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Abstract
Adapting large pre-trained language models
(LLMs) to downstream tasks typically requires
fine-tuning, but fully updating all parameters
is computationally prohibitive. Parameter-
Efficient Fine-Tuning (PEFT) methods like
Low-Rank Adaptation (LoRA) reduce this cost
by updating a small subset of parameters. How-
ever, the standard approach of jointly training
LoRA adapters and a new classifier head from
a cold start can lead to training instability, as
the classifier chases shifting feature represen-
tations. To address this, we propose LP-FT-
LORA , a novel three-stage training framework
that decouples head alignment from represen-
tation learning to enhance stability and perfor-
mance. Our framework first aligns the classifier
head with the frozen LM backbone via linear
probing, then trains only the LoRA adapters
to learn task-specific features, and finally per-
forms a brief joint refinement of the head and
adapters. We conduct extensive experiments
on five Bangla NLP benchmarks across four
open-weight compact transformer models. The
results demonstrate that LP-FT-LORA consis-
tently outperforms standard LoRA fine-tuning
and other baselines, achieving state-of-the-art
average performance and showing improved
generalization on out-of-distribution datasets.
Code for this paper is available at https://
github.com/tomal66/lp-ft-lora.

1 Introduction

The paradigm of pre-training and fine-tuning has
become the de-facto standard for natural language
processing (NLP), with large language models
(LLMs) based on the Transformer architecture (De-
vlin et al., 2019) demonstrating remarkable capabil-
ities across a wide array of tasks (Zhao et al., 2024).
To adapt these powerful but general-purpose mod-
els to specific downstream applications, fine-tuning
is essential. However, updating all the parameters
of a multi-billion parameter model is computation-
ally extensive, requiring substantial memory and

GPU resources. This has spurred the development
of Parameter-Efficient Fine-Tuning (PEFT) meth-
ods.

PEFT techniques aim to adapt LLMs by updat-
ing only a small fraction of their total parame-
ters, drastically reducing the computational bur-
den while often matching or even exceeding the
performance of full fine-tuning. Among these,
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
has emerged as a particularly effective and widely
adopted method. LoRA injects trainable low-rank
matrices into the model’s layers, allowing for ef-
ficient task-specific adaptation without modifying
the original pre-trained weights.

Concurrently, linear probing remains a canoni-
cal and lightweight transfer learning protocol (Ku-
mar et al., 2022). In this approach, the entire pre-
trained LM backbone is frozen, and only a newly
added classification head is trained. While fast and
memory-efficient, its success hinges on the strong
assumption that the downstream task’s classes are
already linearly separable in the model’s frozen
feature space. This assumption often breaks down
under significant domain shifts, limiting its effec-
tiveness for more complex adaptation scenarios.

Although both LoRA and linear probing are pow-
erful, they present distinct challenges when applied
in isolation. Standard LoRA fine-tuning, which typ-
ically involves jointly training the LoRA adapters
(ϕLoRA) and a randomly initialized classifier head
(ϕC), can suffer from training instability. The clas-
sifier head must learn to interpret features that are
themselves being modified, a "moving target" prob-
lem that can lead to noisy gradients and slow con-
vergence (Rajput and Mehta, 2025). On the other
hand, linear probing’s inability to adapt the back-
bone’s representations makes it unsuitable for tasks
where the pre-trained features are insufficient.

In this paper, we identify and address a criti-
cal gap: the need for a framework that systemat-
ically stabilizes the fine-tuning process while en-
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abling robust representation learning. We propose
LP-FT-LORA , a novel three-stage fine-tuning
framework that explicitly decouples classifier head
alignment from adapter-based representation learn-
ing. LP-FT-LORA mitigates the instabilities of
standard LoRA fine-tuning and overcomes the rep-
resentational rigidity of simple linear probing. Our
contributions are threefold:

• We introduce LP-FT-LORA , a novel three-
stage training framework that synergistically
combines linear probing and LoRA for effi-
cient and stable adaptation of LLMs.

• Through extensive experiments on five Ben-
gali NLP datasets and four different model
architectures, we demonstrate that LP-FT-
LORA consistently outperforms standard
LoRA fine-tuning and other strong baselines.

• We provide a detailed analysis of the frame-
work’s robustness to out-of-distribution data
and conduct comprehensive ablation studies
to dissect the impact of key hyperparameters.

The rest of this paper is organized as follows:
Section 2 reviews related work, Section 3 provides
preliminaries on the core techniques, Section 4 de-
tails our proposed method, Section 5 describes the
experimental setup, Section 6 presents our results
and analysis, and Section 7 concludes the paper.

2 Related Work

In this section, we situate our approach within prior
work on linear probing, parameter-efficient fine-
tuning, and multi-stage fine-tuning, highlighting
how existing methods motivate and contrast with
our proposed framework.

2.1 Linear Probing
Linear probing and fine-tuning are canonical trans-
fer learning protocols, where staged approaches
like LP-FT improve performance and preserve rep-
resentations under distribution shifts (Tomihari and
Sato, 2024; Kumar et al., 2022). Advances in lin-
ear probing evaluation have introduced more robust
metrics and demonstrated its utility in separating
evaluation contexts from deployment prompts (Thi-
lak et al., 2024; Nguyen et al., 2025).

2.2 Parameter Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) methods,
such as adapter modules and the widely adopted

LoRA, adapt large models by updating a small
fraction of parameters (Houlsby et al., 2019; Hu
et al., 2022). Recent LoRA variants enhance per-
formance by using different learning rates, dynami-
cally allocating parameter budgets based on layer
importance, or employing layer-wise adaptive rank
allocation (Hayou et al., 2024; Mao et al., 2024; Gu
et al., 2025). Other extensions explore multiplica-
tive updates or combine quantization with adaptive
rank selection for highly compressed models (Bi-
hany et al., 2025; Kim et al., 2024). The theoretical
underpinnings for these methods are provided by
the delta-tuning framework, with recent insights
also revealing benefits of non-zero initialization
practices (Ding et al., 2023; Li et al., 2025).

2.3 Multi-stage Fine-tuning

Multi-stage fine-tuning has been explored through
progressive frameworks that mitigate catastrophic
forgetting and in continual learning settings that
manage knowledge conflicts (Hou et al., 2024;
Guan et al., 2025). Hybrid PEFT methods and ad-
vanced multi-task architectures enable uncertainty
quantification and fine-grained task specialization
(Chai et al., 2025; Ning et al., 2025). While linear
probing and LoRA are each well studied, a single
multi-stage framework that integrates linear prob-
ing with LoRA fine-tuning for domain-specialized
classification appears to be unaddressed.

3 Preliminaries

This section formalizes the linear probing fine-
tuning and LoRA fine-tuning protocols and delin-
eates the research scope that motivates our pro-
posed framework.

3.1 Linear Probing Fine-Tuning

Kumar et al. (Kumar et al., 2022) explored the the-
oretical foundations and operational mechanisms
of linear probing, particularly in the context of out-
of-distribution (OOD) tasks. Their study also com-
pared the performance of linear probing and full
fine-tuning. The experimental results demonstrated
that while fine-tuning outperforms linear probing
on in-distribution (ID) tasks, it struggles with gen-
eralization on OOD tasks. Based on these obser-
vations, the authors proposed a hybrid approach
called Linear Probing Fine-Tuning (LP-FT).

Omitting theoretical details, the operational
workflow of LP-FT is as follows. Given a pre-
trained LM backbone denoted as ϕM , a classifier
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head ϕC is appended on top. In standard fine-
tuning, the entire network [ϕLM , ϕC ] is jointly
trained based on the loss from the downstream task.
In contrast, linear probing keeps ϕLM frozen and
trains only the classifier ϕC . LP-FT introduces a
two-stage training strategy:

Stage 1 (Linear Probing): The backbone ϕLM

is frozen, and only the classifier ϕC is trained using
the downstream loss.

Stage 2 (Fine-Tuning): Both the backbone ϕLM

and the previously trained classifier ϕC are jointly
fine-tuned on the downstream task.

This staged approach utilizes the robustness of
linear probing in the initial phase and the represen-
tational flexibility of fine-tuning in the later phase,
resulting in improved generalization across both
ID and OOD settings.

3.2 LoRA Fine-Tuning

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a
Parameter-Efficient Fine-Tuning (PEFT) technique
designed to reduce the computational and memory
overhead associated with traditional fine-tuning of
large pre-trained models. Rather than updating all
model parameters, LoRA introduces a low-rank
decomposition to capture task-specific adaptations
while training a classifier head jointly for the tar-
get task. A visual architecture of the procedure is
shown in Figure 1a.

Let the pre-trained model backbone be denoted
as ϕLM , with its associated weight matrix W. Dur-
ing LoRA fine-tuning, W remains frozen. Instead
of directly updating W, LoRA introduces a learn-
able, low-rank update matrix ∆W, defined as:

∆W = ABT

where A ∈ Rd×r and B ∈ Rr×d, with r ≪ d.
This low-rank factorization ensures that the number
of additional trainable parameters is significantly
smaller than in full-rank updates. The matrices
A and B encode the task-specific information re-
quired for adaptation, with A representing learned
transformations across output dimensions and B
across input dimensions. We denote the LoRA
adapter parameters as ϕLoRA = {A,B}.

The final adapted weight matrix W′ used during
inference is given by:

W′ = W +∆W = W +ABT

In addition to the LoRA adapters ϕLoRA, a task-
specific classifier head ϕC ∈ Rh×C is introduced,
where h is the hidden dimension of the backbone
and C is the number of classes. This classifier
head is randomly initialized and trained jointly with
ϕLoRA, enabling the model to learn both feature
adaptations and classification mappings simultane-
ously during fine-tuning.

3.3 Research Scope

With the backbone ϕLM frozen in Linear Probing
Fine-Tuning, training only the head ϕC implicitly
assumes downstream classes are linearly separable
in the pretrained feature space. Therefore, for under
domain shift, this approach often fails, and ϕC can
merely reweight insufficient features.

In the case of LoRA Fine-Tuning, jointly opti-
mizing {ϕLoRA, ϕC} from a cold start requires rep-
resentation learning and classification. It induces
noisy gradients and acute sensitivity to LoRA rank
r and learning rate (Hayou et al., 2024). Further-
more, if ϕC is trained jointly from scratch, the head
can chase moving features, which shifts ϕLM ’s
pretrained representations, resulting in slow con-
vergence (Tomihari and Sato, 2024).

In our proposed framework LP-FT-LORA , we
mitigate the above-mentioned issues through a
three-stage fine-tuning process. To the best of our
knowledge, LP-FT-LORA is the first framework
to combine linear probing of the classifier (ϕC),
LoRA-only probing of adapters (ϕLoRA) on a frozen
backbone (ϕLM ), and a brief joint refinement of
ϕLoRA, ϕC for explicit decoupling of head align-
ment from adapter representation learning.

4 Proposed Method: LP-FT-LORA

In this work, we propose LP-FT-LORA , a three-
stage training framework that integrates LP-FT into
a LoRA-augmented network. The objective is to
enable efficient and effective adaptation to down-
stream tasks through structured, progressive train-
ing.

Let ϕLM represent the frozen pre-trained lan-
guage model backbone. The LoRA-specific train-
able parameters associated with this model are de-
noted as ϕLoRA, and the classifier head is repre-
sented by ϕC . The overall model architecture can
thus be described as [ϕLM , ϕLoRA, ϕC ]. The over-
all design is visualized in Figure 1b. The training
process proceeds in the following three stages:

Stage 1: Linear Probing. In the initial stage,
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Figure 1: Standard LoRA Fine-tuning and proposed LP-FT-LORA architecture

the pretrained language model’s backbone ϕLM

remains frozen, and a classifier head ϕC is added
on top. Only the classifier ϕC is trained using a
downstream loss function—specifically, the cross-
entropy loss in our classification setup. This step
allows the classifier to adapt to the output space of
the frozen backbone.

Stage 2: LoRA Linear Probing. In this stage,
we initialize the LoRA parameters ϕLoRA with ran-
domly initialized low-rank matrices A and B, in-
serted into the backbone ϕLM . The previously
trained classifier ϕC is retained, but both ϕLM and
ϕC are kept frozen during this phase. Only the
LoRA parameters are updated. The goal of this
stage is to enable the LoRA layers to learn task-
specific or domain-specific representations without
modifying the backbone or classifier.

Stage 3: Fine-Tuning. In the final stage, we
jointly train the LoRA parameters ϕLoRA and the
classifier head ϕC , while continuing to keep the
backbone ϕLM frozen. Crucially, the training re-
sumes from the previously learned weights: ϕLoRA
from Stage 2 and ϕC from Stage 1. This step re-
fines both the adaptation layers and the classifier
for improved performance on the downstream task.

5 Experimental Setup

This section details the datasets, model architec-
tures, training configuration, and baseline methods
used to evaluate LP-FT-LORA .

5.1 Datasets

We evaluate LP-FT-LORA across five Bangla
NLP benchmarks covering fake news detection,
sarcasm detection, sentiment analysis, and emotion
recognition. The datasets are:

• BanFakeNews (Hossain et al., 2020): A fake
news detection dataset containing approxi-
mately 48K authentic and 1K fake Bangla
news articles across multiple categories. The
task involves binary classification to deter-
mine whether a news article is authentic or
fake.

• Sarcasm Detection: A Kaggle competition
dataset1 comprising around 50K news head-
lines labeled as either Sarcastic (1) or Not-
Sarcastic (0).

• SentNoB (Islam et al., 2021): A sentiment
analysis dataset of public comments collected
from social media on news and videos, labeled
as Positive, Negative, or Neutral. The dataset
contains 13.5K training samples with 1.5K
validation and 1.5K test samples across 13
different domains.

• Emotion Detection (Irtiza Tripto and Eu-
nus Ali, 2018): A YouTube comments dataset
for emotion classification with five categories:
anger/disgust, joy, sadness, fear/surprise, and
none. The dataset captures diverse emotional
expressions in Bangla user-generated content.

• Sentiment Classification (Irtiza Tripto and
Eunus Ali, 2018): A fine-grained sentiment
analysis task using the same comment cor-
pus as emotion detection, with five sentiment
classes: Strongly Positive, Positive, Neutral,
Negative, and Strongly Negative.

• EmoNoBa (Islam et al., 2022): A dataset for
fine-grained, multi-label emotion analysis on

1https://www.kaggle.com/competitions/
nlp-competition-cuet-ete-day-2022/data

215

https://www.kaggle.com/competitions/nlp-competition-cuet-ete-day-2022/data
https://www.kaggle.com/competitions/nlp-competition-cuet-ete-day-2022/data


noisy Bangla texts collected from social me-
dia. It includes labels for six basic emotions:
joy, sadness, anger, disgust, fear, and surprise.

• BanglaSarc (Apon et al., 2022): A dataset for
sarcasm detection in Bangla, compiled from
comments on public Facebook posts. The task
is a binary classification to identify text as
either sarcastic or not sarcastic.

5.2 Model Architecture

We evaluate LP-FT-LORA across four
transformer-based open-weight models rang-
ing from 360M to 1.5B parameters, covering
compact to small scales. The selected backbones
are: SmolLM2-360M, Qwen3-0.6B, Gemma3-1B,
and Qwen2.5-1.5B. Their specifications are
summarized in Table 1.

Model Params Layers Hidden
SmolLM2-360M 360M 24 960
Qwen3-0.6B 600M 24 1024
Gemma3-1B 1B 18 2048
Qwen2.5-1.5B 1.5B 28 1536

Table 1: Architecture specifications of backbone mod-
els.

For adaptation, we apply LoRA with task-
specific classifier heads that match hidden dimen-
sions and output 2, 3, or 5 classes depending on the
task.

5.3 Training Configuration

On each stage, we train with AdamW optimizer
under a cosine learning rate schedule with a warm-
up ratio of 0.03. We use a maximum sequence
length of 512, a base learning rate of 2× 10−4, 4
training epochs, and a per-device batch size of 8
with gradient accumulation of 8 (effective batch
size 8× 8 = 64 sequences per update on a single
device). We employ the SDPA attention path for
training in this framework.

For LoRA, we use rank r = 16, targeting atten-
tion and MLP projections. The scaling factor α is
16 across all models, with a dropout rate of 0.05.
All experiments are conducted on a single NVIDIA
Tesla P100 (16 GB) GPU in the Kaggle environ-
ment. Implementations use Python 3.11 with Py-
Torch, Hugging Face transformers, datasets,
accelerate, and peft.

5.4 Baseline Methods
We compare LP-FT-LORA against the following
baseline approaches:

• Linear Probing (LP): Training only the clas-
sifier head ϕC while freezing backbone ϕLM .

• Standard LoRA Fine-Tuning: Joint training
of LoRA parameters ϕLoRA and classifier ϕC

from random initialization.

• LoRA Linear Probing: Training of LoRA
parameters ϕLoRA and keeping the classifier
ϕC frozen.

6 Result and Analysis

This section presents the empirical results of LP-
FT-LORA and analyzes their implications across
tasks, models, and baselines along with detailed
ablation studies.

6.1 Performance of LP-FT-LORA
Analysis Across Datasets. As shown in Ta-
ble 2, LP-FT-LORA demonstrates consistent
improvements across diverse task types. On
the BanFake fake news detection dataset, LP-
FT-LORA achieves the best performance across
all four backbone models, with accuracies rang-
ing from 94.83% (SmolLM2-360M) to 98.82%
(Gemma3-1B), outperforming Standard-LoRA-FT
by 0.82–3.05 percentage points. For the Emo-
tion classification task, LP-FT-LORA consis-
tently secures the top position on Qwen3-0.6B and
Gemma3-1B, showing notable gains over Standard-
LoRA-FT, with the most significant improvement
observed on Qwen3-0.6B (58.48% vs. 52.25%).
On SmolLM2-360M, LP-FT-LORA achieves the
second-best emotion score (50.19%), marginally
behind Standard-LoRA-FT (51.03%). The Sar-
casm detection task also favors LP-FT-LORA ,
achieving best or tied-best results across all models
with accuracies between 93.65% and 95.36%. In
contrast, on the Sentiment classification task, LP-
FT-LORA exhibits more mixed results, achieving
the best score on SmolLM2-360M (58.81%), while
being slightly outperformed by Standard-LoRA-
FT or LoRA Linear Probing on other models. This
variability suggests that the three-stage training ap-
proach is particularly effective for tasks requiring
nuanced semantic understanding and binary clas-
sification (emotion, fake news, sarcasm) but may
offer diminishing returns on certain fine-grained
multi-class sentiment distinctions.
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Models SentNoB BanFake Sarcasm Emotion Sentiment Avg

Qwen3-0.6B
Standard-LoRA-FT 69.99% 96.59% 94.37% 52.25% 65.21% 75.68%
Linear Probing 58.89% 87.66% 90.21% 42.91% 56.00% 67.13%
LoRA Linear Probing 68.10% 97.18% 94.41% 54.33% 64.87% 75.78%
LP-FT-LoRA 71.31% 97.41% 94.54% 58.48% 63.52% 77.05%

Gemma3-1B
Standard-LoRA-FT 71.69% 95.77% 95.26% 52.94% 63.97% 75.93%
Linear Probing 63.18% 94.36% 91.96% 43.60% 55.44% 69.71%
LoRA Linear Probing 71.25% 98.47% 95.36% 53.98% 65.10% 76.83%
LP-FT-LoRA 72.07% 98.82% 95.36% 55.02% 63.75% 77.00%

SmolLM2 360M
Standard-LoRA-FT 67.91% 93.15% 91.01% 51.03% 57.19% 72.06%
Linear Probing 50.44% 84.72% 88.37% 23.18% 45.23% 58.39%
LoRA Linear Probing 62.61% 92.48% 92.72% 38.64% 53.76% 68.04%
LP-FT-LoRA 65.70% 94.83% 93.65% 50.19% 58.81% 72.64%

Qwen2.5-1.5B
Standard-LoRA-FT 69.36% 96.12% 94.45% 56.10% 62.74% 75.75%
Linear Probing 59.21% 86.49% 90.02% 32.18% 51.07% 63.79%
LoRA Linear Probing 68.60% 96.94% 94.37% 53.29% 65.21% 75.68%
LP-FT-LoRA 67.91% 97.88% 94.68% 56.06% 62.96% 75.90%

Table 2: Evaluation results (accuracy) on five datasets (SentNoB, BanFake, Sarcasm, Emotion, Sentiment) for four
base models under different training strategies. Bold marks the best score within each model; underline marks the
second-best.

Model-wise Comparison. Across all four back-
bone architectures, LP-FT-LORA achieves
the highest average accuracy: Qwen3-0.6B
(77.05%), Gemma3-1B (77.00%), SmolLM2-
360M (72.64%), and Qwen2.5-1.5B (75.90%),
demonstrating its robustness across different model
families and parameter scales. Notably, on Qwen3-
0.6B and Gemma3-1B, LP-FT-LORA outper-
forms Standard-LoRA-FT by 1.37 and 1.07 per-
centage points, respectively. On SmolLM2-360M,
LP-FT-LORA surpasses Standard-LoRA-FT by
0.58 percentage points (72.64% vs. 72.06%), while
on Qwen2.5-1.5B, the improvement is 0.15 per-
centage points (75.90% vs. 75.75%). Compared to
the two-stage LoRA Linear Probing approach, LP-
FT-LORA consistently delivers superior perfor-
mance, with improvements of 0.17–4.60 percent-
age points, indicating that the additional fine-tuning
stage (Stage 3) provides meaningful refinement.
The gap between LP-FT-LORA and Linear Prob-
ing is substantial across all models, underscoring
the critical role of LoRA adaptation in the proposed
framework.

Impact of Model Size. The experimental results
reveal a non-linear relationship between model
size and the effectiveness of LP-FT-LORA . The

360M-parameter SmolLM2 achieves an average
accuracy of 72.64%, while increasing model size
to 600M (Qwen3-0.6B) yields a substantial 4.41-
point improvement to 77.05%. Further scaling
to 1B parameters (Gemma3-1B) provides only
marginal changes (77.00%, essentially equivalent
performance), and the 1.5B-parameter Qwen2.5
model achieves 75.90%, lower than the smaller
Qwen3-0.6B and Gemma3-1B. This pattern sug-
gests that LP-FT-LORA is highly effective at
extracting task-specific knowledge from compact
models (600M-1B range), where the progressive
training stages can efficiently leverage limited ca-
pacity. The diminishing returns at 1.5B parameters
may indicate that larger models require different
optimization strategies or that the chosen datasets
reach a performance ceiling around 76-77% aver-
age accuracy, regardless of increased model capac-
ity. Interestingly, Gemma3-1B and Qwen3-0.6B
achieve nearly identical performance despite a sig-
nificant parameter difference, suggesting that archi-
tectural design and pre-training quality may matter
as much as raw model size for Bangla NLP tasks.
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Figure 2: Error analysis with Gemma3-1B, Qwen3-0.6B and SmolLM2-360M on three samples from the SentNoB
dataset.

6.2 Error Analysis.
To assess LP-FT-LORA ’s effectiveness, we an-
alyze three challenging examples from the Sent-
NoB dataset using Gemma3-1B, Qwen3-0.6B, and
SmolLM2-360M with both Standard LoRA (Std-
LoRA) and LP-FT-LORA . We identify two main
error patterns: (i) confusion between similar senti-
ment classes and (ii) difficulty with sparse or con-
flicting sentiment cues.

The first example in Figure 2a shows both meth-
ods correctly predicting the label for straightfor-
ward text with clear polarity. This suggests LP-
FT-LORA maintains baseline performance on sim-
ple cases. In the second example (Figure 2b),
Std-LoRA incorrectly predicts Negative/Neutral
due to misleading named entities, while LP-FT-
LORA correctly identifies the Positive sentiment.
This demonstrates LP-FT-LORA ’s improved han-
dling of deceptive lexical cues.

The third example (Figure 2c) contains Bangla
slang and strong language within a policy statement.
The gold label is Neutral, but both methods predict
Negative. This reveals a common bias where infor-
mal language and emphatic expressions override
the actual discourse intent.

6.3 Ablation Studies
We ablate one hyperparameter at a time around
a fixed configuration: LoRA rank r=16, LoRA
scaling α=32, Attn+MLP target modules, batch
size 8, learning rate 2×10−4, and 4 epochs. The
Macro-F1 scores are visualized in Figure 3a for
LoRA and Figure 3b for training hyperparameters.

Impact of LoRA Hyperparameters
Rank. On Sentiment, performance peaks near the
baseline r=16, with both lower (r=8) and higher

(r=32) ranks underperforming. On Emotion, a
smaller adaptation (r=8) is preferable, while larger
ranks yield diminishing returns. Overall, moder-
ate rank values are most reliable across datasets
(Figure 3a).

Scaling factor α. Increasing α improves robust-
ness. For Sentiment, α=64 delivers the strongest
scores, substantially surpassing smaller values.
Emotion also benefits from a higher scale, with
α=64 slightly outperforming α=16 and α=32.
This suggests that stronger LoRA scaling helps
the adapter better fit both tasks when other settings
are fixed (Figure 3a).

Target modules. Updating both Attention and
MLP consistently outperforms targeting a single
block on Sentiment. For Emotion, adapting only
MLP edges out other choices, indicating dataset-
specific sensitivities to where capacity is added. In
practice, Attention+MLP is a safe default; MLP-
only can be competitive for fine-grained tasks (Fig-
ure 3a).

Impact of Training Hyperparameters
Batch size. The baseline 8 works best for Sen-
timent, whereas a smaller batch (4) is preferable
for Emotion. This mirrors the common trade-off
that smaller batches can aid optimization on noisier,
fine-grained tasks (Figure 3b).

Learning rate. A moderate step size is con-
sistently favorable: 2×10−4 is optimal on both
datasets, while too small harms performance (Fig-
ure 3b).

Training epochs. With other settings fixed, Senti-
ment peaks at 4 epochs and degrades with fewer or
more updates, suggesting mild overfitting beyond
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(a) LoRA Hyperparameter Ablation Study

(b) Training Hyperparameter Ablation Study

Figure 3: Hyperparameter ablation studies on Gemma3-1B. The darker bars represent the Sentiment dataset and
lighter bars represent the Emotion dataset.

the optimum. Emotion benefits from a slightly
longer schedule, with best results at 6 epochs. Tun-
ing the stopping point remains important even for
lightweight adapters (Figure 3b).

Across tasks, (i) moderate LoRA capacity (r≈8-
16) with higher scaling (α≈64) is effective; (ii)
adapting both Attention and MLP is a strong default,
though MLP-only can win on Emotion; and (iii) a
mid-range training setup (batch 4-8, LR 2×10−4,
4–6 epochs) consistently yields the best trade-off
between stability and accuracy.

6.4 Cross-Dataset Evaluation
To evaluate the generalization ability of LP-FT-
LORA , we conduct cross-dataset experiments by
training models on one dataset and directly testing,
in a zero-shot manner, on another dataset from
the same domain. We compare the performance
of our proposed LP-FT-LORA against Standard-
LoRA fine-tuning across sentiment, emotion, and
sarcasm domains using Gemma3-1B and Qwen3-
0.6B backbones.

Sentiment. Transferring between the Sentiment
Classification dataset and SentNoB demonstrates
clear advantages for LP-FT-LORA . When trained
on Sentiment Classification and tested on SentNoB,
LP-FT-LORA achieves 55.55% (Gemma3-1B)
and 51.70% (Qwen3-0.6B), surpassing Standard-

LoRA by 1.33 and 2.20 percentage points, re-
spectively. Conversely, when trained on SentNoB
and tested on Sentiment Classification, LP-FT-
LORA yields stronger gains, improving by 4.37
points on Gemma3-1B and 1.68 points on Qwen3-
0.6B.

Emotion. We examine transfer between Emo-
tion Detection and EmoNoBa. Both models
achieve nearly identical performance here, with
Standard-LoRA slightly outperforming LP-FT-
LORA (34.98% vs. 34.67% for Gemma3-1B, and
35.87% vs. 35.85% for Qwen3-0.6B). This indi-
cates that transferring across fine-grained emotion
datasets remains a considerable challenge, and the
incremental gain from progressive training is less
pronounced compared to other domains.

Sarcasm. Cross-dataset transfer between the Sar-
casm Detection dataset and BanglaSarc shows
consistent improvements with LP-FT-LORA .
On Gemma3-1B, LP-FT-LORA achieves 65.10%
compared to 62.81% with Standard-LoRA, while
on Qwen3-0.6B, it attains 52.27% versus 50.78%.
These results highlight the effectiveness of LP-
FT-LORA in capturing transferable features for
sarcasm recognition, which often relies on subtle
pragmatic cues.
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Gemma3-1B Qwen3-0.6B

Domain Train Dataset Test Dataset LP-FT-LORA Std-LoRA LP-FT-LORA Std-LoRA

Sentiment Sentiment SentNoB 55.55% 54.22% 51.70% 49.50%
SentNoB Sentiment 60.94% 56.57% 51.29% 49.61%

Emotion Emotion EmoNoBa 34.67% 34.98% 35.85% 35.87%
Sarcasm Sarcasm Bangla Sarc 65.10% 62.81% 52.27% 50.78%

Table 3: Cross-dataset evaluation (accuracy). Models are trained on Dataset 1 and evaluated on Dataset 2. Best
score is in bold.

6.5 Computation and Training Time

Model Std LoRA LP-FT LoRA

S1 S2 S3

Qwen3-0.6B 2282 968 2181 2109
Gemma3-1B 2046 769 1861 1963
Qwen2.5-1.5B 4988 2403 4779 4767
SmolLM2-0.3B 2324 942 2144 2136

Table 4: Comparison of the average training time per
epoch (in seconds) between Standard LoRA and LP-
FT-LORA across the previously mentioned dataset for
various model architectures. Here S1 means Stage 1 and
so on

The table 4 presents the average per-epoch train-
ing time (in seconds) for Standard LoRA and LP-
FT-LORA across three. The LP-FT LoRA method
shows notable reductions in training time during
Stage 1 (S1), where models such as Qwen3-0.6B
and Gemma3-1B decrease from 2282 s to 968 s
and from 2046 s to 769 s, respectively. Similar
trends appear for SmolLM2-0.3B (2324 s → 942
s) and Qwen2.5-1.5B (4988 s → 2403 s). In later
stages (S2 and S3), the training time approaches the
Standard LoRA baseline, reflecting the increasing
proportion of parameters being updated.

7 Conclusion

In this work, we introduced LP-FT-LORA , a
novel three-stage fine-tuning framework that in-
tegrates linear probing and LoRA to improve the
adaptation of pre-trained language models for spe-
cialized classification tasks. Our approach method-
ically decouples classifier head alignment from
adapter representation learning by first training the
classifier on frozen features, then training the LoRA
adapters while freezing the LM backbone and clas-
sifier, and finally jointly refining both components.
This structured process is designed to mitigate the
noisy gradients and slow convergence associated
with standard end-to-end fine-tuning.

Our extensive experiments across four language
models and five Bangla NLP datasets demonstrated
that LP-FT-LORA consistently outperforms stan-
dard LoRA fine-tuning and other strong baselines.
While this study confirms the effectiveness of our
method on Bangla classification tasks, future work
could extend the framework to other languages,
larger models, and different task formats, such as
text generation. Further research could also ex-
plore dynamic stage transitions or integrate more
advanced PEFT techniques to build upon these find-
ings.

Limitations

This study has several limitations that should be
acknowledged. The evaluation of the proposed LP-
FT-LORA framework is primarily conducted on
medium-scale transformer models up to 1.5 billion
parameters. Consequently, its effectiveness and
scalability on larger models remain unverified, and
different optimization strategies may be required
for such settings.

The method has been tested exclusively on clas-
sification tasks within the Bangla language domain.
While the results demonstrate strong performance
gains, the generalizability of the approach to other
languages or to different NLP tasks such as text
generation has yet to be established. The multi-
stage training process involves several hyperpa-
rameters and requires careful tuning specific to
each dataset. This tuning complexity may limit
out-of-the-box applicability and could introduce
additional overhead in practical deployments.

Recent studies on transliteration and code-mixed
datasets for Bangla are gaining increased attention
(Fahim et al., 2024; Haider et al., 2024; Ahmed
et al., 2024). It would be valuable to investigate
how our model performs on these alternative text
forms. Instead of focusing solely on standard
Bangla datasets, future work could explore the
model’s effectiveness on transliterated and code-
mixed Bangla data.
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