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Abstract

As an Indo-Aryan language with limited avail-
able data, Chakma remains largely underrepre-
sented in language models. In this work, we
introduce a novel corpus of contextually co-
herent Bangla-transliterated Chakma, curated
from Chakma literature, and validated by native
speakers. Using this dataset, we fine-tune six
encoder-based transformer models, including
multilingual (mBERT, XLM-RoBERTa, Distil-
BERT), regional (BanglaBERT, IndicBERT),
and monolingual English (DeBERTaV3) vari-
ants on masked language modeling (MLM)
tasks. Our experiments show that fine-tuned
multilingual models outperform their pre-
trained counterparts when adapted to Bangla-
transliterated Chakma, achieving up to 73.54%
token accuracy and a perplexity as low as
2.90. Our analysis further highlights the im-
pact of data quality on model performance
and shows the limitations of OCR pipelines
for morphologically rich Indic scripts. Our re-
search demonstrates that Bangla-transliterated
Chakma can be very effective for transfer learn-
ing for Chakma language, and we release our
dataset1 to encourage further research on mul-
tilingual language modeling for low-resource
languages.

1 Introduction

Large Language Models (LLMs) have transformed
the Natural Language Processing (NLP) world
through unsupervised pre-training using large cor-
pora of unlabeled data. Since labeled data are not
required, LLMs can take advantage of the huge text

1https://github.com/adity1234567/
Chakma-MLM-Dataset.git

corpora available in the public domain. For exam-
ple, even first-generation language models such as
BERT use a corpus of 3.3 billion English words
(Devlin et al., 2019), while more recent LLMs use
multiple massive corpora such as RedPajama (We-
ber et al., 2024) scraped from the web with hun-
dreds of trillions of tokens. However, the sheer vol-
ume of data required for pre-training LLMs poses a
challenge for low-resource languages even without
labels, as seen in some recent works using datasets
of 15 million words for Māori (James et al., 2022),
332 million tokens for Swahili (Conneau et al.,
2020), and 108 million tokens from 11 African lan-
guages for AfriBERTa (Ogueji et al., 2021). Com-
pared to the trillions of tokens available in high-
resource languages, these million-scale corpora are
minuscule. Consequently, training LLMs with low-
resource corpora does not yield good results, as
upon encountering new vocabulary, expressions,
or culturally specific semantics, the models strug-
gle to utilize their training patterns for accurate
understanding and generation (Zhong et al., 2024).

To address this limitation, researchers have ex-
plored knowledge transfer, from LLMs trained
on high-resource languages through Masked Lan-
guage Model (MLM) fine-tuning on the compara-
tively lower resource language corpus (Fernando
and Ranathunga, 2025). Muller et al. (2020) fur-
ther showed that we can leverage the same transfer
learning benefit through transliteration when the
two languages do not share a script. They achieved
a significant performance gain for Uyghur (105K
sentences) and Sorani Kurdish (380K sentences)
transliterated into the Latin script, compared to pre-
training on those data in their original script alone.
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Figure 1: Overall workflow of OCR-based data curation, manual correction, and MLM fine-tuning for Bangla-
transliterated Chakma language model

Chakma is an Indo-Aryan language, used as
a first language by roughly one million people
from the Chakma community living across parts
of Bangladesh, India and Myanmar (Chakma
Autonomous District Council, 2025). Although
Chakma has its own script Ojhā Pāt.h, a consider-
able portion of Chakma literature is produced in
Bangla transliteration (Brandt, 2018). Chakma re-
mains a low-resource language with data scarcity
both in its original script and Bangla translit-
eration (Chakma et al., 2024). At the same
time, Bangla script is regularly used in training
of multilingual LLMs like mBERT (Pires et al.,
2019). In this context, our work shows that
Bangla-transliterated Chakma dataset can yield
moderately strong performance through MLM fine-
tuning. Following Muller et al. (2020)’s idea for
transliteration, we use Chakma text transliterated
in Bangla for MLM-tuning multiple LLMs that
are pre-trained on Bangla. Since, to the best of
our knowledge, no contextually coherent Bangla-
transliterated Chakma corpus exists, we have cu-
rated a novel corpus from Chakma books contain-
ing 4,570 manually validated sentences to run our
experiments.

Our major contributions are as follows:

• We develop a novel Bangla-transliterated
Chakma dataset, curated from images sourced
from four books of Chakma literature using
Tesseract OCR, comprising a total number of

6,353 sentences, of which 4,570 have been
manually corrected.

• We show that language models can learn low-
resource languages via MLM fine-tuning on
the script of a related language, as demon-
strated using Bangla script to fine-tune a
Chakma model.

• We demonstrate how data quality impacts
model performance, showing that better OCR
for Bangla script, compatible with Bangla-
transliterated Chakma, can significantly im-
prove transfer learning for the Chakma lan-
guage.

2 Related Works

In this section, we discuss four key areas that in-
form our work: multilingual NLP, model adap-
tation and quantization, tokenization and mor-
phological challenges in Indic scripts, and exist-
ing language resources for Bangla and Chakma.
These topics collectively highlight the progress and
challenges in building effective models for low-
resource languages like Chakma.

2.1 Multilingual NLP

The evolution of multilingual models has been
driven by the need to extend transformer-based
models to low-resource languages, particularly
those with limited data or non-Latin scripts (Pakray
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et al., 2025). Devlin et al. (2019) introduced BERT
along with its multilingual variant mBERT, and this
marked a turning point. Models like mBERT, pre-
trained on Wikipedia data across 104 languages
using WordPiece (vocabulary of 110K tokens),
and XLM-R, trained on CommonCrawl data from
100 languages with a 250K SentencePiece vocab-
ulary (Conneau et al., 2019), enabled zero-shot
cross-lingual transfer. XLM-R, relying solely on
MLM pretraining, achieved state-of-the-art per-
formance on multiple benchmarks (Ebrahimi and
Kann, 2021).

These multilingual models often show strong
zero-shot performance, but disparities remain: lan-
guages with less pretraining data or non-Latin
scripts typically lag behind high-resource lan-
guages (Ebrahimi and Kann, 2021; Marchisio et al.,
2024). For example, Wu and Dredze (2020) and
Muller et al. (2020) show that mBERT’s zero-
shot accuracy varies widely by language, with
some “hard” languages (often low-resource or us-
ing different scripts) remaining poorly served with-
out additional adaptation. These findings spurred
research leveraging pretrained transformer mod-
els and specialized techniques to handle under-
represented languages (Tela et al., 2020; Hangya
et al., 2022; Bharadiya, 2023; Pakray et al., 2025).
Our work builds on this by fine-tuning a Chakma-
specific MLM encoder, addressing data scarcity for
this low-resource Indic language.

2.2 Model adaptation techniques and
quantization

To address performance disparities in low-resource
languages, adaptation strategies emerged to tailor
pre-trained models to specific languages or do-
mains. When more data are available, continued
monolingual pre-training in target-language data,
as demonstrated by Chau et al. (2020), improved
zero-shot performance, while domain-adaptive
MLM pre-training improves downstream perfor-
mance even in low-resource settings (Gururangan
et al., 2020). Another strategy is to expand the
vocabulary of a multilingual model to better cover
the target language’s lexicon and then additional
MLM training improves performance for underrep-
resented languages (Wang et al., 2020).

2.3 Tokenization and morphology in Indic
scripts

Indic languages like Bangla and Chakma are mor-
phologically rich and use complex abugida scripts

(Chowdhury, 2025), which raise challenges for sub-
word tokenization. Standard BPE or WordPiece
tokenizers can fragment important morphological
units, hurting model performance (Pattnayak et al.,
2025). Recent work demonstrates that Sentence-
Piece (unigram) tokenization often preserves mor-
phological information better than BPE for Indic
languages. For instance, Pattnayak et al. (2025)
found that, for zero-shot named entity recognition
across several Indic languages, a SentencePiece-
based vocabulary outperformed BPE, because it
more cleanly segments root words and affixes. Oth-
ers have noted that vowel forms in abugida scripts
(matras) attach to consonants and can appear above,
below, or beside the base character, which makes
character-level segmentation non-trivial (Kashid
and Bhattacharyya, 2024; Maung et al., 2025).

2.4 Bangla and Chakma language resources

Although Joshi et al. (2020) categorize Bangla
among languages lacking labeled data, Bhattachar-
jee et al. (2021) developed BanglaBERT, a BERT-
base model on the Bangla2B+ corpus with 2.18
billion tokens from Bangla text, and introduced
the Bangla Language Understanding Benchmark
(BLUB). BanglaBERT achieves state-of-the-art re-
sults on multiple Bangla NLU tasks, outperforming
both multilingual baselines (mBERT, XLM-R) and
previous monolingual models.

In contrast, NLP work on Chakma is scant. The
first known work in Chakma NLP effort is Chak-
maNMT (Chakma et al., 2024), which constructed
the first parallel corpus (15K sentence-pairs transla-
tion, from Chakma to Bangla) and trained a transla-
tion model. Using BanglaT5 and transliteration-
based back-translation, they achieved a BLEU
score of 17.8 for Chakma to Bangla translation.
However, this work does not include the Bangla-
transliterated Chakma text. The MELD dataset
(Mahi et al., 2025) compiled transliterated sentence-
level text in Chakma (and Garo, Marma) using the
Bangla script. We opted not to use MELD, as its
collection of isolated sentences lacks the semantic
coherence required for our study. Instead, we focus
on Bangla-transliterated Chakma texts extracted
via OCR from printed literature.

3 Dataset Creation

Emphasizing the authenticity of linguistic re-
sources, particularly in the field where the digitized
materials are scarce and under-resourced, we con-
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Figure 2: Sample data illustrating quality comparison across different methods, highlighting missing sentences in
Gemini and spelling errors in other models caused by the misinterpretation of conjunct characters, phonetic signs,
vowel diacritics, consonant modifiers, nasalization, and related orthographic features.

Model Vocab Size Tokenizer & Special Tokens Tokenization Method
BERT-Base Multilingual (cased) ∼120k (WordPiece) [CLS] ... [SEP], [MASK] WordPiece

DistilBERT Multilingual (cased) ∼120k (WordPiece) [CLS] ... [SEP], [MASK] WordPiece

XLM-RoBERTa (XLM-R) ∼250k (SentencePiece) ⟨s⟩ ... ⟨/s⟩, ⟨mask⟩ SentencePiece

DeBERTaV3-Base ∼128k (WordPiece-style) [CLS] ... [SEP], [MASK] WordPiece-style

Bangla BERT Base ∼32k (WordPiece) [CLS] ... [SEP], [MASK] WordPiece

IndicBERT ∼200k (SentencePiece) ⟨s⟩ ... ⟨/s⟩, ⟨mask⟩ SentencePiece

Table 1: Comparison of encoder-based models used in our evaluation. Differences arise in vocabulary size,
tokenizer conventions, and tokenization methods. The models include BERT-Base Multilingual (Devlin et al., 2019),
DistilBERT Multilingual (Sanh et al., 2019), XLM-RoBERTa (Liu et al., 2019), DeBERTaV3-Base (He et al., 2021),
Bangla BERT (Sarker, 2020), and IndicBERT (Kakwani et al., 2020).

struct a novel dataset combining four books (novels
and poems) written in the Chakma language, utiliz-
ing Bangla script (see Figure 4 and Table 2). To col-
lect these materials, we directly engaged with schol-
ars whose first language is Chakma. The books
were gathered from libraries on the basis of their
recommendations. However, we acknowledge that
most scholars prioritize the preservation and use of
their own Chakma script. Chakma et al. (2024) also
assigns importance to the Chakma script. Most pre-
trained models lack support for the complex struc-
ture of Chakma scripts. The Bangla-transliterated
Chakma script enables the models to process the
language effectively using their existing tokenizers.

3.1 Corpus Compilation: Sources and Scale

The data were extracted from the image of the
pages of the books using three primary methods:
Pytesseract (Hoffstaetter et al.), Gemini (Comanici
et al., 2025), and manual processing. We used the
PyTesseract OCR model and the Gemini 2.5 Pro
model API separately to independently assess the
quality of text extraction from different systems.

PyTesseract encountered problems with the
recognition of Bangla’s conjunctive characters and
committed frequent spelling errors, as presented
in Figure 2. On the other hand, Gemini 2.5 Pro
with the free API, posed usage restrictions creat-
ing a barrier to scalability as we processed 400
images. Moreover, the Gemini API deviated from
correctness in alphabet recognition, often produced
incomplete sentences, and sometimes omitted en-
tire sentences, affecting the overall quality of the
extracted text. Some examples are presented in
Figure 2.

Due to these limitations, we manually fixed one
book entirely and another book partially, which
we discuss in Section 3.2. The dataset is split into
training, testing and validation subsets, as shown
in Table 2.

3.2 Manual Curation for Linguistic Fidelity

Both the OCR models and LLMs struggled with
accurate processing of conjunct characters, pho-
netic signs, including vowel diacritics, consonant
modifiers, nasalization, silent consonant and incom-
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Dataset
Dataset Split
(sentences)

Tesseract OCR (Tes OCR) train: 4,348
eval: 832
test: 1,173

Gemini OCR train: 3,815
eval: 994
test: 1,173

Manually Fixed Data train: 2,908
eval: 545
test: 1,118

Table 2: Breakdown of training, evaluation, and test
sentence counts for datasets obtained from Tesseract
OCR, Gemini OCR outputs, and manually corrected
data.

pleteness of sentences (Figure 2). These complex
character clusters are fundamental to the Bangla
orthography but often are misinterpreted or omitted
by OCR systems due to their non-linear composi-
tion and script variability (Ali et al., 2023; Guo
et al., 2023). After identifying the limitations and
to ensure the linguistic fidelity of our dataset, 4,570
sentences of OCR and LLM extracted text under-
went a multi-stage manual correction and valida-
tion process. Two co-authors of this paper rectified
these specific errors to guarantee the high integrity
and usability of the final manual dataset. The over-
all workflow of the paper is presented in Figure 1.

4 MLM-tuning for low-resource
languages

We fine-tuned six encoder-based models (including
monolingual, multilingual and regional variants) on
limited Chakma text written in Bangla script and
compared their performance. Table 1 summarizes
the models used in our experiments, including their
vocabulary sizes and tokenization algorithms. All
of these models have been pre-trained on Bangla
before.

These LLMS are trained to predict the probabil-
ity of a masked token/word given the context of
surrounding words. This gives the models a founda-
tional understanding of trained languages that can
be generalized to other tasks (Wolf et al., 2020).
Although each model comes in a similar-sized 12-
layer configuration (270M–300M parameters for
base models), they vary in vocabulary sizes, to-
kenizer types, special tokens, and critically, the
dataset they were first pre-trained on.

For MLM fine-tuning, we masked 15% of tokens
in each input sequence using the standard mask-
ing strategy: 80% replaced with the appropriate
mask token ([MASK] or <mask>), 10% substituted
with random vocabulary tokens, and 10% left un-
changed. We maintained strict separation between
training, validation, and test datasets across all ex-
periments to prevent data leakage.

After multiple trials and errors, in our final con-
figuration, we use the Adam optimizer, with a learn-
ing rate of 2× 10−5 for all the models. The max-
imum number of epochs is 20. The dropout rate
is 0.01. We keep the batch size at 8. For testing
the fine-tuned models, we ensure consistency and
reproducibility across the models.

5 Results

We evaluated the performance across three differ-
ent data processing pipelines (Pytesseract, Gemini
and manual processing) and also compared both
universal and regional model types. Following the
works of Salazar et al. (2019), Rogers et al. (2021)
and Ethayarajh (2019), we evaluate our MLM fine-
tuned models using perplexity, masked token ac-
curacy, precision, recall, F1(macro), pseudo-log-
likelihood (PLL) and predictive entropy.

5.1 Language Modeling Capability

RQ1: How effective are the pre-trained language
models at masked language modeling for the
(monolingual) Chakma language written in the
Bangla script?

Table 3 shows that fine-tuned encoder-based
language models consistently outperform their
pre-trained counterparts for Bangla-transliterated
Chakma. The fine-tuned models achieve accuracies
up to 73.54% (XLM-RoBERTa) and perplexity as
low as 2.899 (DeBERTaV3-Base) on manually cor-
rected data, underscoring the value of adaptation
for low-resource languages. Notably, monolingual
models like DeBERTaV3-Base, which start with
no prior knowledge of Chakma or Bangla script
(0% baseline accuracy), achieve competitive results
post-fine-tuning, demonstrating the robustness of
adaptation even without cross-lingual pre-training.
MLM-tuning also yields a marked reduction in pre-
diction entropy, indicating increased confidence in
masked-token predictions in Table 6.

Our best perplexity score of 2.899 is substan-
tially lower (indicating better performance) than
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Model
Accuracy (%) ↑ Perplexity ↓

Without
MLM

With
MLM Performance

Without
MLM

With
MLM Performance

DeBERTaV3-Base 0.00 72.08 +72.08 39329757.5 2.90 -39329754.6

XLM-RoBERTa 46.24 73.54 +27.30 24.39 3.27 -21.12

BERT-Base mBERT 48.43 70.00 +21.57 13.12 4.017 -9.103

DistilBERT Multilingual 38.78 65.08 +26.30 24.284 4.3046 -19.978

Bangla BERT Base 29.87 54.52 +24.65 250.09 11.79 -238.3

IndicBERT 17.54 45.36 +27.82 1823.61 16.79 -1806.82

Table 3: Performance comparison of models before and after MLM fine-tuning using manually annotated Chakma
corpora. Accuracy (%) and perplexity are reported. Lower perplexity indicates better language modeling perfor-
mance.

the perplexity scores reported for BERT on English
datasets (Salazar et al., 2019). We treat this as
an empirical observation rather than definitive evi-
dence of superior absolute performance. This low
perplexity may be an artifact of our dataset char-
acteristics, including its relatively small size and
the specific nature of the data (potentially featur-
ing simpler or more repetitive linguistic structures
compared to diverse English corpora). Hypotheses
for this include reduced lexical diversity or script-
specific tokenization efficiencies in Chakma, but
the exact reasons remain unclear and could be ex-
plored in more detail in future work, perhaps by
evaluating on larger, more varied Chakma datasets.

Outperforming of universal models over re-
gional encoders: From Figure 3 and Table 4,
we observe a consistent advantage for multilin-
gual encoder models (XLM-RoBERTa, BERT-Base
mBERT, DistilBERT Multilingual) and the mono-
lingual DeBERTaV3-Base over regional encoder
models (BanglaBERT, IndicBERT). Because tok-
enizers and vocabulary sizes differ across models,
masked-language accuracy and perplexity are com-
puted on model-specific tokenizations rather than
an identical token sequence. This can potentially
advantage models that produce fewer tokens per
input, since they evaluate fewer positions and may
face fewer rare-subword predictions. However, we
argue that the comparison remains informative: the
vocabularies are not extremely different, and the
underlying dataset is identical for all models, and
that accuracy is not simply determined by token
count (see Table 1 and Table 3).

We analyze two primary factors that influence

Figure 3: Comparison of universal multilingual and
regional encoder models. Each grouped bar chart is
showing the accuracy of pre-trained language models
fine-tuned on manually fixed data, categorized by their
parameter sizes.

model effectiveness: model parameter size and tok-
enization efficiency.

1. Parameter size → tokenization robustness.
Larger multilingual models are trained on broader,
more diverse corpora and typically learn richer sub-
word vocabularies. This reduces out-of-vocabulary
occurrences, over-fragmentation, and tokenization
drift, which can otherwise harm downstream per-
formance. These effects can cause some tokenizers
to produce 2–3 times more tokens for the same
input (see Figure 3) (Rust et al., 2020).

2. Tokenizer efficiency → evaluation metrics.
A smaller number of tokens allows each token to
carry more semantic context and reduces prediction
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Model

Manual Tesseract Gemini

Self-Finetuned Manual-Finetuned Self-Finetuned Manual-Finetuned

Acc.(↑) PPL(↓) Acc.(↑) PPL(↓) Acc.(↑) PPL(↓) Acc.(↑) PPL(↓) Acc.(↑) PPL(↓)

DeBERTaV3-Base 72.08 2.90 46.94 7.82 46.52 9.75 46.86 9.12 45.77 10.01

XLM-RoBERTa 73.54 3.27 30.28 54.39 29.14 77.74 28.70 80.16 29.67 78.04

BERT-Base mBERT 70.00 4.02 32.91 27.50 31.56 40.59 31.75 44.16 31.23 42.35

DistilBERT Multilingual 65.08 4.30 31.64 29.05 29.63 43.91 30.49 43.20 30.04 41.96

Bangla BERT Base 54.52 11.79 22.17 299.54 20.19 384.28 20.71 483.57 20.86 467.25

IndicBERT 45.36 16.79 23.04 83.67 24.05 80.18 23.64 97.62 23.12 103.10

Table 4: Impact of data quality on model performance. Accuracy (%) and Perplexity (PPL) are reported for
each model fine-tuned on manually annotated, Tesseract-processed, and Gemini-processed data. In our table,
Self-Finetuned refers to training and evaluating each model on the same dataset, while Manual-Finetuned involves
training on manually corrected data but evaluating on other test datasets like Tesseract or Gemini test sets.

noise for masked positions. Over-fragmentation,
by contrast, spreads probability mass across many
rare subwords, penalizing sequence-level scoring
and hurting pseudo-log-likelihood (PLL) (Kudo
and Richardson, 2018).

5.2 Impact of Data Quality
RQ2: In the context of the morphologically rich
Bangla-transliterated Chakma, how does the OCR
noise of data affect MLM performance?

Building on the findings from RQ1, where fine-
tuning encoder-based models on manually cor-
rected Chakma data demonstrated strong improve-
ments in masked language modeling capabilities,
we now explore the extent to which OCR-induced
noise (stemming from script-specific challenges
like transliteration variations and complex conjunct
consonants) disrupts the learning of morphologi-
cal structures in Bangla transliterated Chakma. In
each case, the models were fine-tuned and evalu-
ated on their respective dataset, which we refer
to as Self-Finetuned in our Table 4. Addition-
ally, we evaluated the model fine-tuned on the
manually corrected dataset against the Tesseract
and Gemini 2.5 Pro test sets, which we denote
as Manually-Finetuned in the Table 4. Due to
transliteration-induced variation with more com-
plex conjunct consonants, the transliterated data
(Bangla-transliterated Chakma) appears morpho-
logically heavier than Bangla.

From the Table 4, we can see that models trained
with Tesseract and Gemini 2.5 Pro processed data
struggled to grasp the Chakma language, show-
ing limited improvements even after fine-tuning,
particularly evident in cases where models like
DeBERTaV3-Base(He et al., 2021) had no initial

understanding of Chakma (Table 3). The fine-
tuning with the manually fixed dataset led to sub-
stantial gains in accuracy, highlighting that the
model learns the affixes, inflections and complex
forms of the language in a better way. Meanwhile,
these models drop their performance when test-
ing on the noisy test dataset. For instance, the
XLM-RoBERTa model achieved its strongest per-
formance with manual data, far surpassing its base-
line and revealing that noisy OCR outputs can actu-
ally degrade model capabilities compared to their
pre-fine-tuned state.

We find a similar pattern when examining per-
plexity across datasets for individual models. From
Table 4, the manual dataset consistently yielded
low perplexity, indicating strong language model-
ing and coherence. However, Tesseract and Gemini
data introduced higher perplexity, often worsen-
ing it beyond the base model’s levels due to inher-
ent noise and errors. This trend holds across all
six models in our experiments, emphasizing how
high-quality data refines predictions while OCR-
generated inaccuracies amplify confusion. Further-
more, when testing manually fine-tuned models on
Tesseract or Gemini data, their perplexity suffered
slightly compared to self-fine-tuned counterparts,
reinforcing the pervasive impact of noise in OCR
pipelines on overall model robustness.

Overall, these results show the critical role of
preserving morphologically accurate data quality
in enhancing model performance for low-resource
indigenous languages like Chakma.
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6 Conclusion

In this work, we introduced a Bangla-transliterated
Chakma dataset, derived from Chakma literature
using Tesseract, Gemini 2.5 Pro OCR and man-
ual transcription. We empirically demonstrate
that pre-trained multilingual language models can
be effectively adapted for the Chakma language
through fine-tuning on this data, establishing a
strong baseline for Masked Language Modeling
for Chakma. Our comprehensive experiments fur-
ther underscore that model performance is highly
sensitive to data quality, and that iterative cleaning
directly enhances model performance. To support
future research, we publicly release our manually
refined dataset. A compelling direction for future
work is to investigate the optimal transliteration
target for low-resource languages. We hypothesize
that for Chakma, which shares significant typo-
logical and lexical similarity with Bangla, translit-
eration into the Bangla script may yield superior
performance compared to the English script, de-
spite the generally stronger pre-training of LLMs
on English. Systematically evaluating this trade-off
between linguistic proximity and model capability
remains an open question.

7 Limitations and Future Work

This study focuses on understanding the potential
of LLM adaptability to low-resource languages.
In our work, we have considered Chakma lan-
guage as a case study. However, our manually
validated Bangla-transliterated Chakma language
dataset contains only 4570 sentences. The sen-
tences are collected from story books, which is not
sufficient to reflect diverse real-world scenarios, es-
pecially in a modern context. So, we aim to expand
our Chakma corpus incorporating more diverse
text sources, including spoken language transcripts,
community-generated contents and parallel trans-
lations. Transliteration of Chakma dataset to Latin
script is another direction of research following the
works of Muller et al. (2020). If such a dataset ex-
ists, we can test the hypothesis that transliterating
Chakma to a related language (Bangla) as opposed
to the strongest language (English) may yield better
performance. Inspired by Devlin et al. (2019), we
can test our fine-tuned model for Next Sentence
Prediction (NSP) accuracy to get a better under-
standing of how well our model is understanding
the Chakma language. Improving OCR accuracy to
extract the text with a better performance for con-

junct characters, phonetic signs including vowel
diacritics, consonant modifiers, nasalization, and
others is also a potential direction for improvement.
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A Appendix

Table 5: Model Fine-tuned on Manual Data: Cross-Test
Performance

Model Data Loss Perplexity
Accuracy(%)

(masked token acc.) Precision Recall F1_macro
Prediction
Entropy

Pseudo-log
likelihood

Evaluated
Tokens (sentences)

manual_roberta
manual 3.1942 24.3903 46.24 0.3432 0.2799 0.2876 2.8258 -3.1910 8092 (431)
teserrect 4.3534 77.7443 29.14 0.2502 0.1469 0.1603 2.7436 -4.3550 10713 (569)

gemini-2.5-pro 4.3573 78.0479 29.67 0.253 0.1576 0.1677 2.7591 -4.3559 10645 (569)

manual_bert
manual 1.3905 4.017 70 0.5107 0.4353 0.4512 1.0178 -1.3916 9011 (495)
teserrect 3.7036 40.5924 31.56 0.2886 0.1837 0.1974 2.123 -3.7023 12198 (657)

gemini-2.5-pro 3.7461 42.3548 31.23 0.2738 0.1716 0.1880 2.1382 -3.7426 12445 (657)

manual_distilbert
manual 1.4740 4.3668 67.10 0.4803 0.4074 0.4074 1.2122 -1.4742 9180 (495)
teserrect 3.7822 43.9145 29.63 0.233 0.1415 0.1521 2.3025 -3.7787 12516 (657)

gemini-2.5-pro 3.7368 41.9629 30.04 0.2357 0.1568 0.1636 2.3025 -3.7411 12424 (657)

manual_debarta
manual 1.0644 2.8991 72.08 0.452 0.3549 0.3724 0.8393 -1.0654 16202 (864)
teserrect 2.2775 9.7526 46.52 0.1911 0.1402 0.1446 1.3831 -2.2782 20466 (1085)

gemini-2.5-pro 2.3037 10.0116 45.77 0.1999 0.1460 0.1515 1.3957 -2.3066 20402 (1085)

sagorbangla
manual 2.4675 11.7925 54.52 0.367 0.2663 0.2861 2.6335 -2.4707 18587 (986)
teserrect 6.1659 476.2059 20.45 0.1542 0.0979 0.1042 3.9245 -6.1638 8216 (434)

gemini-2.5-pro 6.2530 519.5888 20.51 0.1343 0.0826 0.0886 3.9889 -6.2558 8148 (434)

IndicBERT
manual 2.4492 11.5791 52.75 0.4337 0.2994 0.3297 2.4188 -2.4546 6627 (351)
teserrect 4.6562 105.2307 23.03 0.2572 0.1140 0.1385 3.7807 -4.6625 8392 (429)

gemini-2.5-pro 4.5815 97.6632 23.19 0.2964 0.1357 0.1649 3.7785 -4.5871 8251 (429)

Table 6: Model Performance Comparison

Model Data Type Loss Perplexity
Accuracy

(masked token accuracy) Precision Recall F1_macro
Prediction
Entropy

Pseudo-log-
likelihood Tokens

BERT-Base
Multilingual (cased)

manual
base 2.5744 13.1234 48.43% 0.4173 0.3144 0.3321 2.3547 -2.5763 9126 (495)

finetuned 1.3905 4.017 70% 0.5107 0.4353 0.4512 1.0178 -1.3916 9011 (495)

teserrect
base 3.8187 45.5459 25.05% 0.2491 0.1507 0.1640 3.3034 -3.8194 12371 (657)

finetuned 3.3143 27.5039 32.91% 0.2882 0.1706 0.1889 2.6401 -3.3211 12493 (657)

gemini-2.5-pro
base 3.7713 43.4369 26.19% 0.2492 0.1543 0.1695 3.2742 -3.7731 12338 (657)

finetuned 3.7878 44.1608 31.75% 0.2391 0.1821 0.1855 2.1291 -3.7898 12353 (657)

DistilBERT
Multilingual (cased)

manual
base 3.1898 24.284 38.78% 0.3030 0.2044 0.2135 3.2877 -3.1989 9106 (495)

finetuned 1.4597 4.3046 65.08% 0.5070 0.4045 0.4323 1.4180 -1.4636 8796 (439)

teserrect
base 4.2519 70.2371 20.10% 0.2064 0.1030 0.1090 3.8775 -4.2527 12126 (657)

finetuned 3.3691 29.052 31.64% 0.2845 0.1699 0.1872 2.6530 -3.3700 1197 (657)

gemini-2.5-pro
base 4.2025 66.8516 20.30% 0.2175 0.1087 0.1150 3.8539 -4.2038 12459 (657)

finetuned 3.7658 43.197 30.49% 0.2533 0.1701 0.1811 2.3147 -3.7675 12353 (657)

XLM-RoBERTa
(XLM-R)

manual
base 3.1942 24.3903 46.24% 0.3432 0.2799 0.2876 2.8258 -3.1910 8092 (431)

finetuned 1.1858 3.2732 73.54% 0.5677 0.5114 0.5219 1.0693 -1.1918 8043 (431)

teserrect
base 4.5293 92.6939 25.79% 0.2294 0.1498 0.1619 4.0378 -4.5321 10653 (569)

finetuned 3.14 54.39 30.28% 0.2634 0.1554 0.1719 3.2284 -3.9981 10327 (569)

gemini-2.5-pro
base 4.5354 93.2627 25.72% 0.2213 0.1417 0.1552 4.0543 -4.5400 10762 (569)

finetuned 4.3840 80.1618 28.70% 0.2421 0.1575 0.1631 2.8692 -4.3910 10620 (569)

DeBERTaV3
Base

manual
base 17.4875 39329757.5 0% 0.0000 0.0000 0.0000 7.8197 -17.4848 16457 (864)

finetuned 1.0644 2.8991 72.08% 0.4520 0.3549 0.3724 0.8393 -1.0654 16202 (864)

teserrect
base 14.6398 2280263.447 0% 0.0000 0.0000 0.0000 7.8999 -14.6415 20447 (1085)

finetuned 2.0572 7.8241 46.94% 0.3072 0.1697 0.1859 1.562 -2.0610 20477 (1085)

gemini-2.5-pro
base 16.1899 10744904.22 0% 0.0000 0.0000 0.0000 8.1224 -16.1899 20398 (1085)

finetuned 2.2105 9.1200 46.86% 0.2412 0.1576 0.1688 1.4322 -2.2130 20509 (1085)

Bangla BERT
Base

manual
base 5.5218 250.0904 29.87% 0.2338 0.1478 0.1637 5.7929 -5.5302 6451 (344)

finetuned 2.4675 11.7925 54.52% 0.3670 0.2663 0.2861 2.6335 -2.4707 18587 (986)

teserrect
base 6.8747 967.5296 15.67% 0.1516 0.0860 0.0981 6.6578 -6.8720 8129 (434)

finetuned 5.7022 299.5393 22.17% 0.1598 0.1039 0.1116 4.2600 -5.7041 8167 (434)

gemini-2.5-pro
base 6.8133 909.9072 16.95% 0.1514 0.0847 0.0967 6.5669 -6.8131 8256 (434)

finetuned 6.1469 467.2527 20.86% 0.1442 0.0888 0.0953 3.9319 -6.1402 8179 (434)

IndicBERT

manual
base 7.5091 1824.6141 17.54% 0.3636 0.1131 0.1489 5.3301 -7.5190 18403 (971)

finetuned 2.8209 16.7924 45.36% 0.4261 0.2239 0.2693 2.8646 -2.8273 18418 (971)

teserrect
base 8.0048 2995.1897 12.62% 0.2703 0.0822 0.1060 5.4509 -8.0154 8065 (429)

finetuned 4.4269 83.6677 23.04% 0.2744 0.1141 0.1434 3.9951 -4.4268 8046 (429)

gemini-2.5-pro
base 8.0774 3220.7776 12.42% 0.2762 0.0784 0.1026 5.4241 -8.0825 8130 (429)

finetuned 4.5811 97.6174 23.64% 0.2733 0.1186 0.1470 3.7354 -4.5813 8046 (429)
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Figure 4: Details of Chakma Storybooks Used in the Dataset
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