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Abstract

Hate speech on social media platforms, partic-
ularly in low-resource languages like Bengali,
poses a significant challenge due to its nuanced
nature and the need to understand its type,
severity, and targeted group. To address this,
the Bangla Multi-task Hate Speech Identifica-
tion Shared Task at BLP 2025 adopts a multi-
task learning framework that requires systems
to classify Bangla YouTube comments across
three subtasks simultaneously: type of hate,
severity, and targeted group. To tackle these
challenges, this work presents BanTriX, a
transformer ensemble method that leverages
BanglaBERT-I, XLM-R, and BanglaBERT-II.
Evaluation results show that the BanTriX, op-
timized with cross-entropy loss, achieves the
highest weighted micro F1-score of 73.78% in
Subtask 1C, securing our team ond place in the
shared task.

1 Introduction

Hate speech identification relies on detecting and
classifying harmful or offensive language in text,
with careful analysis of its type (such as personal
attack or communal hate), severity (ranging from
mild to severe), and targeted group (including
gender and religion); these factors play a critical
role in fostering safe online environments (Fayaz
et al., 2025). Particularly in low-resource lan-
guages (LRLs) like Bengali, the limited availabil-
ity of annotated datasets and the inherent linguistic
complexity present significant challenges. The ne-
cessity for multi-task learning, where models must
classify multiple related objectives at once and re-
flect the interconnectedness of real-world scenar-
ios, further complicates this task. The scarcity
of comprehensive datasets has hindered progress,
the contextual subtlety of Bengali hate speech,
and a lack of previous multi-task learning frame-
works for LRLs like Bengali. In response, the
BLP Workshop@IJCNLP-AACL 2025 organized

a shared task (Hasan et al., 2025b) centering on
multi-task hate speech identification in Bengali
YouTube comments, with classification by type
(abusive, religious, or political), severity (mild or
severe), and targeted group (society or organiza-
tion). This collaborative effort highlights the im-
portance of synergy in advancing robust and in-
terpretable hate speech detection systems. Such
collaboration forms the central motivation for our
work. Our main contributions are summarized as
follows:

* We developed BanTriX, a robust ensem-
ble that merges BanglaBERT-1, XL.M-R, and
BanglaBERT-II for multi-task hate speech
classification in Bengali.

* By evaluating diverse deep learning, trans-
former models and their ensembles with com-
prehensive metrics and ablation studies, we
identify the optimal multi-task strategy.

* To enhance interpretability, we employ LIME
to highlight feature importance and illumi-
nate the decision processes of our proposed
architecture.

2 Related Work

In recent years, researchers have explored harm-
ful online behaviors, e.g., cyberbullying and abu-
sive language, often treating them as related to
hate speech. Within this space, automated hate
speech detection has progressed rapidly, initially
focusing on English datasets (Davidson et al.,
2017; Founta et al., 2018), and later expand-
ing to languages such as Arabic (Omar et al.,
2020), Spanish (del Arco et al., 2021), and Ben-
gali (Das et al.,, 2022). This shift was facili-
tated by shared tasks such as HASOC (Mandl
et al., 2025), CHiPSAL (Sarveswaran et al., 2025),
and DravidianLangTech@NAACL 2025 (G et al.,
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2025). Several studies have provided a compre-
hensive overview of hate speech detection tech-
niques, highlighting key contexts (Maruf et al.,
2024; Nandi et al., 2024).

A study by Acharya et al. (2025) evaluated Fast-
Text and BERT for hate speech detection and tar-
get identification, finding that FastText with data
augmentation performed best for hate speech (F1
score of 0.8552). At the same time, BERT ex-
celled in target identification (F1 score of 0.5785).
Farsi et al. (2024) explored LR, SVM, CNN,
XLM-R, and MuRIL, achieving the best result
with Indic-SBERT (macro F1 of 0.7013). A Fast-
Text model for Hindi offensive text classification
achieved 92.2% accuracy on the DHOT dataset
(Jha et al., 2020). However, several works ad-
dressed aggressive content in Bengali. For in-
stance, Remon et al. (2022) introduced a 10,133-
comment Facebook dataset, where SVM with Fast-
Text embeddings performed best. Fayaz et al.
(2025) proposed BIDWESH, covering regional di-
alects with 9k+ samples for fair detection. Sharif
et al. (2022) presented M-BAD with 15,650 texts
for aggression and target detection, achieving a
weighted F1 of 0.92 and 0.83 using BanglaBERT.
A 30k-comment Bengali dataset from YouTube
and Facebook annotated in 7 categories, with
SVM reaching 87.5% accuracy (Romim et al.,
2020).

Despite significant progress in hate speech and
offensive content detection, including multimodal
approaches (Hossain et al., 2022; Hee et al., 2023),
to the best of our knowledge, no prior studies have
addressed a multi-task setup that simultaneously
predicts hate type, severity, and targeted group in
Bengali. Building on this gap, this study presents
a multi-task learning scenario using Bengali text
from YouTube comments, aiming to develop ro-
bust systems for comprehensive analysis of hate
speech.

3 Task and Dataset Description

This study develops a system to classify Bengali
YouTube comments by hate type (such as Abusive,
Political Hate, or Profane), severity (like Mild or
Severe), and the group targeted (for example, Indi-
vidual, Organization, or Society). This multi-task
approach helps capture how different aspects of
hate speech are connected in Bengali. The dataset
(Hasan et al., 2025a) contains annotated Bengali
comments divided into training, validation, and

test sets. For example, the training set has 8,212
Abusive and 4,227 Political Hate cases, 23,489
with little to no severity, and 5,646 targeting in-
dividuals. These figures show the dataset’s variety,
which supports strong model development. How-
ever, there is an imbalance in the dataset, with
more samples labeled as None hate type (19,954
in training, 1,451 in validation, and 5,751 in test)
compared to other categories, as shown in Table
1. Appendix A provides further exploratory data
analysis.

Subtask Classes Train Valid Test Wp
Abusive 8212 564 2312 153869
Political Hate 4227 291 1220 109447
Profane 2331 157 709 43618
Hate Type Religious Hate 676 38 179 14659
Sexism 122 11 29 2396
None 19954 1451 5751 341607
Total 35522 2512 10200 665596
Little to None 23489 1703 6737 414639
Hate Severity Mild 6853 483 2001 146920
Severe 5180 326 1462 104037
Total 35522 2512 10200 665596
Individual 5646 364 1571 102771
Organization 3846 292 1152 84773
Community 2635 179 759 59800
Targeted Group —5 o0 2205 141 625 52132
None 21190 1536 6093 366120
Total 35522 2512 10200 665596

Table 1: Class-wise distribution of datasets used for the
task, where W denotes total words.

4 System Overview

This section presents the implementation details
of the proposed architecture, encompassing both
deep learning and transformer-based models.

4.1 Problem Formulation

Given a set of Bangla YouTube comments C' =
{C1,...,C\c}}, each comment C; is represented
by a text sequence X;. The goal is to learn
a mapping f that assigns three labels Y; =
{yt yhs yiwy corresponding to hate type (6
classes), hate severity (3 classes), and targeted
group (5 classes), formulating a multi-task classi-
fication problem: f : X; — Y;. The models per-
formance is governed by a summed cross-entropy
loss function £ = Ly + Lps + L4, Which quanti-
fies the divergence between predicted and true la-
bels across tasks. To achieve this, the model solves
the optimization problem as shown in Eq. 1.

[C|

min 3 [Loe(Fue(X0), Y) 4 Lusfaa(X, Y
i=1

-+ [rtw(ftw(Xi)a Ytitw)]7
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Figure 1: Overview of the proposed architecture for multi-task classification.

where frt, fns, frw are task-specific heads on
shared transformer features, and Ly, L1, Lty are
cross-entropy losses for each task.

4.2 Baselines

Several deep learning and transformer-based mod-
els were explored to develop the proposed system.

4.2.1 Deep Learning Models

Deep learning models such as CNN (Kim, 2014),
BiLSTM (Huang et al., 2015), BiLSTM+CNN,
shared a common 128-dimensional word embed-
ding layer trained from scratch on the prepro-
cessed corpus using a Tokenizer with <O0V> han-
dling. Input sequences were standardized to 128
tokens through post-padding and truncation. The
BiLSTM model stacked two bidirectional LSTM
layers (128 units each) with a 10% dropout and
three parallel output heads. The CNN model
applied two ConvlD layers (128 filters, kernel
size 5) with max pooling and global max pool-
ing, followed by dropout and identical output
heads. The hybrid model combined a 64-unit BiL-
STM branch and a 64-filter CNN branch, merged
their outputs, and connected them to the output
heads. All models were optimized with Adam
using task-specific learning rates (2.15 x 1074,
1.25x 1073, and 1.5 x 104, respectively), trained
with SparseCategoricalCrossentropy loss and
early stopping (patience of 13) over up to 25-31
epochs with a batch size of 32.

4.2.2 Transformer-Based Models

Transformer-based models such as BanglaBERT-
I (SagorSarkerl), XLM-R (Conneau et al., 2020),
and BanglaBERT-II (Bhattacharjee et al., 2022)
were fine-tuned for the task using AdamW with
learning rates of 2.25e-5, 2e-5, and 2.35e-5, re-
spectively, over 9 epochs and a batch size of 32.
All models processed inputs with a maximum se-
quence length of 128, applied 10% dropout af-
ter the [CLS] pooled output, and shared three
linear classification heads for hate type, sever-
ity, and target prediction. Training used summed
CrossEntropy loss across tasks, with linear learn-
ing rate warmup (50 steps for BanglaBERT-I, 175
for BanglaBERT-II, 225 for XLM-R) followed
by decay over total training steps. After eval-
uating transformer-based models, BanglaBERT-I,
XLM-RoBERTa, and BanglaBERT-II emerged as
the best performers, significantly outperforming
mBERT. These three models were then ensem-
bled through systematic exploration to identify the
optimal strategy (detailed in Appendix C), using
their complementary strengths in contextual under-
standing to develop BanTriX.

4.3 Proposed Approach

Figure 1 illustrates the proposed architecture
(BanTriX) for Bengali hate speech detection
in YouTube comments, integrating a shared
transformer backbone with task-specific heads
and ensembles of BanglaBERT-I, XILLM-R, and
BanglaBERT-II. Full implementation details can

1https://huggingface.co/sagorsarker/
bangla-bert-base
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be found in the GitHub repository?.

4.3.1 Data Preparation and Input Layer

The data preparation began with processing
raw Bengali text sequences from YouTube com-
ments. Using pre-trained tokenizers (e.g., for
BanglaBERT or XLM-R), each text ¢ was con-
verted into input IDs T and attention masks A as
depicted in Eq. 2.

{I, A} = tokenizer(t), )

where I, A € RB*L | with batch size B = 32
and maximum sequence length L = 128.

4.3.2 Shared Encoder

The core of the architecture is a pre-trained trans-
former encoder (e.g., BanglaBERT-1, XLM-R, or
BanglaBERT-II), which extracts contextual em-
beddings shared across all tasks as shown in Eq. 3.

H= fbase(Ia A)a (3)

where H € RBXEXDP and D = 768 is the hid-
den dimension. This shared encoder captures the
linguistic nuances critical for the tasks.

4.3.3 Pooling and Dropout

To create a compact representation, the sequence
embeddings were pooled, typically using the
[CLS] token, yielding P € RE*P_ Dropout (0.1)
was applied for regularization, as shown in Eq. (4).

D = Dropout(P), 4)

4.3.4 Task-Specific Heads

From the pooled features D, three linear classifiers
were used to produce logits for each task, i.e., hate
type (Cr: = 6), hate severity (Cps = 3), and tar-
geted group (Cy,, = 5), as shown in Eq. 5.

Lpt = WptD + b,
Ltw = Wth + btﬂM

th = thD + bhsa
(5)

where Ly, € RF*6, L, € RBX3 Ly, € REX5,
and W, b are learnable parameters. During infer-
ence, probabilities were computed via softmax as
Prp; = softmax(Ly;), and selected predictions as
Upt = argmax(Prpy).

2https://github.com/RI-Hossan/BLP_T1_2025

4.3.5 Ensemble Mechanism

To enhance performance, three models were en-
semble by averaging their logits as shown in Eq. 6.

3
= 1 (m)
L =3 mZ_fht , (©)

and similarly for Ly, and Ly,,. Final predictions
are obtained via softmax on L.

4.3.6 System Requirements

The proposed architecture was trained on Kag-
gle’s free-tier environment using two NVIDIA T4
GPUs in a distributed setup, requiring approxi-
mately 5 GB of system RAM and ~15 GB of GPU
memory, with a total training time of around 65
minutes. Table B.1 in Appendix B provides the
tuned hyperparameters used in the proposed archi-
tecture for the tasks.

5 Results and Discussion

Table 2 summarizes the performance of various ap-
proaches for the task, with performance metrics in-
cluding the overall Weighted Micro F1-Score (u-
F1), True Positive Rate (TPR), and Balanced Er-
ror Rate (BER). The following insights are drawn
from these results.

Which tasks are hard to solve? The three classi-
fication tasks present challenges, particularly due
to class imbalances. The CNN+BiGRU model
shows a high BER for Hate Type (56.06%), indi-
cating difficulty in correctly classifying all classes.
Even transformer-based models like BanglaBERT-
II exhibit elevated BER for Hate Type (47.41%).
The proposed ensemble achieves lower BERs (e.g.,
41.07% for Hate Severity). Still, these values re-
main relatively high, highlighting that Hate Type
and Targeted Group are tough to classify accu-
rately due to their complex class distributions (clar-
ified by error analysis in Appendix E).

Does the ensemble approach improve the re-
sult?  The result clarifies that ensemble ap-
proaches significantly improve performance. The
XLM-R+BanglaBERT-II ensemble achieves an
overall p-F1 of 72.52%, surpassing the sin-
gle BanglaBERT-II model’s u-F1 of 70.49% by
2.88% and improving Hate Type p-F1 by 2.33%.
The proposed ensemble further enhances perfor-
mance, achieving an overall y-F1 score of 73.78%
(+1.74% compared to XLM-R+BanglaBERT-II).
In task-wise, BanTriX excels with Hate Type pu-
F1 of 73.38% (+4.87% than XLM-R), Hate Sever-
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Approaches Overall Hate Type Hate Severity Targeted Group
Pr(%) Re(%) p-F1(%) TPR(%) | u-F1(%) BER(%) | p©-F1(%) BER(%) | pu-F1(%) BER(%)
CNN 64.63  67.77 67.77 41.13 65.39 66.70 71.71 44.68 66.21 65.23
BiLSTM 6245  66.74 66.74 42.31 64.75 62.82 71.06 45.31 64.40 64.93
BiLSTM+CNN 62.62  64.77 64.77 38.29 61.47 69.17 69.45 46.27 63.39 69.69
BiLSTM+BiGRU 63.95  68.05 68.05 42.93 66.12 62.29 72.00 46.18 66.04 62.75
CNN+BiGRU 67.06  69.50 69.50 47.31 68.30 56.06 72.31 44.30 67.87 57.71
BanglaBERT-T 67.21 67.24 67.24 51.75 65.96 50.50 70.12 43.54 65.63 50.71
BanglaBERT-II 70.70  70.49 70.49 56.52 69.66 47.41 72.54 38.82 69.28 4422
XLM-R 69.27 7045 70.45 54.76 69.97 47.65 72.11 40.84 69.27 4723
mBERT 59.69  66.53 66.53 39.60 63.57 66.02 70.63 50.14 65.40 65.04
(BILSTM+CNN)+BiLSTM | 62.89  69.03 69.03 40.64 67.52 64.11 72.59 48.32 66.97 65.66
BiGRU+(BiLSTM+CNN) 64.79  69.34 69.34 43.33 68.15 62.07 72.59 45.37 67.27 62.57
BanglaBERT-I+XLM-R 69.37  71.49 71.49 51.85 70.84 51.06 73.33 42.14 70.29 51.24
XLM-R+BanglaBERT-II 7177 7252 72.52 56.40 71.28 47.35 74.12 39.98 72.17 43.46
Proposed (BanTriX) 7191 73.78 73.78 54.97 73.38 47.70 74.95 41.07 73.02 46.32

Table 2: Performance comparisons on test data across different approaches, where Pr, Re, u-F1, TPR, and BER
denote Precision, Recall, Weighted Micro-F1 score, True Positive Rate, and Balanced Error Rate, respectively.

ity pu-F1 of 74.95%, and Targeted Group u-F1
of 73.02% (+5.41% than XLM-R), demonstrating
that combining Bengali-specific transformers en-
hances robustness and accuracy across all tasks.
Does CCC loss configuration help?  Abla-
tion study in Appendix C shows that the CCC
setup (C=Cross-Entropy Loss across three models)
achieves the best overall performance, surpassing
other loss variants. Poor-performing variants, such
as FCW and WFL, indicate heavy overfitting. In a
task-wise comparison, CCC provides a more bal-
anced performance across all tasks, demonstrating
the effectiveness of the proposed CCC loss function
combination in stabilizing training and improving
generalization.

6 Conclusion

The study introduced the BanTriX architecture
tailored for the Bengali multi-task hate speech
identification, achieving an overall weighted mi-
cro F1-Score of 73.78%. An ablation study high-
lighted that the optimal configuration, using a to-
ken length of 128 with the cross-entropy loss com-
bination, excelled in terms of LIME-based inter-
pretability, confirming its focus on hate-indicative
features. Future work will explore the integration
of LLMs and advanced techniques, such as dy-
namic loss optimization, to further enhance rare
class detection across diverse datasets.

Limitations

While the study yields strong results for detecting
Bengali hate speech, it also presents some appar-
ent limitations. Using a fixed token length of 128

means longer posts may lose important context.
The CCC loss setup works well overall; however,
it struggles with rare hate categories. It also tends
to perform better on predicting None cases, which
risks missing more subtle hate expressions. More-
over, the study acknowledges class imbalance but
does not address it, potentially affecting underrep-
resented categories. It emphasizes model integra-
tion and empirical analysis, relying on pretrained
transformers with limited task-specific adaptation
or efficiency optimization. Finally, more advanced
methods, such as large language models, have yet
to be explored.

Ethics Statement

We acknowledge the dataset’s annotation biases,
though mitigated by clear guidelines and schemas.
As it contains only non-identifiable comments, no
privacy risks arise. Our model adds no ethical
concerns, and fairness was ensured by evaluating
across hate types and communities. Overall, the
dataset enables hate speech detection to support
healthier online discourse, with human oversight
mitigating misclassification risks and promoting
equitable outcomes.
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A Exploratory Data Analysis

Figure A.1 shows the word cloud generated from
the train, validation, and test datasets, where fre-
quently occurring words appear larger in size.
This visualization highlights dominant patterns
and recurring terms in the corpus, offering quick
insights into the lexical distribution of the dataset
and serving as an effective tool for understanding
key themes and guiding preprocessing decisions.
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Figure A.1: Word clouds (top 200 words) across all
three datasets.

Figure A.2 illustrates the feature correlation
map, which reveals the three subtasks: Hate Type,
Hate Severity, and Targeted Group. They are
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Figure A.2: Feature correlation map across three
datasets.

Targeted Group Hate Severity

Hate Type Hate Severity Targeted Group

largely independent, with only weak associations.
For example, Hate Type vs. Hate Severity shows
a very low positive correlation of 0.07, Hate Type
vs. Targeted Group is slightly higher at 0.12, while
Hate Severity vs. Targeted Group exhibits a weak
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negative correlation of -0.15. These low values in-
dicate that each label contributes distinct informa-
tion, justifying the multi-task setup and highlight-
ing the datasets richness for modeling diverse as-
pects of hate speech.

B Tuned Hyperparameters

Table B.1 summarizes the key hyperparame-
ters used for training the proposed architecture
(BanTriX), including a dropout rate of 0.1, a token
length of 128, a batch size of 32, model-specific
learning rates (2.5e-5 for BanglaBERT-I, 2e-5 for
XLM-R and BanglaBERT-II), AdamW optimizer,
linear warmup scheduler with O warmup steps, and
two training epochs.

Attribute
Dropout 0.1
Token Length 128
Batch Size 32
2.5e-5 (BanglaBERT-])

Value

Learning Rate 2e-5 (XLM-R)

2e-5 (BanglaBERT-II)
Optimizer AdamW
Scheduler Linear Schedule with Warmup
Warmup Steps 0
Epochs 2

Loss Function  Cross-Entropy Loss

Table B.1: Hyperparameters used for training of
BanTriX in multi-task hate speech detection.

C Ablation Study

The ablation study (Table C.1) examines the im-
pact of various loss function combinations and
maximum token lengths (77) on performance, us-
ing an epoch size of 2. The study reveals that
the optimal configuration (I, = 128) achieves
an overall u-F1 score of 73.78% and a TPR of
54.97% (slightly lower than the best), thereby bal-
ancing context capture and generalization.

C.1 Loss Function Combinations

The proposed architecture uses Cross-Entropy
Loss (C) across three transformer models
(BanglaBERT-1, XLLM-R, BanglaBERT-II). Still,
we explored combinations of Cross-Entropy (C),
Focal Loss (F), Weighted Cross-Entropy (W), and
Label-Smoothed Cross-Entropy (L), as defined in
Eq. C.7.

C
Lep=—) yelog(ie)

(C.7a)
c=1
C
Lwer ==Y weyelog(de), (C.7b)
c=1
C
Lrr=—Y (1—§) yelog(jc) (CTc)
c=1
C
Lisor =—(1-¢€) ) yelog(ie)
c=1
C
— & log(fe) (C.7d)
c=1

where reduction="mean”, v = 2.0, « = None,
and e = 0.1 used.

The CFL setup (Cross-Entropy, Focal Loss,
Label-Smoothed) achieves the best results with
73.03% p-F1 and 53.64% TPR, surpassing FFF
(all Focal Loss) at 72.52% p-F1 and 55.23%
TPR by +0.70% p-F1 and -2.96% TPR. Poor-
performing variants FCW, WFL, and LWF yield
only 32.05% p-F1 and 23.33% TPR, reflecting
heavy overfitting. In task-wise, CFL records
72.40% p-F1 for Hate Type (vs. 71.57% of FFF),
74.68% for Severity (vs. 74.46%), and 72.00% for
Targeted Group (vs. 71.53%), with slightly higher
BER (+5.87%) on Hate Type but overall more bal-
anced performance after the proposed CCC loss
function combination.

C.2 Maximum Token Length

Varying the maximum token length (77,) impacts
context capture. At 77 of 156, the proposed
method achieves the 2" best (after 77, of 128)
overall u-F1 of 73.72% and TPR of 56.72%, sur-
passing 17, of 64 (73.51% p-F1) by 0.29% in
u-F1, and T of 256 (72.91% u-F1, 59.16%
TPR) by +1.11% in p-F1 but -4.30% in TPR. In
task-wise, 77, of 156 yields Hate Type u-F1 of
72.94% (0.27% better than T, of 64) with BER
of 47.58%, Hate Severity p-F1 of 75.21% with
BER of 38.53%, and Targeted Group u-F1 of
73.01%, indicating optimal performance (except
token length of 128) at token length of 156.

C.3 Batch Size Analysis

Figure C.1 shows that a batch size of 32 yields
the best results, with p-F1 scores of 73.38% (Hate
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Attributes Overall Hate Type Hate Severity Targeted Group
Pr(%) Re(%) w-F1(%) TPR(%) u-F1(%) BER(%) w-F1(%) BER(%) 1-F1(%) BER(%)
Loss Function Combinations
CFL 71.01 73.03 73.03 53.64 72.40 49.39 74.68 40.69 72.00 48.99
FCW 16.44 32.05 32.05 23.33 22.67 83.33 66.05 66.67 7.44 80.00
WFL 16.44 32.05 32.05 23.33 22.67 83.33 66.05 66.67 7.44 80.00
FFF 71.35 72.52 72.52 55.23 71.57 46.65 74.46 40.08 71.53 47.58
LWF 16.44 32.05 32.05 23.33 22.67 83.33 66.05 66.67 7.44 80.00
Maximum Token Length, 7',
Tr =64 72.40 73.51 73.51 57.32 72.74 46.41 74.87 39.26 72.91 42.37
T =128 71.91 73.78 73.78 54.97 73.38 47.70 74.95 41.07 73.02 46.32
T, =156 72.71 73.72 73.72 56.72 72.94 47.58 75.21 38.53 73.01 43.74
T =224 71.89 73.57 73.57 55.17 72.81 47.84 75.20 40.17 72.70 46.48
Ty, =256 73.19 7291 7291 59.16 72.08 45.14 74.28 36.80 72.37 40.56

Table C.1: Ablation study of BanTriX on test data with loss function combinations and maximum token length.
Here, Pr, Re, u-F1, TPR, and BER denote Precision, Recall, Weighted Micro-F1 score, True Positive Rate, and

Balanced Error Rate, respectively.

Type), 74.95% (Severity), and 73.02% (Targeted
Group), along with the lowest BERs. Smaller
sizes (8, 16) achieve around 72-74.6% u-F1,
while larger sizes (64, 96) drop to about 69-74.1%
1-F1 with higher BERs, confirming batch size 32
as the optimal choice.

96 T1L.11%  71.11%  46.07% 70.29% 58.89% 73.87% 43.38% 69.16%  59.51%

100%

w0 TL75%  7175%  47.14%  7097%  sg o1% T410%  4280% T017% g6,
o, 5497% g " 3.029
7378%  7378% 49T 7338% L, T495%  4107% 73.02%
60% 64 E 41.70% 14 463

7291%  7291%  50.93%  7241%  54.10% 74.60% 41.98% T1.73% )30,
40% » + + + + —

72.70%  72.70%  50.57%

7202%  55.05%  74.47%  42.22% T1.62%  5091%
20% ——

weFl BER weFl BER weFl BER

BatchSize  Acc weFl TPR Hate Type Hate Severity Targeted Group

Figure C.1: Overview of the batch size impact while
the maximum token length is 128 and cross-entropy
loss is used.

D Performance Comparison

Table D.1 compares teams’ performance with
baselines in the task, with CUET-NLP_Zenith
(our team) achieving a Weighted Micro F1-Score
(u-F1) of 73.78%, ranking second. It trails
mahim_ju’s performance by 0.16% but beats shi-
fat_islam’s performance by 0.23%. Compared to
the baselines provided by the organizers, the pro-
posed BanTriX outperforms the Majority Base-
line by 21.51% and the n-gram Baseline by
17.02%, demonstrating its superiority over tradi-
tional approaches.

Baseline/Team 1-F1 (%) Rank
mahim_ju 73.92 1
CUET-NLP_Zenith ~ 73.78 2
shifat_islam 73.61 3
reyazul 73.32 4
Random Baseline 23.04 -
Majority Baseline 60.72 -
n-gram Baseline 63.05 -

Table D.1: Performance comparison of the proposed
architecture with other teams’ approaches.

E Error Analysis

A thorough quantitative and qualitative error anal-
ysis was conducted to gain an in-depth understand-
ing of the proposed architecture’s performance in
the task.

E.1 Quantitative Analysis

The confusion matrices presented in Figure E.1
reveal distinct performance patterns across hate
types (Figure E.la), hate severity (Figure E.1b),
and targeted groups (Figure E.1c).

For hate severity, the model performs well on
Little to None (92.4% accuracy, F1 of 0.86) but
struggles with Mild (F1 of 0.41, often misclassi-
fied as Little to None) and Severe (F1 of 0.56, with
frequent downgrading). For targeted groups, per-
formance is weak due to dataset skew, with Soci-
ety achieving only 0.39 F1 and few instances for
Community. Regarding hate types, strong results
are observed for Profane (F1 of 0.76) and None
(F1 of 0.84). In contrast, Abusive exhibits limited
recall (0.48), and Sexism performs poorly, often
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Figure E.1: Confusion matrices for different categories
in the task.

being misclassified as None. Overall, the model
excels at the majority classes but struggles with
minority hate categories (e.g., sexism), reflecting
bias toward predicting None in ambiguous cases.

E.2 Qualitative Analysis

The qualitative analysis of sample classifications
shown in Table E.1 illustrates varied model
performance in detecting hate speech in Ben-
gali YouTube comments. The model demon-
strates strong performance on neutral samples
(IDs 266764 and 653626), both labeled as None,
where the predictions match perfectly. This indi-
cates robustness in handling straightforward non-
hate content. In contrast, it struggles with nuanced
cases, e.g., sample 241030 (Political Hate) was
misclassified as Abusive, likely due to overlapping
sarcastic or abusive tones, while sample 742298
(Abusive) was predicted as None, reflecting diffi-
culties with cultural subtleties and dataset imbal-
ance. Overall, the model reliably detects clear non-
hate instances but faces challenges with context-
dependent hate and minority categories.

Sample Text # Hate Type Hate Targeted
No. Severity Group
241030 | ST T B Actual Political Mild Organization
ot b o9 Hate
Prediction | Abusive X v v
266764 | @ %2 GHRIE Actual None Little to ‘None
P! (T None
Prediction v v v
742298 |wCars S0 S [ Actual | Abusive Mild Individual
%0 @ & T
WG AEISF Prediction | None X Little to None X
None X
653626 | ST M= Actual None Little to None
S AFF None
Prediction v v v

Table E.1: Few sample predictions by BanTriX in the
task. The / mark indicates the correct predictions, and
X denotes incorrect predictions.

F Model Interpretability

The LIME-based explanation bar plots (see Fig-
ure F.1) for the last sample of Table E.1, labeled
as None across hate type, severity, and targeted
group, provide insights into token contributions to
the model’s predictions. For hate severity, the plot
shows that tokens like ‘<1 (la)” and ‘= (ka)” nega-
tively impact (red bars) the prediction of Little to
None severity, reducing its likelihood, while other
tokens positively impact (green bars), supporting
the None prediction. In the hate type plot, “~ (na)”
negatively affects the predictions, whereas some
tokens like “¥1 (la)”, “© (bha)” positively reinforce
the None classification, highlighting these tokens
as key neutral indicators. Overall, the model relies
heavily on neutral tokens to correctly classify this
sample as None across all categories.
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Figure F.1: LIME-based model interpretability for the
last sample of Table E.1.
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