. These choices align with our cas-
cading framework’s goal of initial high-confidence
filtering of major classes followed by comprehen-
sive classification of all classes.

We used k-fold cross-validation with an ensem-
ble approach (Figure 2) on each stage to improve
generalization and make full use of our data. We
merged the training and validation sets, then split
them into folds. For Subtasks 1A and 1B, we set
k = 7; for Subtask 1C’s severity, k = 9. We
applied StratifiedKFold to keep class ratios bal-
anced across folds, producing k models at each
stage. During inference, we ensembled those mod-
els by majority vote. In multi-class tasks, ties were
broken by choosing the most frequent class in the
training set.
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Figure 2: Cascading classification architecture with
level-wise k-fold ensembling

To improve classification performance for Sub-
task 1B, we used an enhanced BanglaBERT archi-
tecture for the 2nd stage of the multi-class classi-
fier (Figure 3). We processed each input by first
encoding it into token IDs and attention masks,
which were then passed through the pretrained
BanglaBERT encoder to obtain contextual embed-
dings. To summarize token-level information, we
applied an attention-pooling mechanism that dy-
namically weighted important tokens, producing a
single pooled vector per instance. This pooled out-
put was regularized using dropout and transformed
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[SEP]
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Figure 3: Enhanced BanglaBERT with Attention Pool-
ing and Classification Head

via a dense layer followed by GELU activation to
introduce non-linearity. A second dropout layer
was applied to further reduce overfitting before fi-
nal classification. The transformed features were
then mapped to class logits using a linear layer.
During training, we computed loss using CrossEn-
tropy with optional label smoothing to improve
stability on imbalanced data.

For Subtask 1C, we developed three indepen-
dent classification pipelines shown in Figure 4,
each trained separately; their outputs were then
aggregated to improve the average micro-F1 score.
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Figure 4: Aggregation of 3 models

5 Results and Findings

We evaluated all tasks using the final test dataset
provided by the workshop organizers. Each subtask
test set contains 10,200 instances.

The overall performance across the three sub-
tasks is shown in Table 1. With F1 scores of 0.7331,
0.7356, and 0.7392 for Subtasks 1A, 1B, and 1C,
our cascaded framework with k-fold ensembling
consistently delivers strong results. The reliability
of our divide-and-conquer strategy is demonstrated
by the improvements, which are not only evident
in terms of F1 but also balanced across precision
and recall.

Subtask Accuracy Precision Recall F1 Score
1A 0.7331 0.7235 0.7331 0.7331
1B 0.7356 0.7276 0.7356 0.7356
1C 0.7392 0.7266 0.7392 0.7392

Table 1: Overall performance metrics across all sub-
tasks.

For hate type classification, our system achieved
an overall F1 of 0.7331 with precision = 0.7439
and recall = 0.7395. As shown in Table 2, the
None class achieved the highest performance (F1 =
0.8361, precision = 0.8221, recall = 0.8506), indi-
cating the effectiveness of the first-stage filtering in
distinguishing non-hate content. Profane language
also scored strongly (F1 = 0.7500). However,
performance was weaker for minority categories,
particularly Religious Hate (F1 = 0.4531) and Sex-
ism (no correct predictions). The challenges with
the Sexism category stem from its extreme under-
representation, with only 9 examples in a training
set of over 35k. In the test set, the first-stage classi-
fier detected just 11 of 29 sexism instances (recall
= 0.38), and none of these were correctly labeled
as Sexism in the second stage, often falling under
broader categories like Abusive.

Class Precision Recall F1 Score
Abusive 0.5761 0.5272 0.5506
None 0.8138 0.8597 0.8361
Political Hate 0.6175 0.5730 0.5944
Profane 0.7309 0.7701 0.7500
Religious Hate 0.5385 0.3911 0.4531
Sexism 0.0000 0.0000 0.0000

Table 2: Per-class performance metrics for Subtask 1A.

In hate target prediction, our system obtained
an overall F1 of 0.7356, with precision = 0.7510
and recall = 0.7394. Similar to Subtask 1A, the
None category was detected with high performance
(F1 = 0.8408, recall = 0.8611), showing the ef-
fectiveness of cascading from the binary stage and
the influence of the training dataset. Among hate-
bearing categories, Individual (F1 = 0.6446) and
Organization (F1 = 0.6040) were captured reason-
ably well. By contrast, Community (F1 = 0.4470)
and Society (F1 = 0.4499) proved harder to detect,
suggesting subtler linguistic markers and limited
representation in the dataset.

The third subtask differs from the previous ones
as it requires predicting hate type, target, and sever-
ity jointly. We reuse outputs from Subtasks 1A
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Figure 5: Confusion matrix for Sub-
task 1A.

Figure 6: Confusion matrix for Sub-
task 1B.

Figure 7: Confusion matrix for Sub-
task 1C.

Class Precision Recall F1 Score
Community 0.4584 0.4361 0.4470
Individual 0.6699 0.6213 0.6446
None 0.8190 0.8638 0.8408
Organization 0.6146 0.5938 0.6040
Society 0.5166 0.3984 0.4499

Table 3: Per-class performance metrics for Subtask 1B.

and 1B, focus solely on severity here, then merge
all three labels, simplifying the workflow and
maintaining consistency. Our system achieved
an overall F1 of 0.7392 (precision = 0.7471, re-
call = 0.7390). It excelled on Little to None
(F1 = 0.8658, recall = 0.9170) but lagged on Se-
vere (F1 = 0.5424) and Mild (F1 = 0.4304). This
reflects the challenge of distinguishing between
mild and severe hate, where subjectivity in annota-
tion and overlapping cues complicate classification.

Class Precision Recall F1 Score
Little to None 0.8200 0.9170 0.8658
Mild 0.4859 0.3863 0.4304
Severe 0.6400 0.4706 0.5424

Table 4: Per-class performance metrics for Subtask 1C -
Hate Severity only.

The confusion matrices (Figures 5, 6, and 7)
show systematic misclassification trends. In Sub-
task 1A, many instances of Abusive, Profane, and
Political Hate are misclassified to the None class,
with additional overlap between Abusive and both
Political Hate and Profane. Subtask 1B shows a
similar pattern, where most categories are misclas-
sified as None, alongside confusions among Com-
munity, Organization, and Society. In Subtask 1C,
errors largely reduce to Little to None, but we also
observe overlap between Mild and Severe, with se-
vere cases often predicted as mild. Together, these

patterns underline both the dominance of neutral la-
bels and the difficulty of separating closely related
categories.

Key findings and overall insights:

• Subtask 1A and 1B results show that the sys-
tem is highly effective at detecting the None
category (non-hate content), which boosts
global performance, but struggles with minor-
ity classes such as Sexism, Religious Hate, and
Community; Subtask 1C reuses hate type and
target labels, focuses on severity, and achieves
an overall F1 of 0.7392.

• Precision and recall remain high for dominant
categories (e.g., None, Little to None), but
recall drops significantly for underrepresented
or ambiguous categories such as Mild severity,
where annotation subjectivity is likely a factor.

• The cascaded framework achieves strong per-
formance across all subtasks with balanced
precision and recall; k-fold ensembling op-
timizes the use of limited low-resource lan-
guage data to enhance overall results.

6 Conclusion

In this work, we proposed a two-stage cascaded
framework for multi-label classification of hate
speech in Bangla using k-fold ensembling. Our
system ranked among the top submissions (4th, 1st,
and 1st) in the shared task, consistently achieving
balanced precision, recall, and F1-score across hate
type, target, and severity. Although there are still
issues with underrepresented and ambiguous labels
like "Sexism" and "Mild severity," the framework
was especially successful at handling dominant cat-
egories and filtering non-hate content. These re-
sults illustrate the potential of cascaded ensembling
for low-resource hate speech detection as well as
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the ongoing requirement for more balanced, richer
datasets to capture subtle types of online abuse.

Limitations

The system lacks the implementation of contrastive
learning. As the proposed problem to be solved
has overlapping classes, contrastive learning could
help. It pulls similar examples together and pushes
dissimilar ones apart. This creates fine-grained
distinctions between close classes like community
and organizations.

The system lacks proper data augmentation. Mi-
nority classes suffer as a result. The model does
well on dominant labels but fails to detect labels
such as Sexism accurately. Per-class F1 scores drop
despite strong global metrics.

Critical Analysis

We experimented with data augmentation through
back-translation, but this strategy did not improve
the performance of the models, most likely due to
overlapping class annotations that limited the value
of augmented samples.

We also explored an enhanced classification
head for Subtasks 1A and 1C. Although initial ex-
periments involved some hyperparameter tuning,
the limited scope of training time and resources
prevented us from fully optimizing the approach,
and the gains remained inconsistent. Consequently,
it was not included in our final system. In contrast,
the same design showed clearer improvements in
Subtask 1B, suggesting that with more extensive
hyperparameter exploration, it could potentially
benefit Subtasks 1A and 1C as well.

Lastly, model generalization was limited by
dataset-specific issues like class imbalance and in-
consistent annotations. Although methods such
as weighted class and over-sampling were tried,
they were unable to completely counteract the test
dataset’s bias toward majority classes.
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A Source Code

To foster reproducibility and future research, we re-
lease all implementation source code and resources
at https://github.com/mahbubislammahim/
Bangla-Hate-Speech-Identification

B Experimental Setup

B.1 Hardware and Runtime
All training experiments were performed using an
NVIDIA GeForce RTX 4090 GPU with 24 GB
memory. Additional experiments were occasion-
ally run on free GPUs: Google Colab (T4, 16 GB)
and Kaggle (P100 or T4, 15 GB). Training times
were around an hour.

B.2 Text Normalization and Tokenization
All inputs are normalized using the BUET NLP nor-
malizer to reduce script-level noise and standardize
punctuation/spacing. Tokenization is performed
with the csebuetnlp/banglabert WordPiece to-
kenizer, with sequences padded or truncated to a
maximum of 256 tokens.

B.3 Cascaded Modeling
Each subtask uses a two-stage cascaded framework:
stage 1 routes an input either to the “none” category
or forwards it to Stage 2 for fine-grained classifica-
tion. Stage 2 predicts the task-specific labels.

For Subtask 1A and 1C, both stages employ the
BanglaBERT base model with standard configura-
tion. For Subtask 1B, Stage 2 uses an enhanced
classification head with attention pooling and a
dense 512-GELU layer.

B.4 Training Protocol
We used the HuggingFace Trainer with AdamW,
linear learning-rate scheduling with warmup, gra-
dient accumulation, mixed precision (FP16), and
weight decay. Stage 1 optimizes micro-F2, while
Stage 2 optimizes micro-F1. Cross-validation is
stratified (random_state=42) and shuffling is en-
abled. Stage 1 models are selected by the best
validation micro-F2. Stage 2 models are selected
by the best validation micro-F1.

B.5 Inference and Ensemble Strategy
• Stage 1: average positive-class probability

across folds.

• Routing: threshold τ decides between “none”
vs. forwarding to Stage 2 (τ = 0.5 for 1A/1B,
τ = 0.3 for 1C).

• Stage 2: per-fold argmax predictions are ag-
gregated via majority vote; ties are broken
deterministically using task-specific priority
orders.

B.6 Hyperparameter Tuning
We adopt a pragmatic tuning strategy:

1. Base learning rate: 3×10−5 for Stage 1; 3–4×
10−5 for Stage 2.

2. Short training (2–3 epochs) with gradient ac-
cumulation.

3. Label smoothing of 0.1 for Subtasks 1A/1B
to stabilize predictions and break ties.

4. Step-based validation for volatile multi-class
heads.

B.7 Subtask Configurations
Subtask 1A (Hate Type; 6 classes) 7-fold CV
(approx. 5074 rows/fold from 35522 total); Stage 1:
{None, Hate}; Stage 2: {None, Religious Hate,
Sexism, Political Hate, Profane, Abusive}.

Subtask 1B (Target; 5 classes) 7-fold CV (ap-
prox. 5074 rows/fold from 35522 total); Stage 1:
{None, Hate}; Stage 2: {None, Society, Organi-
zation, Community, Individual}. Stage 2 uses en-
hanced head with attention pooling.

Subtask 1C (Severity; 3 classes) 9-fold CV (ap-
prox. 3946 rows/fold from 35522 total); Stage 1:
{Little-to-None, Has-Severity}; Stage 2: {Little-
to-None, Mild, Severe}. Stage 2 evaluates every
500 steps with τ = 0.3 for improved recall. In
this subtask, final outputs are merged into a single
submission by joining 1A (hate type), 1B (target),
and severity predictions on id.

B.8 Environment and Reproducibility
We use transformers (≥ 4.21), datasets (≥
2.0), accelerate (≥ 0.20), PyTorch (≥ 1.12),
scikit-learn (0.24), and numpy (1.20). Seeds
are fixed at 42.

B.9 Training Analysis
To better illustrate the training process, we present
example diagrams for Subtask 1B in Figure 8. We
also include attention heatmap visualizations for
1B and 1C in Figure 9 and Figure 10, respectively.
This demonstrates how the model attends to input
tokens and provide insight into its decision-making
process.
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Hyperparameter Stage 1 (Binary) Stage 2 (6-way)
CV folds 7 7
Base model csebuetnlp/banglabert csebuetnlp/banglabert
Max seq. length 256 256
Optimizer / Scheduler AdamW / Linear AdamW / Linear
Learning rate 3× 10−5 3× 10−5

Epochs 2 2
Batch size (train / eval) 16 / 16 8 / 8
Grad. accumulation 2 2
Warmup ratio 0.1 0.1
Weight decay 0.01 0.01
Label smoothing 0.1 0.1
FP16 True True
Ensemble Prob. avg. Majority vote + tie-break
Routing threshold τ 0.5 –

Table 5: Subtask 1A: Training setup.

Hyperparameter Stage 1 (Binary) Stage 2 (5-way, Enhanced)
CV folds 7 7
Base model csebuetnlp/banglabert csebuetnlp/banglabert + attention pooling
Head Standard Dense(512)+GELU + Dropout + Linear
Max seq. length 256 256
Optimizer / Scheduler AdamW / Linear AdamW / Linear
Learning rate 3× 10−5 4× 10−5

Epochs 2 3
Batch size (train / eval) 16 / 16 16 / 16
Grad. accumulation 2 2
Warmup ratio 0.1 0.1
Weight decay 0.01 0.01
Label smoothing 0.1 0.1
FP16 True True
Ensemble Prob. avg. Majority vote + tie-break
Routing threshold τ 0.5 –

Table 6: Subtask 1B: Training setup.

Hyperparameter Stage 1 (Binary) Stage 2 (3-way)
CV folds 9 9
Base model csebuetnlp/banglabert csebuetnlp/banglabert
Max seq. length 256 256
Optimizer / Scheduler AdamW / Linear AdamW / Linear
Learning rate 3× 10−5 4× 10−5

Epochs 2 3
Batch size (train / eval) 16 / 16 16 / 16
Grad. accumulation 2 2
Warmup ratio 0.1 0.1
Weight decay 0.01 0.01
Label smoothing – –
FP16 True True
Ensemble Prob. avg. Majority vote + tie-break
Routing threshold τ 0.3 –

Table 7: Subtask 1C: Training setup.

459



Figure 8: Training analysis.

Figure 9: Attention heatmap for Subtask 1B. Figure 10: Attention heatmap for Subtask 1C.
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