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Abstract

This paper presents an overview of the
BLP 2025 shared task Code Generation in
Bangla1, organized with the BLP workshop
co-located with AACL. The task evaluates
Generative AI systems capable of generat-
ing executable Python code from natural
language prompts written in Bangla. This
is the first shared task to address Bangla
code generation. It attracted 152 partici-
pants across 63 teams, yielding 488 sub-
missions, with 15 system-description pa-
pers. Participating teams employed both
proprietary and open-source LLMs, with
prevalent strategies including prompt en-
gineering, fine-tuning, and machine trans-
lation. The top Pass@1 reached 0.99 on
the development phase and 0.95 on the test
phase. In this report, we detail the task
design, data, and evaluation protocol, and
synthesize methodological trends observed
across submissions. Notably, we observe
that the high performance is not based on
single models; rather, a pipeline of multiple
AI tools and/or methods.

1 Introduction

Despite being the world’s fifth most spoken
language, Bangla remains underrepresented in
Large Language Models (LLMs)—especially
for code generation, even as recent advances
markedly improve code synthesis (Touvron
et al., 2023; Hui et al., 2024a; Team et al.,
2025). State-of-the-art (SOTA) models now ex-
ceed 90% Pass@1 on prominent benchmarks
such as HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), spurring adoption
in software engineering (Pasquale et al., 2025)
and education (Raihan et al., 2025c). Yet these

1Task website: https://noshinulfat.github.io/
blp25_code_generation_task/#/home

gains disproportionately accrue to a few high-
resource languages (Joshi et al., 2020; Blasi
et al., 2022; Ahuja et al., 2023; Wang et al.,
2023; Raihan et al., 2024).

Bangla—spoken by over 242 million native
speakers2, still lacks dedicated code-generation
resources: datasets are scarce, tooling is lim-
ited, and benchmarks are largely absent (Bhat-
tacharjee et al., 2022; Zehady et al., 2024). Con-
sequently, general-purpose Bangla models are
outperformed by their English counterparts on
code-related tasks (Bhattacharyya et al., 2023;
Uddin et al., 2023), underscoring the need for
targeted data, evaluation suites, and modeling
efforts.

While Bangla Natural Language Understand-
ing (NLU) and Generation (NLG) see consider-
able growth with resources like BanglaRQA
(Ekram et al., 2022) and BEnQA (Shafayat
et al., 2024), the domain of code generation re-
mains relatively under-explored. Prior work in
this area is limited to two main benchmarks:
mHumanEval-Bangla (Raihan et al., 2025a),
a subset of a multilingual evaluation bench-
mark containing 164 prompts adapted from the
HumanEval dataset, and MBPP-Bangla (Rai-
han et al., 2025b), which provides 974 cod-
ing prompts adapted from the MBPP dataset.
For this shared task, we utilize a combined
dataset composed of both mHumanEval-Bangla
and MBPP-Bangla.

Our motivation for this shared task is to im-
prove the performance of Bangla NLP models
on code generation. The primary objective is
to introduce a more advanced task that eval-
uates the emerging code generation capabili-
ties of LLMs. As the first task of its kind for

2https://www.ethnologue.com/
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Bangla, we provide extensive support to partici-
pants, including a starter kit3, tutorials, and sem-
inars. Participants are also granted the flexibil-
ity to use any proprietary or open-source mod-
els, alongside any NLP methods. This open ap-
proach is intended not only to provide a strong
starting point but also to uncover diverse strate-
gies for solving a new and complex task for
LLMs in a mid-resource language, yielding key
insights for future research.

We elaborate on the task and present our find-
ings, the remainder of this paper is organized as
follows: Section 2 discusses the datasets used
during the task, Section 3 describes the task
and the it’s two phases (dev & test), Section
4 includes the participants’ results, Section 6
summarizes the approaches taken by the system
description papers and Section 6 investigates
the key insights.

2 Data

We utilize the only two available bench-
marks for Bangla Code Generation:
mHumanEval-Bangla (Raihan et al., 2025a) and
MBPP-Bangla (Raihan et al., 2025b). These are
selected for their distinct and complementary
qualities.

Specs HumanEval-Bangla MBPP-Bangla

# of Tasks 164 974
Prompt Bangla Bangla
Solution Python Python
Problem source Hand-written Crowd-sourced
Task focus Function completion Basic–intermediate
Problem format Docstring Short prompt
Tests per task 7.7 (avg.) 3
Metric pass@1 pass@1

Table 1: Dataset details for HumanEval-Bangla and
MBPP-Bangla.

MBPP-Bangla offers scale and breadth: its 974
short, crowd-sourced Bangla prompts yield
more coverage, which estimates and stress a
model’s ability to handle a wide variety of
basic–intermediate tasks. HumanEval-Bangla
complements this with depth: 164 hand-written,
docstring-based function-completion problems
paired with denser test suites ( 7.7 test cases
on avg.) vs. 3 tests per task) probe precise ad-
herence to specification. Evaluating on both

3Starter Kit: https://noshinulfat.github.io/
blp25_code_generation_task/#/starter-kit

benchmarks provides a more detailed picture
of Bangla-to-Python code generation—breadth
and robustness from MBPP-Bangla, and preci-
sion and rigor from HumanEval-Bangla. We
have made the combined version publicly avail-
able. 4

3 Task Description

In this task, we evaluate LLMs on one of their
emerging capabilities, code generation. The
task becomes more challenging as the prompts
used in our task are in Bangla. As mentioned
before, this is the first shared task of its kind in
the Bangla NLP domain.

In formal definition, the task entails:

Given a set of coding prompts (task descrip-
tions and/or docstrings) in Bangla, the par-
ticipants will have to use (prompt, finetune,
etc.) LLMs to generate corresponding Python
code snippets that pass all the test cases for
that particular task. The evaluation metric is
Pass@1, meaning that the models will have
only one attempt to pass all the test cases for
a particular prompt.

Task examples from both benchmarks are
shown in Figure 1 and 2. We launch the dev
phase of the task on the Codabench 5 platform
on August 10th, 2025.

Figure 1: Sample prompt from MBPP-Bangla.
Translation: ‘Write a Python function to find the
length of the last word in a given string’.

4Datasets: https://noshinulfat.github.io/
blp25_code_generation_task/#/starter-kit

5Competition website: https://www.codabench.
org/competitions/10089/
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Specification DEV TEST Total

Start Date August 10, 2025 September 7, 2025 —
End Date September 8, 2025 September 14, 2025 —
Duration 28 Days 7 Days 35 Days
Participants 152 97 152
Teams 63 32 63
Submissions 301 187 488
Average (Submission) 4.78 5.84 7.75
Test Cases Fully Released One per Task —
Highest Score (Pass@1) 0.99 0.95 —
Lowest Score 0.00 0.02 —
Average Score 0.52 0.59 —

Table 2: DEV/TEST timeline and participation summary. Average (Submission) denotes average submissions
per team.

Figure 2: Sample prompt from mHumanEval-
Bangla. Translation: ‘Write a Python function to
find that if two numbers in a list are closer to each
other than the given threshold’.

3.1 DEV Phase

In the DEV phase, systems operate under high
observability: fully released test cases and a
longer horizon enable targeted debugging and
steady pipeline stabilization. Teams submit at
a disciplined rate (Avg. 4.78 submissions per
team), and performance spans a wide range,
from 0.00 to a near-ceiling 0.99 Pass@1 (Ta-
ble 2). The broad spread, together with an av-
erage score of 0.52, indicates heterogeneous

readiness—strong systems rapidly approach the
ceiling, while weaker pipelines expose speci-
fication and edge-case errors that visible tests
help uncover.

Methodologically, DEV functions as an
internal-validity probe: with rich feedback,
improvements reflect engineering rigor and
prompt–test alignment rather than guesswork.
The combination of high best score and mod-
erate average suggests a bimodal landscape in
which top teams consolidate gains early while
others iterate to resolve stability issues. These
dynamics make DEV well-suited for ablations
and reproducibility checks, as changes map
cleanly onto observable error reductions (Ta-
ble 2).

3.2 TEST Phase

The TEST phase tightens observability—one
visible test per task over a shorter win-
dow—shifting the emphasis from iterative de-
bugging to generalization under uncertainty.
Teams react by concentrating effort: average
submissions per team increases to 5.84 despite
a smaller field, and performance compresses
upward, with the lowest score rising to 0.02
and the average improving to 0.59 (Table 2).
This pattern is consistent with maturation ef-
fects (pipelines refined during DEV) and se-
lection effects (fewer weak entries), producing
stronger mid-pack outcomes.

At the top end, the best Pass@1 is slightly
lower (0.95 vs. 0.99 in DEV), which is expected
when feedback is constrained. The small top-
line drop, paired with a higher mean, suggests
that TEST emphasizes robustness over oppor-
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Rank Team Name System Paper Best Model Pass@1

1 NALA_MAINZ (Saadi et al., 2025) GPT-5 0.95
2 Retriv (Asib et al., 2025) Qwen2.5-Coder-14B 0.93
3 Musafir (Hasan et al., 2025) Qwen2.5-14B-Instruct 0.92
4 AdversaryAI (Riyad and Junaed, 2025) Gemini 2.5 Pro 0.85
6 Code_Gen (Agarwala et al., 2025) GPT-5 0.84
7 TeamB2B (Dihan et al., 2025) Gemini-2.5-Pro 0.84
8 NSU_PiedPiper (Fahmid et al., 2025) Qwen2.5-Coder-14B 0.83

11 Barrier Breakers (Jalil et al., 2025) GPT OSS 120B 0.82
12 PyBhasha (Dewan and Rifat, 2025) Ensemble 0.80
13 JU_NLP (Pal and Das, 2025) GPT-4.1 0.77
16 AlphaBorno (Rahman et al., 2025) GPT-4o 0.72
17 PyBangla (Islam et al., 2025) Qwen3-8B 0.72
21 CUET_Expelliarmus (Shahrier et al., 2025) GPT-20B OSS 0.37
22 CodeAnubad (Roy, 2025) Gemma-2-9b-it 0.37
26 Troopers (Farazi and Reza, 2025) TigerLLM (RSFT) 0.32

Table 3: TEST phase results for the teams who submitted system description papers, ranked by Pass@1
scores (descending), scores rounded to two decimals. Complete results in Table 5 (Appendix B).

tunistic tuning: ceiling systems lose limited
headroom, while the median gains from de-
signs that encode safer defaults and broader
guardrails. In effect, TEST acts as an external-
validity probe, rewarding solutions that trans-
fer beyond DEV’s fully visible conditions and
revealing residual brittleness in pipelines that
depend on extensive test exposure (Table 2).

4 Results

DEV (63 teams). Table 4 (Appendix A) shows
a clear separation between a small group of top
systems and a wide middle. Under full test vis-
ibility, teams diagnose errors, adjust prompts
and post-processing, and move up steadily. Top
scores sit near perfect, but many teams still
leave points on the table because of edge cases
and inconsistent handling of problem specs.
When scores are the same at the reported preci-
sion, we break ties by shorter average solution
length (shorter wins). This favors solutions that
meet the spec with minimal code rather than
long, brittle fixes.

TEST (32 teams). Table 3 reflects how sys-
tems behave with less feedback. The middle of
the leaderboard strengthens, while the very top
tightens—high performers keep most of their
lead, but not all of it. Designs that rely on sta-
ble defaults, careful I/O handling, and simple
control flow hold up best; runs that depend on
DEV-style trial-and-error drop back. We use
the same tie-breaking rule here: shorter aver-

age solution length wins ties. In practice, this
pushes teams toward concise, robust code that
generalizes beyond the DEV environment.

5 Approaches

We briefly discuss the approaches of the 15 sub-
mitted System description papers in this section.

NALA_MAINZ (Saadi et al., 2025) (Rank 1)

The authors present the top-ranked system for
the task. A lean multi-agent pipeline couples a
code-generation agent with a selective debugger.
The coder emits an initial solution and imme-
diately runs unit tests; failures condense into
error traces that guide the debugger to propose
minimal, localized patches within a small step
budget. The system augments supervision with
matched external tests and lightweight auto-
generated assertions, and it optionally translates
Bangla prompts to English. Ablations indicate
most gains come from error-trace–guided repair,
with test augmentation adding complementary
improvements.

Retriv (Asib et al., 2025) (Rank 2)

The authors propose a test-driven, feedback-
guided framework. Their system uses a
Qwen2.5-14B model (Hui et al., 2024b), fine-
tuned with QLoRA (Dettmers et al., 2023), to
generate an initial Python solution from trans-
lated English instructions. The code is imme-
diately executed against unit tests. If a fail-
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ure occurs, the error trace is fed back into the
model prompt to guide a correction. This re-
finement loop is repeated up to three times with
increasing temperature to encourage diverse so-
lutions. The combination of parameter-efficient
fine-tuning and iterative, execution-guided self-
correction proved highly effective, securing the
second-place rank.

Musafir (Hasan et al., 2025) (Rank 3)

This team employs a two-stage cascade pipeline.
First, Bangla instructions are translated into En-
glish using a model optimized to preserve tech-
nical semantics. This step allows them to lever-
age powerful, English-centric code generation
models. The translated prompt is then fed to
a Qwen-based code generation model (Yang
et al., 2024), which performs zero-shot code
generation. The final output is validated using
the provided unit tests. This direct translation-
generation strategy effectively bridges the re-
source gap for Bangla, demonstrating a robust
and high-performing approach that achieved
third place in the competition.

AdversaryAI (Riyad and Junaed, 2025)
(Rank 4)

The authors introduce TriGen (Think, Refine,
and Generate), a system centered on a self-
refinement loop. For open-source models, they
use LoRA (Hu et al., 2022) to fine-tune on a
dataset augmented with Chain-of-Thought (Wei
et al., 2022) reasoning steps. The core of the
system is an iterative process: an initial code
solution is generated and tested. If it fails,
the model receives the error feedback and is
prompted to debug and correct its own output.
This execution-guided refinement is applied to
both their fine-tuned models and to a few-shot
prompted Gemini 2.5 Pro, which yielded their
top-performing submission.

Code_Gen (Agarwala et al., 2025) (Rank 6)

This work focuses on the impact of input quality,
using a pipeline of preprocessing, translation,
and assertion-based prompting with GPT-5. The
authors first normalize the raw Bangla instruc-
tions to remove noise. Next, they translate the
cleaned instructions to English to align with the
model’s strengths. Critically, they append the

provided unit test assertions directly to the final
prompt. This gives the model explicit examples
of the required input-output behavior. Their ex-
periments show that this assertion-augmented,
translation-based approach significantly boosts
performance, highlighting the importance of
prompt clarity and context.

TeamB2B (Dihan et al., 2025) (Rank 7)

This team presents BanglaForge, a framework
built on a retrieval-augmented (Lewis et al.,
2020), dual-model collaborative pipeline. The
system first uses TF-IDF to retrieve relevant
solved examples, which are used for few-shot
prompting. An initial "Coder" LLM generates
a code solution. This solution is then passed to
a "Reviewer" LLM, which validates the code,
enhances its robustness, and refines it based on
execution feedback from unit tests. This itera-
tive cycle between the generator and reviewer
agents, grounded by retrieved examples, effec-
tively improves the final code’s quality and cor-
rectness.

NSU_PiedPiper (Fahmid et al., 2025) (Rank
8)

The authors combine Chain-of-Thought (CoT)
prompting (Zhou et al., 2024) with an itera-
tive debugging loop (Liu et al., 2024). Us-
ing a Qwen-based model (Qwen Team et al.,
2024), an initial solution is generated from a
CoT prompt that encourages step-by-step rea-
soning. This code is then validated against unit
tests. If any tests fail, the generated code and
the resulting error messages are passed to a spe-
cialized debugger prompt. The model then at-
tempts to fix the identified issues. This refine-
ment process can be repeated up to three times,
effectively using execution feedback to system-
atically correct errors from the initial reasoning
phase.

Barrier Breakers (Jalil et al., 2025) (Rank
11)

This team introduces a novel approach that com-
bines Test-Driven Development (TDD) and a
Code Interpreter (CI) (Wang et al., 2024) with-
out requiring model fine-tuning. First, in the
TDD phase, the LLM generates additional test
cases from the Bangla prompt. These new tests,
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combined with the provided one, are injected
into the final prompt for code generation. In
the CI phase, the generated code is executed
in a sandbox. If any compilation or assertion
errors occur, the error message is fed back to
the model for up to five retry attempts, enabling
iterative self-correction.

PyBhasha (Dewan and Rifat, 2025) (Rank
12)

The authors investigate the impact of instruction
quality and model ensembling. They compare
three instruction variants: original Bangla, En-
glish translations via Facebook NLLB (Team
et al., 2022), and semantic-aware English
rewrites using GPT-4.1. Finding the GPT-4.1
rewrites most effective, they implement a two-
stage ensemble for their final submission. The
primary model (Qwen2.5-Coder-14B) generates
the initial solution. If this solution fails unit
tests, it is passed to a secondary model (Claude
Sonnet 4) as a fallback, leveraging the comple-
mentary strengths of different architectures to
improve the overall success rate.

JU_NLP (Pal and Das, 2025) (Rank 13)

This team employs a straightforward yet effec-
tive zero-shot prompting strategy (Brown et al.,
2020). They construct a detailed prompt that in-
structs the model to act as a senior Python devel-
oper, providing it with the original Bangla prob-
lem statement, the required function signature,
and the visible unit tests. The prompt explicitly
tells the model it can translate the instruction
internally before generating the code. They test
this approach across several proprietary mod-
els, with their best result coming from GPT-4.1,
demonstrating the strong out-of-the-box, cross-
lingual reasoning capabilities of modern frontier
models.

AlphaBorno (Rahman et al., 2025) (Rank 16)

This work systematically evaluates several
prompting strategies. After translating Bangla
instructions to English with GPT-4o, they com-
pare zero-shot, few-shot, and Chain-of-Thought
baselines. Their key finding is that providing
explicit behavioral constraints is more effective
than abstract reasoning. Their best-performing

method augments a zero-shot prompt with syn-
thetic unit tests to cover edge cases. This is com-
bined with a self-repair loop where failed exe-
cution feedback is used to prompt the model for
a correction, with GPT-4o achieving the highest
score under this configuration.

PyBangla (Islam et al., 2025) (Rank 17)

The authors introduce BanglaCodeAct, an
agent-based framework inspired by the ReAct
paradigm. Their system uses a general-purpose
multilingual LLM (Qwen3-8B) in an iterative
Thought-Code-Observation loop without any
task-specific fine-tuning. For each problem, the
agent first generates a ’Thought’ in Bangla out-
lining its plan. It then produces Python ’Code’
to implement the plan. This code is executed,
and the ’Observation’ (output or error) is fed
back to the agent. This cycle of self-correction
continues until the code passes all unit tests,
proving effective for low-resource code genera-
tion.

CUET_Expelliarmus (Shahrier et al., 2025)
(Rank 21)

This team proposes a two-stage pipeline using
the open-source GPT-20B OSS model. In the
first stage, the Bangla instruction is translated
to English and then refined using a one-shot
prompt to create a well-structured specification.
This refined English instruction is then passed
to the second stage for code generation using a
zero-shot prompt. The generated code is vali-
dated against unit tests. If a test fails, the trace-
back error is used as feedback to re-prompt the
model, with this iterative correction loop run-
ning for up to five attempts.

CodeAnubad (Roy, 2025) (Rank 22)

This work tackles the extreme data scarcity of
the task with an iterative self-improvement strat-
egy. The authors first fine-tune a Gemma-2-9b
model on the initial 74 training samples using
QLoRA (Dettmers et al., 2023). This model
is then used to generate solutions for the de-
velopment set. All solutions that pass the unit
tests are harvested and added to the training set.
The model is then re-trained on this augmented
dataset. This process creates a positive feedback
loop, progressively improving performance by
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curating a high-quality, in-domain dataset from
the model’s own verified outputs.

Troopers (Farazi and Reza, 2025) (Rank 26)
The authors implement a reward-selective fine-
tuning (RSFT) pipeline (Dong and others,
2023). The process begins by sampling mul-
tiple candidate programs from a base model for
each Bangla prompt. Each candidate is exe-
cuted in a sandbox, and only those that pass
all unit tests (the "winners") are retained. This
curated set of high-quality, execution-verified
instruction-code pairs forms the dataset for su-
pervised fine-tuning (SFT). The base model is
then efficiently updated on this dataset using
LoRA adapters, selectively reinforcing correct
program synthesis without complex reinforce-
ment learning.

6 Analysis

Since the task focuses on generation, all the
systems are built around one or more LLMs.
Table 6 (Appendix C) lists all the models used
by each system.

6.1 Preference on LLMs
Participants have used a total of 20 different
LLMs, including 6 proprietary and 14 open-
source models. As Figure 3 illustrates that
TigerLLM is the most used model along with
two other open-source ones (LLaMA 3 and
Qwen2.5).

6.2 Best Performing LLMs
As Figure 4 shows, Qwen2.5 was the best-
performing model by most systems, followed
by the proprietary models and some other open-
source models.

6.3 Methodologies
As shown in Figure 5, teams build upon a com-
mon foundation. Prompting is nearly universal,
while a majority (8 of 15 teams) use Machine
Translation to leverage powerful English-centric
models, a key strategy for systems like Musafir
(R3). Five teams employ Finetuning to spe-
cialize models; Retriv (R2) uses QLORA for
efficiency, while Troopers (R26) implements
a reward-selective pipeline (RSFT) to train on
verified-correct code.
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Figure 3: Most used LLMs by the submitted systems.
Proprietary models are in red.

TigerLLM
Qwen 3
Gemma

Ensemble
GPT-OSS

Gemini 2.5
GPT-4/4.x

GPT-5
Qwen2.5

1
1
1
1

2
2
2
2

3

Figure 4: Best performing LLMs by the submitted
systems. Proprietary models are in red.

The most critical differentiator for top-
tier systems is the implementation of a self-
correcting feedback loop. This is often initi-
ated with Chain-of-Thought (CoT) prompting
to improve the model’s initial reasoning, as seen
with NSU_PiedPiper (R8). The core of this ap-
proach is Iterative Self-Correction, where gen-
erated code is executed and any resulting errors
are fed back to the model for debugging. This
refinement process proves central to the suc-
cess of the highest-performing teams, including
NALA_MAINZ (R1), Retriv (R2), and Adver-
saryAI (R4).

A few teams explore more specialized
strategies. TeamB2B (R7) utilizes Retrieval-
Augmented Generation (RAG) to provide mod-
els with relevant examples, while Barrier Break-
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Code Interpreter
Test Driven Development

Self-Refinement
Iterative Self-Correction

Preprocessing Instructions
RAG

Chain-of-Thought
Finetuning

Machine Translation
Prompting

1
1
1
1
1
2
4
5

8
13

Figure 5: Most used methodologies by the submitted
systems.

ers (R11) uniquely combines Test-Driven De-
velopment (TDD) with a Code Interpreter (CI)
for safe, iterative refinement. These advanced
methods underscore a clear trend: top perfor-
mance requires moving beyond foundational
techniques to build robust, multi-step systems
that emulate real-world development work-
flows.

6.4 Pipeline Components
Figure 6 visualizes the relationship between the
architectural complexity of a system and its fi-
nal score. A strong positive correlation is evi-
dent: systems employing a greater number of
integrated methodologies consistently achieved
higher performance. Notably, five of the top
eight teams utilized complex pipelines integrat-
ing at least three distinct techniques, such as
translation, Chain-of-Thought, and iterative self-
correction. This trend highlights that success in
this task was not merely dependent on model
choice, but was significantly driven by the so-
phistication of the overall pipeline. Simpler ap-
proaches, while effective to a degree, generally
did not reach the top performance tiers.

7 Conclusion

In this shared task, the first of its kind for
Bangla code generation, we successfully bench-
marked the capabilities of modern LLMs on a
low-resource language. We observed a clear
methodological trend from the diverse systems
submitted: top performance was not driven by
model choice alone, but by pipeline complexity.
We found that the most effective systems imple-
mented robust, multi-step workflows with self-
correction loops that emulate a developer’s iter-
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Figure 6: Correlation between pipeline complexity
(number of distinct high-level components/method-
ologies employed) and the final Pass@1 score for
the 15 teams with system description papers. Each
point is labeled with the team’s final rank.

ative debugging process. We observe that, fine-
tuning and machine translation were the most
effective methods during the test phase. While
open-source models only performed better after
pairing them up with some test-driven coding
tools.

Our results establish a strong baseline and
highlight the effectiveness of agentic, self-
refining architectures. For future work, we
recommend focusing on developing capable
Bangla-native code models to reduce the de-
pendency on translation, expanding benchmark
complexity, and exploring how these successful
pipeline strategies can be transferred to other
languages.

We plan to build on our findings, and our
priorities include refining these agentic work-
flows, developing native Bangla code models
to reduce the current dependency on transla-
tion, and increasing benchmark complexity to
repository-level tasks like bug fixing. Advanc-
ing these areas will not only improve Bangla
code generation but also provide a transferable
blueprint for other under-resourced languages,
making AI-driven software development more
globally accessible.
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Limitations

While our task is intentionally focused on gen-
erating self-contained, function-level Python
code, we acknowledge this does not encompass
the full complexity of real-world software en-
gineering. This focused scope, however, was
a deliberate design choice to establish a clear,
controlled, and reproducible benchmark—a crit-
ical first step for a new task in a low-resource
language. Similarly, our use of the stringent
Pass@1 metric, which is standard in code gen-
eration benchmarks, provides an unambiguous
signal of functional correctness. While many
top systems relied on translating prompts to En-
glish, we view this not as a limitation of the task,
but as a key finding that accurately reflects the
current state-of-the-art strategies for bridging
the resource gap, providing a realistic baseline
for future work to improve upon.

Ethical Considerations

The datasets used in this task are derived from
publicly available, open-source benchmarks,
mitigating data privacy concerns. A primary
goal of our work is to enhance the accessibil-
ity of programming tools for Bangla speakers,
promoting linguistic inclusivity in technology.
However, we acknowledge that any code gen-
eration system carries a potential risk of mis-
use for generating malicious code, although the
function-level scope of our task makes this risk
indirect. The prevalent use of proprietary mod-
els also means we rely on the safety and bias
mitigations implemented by model providers.
While the technical nature of the prompts limits
the potential for social bias, the common strat-
egy of translating prompts to English could am-
plify biases present in the target English-centric
LLMs.
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A DEV Phase Results

Rank Team_Name Score

1 BRACU_CL 1.00
2 NALA_MANIZ_2 1.00
3 Team_Trinity 0.99
4 not_Decided 0.99
5 Code_Gen 0.97
6 Team B2B 0.97
7 Musafir 0.94
8 Oleksandr Usyk 0.94
9 PyBangla 0.94

10 alubhorta 0.94
11 Metaphor 0.93
12 NO Name 0.91
13 Alpha Borno 0.90
14 Gradient Masters 0.88
15 NLPirates 0.87
16 PyBhasha 0.86
17 Nsu_PiedPiper 0.85
18 CUET_SIURS 0.84
19 JU_NLP 0.84
20 Retriv 0.84
21 SamNLP 0.84
22 fallen_dark-358115 0.84
23 Ecstasy 0.83
24 NeuralCoders 0.83
25 CUET_DuoBingo 0.82
26 3_idiots 0.78
27 BanglaBytes 0.73
28 Py_Chunker 0.68
29 delayed 0.64
30 BarrierBreakers 0.62
31 AdversaryAI 0.60
32 Team_AA 0.56
33 BLPCG 0.51
34 theDarkKnights 0.48
35 soumyajit 0.47
36 wspr 0.46
37 rms92 0.44
38 NeuralCoders 0.41
39 KodomAli Coders 0.38
40 PrompterXPrompter 0.38
41 UIU_NLP 0.32
42 unknown 0.31
43 Md_Abdur_Rahman 0.29
44 CUET_Zahra_Duo 0.17
45 Wahid 0.11
46 Organizers 0.10
47 Quasar 0.10
48 Team_Ban 0.10
49 turtur 0.10
50 SoloGuy 0.09
51 huday 0.09
52 troublemaker 0.09
53 Arekta Team 0.08
54 Kaf 0.08
55 None 0.08
56 Sweet Dreams 0.08
57 disco 0.08
58 cuet_1376 0.03
59 tryNLP 0.03
60 nafiurahman-353732 0.01
61 CUET_NLP_Zahra_Duo 0.00
62 Troopers 0.00
63 programophile 0.00

Table 4: DEV phase results. 63 Teams - ranked by Pass@1 scores (descending) — scores rounded to two
decimals.
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B TEST Phase Results

Rank Team Name Pass@1

1 NALA_MAINZ 0.95
2 Retriv 0.93
3 Musafir 0.92
4 AdversaryAI 0.85
5 BRACU_CL 0.84
6 Code_Gen 0.84
7 TeamB2B 0.84
8 NSU_PiedPiper 0.83
9 One Braincell 0.83
10 fallen_dark-370156 0.83
11 Barrier Breakers 0.82
12 PyBhasha 0.80
13 JU_NLP 0.77
14 This Team has no name 0.77
15 NLPirates 0.74
16 AlphaBorno 0.72
17 PyBangla 0.72
18 CUET_DuoBingo 0.70
19 CUET_SIURS 0.67
20 Ecstasy 0.66
21 CUET_Expelliarmus 0.37
22 CodeAnubad 0.37
23 Gradient Masters 0.36
24 team_trinity 0.36
25 nidala 0.33
26 Troopers 0.32
27 Team Random 0.28
28 delayed 0.18
29 Organizers 0.17
30 huday 0.09
31 SyntaxMind 0.08
32 Team Random 0.02

Table 5: TEST phase results for the teams who submitted system description papers. 32 Teams — ranked by
Pass@1 scores (descending), scores rounded to two decimals.
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C LLMs Used by Teams

The following table details the various Large Language Models (LLMs) employed by the teams
who submitted system papers, sorted by their final rank in the competition.

Rank Team Name Models Used

1 NALA_MAINZ GPT 5, Claude 4, Gemini 2.5
2 Retriv Phi, Qwen3, Qwen2.5-Coder, Llama-3.1, ReasonFlux-Coder, codegemma
3 Musafir Qwen
4 AdversaryAI TigerLLM, Gemma 3, Gemini 2.5, Llama3, Qwen3, Qwen2.5
6 Code_Gen GPT 4, GPT 5, LLaMA 4, TigerLLM, Deepseek
7 TeamB2B Gemini 2.5, Gemma-1B, GPT-OSS, DeepSeek-R1, Gemini2.0, Lg Exaone Deep
8 NSU_PiedPiper Qwen2.5-Coder-14B
11 Barrier Breakers LLaMA 4, Llama 3.2, GPT-OSS
12 PyBhasha GPT 4, Claude 4, TigerLLM-9B, Qwen2.5-Coder, LLaMA-3.1
13 JU_NLP GPT 4, LLaMA 4
16 AlphaBorno GPT 4, Claude 3.7 Sonnet, Qwen Coder 2.5, Grok 3
17 PyBangla TigerLLM, Qwen3, Llama-3.1, DeepSeek-Coder-V2
21 CUET_Expelliarmus GPT-20B-OSS
22 CodeAnubad Gemma, Starcoder, CodeLlama
26 Troopers TigerLLM

Table 6: All the LLMs used by the teams (only includes the submitted system description papers).
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