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Abstract

Bangla text on the internet often appears in
mixed scripts that combine native Bangla char-
acters with their Romanized transliterations.
To ensure practical usability, language models
should be robust to naturally occurring script
mixing. Our work investigates the robustness
of current LLMs and Bangla language models
under various transliteration-based textual per-
turbations, i.e., we augment portions of existing
Bangla datasets using transliteration. Specifi-
cally, we replace words and sentences with their
transliterated text to emulate realistic script
mixing, and similarly, replace the top k salient
words to emulate adversarial script mixing. Our
experiments reveal interesting behavioral in-
sights and vulnerabilities to robustness in lan-
guage models for Bangla, which can be crucial
for deploying such models in real-world scenar-
ios and enhancing their overall robustness. Our
code is available at: https://github.com/
farhanishmam/BTL-Robustness.

1 Introduction

In the digital era, Bangla is often written in its ro-
manized form using English scripts due to the ubiq-
uity of the QWERTY layout (Haider et al., 2024).
With the growing popularity of Bangla keyboard
layouts, particularly among mobile users, Bangla-
English mixed script texts have become more com-
mon. This phenomenon is known as script-mixing,
where multiple scripts are used in a single piece of
text (Srivastava et al., 2020).

The current generation of Large Language Mod-
els (LLMs) has also excelled in tasks on translit-
erated or romanized Bangla (Fahim et al., 2024).
However, their robustness to textual perturbations
in Bangla has yet to be evaluated. Textual pertur-
bation refers to any form of change or modifica-
tion to the input text that can potentially impact
the model’s performance in a given task (Li et al.,
2020a). Such perturbations can emulate realistic

conditions (Moradi and Samwald, 2021) (e.g., re-
moval or replacement of a word) or adversarial
conditions (Li et al., 2018) (e.g., removal of most
salient tokens (Raiyan et al., 2025)). Our work ex-
plores a form of replacement-based perturbation
where words or sentences in the original Bangla
scripts are replaced by their transliterations.

Current datasets in Bangla are limited to a sin-
gle script, either in Bangla (Hasan et al., 2020;
Islam et al., 2021) or English (Fahim et al., 2024).
While code-mixed texts have been a topic of inter-
est, where Bangla and English words are mixed, the
datasets are usually limited to the English scripts
(Alam et al., 2024). Evaluation of LLMs under
script mixing can be crucial for deploying the
model in realistic scenarios. We hence propose
a scalable augmentation strategy to produce script-
mixed text in Bangla and evaluate the robustness
of models against such forms of perturbations. Our
contributions can be summarized as:

• We present the first study to evaluate LLMs
in three Bangla transliteration-based perturba-
tions encompassing both realistic and adver-
sarial settings.

• Our augmentation framework can be used to
produce text that emulates script-mixing in
Bangla at scale.

• Our experiments on a rich suite of closed-
sourced and open-sourced LLMs, as well as
Bangla language models, highlight the robust-
ness vulnerability in Bangla.

2 Related Work

2.1 Textual Perturbation
Textual perturbations are either formulated as
adversarial attacks that exploit the vulnerability
of a system using an input, often tailored to that
particular model (Li et al., 2020a), or common
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Figure 1: High level overview of our dataset perturbation pipeline.

perturbations that are typically encountered by
texts in realistic scenarios (Moradi and Samwald,
2021). Adversarial perturbations saw some earlier
success with rule-based methods, e.g., synonym
replacement, in both black-box and white-box
settings (Jin et al., 2020; Alzantot et al., 2018).
Few methods relied on using language models to
generate adversarial examples (Li et al., 2020b;
Garg and Ramakrishnan, 2020).

Realistic textual perturbations include charac-
ter and word-level perturbations, e.g., insertion,
deletion, and replacement, which are used to simu-
late realistic errors in text (Moradi and Samwald,
2021; Le et al., 2022). Ours similarly uses word
and sentence-level transliteration as realistic per-
turbations to simulate script mixing in text. We
also experiment with the transliteration of the most
salient word as a form of adversarial perturbation.

2.2 Robustness of Language Models

The robustness of language models refers to their
inherent ability to sustain performance when ex-
posed to input variations (Morris et al., 2020).
While such studies on robustness are prevalent
in English (Moradi and Samwald, 2021; Li et al.,
2020a), the challenge is exacerbated in multilin-
gual and low-resource contexts (Kaing et al., 2024).
Robustness also refers to the language model’s
generalization capabilities under distribution shifts
(Hendrycks et al., 2020). Our study focuses on
evaluating this robustness in low-resource contexts,
specifically examining the Bangla language under
script distribution shifts.

2.3 Transliteration, Code-mixing, and
Script-mixing

Transliterated texts, where native words are
represented in foreign scripts, have been common
in Indic languages through romanization (Madhani

et al., 2023). This phenomenon is particularly
prevalent in Bangla, where romanized scripts
are used to write Bangla text. Current language
models have shown strong performance on
back-transliteration, i.e., producing the original
Bangla text from transliterated input (Fahim
et al., 2024). Several downstream tasks have
been explored on transliterated Bangla, including
sentiment analysis (Hassan et al., 2016) and hate
speech detection (Haider et al., 2024).

A closely related setting is code-switching or
code-mixing, where words from multiple lan-
guages appear in the same text using different
scripts (Sheth et al., 2025). Code-switching be-
tween Bangla and English is particularly common
among Bangla speakers (Alam et al., 2024), though
LLMs have shown degraded performance on such
code-switched text (Mohamed et al., 2025). Our
work differs in that we evaluate the robustness
through Bangla dataset augmentations that mimic
script-mixing (Srivastava et al., 2020), i.e., multiple
scripts coexist within the same text block.

3 Methodology

Our framework involves applying three types of
perturbations to popular Bangla classification and
generation datasets, as shown in Fig. 1.

3.1 Textual Perturbation

Each perturbation p ∈ P is defined as a function
p : T → T tr, that takes an input text in native
Bangla scripts B to produce text in transliterated
scripts. For a model f , we quantify the average
case performance as robustness over the test set
distribution D (Hendrycks and Dietterich, 2019;
Ishmam et al., 2025),

Ep∼P [P(B,y)∼D((f(p(B)) = y)].
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Dataset SentNob BanFakeNews BanglaHateSpeech XL-Sum CSEBuetNMT

Total Samples 12k 49k 30K 8k 2.7M
Evaluated Samples 1568 2000 750 1012 1000
Vocab Size 24K 415K 64K 226K 1.3M
Min Word Length 3 1 1 7 1
Max Word Length 93 4650 537 3726 8353
Min Sentence Length 1 1 1 1 1
Max Sentence Length 20 679 78 370 262

Table 1: Statistics and number of samples taken for evaluation from the evaluation datasets.

The textual perturbation is implemented as a func-
tion that takes a slice of the input text and passes it
to a transliteration model f tr : T → T tr to produce
the transliterated text. The slicing of the text differs
for each perturbation and has been defined in the
latter sections.

3.1.1 Random Word Perturbation
For each word wi in an input text B =
{w1, w2, . . . wn} ∈ T and a random word-level
mask vector,

M = {m1,m2, . . . ,mn}, mi ∼ Bernoulli(p),

where p ∈ [0, 1] is the probability of perturbing a
word, the random word perturbation can be defined:

prw(wi) =

{
f tr(wi), if mi = 1,

wi, o/w.
(1)

3.1.2 Random Sentence Perturbation
Similar to §3.1.1, the sentence perturbation seg-
ments the input text B into sentences, B =
{w1:i1 , wi1+1:i2 , . . . win−1+1:n} ∈ T , and uses
sentence-level mask vectors. Following Eq.1, we
define random sentence perturbation,

prs(wi:j) =

{
f tr(wi:j), if mi = 1,

wi:j , o/w.
(2)

3.1.3 Salient Word Perturbation
Let si = S(wi, B) denote the saliency score as-
signed to word wi, measuring its influence on the
model’s output. We calculate the saliency scores
by averaging the attention scores of a BanglaBERT
model (Bhattacharjee et al., 2022) across the se-
quence length, heads, and layers. We define a pro-
portion p, and organize the words based on the
descending order of saliency scores. We now de-
fine the set of top-p salient word indices,

Isal = {i|si is among top p scores}.

The salient word perturbation can be similarly de-
fined as:

psal(wi) =

{
f tr(wi), if i ∈ Isal,
wi, o/w.

(3)

For each perturbation, the probability of per-
turbation p is taken as 20%. We use the
BanglaT5_NMT model (Bhattacharjee et al., 2023)
fine-tuned on the BanglaTLit dataset (Fahim et al.,
2024) as our transliteration model f tr.

3.2 Tasks & Datasets
We evaluate on five tasks: machine translation with
CSEBuetNMT dataset (Hasan et al., 2020), hate
speech detection with BanglaHateSpeech dataset
(Romim et al., 2021), sentiment analysis with
Sent-Nob dataset (Islam et al., 2021), fake news
detection with BanFakeNews dataset (Hossain
et al., 2020), and text summarization with XL-Sum
dataset (Hasan et al., 2021). The number of sam-
ples taken from each dataset and their statistics are
provided in Tab.1.

3.3 Baselines
We evaluate closed-source models: Claude-3.5 Son-
net, and GPT-4o (Hurst et al., 2024), open-source
models: Qwen-2.5 32B (Qwen et al., 2025), Llama-
3 70B (Grattafiori et al., 2024), and the Bangla lan-
guage models: BanglaBERT (Bhattacharjee et al.,
2022) and BanglaT5 (Bhattacharjee et al., 2023).

3.4 Evaluation Metrics
For classification, we use the standard metrics:
Macro-F1 (M-F1), Weighted-F1 (W-F1), and Accu-
racy (Acc). Similarly, for generation tasks, we use
BLEU score, Brevity Penalty, and ROUGE-2-F1.

4 Experimental Results

We evaluate model robustness across three pertur-
bation strategies on classification and generation
tasks (Tables 2 and 3). Most models achieve peak
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Model

Dataset Claude-3.5 Sonnet GPT-4o Qwen-2.5 32B Llama-3 70B BanglaBERT

M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1 Acc

SentNob
Bangla Text (Base) 63.90 66.30 66.19 64.37 66.53 65.83 56.78 56.79 56.57 45.07 45.16 48.18 45.80 48.16 49.50

Random Words 63.73 66.01 65.96 63.48 65.46 64.88 52.50 52.54 52.00 45.77 45.81 48.69 45.13 47.19 48.05
∆ Base -0.17 -0.29 -0.23 -0.89 -1.07 -0.95 -4.28 -4.25 -4.57 +0.70 +0.65 +0.51 -0.67 -0.97 -1.45

Random Sentences 60.86 63.04 62.92 58.93 60.85 59.90 48.69 48.71 48.00 46.48 46.67 49.90 35.88 37.48 41.30
∆ Base -3.04 -3.26 -3.27 -5.44 -5.68 -5.93 -8.09 -8.08 -8.57 +1.41 +1.51 +1.72 -9.92 -10.68 -8.20

Salient Words 63.82 65.88 65.78 61.99 63.96 63.18 49.94 50.01 50.00 40.18 40.21 45.23 44.42 46.63 47.48
∆ Base -0.08 -0.42 -0.41 -2.38 -2.57 -2.65 -6.84 -6.78 -6.57 -4.89 -4.95 -2.95 -1.38 -1.53 -2.02

BanFakeNews
Bangla Text (Base) 66.80 66.88 68.42 85.93 85.93 85.93 52.07 78.11 78.00 50.58 75.88 75.36 92.98 92.99 93.00

Random Words 61.00 59.20 59.71 84.91 84.91 84.94 48.54 72.80 72.45 55.10 82.64 82.47 32.71 31.79 48.60
∆ Base -5.80 -7.68 -8.71 -1.02 -1.02 -0.99 -3.53 -5.31 -5.55 +4.52 +6.76 +7.11 -60.27 -61.20 -44.40

Random Sentences 57.24 58.00 61.82 85.76 85.76 85.80 51.30 76.97 76.77 53.55 80.33 80.16 50.09 49.54 57.60
∆ Base -9.56 -8.88 -6.60 -0.17 -0.17 -0.13 -0.77 -1.14 -1.23 +2.97 +4.45 +4.80 -42.89 -43.45 -35.40

Salient Words 47.86 49.02 55.00 84.89 84.89 84.90 47.55 71.33 71.00 52.55 78.82 78.74 33.14 32.23 48.80
∆ Base -18.94 -17.86 -13.42 -1.04 -1.04 -1.03 -4.52 -6.78 -7.00 +1.97 +2.94 +3.38 -59.84 -60.76 -44.20

BanglaHateSpeech
Bangla Text (Base) 85.54 87.29 87.56 79.90 82.13 82.13 83.77 83.77 84.00 53.21 53.17 59.39 91.45 92.33 92.27

Random Words 85.94 87.48 87.67 78.04 80.23 80.00 80.91 80.91 81.00 51.96 51.93 58.38 87.16 88.25 88.00
∆ Base +0.40 +0.19 +0.11 -1.86 -1.90 -2.13 -2.86 -2.86 -3.00 -1.25 -1.24 -1.01 -4.29 -4.08 -4.27

Random Sentences 81.95 83.81 83.78 75.52 77.74 77.33 71.44 71.44 72.00 62.58 62.62 65.66 59.97 59.11 59.87
∆ Base -3.59 -3.48 -3.78 -4.38 -4.39 -4.80 -12.33 -12.33 -12.00 +9.37 +9.45 +6.27 -31.48 -33.22 -32.40

Salient Words 84.52 86.04 86.10 77.59 79.90 79.73 76.89 76.89 77.00 51.70 51.70 58.60 76.89 77.96 77.33
∆ Base -1.02 -1.25 -1.46 -2.31 -2.23 -2.40 -6.88 -6.88 -7.00 -1.51 -1.47 -0.79 -14.56 -14.37 -14.94

Table 2: Macro-F1(M-F1), Weighted-F1(W-F1), Accuracy(Acc) score for the classification tasks: sentiment analysis, fake news
detection, and hate speech classification on SentNob, BanFakeNews, and BanglaHateSpeech, respectively. Gray indicates
base/clean text performance, and cyan indicates worst performance degradation.

Model

Dataset Claude-3.5 Sonnet GPT-4o Qwen-2.5 32B Llama-3 70B BanglaT5

BLEU BP R2-F1 BLEU BP R2-F1 BLEU BP R2-F1 BLEU BP R2-F1 BLEU BP R2-F1

XL-Sum
Bangla Text (Base) 0.000 1.00 0.00 0.002 0.99 0.01 0.001 0.99 0.01 0.004 0.97 0.01 0.025 0.62 0.03

Random Words 0.000 1.00 0.00 0.002 0.98 0.00 0.002 0.99 0.01 0.003 0.98 0.01 0.016 0.59 0.02
∆ Base -0.00 0.00 - -0.00 -0.01 - +0.00 0.00 - -0.00 +0.01 - -0.01 -0.03 -

Random Sentences 0.000 1.00 0.00 0.002 0.98 0.01 0.001 0.99 0.01 0.003 0.98 0.01 0.017 0.59 0.03
∆ Base +0.00 0.00 - -0.00 -0.01 - +0.00 0.00 - -0.00 +0.01 - -0.01 -0.03 -

Salient Words 0.000 1.00 0.00 0.001 0.99 0.00 0.001 0.99 0.00 0.003 0.98 0.01 0.006 0.60 0.01
∆ Base +0.00 0.00 - -0.00 0.00 - -0.00 0.00 - -0.00 +0.01 - -0.02 -0.02 -

CSEBuetNMT
Bangla Text (Base) 0.215 0.94 0.223 0.215 0.96 0.220 0.171 0.99 0.191 0.059 0.95 0.073 0.241 0.93 0.233

Random Words 0.191 0.94 0.201 0.184 0.97 0.195 0.134 0.97 0.150 0.051 0.92 0.065 0.180 0.91 0.185
∆ Base -0.02 0.00 - -0.03 +0.01 - -0.04 -0.02 - -0.01 -0.03 - -0.06 -0.02 -

Random Sentences 0.199 0.89 0.212 0.109 0.95 0.125 0.052 0.96 0.066 0.065 0.94 0.079 0.027 0.79 0.037
∆ Base -0.02 -0.05 - -0.11 -0.01 - -0.12 -0.03 - +0.01 -0.01 - -0.21 -0.14 -

Salient Words 0.262 0.96 0.251 0.180 0.97 0.192 0.113 0.98 0.140 0.052 0.92 0.068 0.180 0.90 0.184
∆ Base +0.05 +0.02 - -0.03 +0.01 - -0.06 -0.01 - -0.01 -0.03 - -0.06 -0.03 -

Table 3: BLEU score, BP: Brevity Penalty, R2-F1 for the translation and summarisation tasks on the CSEBuetNMT and XL-Sum
datasets, respectively. Gray indicates base/clean text performance, and cyan indicates worst performance degradation. The
difference between the R2-F1 scores is not calculated as it doesn’t hold any meaningful value.

performance on clean text and show degradation
under the perturbations.

4.1 Effect of Perturbation Techniques

Random sentence and salient word perturbations
induce higher performance drops than random

word perturbations. For instance, Claude-3.5
Sonnet shows a 3.27% accuracy drop on Sent-
Nob under random sentence perturbation versus
only 0.23% for random word perturbation. The
vulnerability also varies across tasks, e.g. ran-
dom sentence perturbation is more challenging on
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Figure 2: Impact of varying perturbation levels on the performance of the GPT-4o model in classification (Fake
News) and generation (XL-Sum) tasks.

SentNob, BanglaHateSpeech, and CSEBuetNMT,
while salient word perturbation is more severe on
BanFakeNews and XL-Sum.

Smaller language models, like BanglaBERT and
BanglaT5, show higher vulnerability, confirming
their strong reliance on key lexical and semantic
cues. Among LLMs, GPT-4o and Llama-3 exhibit
relatively better robustness, maintaining smaller
performance drops across all metrics, compared to
Claude-3.5 Sonnet and Qwen-2.5. However, GPT-
4o was less robust on generative tasks, e.g., on the
CSEBuetNMT dataset. We attribute the model-
wise performance variance to the pretraining data
distribution and exposure to code-mixed and script-
mixed data during training.

4.2 Performance Degradation across Tasks

For classification tasks, LLMs showed relatively
consistent degradation patterns: 3-8.5% on Sent-
Nob, 1-19% on BanFakeNews, and 1.5-12.5% on

BanglaHateSpeech across all metrics. By contrast,
BanglaBERT suffers dramatically larger drops,
with F1-score degradation reaching 60% and ac-
curacy declining by 44.5%. For generative tasks,
the degradation was relatively higher for CSEBuet-
NMT than XL-sum, with BanglaT5 being more
vulnerable than the LLMs.

4.3 Performance across Perturbation Levels

In Fig. 2, we observe a substantial decline in the
summarization metrics BLEU and R2-F1, showing
GPT-4o’s vulnerability to increasing perturbation
levels across all perturbation types. Random-word
and salient-word perturbations show a consistent
downward trend for the classification task. In con-
trast, random-sentence perturbation dips sharply at
the 80% level, followed by an unexpected rebound
at 100%. This suggests that the model becomes
confused when only a small number of sentences
are transliterated, whereas fully perturbed input
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allows it to settle into a more stable interpretation.

5 Discussion

We discuss the underlying causes of performance
degradation in script-mixed scenarios, promising
steps for mitigation, and other future directions.

5.1 The Tokenization Bottleneck

The substantial performance degradation observed
in script-mixed texts can be largely attributed to
fundamental limitations in tokenization. Firstly,
the choice of tokenization method varies across
models and can be an inherent limitation in script-
mixing. For instance, models such as BERT and T5
employ WordPiece (Schuster and Nakajima, 2012)
and SentencePiece (Kudo and Richardson, 2018)
tokenization, respectively, which exhibit reduced
robustness compared to the Byte Pair Encoding
(BPE) (Gage, 1994) used in modern LLMs. The
older tokenization methods struggle to maintain
consistent granularity of mixed tokens, leading to
suboptimal encoding.

Secondly, the process of tokenization itself con-
stitutes an inherent architectural bottleneck, espe-
cially for cross-script processing. In script-mixed
texts, using tokenizers trained predominantly on
one script, typically Latin, penalizes foreign or un-
trained scripts (Land and Arnett, 2025). These
tokenizers frequently fragment non-English tokens
into excessive subword units or map them to rare
and underrepresented vocabulary entries, occasion-
ally resorting to unknown token markers. This
phenomenon reflects a deeper issue of vocabulary
bias, where tokenizers optimized on monolingual
or Latin-script-dominant corpora show systematic
disadvantages when processing alternative scripts,
resulting in unnecessarily long token sequences and
potential information loss at the encoding stage.

5.2 BLT and Multi-script Tokenizers

Byte Latent Transformers (BLT) (Pagnoni et al.,
2025) have shown great empirical robustness to
input perturbations and warrant investigation in
script-mixing scenarios, as their byte-level pro-
cessing naturally sidesteps script tokenizing limita-
tions. Multilingual or transliteration-aware tokeniz-
ers with joint-script vocabularies offer a potential
direct solution. Such tokenizers would require bal-
ancing the training data to ensure equitable repre-
sentation across scripts and prevent the replication
of existing script biases.

5.3 Script Normalization

A practical and easier approach to improve script-
mixing robustness can be achieved through script
normalization, i.e., conversion of mixed scripts to a
single script that is the most dominant throughout
the input text. One option is to train a dedicated nor-
malizer model, e.g., a sequence-to-sequence model
similar to BanglaT5-NMT (Fahim et al., 2024), but
for script conversion. Alternatively, LLMs with
reasoning capabilities could be prompted to nor-
malize scripts in the thinking process first before
proceeding with the task.

5.4 Can training improve robustness?

The language models can be either continually pre-
trained or fine-tuned on the script-mixed dataset.
Continual pre-training on multilingual or multi-
script corpora should mitigate monoscript bias and
enable models to learn robust cross-script corre-
spondences. By exposing models to diverse script
combinations during pre-training, we can poten-
tially encode invariance to script perturbations
directly into the model’s representations. Task-
specific fine-tuning on script-mixed text could also
be a viable approach, but raises difficulty in estimat-
ing the distribution of scripts, leading to plausibly
higher degradation due to overfitting.

5.5 Extension to Multimodal Settings

Our perturbation pipeline can be extended to mul-
timodal scenarios, e.g., visual question answering
(Antol et al., 2015; Ishmam et al., 2025) on Bangla-
regional images (Barua et al., 2025), which can in-
vestigate cross-visual perturbations, such as swap-
ping cultural elements between images, or evaluat-
ing on script-mixed questions.

6 Conclusion

Our work evaluates LLMs and Bangla LMs un-
der transliteration-based perturbations on random
words, random sentences, and salient words. Our
framework provides a scalable method for aug-
menting existing Bangla datasets to produce their
script-mixed counterparts, thereby assessing the ro-
bustness of language models. Our findings reveal
that discriminative models are vulnerable to script-
mixing, whereas generative models are relatively
more robust. We envision that our work will open
doors for future research in Bangla script-mixing.
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Limitations

Our study uses only transliteration-based pertur-
bations, which are a subset of replacement-based
perturbations. Other categories of perturbations,
e.g., insertion, deletion, and paraphrasing, haven’t
been explored and could provide a holistic view of
the model’s robustness. Our proposed robustness
enhancement strategies have not been empirically
verified and could be a potential future direction.
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