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Introduction

Welcome to the proceedings of the Shared Tasks at the Third Arabic Natural Language Processing
Conference (ArabicNLP 2025), co-located with EMNLP 2025 in Suzhou, China, November 8–9, 2025.
This volume represents a major achievement in collaborative Arabic NLP research, bringing together a
total of 138 papers from 11 shared tasks — including 11 overview papers and 127 system description
papers from participating teams worldwide. This substantial collection reflects the growing vitality and
maturity of the Arabic NLP research community and showcases the field’s expansion into increasingly
diverse and sophisticated challenges.
This collection highlights the community’s growing interest toward evaluating, aligning, and extending
these models for Arabic — across text, speech, and multimodal domains, as well as culturally grounded
and ethically sensitive applications. This year marks a record milestone for ArabicNLP, featuring the
largest number of shared tasks to date — 11 in total. The process began with 26 submitted shared
task proposals, from which 11 shared tasks were accepted, including 6 formed through successful
mergers. This outcome underscores the community’s strong spirit of collaboration and its collective
effort to design impactful, high-quality shared tasks.

Organization and Participation of the Shared Tasks

The 11 shared tasks at ArabicNLP 2025 are organized into three thematic tracks, each addressing critical
needs and emerging priorities in Arabic language technology. Together, they represent the communi-
ty’s most comprehensive shared task effort to date, covering speech, multimodal processing, text
quality, and cultural and ethical evaluation in the era of large language models (LLMs).

Track 1: Speech and Multimodal Processing This track features four shared tasks that advance Ara-
bic language processing beyond traditional text:

• ImageEval (Arabic Image Captioning) — 8 papers

• Iqra’Eval (Qur’anic Pronunciation Assessment) — 5 papers

• NADI 2025 (Multidialectal Arabic Speech Processing) — 7 papers

• MAHED 2025 (Multimodal Detection of Hope and Hate Emotions in Arabic Content) — 23
papers

These tasks address the pressing need for technologies that can process Arabic across different
modalities and dialectal variations.

Track 2: Text Quality and Generation Assessment This track comprises four shared tasks focused
on evaluating and enhancing Arabic text quality:

• AraGenEval (Arabic Authorship Style Transfer and AI-Generated Text Detection) — 16 pa-
pers

• TAQEEM 2025 (Arabic Quality Evaluation of Essays in Multi-dimensions) — 4 papers

• BAREC 2025 (Arabic Readability Assessment) — 17 papers

• AraHealthQA 2025 (Comprehensive Arabic Health Question Answering) — 15 papers

These tasks tackle essential challenges in automated assessment, generation evaluation, and domain-
specific question answering.
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Track 3: Cultural and Ethical Evaluation of LLMs for Arabic This track introduces three ground-
breaking shared tasks designed to evaluate large language models’ understanding of Arabic culture and
Islamic knowledge:

• IslamicEval (Capturing LLMs’ Hallucination in Islamic Content) — 7 papers

• PalmX 2025 (Benchmarking LLMs on Arabic and Islamic Culture) — 9 papers

• QIAS 2025 (Islamic Inheritance Reasoning and Knowledge Assessment) — 16 papers

These tasks represent a critical step toward ensuring that AI systems appropriately and accurately
represent the cultural and religious contexts of Arabic-speaking communities.

Community Impact and Participation

The remarkable response to this year’s shared tasks — with 127 system submissions across the 11 tasks
— demonstrates the Arabic NLP community’s continued growth and dynamism. Participating teams re-
present a diverse range of institutions across multiple continents, including universities, research centers,
and industry partners, reflecting both the global interest in Arabic NLP and the real-world relevance of
these challenges.
The breadth of methodological approaches presented in these proceedings is particularly noteworthy,
spanning traditional machine learning techniques, state-of-the-art transformer models, retrieval-augmented
generation systems, and multimodal architectures. This methodological diversity not only reflects the
field’s technical maturity but also highlights researchers’ creativity in addressing the unique challenges
posed by Arabic language processing.
The breadth of methodological approaches presented in these proceedings is particularly noteworthy,
spanning traditional machine learning techniques, state-of-the-art transformer models, retrieval-augmented
generation systems, and multimodal architectures. This methodological diversity not only reflects the
field’s technical maturity but also highlights researchers’ creativity in addressing the unique challenges
posed by Arabic language processing.
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Toro, Simon Ostermann and Dietrich Klakow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

MarsadLab at NADI Shared Task: Arabic Dialect Identification and Speech Recognition using ECAPA-
TDNN and Whisper

Md. Rafiul Biswas, Kais Attia, Shimaa Ibrahim, Mabrouka bessghaier and Wajdi Zaghouani 752

Abjad AI at NADI 2025: CATT-Whisper: Multimodal Diacritic Restoration Using Text and Speech
Representations

Ahmad Ghannam, Naif Alharthi, Faris Alasmary, Kholood Al Tabash, Shouq Sadah and Lahouari
Ghouti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

ELYADATA & LIA at NADI 2025: ASR and ADI Subtasks
Haroun Elleuch, Youssef Saidi, Salima Mdhaffar, Yannick Estève and Fethi Bougares . . . . . . . 762

Unicorn at NADI 2025 Subtask 3: GEMM3N-DR: Audio-Text Diacritic Restoration via Fine-tuning
Multimodal Arabic LLM

Mohamed Lotfy Elrefai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767

PalmX 2025: The First Shared Task on Benchmarking LLMs on Arabic and Islamic Culture
Fakhraddin Alwajih, Abdellah El Mekki, Hamdy Mubarak, Majd Hawasly, Abubakr Mohamed

and Muhammad Abdul-Mageed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

Hamyaria at PalmX2025: Leveraging Large Language Models to Improve Arabic Multiple-Choice Que-
stions in Cultural and Islamic Domains

Walid Al-Dhabyani and Hamzah A. Alsayadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790

ISL-NLP at PalmX 2025: Retrieval-Augmented Fine-Tuning for Arabic Cultural Question Answering
Mohamed Gomaa and Noureldin Elmadany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

ADAPT–MTU HAI at PalmX 2025: Leveraging Full and Parameter-Efficient LLM Fine-Tuning for
Arabic Cultural QA

Shehenaz Hossain and Haithem Afli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

CultranAI at PalmX 2025: Data Augmentation for Cultural Knowledge Representation
Hunzalah Hassan Bhatti, Youssef Ahmed, Md Arid Hasan and Firoj Alam . . . . . . . . . . . . . . . . . 809

MarsadLab at PalmX Shared Task: An LLM Benchmark for Arabic Culture and Islamic Civilization
Md. Rafiul Biswas, Shimaa Ibrahim, Kais Attia, Firoj Alam and Wajdi Zaghouani . . . . . . . . . . 818

Star at PalmX 2025: Arabic Cultural Understanding via Targeted Pretraining and Lightweight Fine-
tuning

Eman Elrefai, Esraa Khaled and Alhassan Ehab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

AYA at PalmX 2025: Modeling Cultural and Islamic Knowledge in LLMs
Jannatul Tajrin, Bir Ballav Roy and Firoj Alam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

Cultura-Arabica: Probing and Enhancing Arabic Cultural Awareness in Large Language Models via
LoRA

Pulkit Chatwal and Santosh Kumar Mishra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

Phoenix at Palmx: Exploring Data Augmentation for Arabic Cultural Question Answering
Houdaifa Atou, Issam AIT YAHIA and Ismail Berrada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

xvii



QIAS 2025: Overview of the Shared Task on Islamic Inheritance Reasoning and Knowledge Assessment
Abdessalam Bouchekif, Samer Rashwani, Emad Soliman Ali Mohamed, Mutaz Alkhatib, Heba

Sbahi, Shahd Gaben, Wajdi Zaghouani, Aiman Erbad and Mohammed Ghaly . . . . . . . . . . . . . . . . . . . 851

NYUAD at QIAS Shared Task: Benchmarking the Legal Reasoning of LLMs in Arabic Islamic Inheri-
tance Cases

Nouar AlDahoul and Yasir Zaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

SHA at the QIAS Shared Task: LLMs for Arabic Islamic Inheritance Reasoning
Shatha Altammami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867

ANLPers at QIAS: CoT for Islamic Inheritance
Serry Sibaee, Mahmoud Reda, OMER NACAR, Yasser Alhabashi, Adel Ammar and Wadii Bou-

lila . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .873

N&N at QIAS 2025: Chain-of-Thought Ensembles with Retrieval-Augmented framework for Classical
Arabic Islamic

Nourah Alangari and Nouf AlShenaifi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .878

HIAST at QIAS 2025: Retrieval-Augmented LLMs with Top-Hit Web Evidence for Arabic Islamic Rea-
soning QA

Mohamed Motasim Hamed, Nada Ghneim and Riad Sonbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

QU-NLP at QIAS 2025 Shared Task: A Two-Phase LLM Fine-Tuning and Retrieval-Augmented Gene-
ration Approach for Islamic Inheritance Reasoning

Mohammad AL-Smadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

Transformer Tafsir at QIAS 2025 Shared Task: Hybrid Retrieval-Augmented Generation for Islamic
Knowledge Question Answering

Muhammad Abu Ahmad, Mohamad Ballout, Raia Abu Ahmad and Elia Bruni . . . . . . . . . . . . . 899

PuxAI at QIAS 2025: Multi-Agent Retrieval-Augmented Generation for Islamic Inheritance and Know-
ledge Reasoning

Nguyen Xuan Phuc and Thìn Đặng Văn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Athar at QIAS2025: LLM-based Question Answering Systems for Islamic Inheritance and Classical
Islamic Knowledge

Yossra Noureldien, Hassan Suliman, Farah Attallah, Abdelrazig Mohamed and Sara Abdalla 914

ADAPT–MTU HAI at QIAS2025: Dual-Expert LLM Fine-Tuning and Constrained Decoding for Arabic
Islamic Inheritance Reasoning

Shehenaz Hossain and Haithem Afli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

CVPD at QIAS 2025 Shared Task: An Efficient Encoder-Based Approach for Islamic Inheritance Rea-
soning

Salah Eddine Bekhouche, Abdellah Zakaria Sellam, Telli Hichem, Cosimo Distante and Abdenour
Hadid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929

CIS-RG at QIAS 2025 Shared Task: Approaches for Enhancing Performance of LLM on Islamic Legal
Reasoning and its Mathematical Calculations

Osama Farouk Zaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

SEA-Team at QIAS 2025: Enhancing LLMs for Question Answering in Islamic Texts
Sanaa Alowaidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940

xviii



MorAI at QIAS 2025: Collaborative LLM via Voting and Retrieval-Augmented Generation for Solving
Complex Inheritance Problems

Jihad R’baiti, Chouaib El Hachimi, Youssef Hmamouche and Amal Seghrouchni . . . . . . . . . . . 947

Gumball at QIAS 2025: Arabic LLM Automated Reasoning in Islamic Inheritance
Eman Elrefai, Mohamed Lotfy Elrefai and Aml Hassan Esmail . . . . . . . . . . . . . . . . . . . . . . . . . . . 953

Tokenizers United at QIAS-2025: RAG-Enhanced Question Answering for Islamic Studies by Integra-
ting Semantic Retrieval with Generative Reasoning

Mayar Boghdady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960

TAQEEM 2025: Overview of The First Shared Task for Arabic Quality Evaluation of Essays in Multi-
dimensions

May Bashendy, Salam Albatarni, Sohaila Eltanbouly, Walid Massoud, Houda Bouamor and Tamer
Elsayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966

ARxHYOKA at TAQEEM2025: Comparative Approaches to Arabic Essay Trait Scoring
Mohamad Alnajjar, Ahmad Almoustafa, Tomohiro Nishiyama, Shoko Wakamiya, Eiji Aramaki

and Takuya Matsuzaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977

912 at TAQEEM 2025: A Distribution-aware Approach to Arabic Essay Scoring
Trong-Tai Dam Vu and Thìn Đặng Văn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983

Taibah at TAQEEM 2025: Leveraging GPT-4o for Arabic Essay Scoring
Nada Almarwani, Alaa Alharbi and Samah Aloufi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

MarsadLab at TAQEEM 2025: Prompt-Aware Lexicon-Enhanced Transformer for Arabic Automated
Essay Scoring

Mabrouka bessghaier, Md. Rafiul Biswas, Amira Dhouib and Wajdi Zaghouani . . . . . . . . . . . . 998

xix



Program

Friday, November 8, 2024

08:45 - 08:30 Welcome & SIGARAB Update

09:30 - 08:45 Beyond Resources: Building an Arabic NLP Ecosystem Rooted in Representation,
Collaboration, and Responsibility, by Dr. Houda Bouamor

09:15 - 10:30 LLM Benchmarking & Development (1)

10:30 - 11:00 Coffee Break

11:00 - 12:30 LLM Benchmarking & Development (2)

12:30 - 14:00 Lunch Break

14:00 - 14:30 Multimodality

14:30 - 15:30 Shared Tasks (1)

The AraGenEval Shared Task on Arabic Authorship Style Transfer and AI Gene-
rated Text Detection
Shadi Abudalfa, Saad Ezzini, Ahmed Abdelali, Hamza Alami, Abdessamad Ben-
lahbib, Salmane Chafik, Mo El-Haj, Abdelkader El Mahdaouy, Mustafa Jarrar,
Salima Lamsiyah and Hamzah Luqman

AraHealthQA 2025: The First Shared Task on Arabic Health Question Answering
Hassan Alhuzali, Farah E. Shamout, Muhammad Abdul-Mageed, Chaimae
Abouzahir, Mouath Abu Daoud, Ashwag Alasmari, Walid Al-Eisawi, Renad Al-
Monef, Ali Alqahtani, Lama Ayash, Nizar Habash and Leen Kharouf

BAREC Shared Task 2025 on Arabic Readability Assessment
Khalid N. Elmadani, Bashar Alhafni, Hanada Taha and Nizar Habash

ImageEval 2025: The First Arabic Image Captioning Shared Task
Ahlam Bashiti, Alaa Aljabari, Hadi Khaled Hamoud, Md. Rafiul Biswas, Bilal
Mohammed Shalash, Mustafa Jarrar, Fadi Zaraket, George Mikros, Ehsaneddin
Asgari and Wajdi Zaghouani

Iqra’Eval: A Shared Task on Qur’anic Pronunciation Assessment
Yassine El Kheir, Amit Meghanani, Hawau Olamide Toyin, Nada Almarwani,
Omnia Ibrahim, Yousseif Ahmed Elshahawy, Mostafa Shahin and Ahmed Ali

IslamicEval 2025: The First Shared Task of Capturing LLMs Hallucination in
Islamic Content
Hamdy Mubarak, Rana Malhas, Watheq Mansour, Abubakr Mohamed, Mah-
moud Fawzi, Majd Hawasly, Tamer Elsayed, Kareem Mohamed Darwish and
Walid Magdy

xx



Friday, November 8, 2024 (continued)

16:00 - 15:30 Coffee Break

14:30 - 15:30 Shared Tasks (2)

MAHED Shared Task: Multimodal Detection of Hope and Hate Emotions in Ara-
bic Content
Wajdi Zaghouani, Md. Rafiul Biswas, Mabrouka Bessghaier, Shimaa Ibrahim,
George Mikros, Abul Hasnat and Firoj Alam

NADI 2025: The First Multidialectal Arabic Speech Processing Shared Task
Bashar Talafha, Hawau Olamide Toyin, Peter Sullivan, AbdelRahim A. Elmada-
ny, Abdurrahman Juma, Amirbek Djanibekov, Chiyu Zhang, Hamad Alshehhi,
Hanan Aldarmaki, Mustafa Jarrar, Nizar Habash and Muhammad Abdul-Mageed

PalmX 2025: The First Shared Task on Benchmarking LLMs on Arabic and Isla-
mic Culture
Fakhraddin Alwajih, Abdellah El Mekki, Hamdy Mubarak, Majd Hawasly, Abu-
bakr Mohamed and Muhammad Abdul-Mageed

QIAS 2025: Overview of the Shared Task on Islamic Inheritance Reasoning and
Knowledge Assessment
Abdessalam Bouchekif, Samer Rashwani, Emad Soliman Ali Mohamed, Mutaz
Alkhatib, Heba Sbahi, Shahd Gaben, Wajdi Zaghouani, Aiman Erbad and Mo-
hammed Ghaly

TAQEEM 2025: Overview of The First Shared Task for Arabic Quality Evaluation
of Essays in Multi-dimensions
May Bashendy, Salam Albatarni, Sohaila Eltanbouly, Walid Massoud, Houda
Bouamor and Tamer Elsayed

17:00 - 18:00 Poster presentations + Shared Task posters

xxi



Saturday, November 9, 2024

08:45 - 08:30 Welcome

09:30 - 08:45 From Benchmarks to the Real-World Impact: Arabic LLMs in Production, by Dr.
Areeb Alowisheq

09:30 - 10:30 Round Table (1)

10:30 - 11:00 Coffee Break

11:00 - 12:30 Education and Speech

12:30 - 14:00 Lunch Break

14:00 - 14:30 Legal & Agents

14:30 - 15:30 Arab Culture & Retrieval

16:00 - 15:30 Coffee Break

16:00 - 17:00 Discussion Roundtable (2)

xxii



Proceedings of The Third Arabic Natural Language Processing Conference, pages 1–13
November 8-9, 2025 ©2025 Association for Computational Linguistics

The AraGenEval Shared Task on Arabic Authorship Style
Transfer and AI Generated Text Detection

Shadi Abudalfa1, Saad Ezzini1, Ahmed Abdelali2, Hamza Alami3,
Abdessamad Benlahbib3, Salmane Chafik4, Mo El-Haj5,8, Abdelkader El Mahdaouy4,

Mustafa Jarrar6,9, Salima Lamsiyah7, Hamzah Luqman1

1King Fahd University of Petroleum & Minerals, 2Humain,
3Sidi Mohamed Ben Abdellah University, 4Mohammed VI Polytechnic

University, 5VinUniversity, 6Hamad Bin Khalifa University,
7University of Luxembourg, 8Lancaster University, 9Birzeit University

Abstract

We present an overview of the AraGenEval
shared task, organized as part of the Arabic-
NLP 2025 conference. This task introduced
the first benchmark suite for Arabic authorship
analysis, featuring three subtasks: Authorship
Style Transfer, Authorship Identification, and
AI-Generated Text Detection. We curated high-
quality datasets, including over 47,000 para-
graphs from 21 authors and a balanced corpus
of human- and AI-generated texts. The task at-
tracted significant global participation, with 72
registered teams from 16 countries. The results
highlight the effectiveness of transformer-based
models, with top systems leveraging prompt en-
gineering for style transfer, model ensembling
for authorship identification, and a mix of mul-
tilingual and Arabic-specific models for AI text
detection. This paper details the task design,
datasets, participant systems, and key findings,
establishing a foundation for future research in
Arabic stylistics and trustworthy NLP.

1 Introduction

The rise of user- and machine-generated Arabic
content across social media platforms, digital jour-
nalism, literary archives, and online educational
resources has created an urgent demand for ad-
vanced NLP tools capable of analysing, transform-
ing (Abudalfa et al., 2024; Abdu et al., 2025), and
verifying text style (El-Haj et al., 2024; El-Haj and
Ezzini, 2024). Unlike general stylistic analysis,
which seeks to characterise an author’s linguistic
footprint, Authorship Style Transfer (AST) aims
to actively modify a given text to reflect the stylis-
tic features of a target author while preserving its
semantics. Meanwhile, the proliferation of Ara-
bic content generated by large language models
(LLMs) has raised the stakes for AI-generated text
detection systems (Zmandar et al., 2023). As the
line between human and synthetic writing becomes
increasingly blurred, particularly in Arabic with its

orthographic and dialectal variability, it is critical
to establish robust benchmarks and methodologies
for style manipulation (Mughaus et al., 2025) and
content authenticity assessment. Prior efforts in
Arabic readability modelling (El-Haj and Rayson,
2016) and corpus development (El-Haj and Koulali,
2013) have laid essential groundwork for Arabic
linguistic resource creation, but there remains a
significant gap in structured evaluations targeting
stylistic transformation and AI-authored text detec-
tion.

To address this need, we launched the Ara-
GenEval Shared Task, hosted at the ArabicNLP
2025 conference (co-located with EMNLP 2025).
AraGenEval complements prior Arabic NLP shared
tasks (Malaysha et al., 2024) and aims to fill a crit-
ical gap in Arabic style transfer and authorship
detection, where no dedicated benchmark has pre-
viously been released. AraGenEval features three
subtasks designed to advance research in Arabic
authorial style processing:

1. Authorship Style Transfer (AST): Given a
formal Arabic input, generate a stylistically
faithful version in the voice of a specific au-
thor from a curated set of 21 classical and
modern writers.

2. Authorship Identification: Determine the
most likely author for a given text segment
using multiclass classification.

3. ARATECT (Arabic AI-Generated Text De-
tection): Distinguish between human- and
LLM-generated Arabic texts across news and
literary genres.

Motivation
The motivation behind AraGenEval is both linguis-
tic and socio-technical. Authorship style transfer
(AST) offers valuable insights into how stylistic
signals operate in Arabic, supporting applications
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such as educational feedback, personalisation, and
literary imitation, while addressing the typolog-
ical and orthographic characteristics of the lan-
guage (Alqahtani and Yannakoudakis, 2022). At
the same time, Arabic authorship identification and
AI-generated text detection have become increas-
ingly important for digital forensics, media ver-
ification, and preserving cultural authenticity, as
demonstrated by recent work on stylometric detec-
tion of LLM-generated Arabic text (Al-Shaibani
and Ahmed, 2025) and competitive system develop-
ment in shared evaluation tasks (Chowdhury et al.,
2024; AL-Smadi, 2025). Furthermore, studies
show that models trained on English frequently fail
to generalise to Arabic due to differences in script,
morphology, and dialectal variation, underscoring
the need for dedicated Arabic-specific evaluation
frameworks (Al-Shaibani and Ahmed, 2025).

Challenges
Arabic presents unique challenges for AST and
detection:

• Stylistic Variation: Arabic exhibits a contin-
uum of registers from Modern Standard Ara-
bic to regional dialects, with authorial voice
often tied to historical, literary, or journalistic
contexts (Habash, 2010).

• Data Sparsity: Compared to English, there
are far fewer large-scale, author-labelled Ara-
bic corpora (El-Haj and Koulali, 2013; El-Haj
and Ezzini, 2024).

• Morphological Richness: Arabic’s complex
morphology makes it harder to isolate stylis-
tic features from lexical ones (El-Haj et al.,
2018).

AraGenEval
AraGenEval1 offers a unified framework and high-
quality datasets to benchmark models on these chal-
lenges. We collected over 47,000 human-written
paragraphs from 21 classical and modern Arabic
authors, and curated a balanced corpus of human-
and AI-generated news and literary texts. Sub-
missions were evaluated via BLEU and chrF for
generation, macro-F1 for multiclass classification,
and accuracy/F1 for binary classification.

The task received strong engagement from the
global NLP community:

1AraGenEval URL: https://ezzini.github.io/
AraGenEval

• 72 teams registered (115 participants in total).

• 37 unique submissions to the leaderboard
across the three subtasks.

• 16 countries, including: India, Pakistan, Saudi
Arabia, Qatar, Tunisia, Egypt, Palestine, Al-
geria, Morocco, Japan, Vietnam, UAE, Spain,
UK, US, and France.

AraGenEval contributes the first benchmark
suite tailored for Arabic authorship manipulation
and AI-authorship detection, and sets the founda-
tion for future research in Arabic stylistics, forensic
linguistics, and trustworthy NLP.

2 Related Work

Authorship Style Transfer (AST) is a special-
ized task in natural language generation that modi-
fies the stylistic elements of a text, such as lexical
choice, syntactic patterns, and rhetorical flourishes,
to mimic a target author’s voice while preserving
the original content. Unlike broader Text Style
Transfer (TST), AST specifically targets writer-
specific traits, including narrative tone, sentence
complexity, and idiosyncratic phrasing. The focus
of TST was to modifies stylistic attributes (e.g.,
politeness, formality, sentiment) of text while pre-
serving its core content.

Recent advances in deep learning and LLMs
have significantly advanced TST research, enabling
more nuanced and convincing stylistic adaptations.
The researchers use different methods and ap-
proaches to solve this challenge. Supervised ap-
proaches use parallel data with encoder-decoder
models (e.g., sequence-to-sequence) (Hu et al.,
2022; Gong et al., 2019) that models the problem as
a translation task. Other approaches include copy
mechanism (Pan et al., 2024; Chawla and Yang,
2020) proposed to better support sections of text
which should not be changed (e.g., some proper
nouns and rare words) (Merity et al., 2016). (Hu
et al., 2017) exploited deep learning methods like
Variational Autoencoders (VAE) and Denoising Au-
toencoders (DAE) to modify textual styles while
preserving the original content. They utilize the
VAE framework to learn the latent representation
of text and employ a style classifier to discern the
style attribute vector.

Authorship Identification is the task of deter-
mining the author of a text from a set of known
candidates (Mosteller and Wallace, 1963). The
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field is historically rooted in stylometry, the quan-
titative study of literary style, which operates on
the premise that authors have unique linguistic "fin-
gerprints" (Mosteller and Wallace, 1963; Lagutina
et al., 2019). Traditional approaches involved man-
ually engineering a wide array of lexical and syntac-
tic features, including word frequencies, sentence
lengths, and punctuation usage, and using them to
train classical machine learning classifiers, includ-
ing logistic regression, Naive Bayes, and support
vector machines (SVM) (Aborisade and Anwar,
2018; Bacciu et al., 2019). However, the advent of
deep learning marked a paradigm shift, moving the
field from manual feature engineering to automated
feature extraction (Bauersfeld et al., 2023; Huang
et al., 2025). Recently, machine learning methods
have explored recurrent neural networks (RNNs)
(Bagnall, 2015), long short-term memory networks
(LSTMs) (Qian et al., 2017), convolutional neu-
ral networks (CNNs) at character and word levels
(Ruder et al., 2016; Shrestha et al., 2017), and hy-
brid Siamese or attention-based networks (Boen-
ninghoff et al., 2019; Saedi and Dras, 2021). With
the rise of pre-trained language models, BERT and
its variants (Devlin et al., 2019; Fabien et al., 2020;
Huertas-Tato et al., 2022) have become the domi-
nant paradigm, often enhanced by supervised con-
trastive learning (Khosla et al., 2020). While effec-
tive, they remain challenged by cross-domain gen-
eralization and explainability (Rivera-Soto et al.,
2021). More recently, LLMs have been applied for
feature extraction, annotation, and even end-to-end
attribution, showing promise in domain transfer
and interpretability (Brown et al., 2020; Huang
et al., 2024, 2025).

Within Arabic NLP, authorship identification
has been investigated across diverse genres, from
classical literature and poetry to modern social
media. Shared tasks such as PAN/CLEF (Rosso,
2017) on author profiling and AraPlagDet (Ben-
salem et al., 2015) on plagiarism detection pro-
vided early benchmarks, though neither directly
addressed multi-author attribution in Arabic. A re-
cent survey of 27 Arabic studies highlights large
performance variability, driven by differences in
genre, feature design, and dataset size, and em-
phasizes the difficulty posed by morphology and
diglossia (Alqahtani and Dohler, 2023). More re-
cent advances demonstrate the advantage of Arabic-
specific pre-trained models such as AraBERT (An-
toun et al., 2020a), AraELECTRA (Antoun et al.,
2020b), and CAMeLBERT, which consistently out-

perform multilingual baselines on tasks including
attribution of classical poetry and Islamic legal
texts (AlZahrani and Al-Yahya, 2023; Alqurashi
et al., 2025). Nevertheless, cross-domain transfer
remains a persistent challenge, as models trained on
social media rarely generalize to literary or journal-
istic prose. The lack of unified, large-scale Arabic
benchmarks makes systematic evaluation difficult,
a gap that AraGenEval seeks to fill by providing
a multi-genre, multi-author benchmark for Arabic
authorship identification.

Arabic AI-Generated Text Detection is framed
as a binary classification task, aiming to determine
whether a given text was authored by a human
or produced by a machine. Approaches applied
to this task are typically grouped into four main
categories (Wu et al., 2025): (i) statistics-based
methods, which exploit entropy or n-gram distribu-
tions to capture distributional irregularities in ma-
chine text (Shen et al., 2023; Mitchell et al., 2023);
(ii) neural-based methods, including fine-tuned
transformers such as BERT and RoBERTa, which
achieve strong performance but face robustness
challenges under adversarial conditions (Ippolito
et al., 2020; Li et al., 2025); (iii) watermarking ap-
proaches, embedding token-level or hidden-space
signals to enable proactive detection (Kirchenbauer
et al., 2023; Zhao et al., 2023); and (iv) LLM-as-
detector frameworks, where large models them-
selves are used to classify or explain text origins
(Wang et al., 2024b; Su et al., 2025).

Recent work has also explored leveraging
Arabic-specific transformer architectures for gener-
ative text detection, highlighting both linguistic and
orthographic challenges in low-resource settings
(Alshammari and Elleithy, 2024). To standard-
ize evaluation, recent benchmarks such as Mul-
tiSocial (Macko et al., 2025), XDAC (Go et al.,
2025), and M4GT-Bench (Wang et al., 2024b) test
cross-domain generalization, while shared tasks
like SemEval-2024 Task 8 (Wang et al., 2024a),
the GenAI Content Detection Task on academic
essay authenticity (Chowdhury et al., 2024), and
the M-DAIGT challenge (Lamsiyah et al., 2025)
and , and the GenAI Content Detection Task 3,
which focused on detector performance in a set-
ting with a large but fixed set of known domains
and models (Dugan et al., 2025). However, the
field still lacks large-scale, standardized bench-
marks and shared tasks for Arabic. Addressing
this gap, recent evaluation on the AIRABIC dataset
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demonstrates that current detectors like GPTZero
and OpenAI’s Text Classifier struggle with Arabic,
especially in the presence of diacritics, revealing
detection accuracy as low as 30% and underscor-
ing design limitations in Semitic language contexts
(Alshammari and Ahmed, 2023). Motivated by
this gap, AraGenEval’s ARATECT subtask pro-
poses the first multi-genre evaluation framework
dedicated to Arabic AI-generated text detection.

3 Data Collection and Selection

3.1 Authorship Style Transfer

We began by gathering works from 21 distinct au-
thors with all sources publicly accessible. For each
author, a selection of 10 books was made. The
texts were then divided into coherent paragraphs
using the Natural Language Toolkit (NLTK)2. In
particular, this tool was employed to partition the
material into segments of 2048 characters, ensur-
ing no overlap between sections. Furthermore, the
word_tokenize function from NLTK was applied to
tokenize the paragraphs, after which any segment
exceeding 2048 tokens was excluded. We then
employed the GPT-4o mini LLM to convert the
selected paragraphs into a more formalized stan-
dard style. The prompt utilized for this process is
presented in Listing 1.

Listing 1: Prompt Applied in Building the Arabic Style
Transfer Dataset

{"role": "system",
"content": "You are a helpful assistant."},
{
"role": "user",
"content": f"Rewrite the following text in

Modern Standard Arabic (MSA) while
maintaining its original meaning but
changing the style to be more formal,
neutral, and consistent with modern
writing standards. Ensure the language is
polished and does not reflect the
author's original stylistic features:
{text}"}

We selected parallel source–target pairs that
could be accommodated within the context length
restrictions of the LLMs under evaluation, as the
generated texts were relatively long. For tokeniza-
tion, the jais-family-13b-chat model was employed
to process these pairs. Only instances in which
the total number of tokens across both source and
target texts was under 1900 were preserved. We

2https://www.nltk.org

divided the collected dataset into three sets: train-
ing, validation, and testing. A statistical overview
is provided in Table 1.

Author Train Test Val
A. Amin 2892 594 246
A. T. Pasha 804 142 53
A. Shawqi 596 46 58
A. Rihani 1557 624 142
T. Abaza 755 191 90
G. K. Gibran 748 240 30
J. Zaydan 2762 562 326
H. Hanafi 3735 1002 548
R. Barr 2680 512 82
S. Moussa 984 282 119
T. Hussein 2371 534 253
A. M. Al-Aqqad 1820 499 267
A. G. Makawi 1520 464 396
G. Le Bon 1515 358 150
F. Zakaria 1771 294 125
K. Kilani 399 109 25
M. H. Heikal 2627 492 260
N. Mahfouz 1630 343 327
N. El Saadawi 1415 382 295
W. Shakespeare 1236 358 238
Y. Idris 1140 349 120

Table 1: Authorship style transfer dataset statistics by
author and data split.

3.2 Authorship Identification

For this task, we employed the same dataset de-
scribed in Section 3.1. However, rather than using
the ground truth text as the target text, we assign the
author’s name as the label, since this task involves
multiclass classification rather than text generation.

3.3 Arabic AI-Generated Text Detection
(ARATECT)

To support the ARATECT subtask, we created a
dataset specifically designed to train and evaluate
systems for detecting AI-generated news articles in
Arabic.

The first step involved collecting 2,900 news ar-
ticles from multiple categories from two Arabic
news websites, Al Jazeera3 and Hespress4, to rep-
resent human-written samples across a variety of
categories. To generate AI-written counterparts,
we extracted the titles from these human-written
articles and used them as input prompts. The con-
tent of the original articles was used to guide the
AI in mimicking human writing style. After filter-
ing and qualitative analysis, we selected a subset
of 2,400 total articles to move forward with. Sev-
eral high-performing reasoning and non-reasoning

3https://www.aljazeera.net
4http://hespress.ma
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language models were employed to generate the AI-
written news content, including variants of Gemini
(Gemini-2.5-pro) and GPT (gpt-3.5, gpt-4o-mini,
gpt-4o, gpt-o4-mini). Each model was prompted
using a standardized prompt shown in Listing 2.

Using this prompt on the 2,400 human-written
articles, we generated 2,400 AI-generated coun-
terparts using different LLMs, resulting in a train-
ing set of 4,800 samples. This training set was
used to fine-tune a baseline model for detecting
AI-generated news articles in Arabic.

For the test and development sets generation, we
used an agent-based approach incorporating the
aforementioned fine-tuned detection model into the
pipeline illustrated in Figure 1. In this pipeline, we
engage in an iterative interaction with the LLM:

• The model is first prompted to generate a news
article based on a given title and writing style.

• The generated text is then evaluated by the
baseline model.

• If the text is flagged as AI-generated, we in-
form the LLM that its previous output was
detected as such, and request a new version.

• This process is repeated until the generated
text is either classified as human-written (it is
included in the dataset) or a predefined itera-
tion threshold ni is reached (we move to the
next example).

As a final result, we obtained a balanced dataset
of 5,800 news article samples, containing both
human-written and AI-generated texts, split into
4,800 for training, 500 for development, and 500
for testing to support comprehensive model evalua-
tion.

4 Subtasks with Evaluation Tracks

We ran three subtasks via CodaBench platform with
two main phases, development and testing phases.

4.1 Authorship Style Transfer
This subtask challenges participants to develop sys-
tems that can rewrite a given formal Arabic text
to emulate the distinct style of a specific author,
while ensuring the original meaning of the text is
preserved. The evaluation of the generated text is
based on its closeness to the target author’s style.
The primary metric for this task is the BLEU score,
which measures the correspondence between the

Listing 2: Prompt’s Key Components for Generating
News Articles
-- Each time this prompt is used, a role is

randomly selected to influence the
assistant writing style.

-- Randomly select one of the following
journalist roles:

Role Definition:
- "You are Tarik Mekouar, an expert

Arabic journalist. Here is an
example of how Tarik wrote:
{first_paragraph}".

- "You are Amal Kanin, a professional
Arabic news writer with a focus on
clear, unbiased reporting. Here is
an example of how Amal wrote:
{first_paragraph}".

- "You are Youssef Yaakoubi, a
friendly and engaging Arabic
journalist, writing in an
easy-to-understand style. Here is
an example of how Youssef wrote:
{first_paragraph}".

- "You are Manal Lotfi, an opinion
Arabic writer, focusing on
offering personal insights on
current news. Here is an example
of how Manal wrote:
{first_paragraph}".

-- Instructions:

Write a '{article_length}'-word news article
about the following topic : '{title}'.

Focus only on the article content. Do not
include a title.

machine-generated output and high-quality refer-
ence translations. Additionally, the chrF score is
used as a secondary metric, which evaluates char-
acter n-gram precision and recall, providing a more
granular assessment of stylistic similarity.

4.2 Authorship Identification

The goal of this subtask is to identify the author
of a given Arabic text from a set of 21 possible
authors. This is a multiclass classification prob-
lem where systems are expected to analyze the
stylistic features of the text to make an accurate
prediction. The primary evaluation metric is the
Macro-F1 score, which calculates the F1 score for
each author independently and then averages them,
treating all classes equally. Accuracy, the propor-
tion of correctly identified authors, serves as the
secondary metric.
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Figure 1: News generation pipeline for subtask 3

4.3 Arabic AI-Generated Text Detection
This subtask, also known as ARATECT, focuses
on distinguishing between human-written and AI-
generated Arabic texts. Participants are tasked with
building a binary classification model to detect
AI-generated content within the domain of Arabic
news. The performance of the systems is evaluated
primarily based on the F1-Score, which provides a
balance between precision and recall. Accuracy is
used as a secondary metric to measure the overall
correctness of the classification.

4.4 Participants Systems
4.4.1 Subtask 1: Authorship Style Transfer
For the Authorship Style Transfer task, partic-
ipants explored a range of generative models
and fine-tuning strategies. The winning team,
ANLPers (Nacar et al., 2025), achieved top per-
formance by employing prompt engineering with
AraT5, framing the task as an explicit natural lan-
guage instruction in Arabic. This was followed
by Nojoom.AI (KARA ACHIRA et al., 2025),
who fine-tuned several pre-trained Seq2Seq models,
including mBART and AraT5, and incorporated
LoRA for efficient adaptation. The third-place
team, MarsadLab (Biswas et al., 2025b), also
leveraged parameter-efficient fine-tuning, applying

LoRA to instruction-following Arabic LLMs like
Qwen2.5-7B-Instruct. Other teams, such as Osint
(Agrahari et al., 2025), fine-tuned an AraT5-based
encoder-decoder model with author conditioning.

4.4.2 Subtask 2: Authorship Identification
The Authorship Identification task saw a va-
riety of approaches, from complex ensembles
to traditional machine learning. The winning
team, Sebaweh (Helmy et al., 2025), developed
a robust ensemble model that combined four
fine-tuned transformer-based models: AraBERT,
CAMELBERT, Arabic XLM-ROBERTa, and
GATE-AraBERT. The third-place team, Ather-
ship (Samir et al., 2025), also used an ensem-
ble approach with a dual-model logit fusion of
AraBERT and AraELECTRA. The fourth-place
team, MISSION (ALHARBI, 2025), fine-tuned the
ALLaM-7B-Instruct-preview model using prompt
engineering. In contrast, the eighth-place team,
Amr&MohamedSabaa (Sabaa and Sabaa, 2025),
demonstrated the effectiveness of traditional meth-
ods by combining word-level and character-level
TF-IDF features with a Logistic Regression clas-
sifier. Other participants, such as NLP_wizard
(Hany, 2025), used a lightweight approach with
pre-trained XLM-ROBERTa embeddings fed into
classical classifiers like LinearSVC. Jenin (Malhis
et al., 2025) team conducted a layer-wise analy-
sis of the fine-tuned BERT model to locate where
author-discriminative signals emerge and how the
model encodes style.

4.4.3 Subtask 3: Arabic AI-Generated Text
Detection

For the ARATECT task, participants employed a
diverse set of models and techniques. The win-
ning team, LMSA (Zita et al., 2025), used an
ensemble-based framework that integrated multi-
lingual and Arabic-specific models, namely Fa-
nar, AraBERT, and XLM-RoBERTa, with a ma-
jority voting strategy. The third-place team, MIS-
SION (ALHARBI, 2025), fine-tuned AraModern-
BERT on a combination of the official dataset
and an external dataset. The fourth-place team,
PTUK-HULAT (Duridi et al., 2025), fine-tuned
multilingual transformer models based on XLM-
ROBERTa. The fifth-place team, BUSTED (Zain
et al., 2025), conducted a comparative study of Ara-
ELECTRA, CAMELBERT, and XLM-ROBERTa,
finding that the multilingual XLM-ROBERTa per-
formed best. Other notable approaches included
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CUET-NLP_Team_SS306’s use of a chunking
strategy with AraBERT to handle long input
sequences (Nath et al., 2025) and REGLAT’s
morphology-aware AraBERT model (Labib et al.,
2025).

4.5 Results

This section presents the results for each of the
three subtasks. A total of 37 unique submissions
were made to the leaderboard across all tasks.

4.5.1 Subtask 1: Authorship Style Transfer
The results for the authorship style transfer task
are shown in Table 2. The top-performing sys-
tems achieved BLEU scores around 24.5. Team
ANLPers secured the first place with a BLEU score
of 24.58, closely followed by team Nojoom.AI
with a score of 24.46.

4.5.2 Subtask 2: Authorship Identification
The authorship identification task was highly com-
petitive. As shown in Table 3, the top 11 par-
ticipants achieved high performance, with only a
10% difference in their Macro-F1 scores. Team
Sebaweh ranked first with a Macro-F1 of 0.8989,
followed by team batoolnajeh with 0.8716.

4.5.3 Subtask 3: Arabic AI-Generated Text
Detection

The results for the ARATECT subtask are pre-
sented in Table 4. The top participant, LMSA,
achieved an F1-Score of 0.8641. It is worth not-
ing that some users deleted their accounts after the
submission phase, which may indicate that they
belonged to the same team as other participants.

5 Discussion

The results from the AraGenEval shared task of-
fer several key insights into the state of Arabic
authorship analysis. Across all three subtasks,
transformer-based models were the dominant ap-
proach, demonstrating their strong capabilities in
capturing the nuances of Arabic. In the AST
task, the success of prompt-engineered and LoRA-
adapted models like AraT5 (Agrahari et al., 2025)
and Qwen (Biswas et al., 2025a) highlights a trend
towards more explicit and efficient methods for con-
trolling generative style. The top systems showed
that framing the task as a natural language instruc-
tion allows models to better leverage their pre-
trained knowledge.

The Authorship Identification task was highly
competitive, with ensemble methods proving par-
ticularly effective. The winning system’s combina-
tion of four different transformer models (Helmy
et al., 2025) and the third-place system’s logit fu-
sion (Samir et al., 2025) approach underscore the
value of model diversity to capture complementary
stylistic features. Notably, a traditional approach
using TF-IDF features also achieved a top-10 rank,
indicating that well-crafted feature engineering re-
mains a viable strategy, especially when computa-
tional resources are limited.

Challenges such as handling long documents
were addressed by some teams through chunking
strategies, showing the importance of data process-
ing in addition to model selection (Helmy et al.,
2025).

For AI-Generated Text Detection, the results
were more varied. The success of the winning
ensemble, which included both Arabic-specific and
multilingual models, suggests that a combination of
specialized and broad linguistic knowledge is ben-
eficial. The strong performance of systems based
solely on multilingual models like XLM-ROBERTa
(Zita et al., 2025) was a key finding, indicating
their robust generalization capabilities for detect-
ing stylistic artifacts of AI generation, even when
not specifically pre-trained on large Arabic corpora.

6 Conclusion and Future Work

The AraGenEval shared task successfully estab-
lished the first comprehensive benchmark for Ara-
bic authorship style transfer, identification, and
AI-generated text detection. The strong partici-
pation and the variety of systems submitted under-
score the growing interest and need for research
in this area. The results confirm the effectiveness
of transformer-based architectures across all three
subtasks, with specific strategies like prompt engi-
neering, model ensembling, and the use of multi-
lingual models leading to top performances. The
task also highlighted the continued relevance of tra-
ditional feature-based methods and the importance
of robust data handling techniques.

Future work should build on the foundation laid
by this shared task. For style transfer, research
could explore more advanced controllable genera-
tion techniques and develop more nuanced evalua-
tion metrics that go beyond surface-level similarity.
For authorship identification, expanding the dataset
to include more authors, genres, and dialects would

7



Rank Team Participant BLEU chrF Paper Submitted System Used
1 ANLPers omarnj 24.58 59.01 Yes Prompt Engineering with AraT5
2 Nojoom.AI nojoom 24.46 59.33 Yes Fine-tuned mBART and AraT5
3 MarsadLab rafiulbiswas 20.30 52.56 Yes LoRA with Qwen2.5-7B-Instruct
4 Osint shifali 19.87 54.97 Yes Fine-tuned AraT5
5 PSAU-Wadi moh55mm5 0.13 26.60 No -
6 - syedsaba 0.00 0.27 No -
7 - tejasree 0.00 0.18 No -
8 Neuiry_st baoflowin502 0.00 0.01 No -

Table 2: Leaderboard for Subtask 1: Authorship Style Transfer. The ranking is based on the primary metric, BLEU.

Rank Team Participant F1-Score Accuracy Paper Submitted System Used
1 Sebaweh muhammad-helmy 0.8989 0.9242 Yes Ensemble of 4 Transformers
2 - batoolnajeh 0.8716 0.9086 No -

3 Athership moamin007 0.8597 0.8952 Yes
Logit Fusion of AraBERT

& AraELECTRA
4 MISSION 7h4m3r 0.8375 0.8905 Yes Fine-tuned ALLaM-7B-Instruct
5 Jenin jenin 0.8347 0.8738 Yes Fine-tuned AraBERT
6 ANLPers omarnj 0.8314 0.8752 Yes Fine-tuned CAMEL-BERT
7 MarsadLab rafiulbiswas 0.8282 0.8650 Yes Fine-tuned AraBERTv2

8
Amr&
MohamedSabaa

mohamedsabaa 0.8274 0.8890 Yes
TF-IDF with

Logistic Regression
9 CIOL tasnim_meem 0.8267 0.8641 Yes Fine-tuned CAMEL-BERT

10 NLP_wizard nlp_wizard 0.8130 0.8528 Yes
XLM-R Embeddings

+ LinearSVC
11 Osint shifali 0.7967 0.8334 Yes Fine-tuned AraBERTv2
12 Couger AI sabarinathan1 0.3676 0.6707 No -
13 - syedsaba 0.0078 0.0317 No -

Table 3: Leaderboard for Subtask 2: Authorship Identification. The ranking is based on the primary metric,
Macro-F1 Score.

enable the development of more generalizable mod-
els. For AI text detection, future tasks should incor-
porate text generated by newer and more diverse
LLMs, as well as adversarial examples, to test the
robustness of detection systems. Finally, fostering
the development of more high-quality, large-scale
Arabic datasets will be crucial for advancing re-
search in all aspects of Arabic NLP.

Limitations

While the AraGenEval shared task provides a valu-
able contribution, several limitations should be
acknowledged. The authorship transfer dataset,
though carefully curated, is confined to a specific
set of 21 authors and primarily covers the literary
domain. This may limit the generalizability of the
developed systems to other genres, such as social
media or scientific writing. For the AI-generated
text detection subtask, the training data was pro-
duced by a finite set of LLMs available at the time
of dataset creation; detection models may not be
robust against newer, more advanced generative
models. Furthermore, the evaluation metrics, while

standard, have known limitations. BLEU and chrF
for style transfer do not fully capture stylistic fi-
delity or semantic preservation, and F1-score for
classification tasks does not account for the sub-
tlety of errors. Finally, the competitive nature of
a shared task, with its inherent time and computa-
tional constraints, may have prevented teams from
exploring more complex or resource-intensive ap-
proaches.
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Abstract

This paper describes the approach developed
for the AraGenEval shared task, with a fo-
cus on Arabic authorship identification and
AI-generated text detection. Transformer-
based models, including ALLaM-7B-Instruct-
preview for Subtask 2 and AraModernBERT
for Subtask 3, were fine-tuned using both the
official and additional datasets. Prompt engi-
neering and transfer learning techniques were
adapted to address challenges specific to the
Arabic language. Competitive performance
was achieved on both subtasks, and all code
and resources have been made publicly avail-
able to facilitate reproducibility.

Arabic NLP, Authorship Identification, AI-
generated Text Detection, Transformer Models,
Prompt Engineering, ALLaM, AraModernBERT

1 Introduction

This paper is prepared for the AraGenEval: Arabic
Authorship Style Transfer and AI-Generated Text
Detection shared task (Abudalfa et al., 2025) and
presents our approach to Subtask 2: Authorship
Identification and Subtask 3: ARATECT – Ara-
bic AI-Generated Text Detection. Subtask 2 is
formulated as a multi-class classification problem,
where the goal is to predict the author of a given
Arabic text from a predefined set of candidates.
Subtask 3 is framed as a binary classification prob-
lem, aiming to distinguish between human-written
and machine-generated Arabic text. Both subtasks
are conducted entirely in Arabic, posing unique lin-
guistic and modeling challenges. To address these
tasks, we employed two transformer-based mod-
els pretrained on large-scale Arabic corpora (Bari
et al., 2025; NAMAA, 2025). Each model was
fine-tuned for its respective subtask to adapt to the
target domains and maximize performance. Our
approach achieved competitive results in the offi-
cial evaluation, ranking 4th in Subtask 2 and 3rd

in Subtask 3. All training and inference code is
publicly available on Kaggle.

2 Datasets

This work uses datasets provided as part of the
AraGenEval shared task, which focus on Arabic
authorship and AI-generated text detection chal-
lenges(Abudalfa et al., 2025). For Subtask 2 (Au-
thorship Identification), the dataset consists of Ara-
bic texts labeled with their respective authors. This
dataset was provided by the shared task organiz-
ers (Abudalfa et al., 2025) and includes training,
development, and test splits with a diverse set of
authors, allowing for a multi-class classification
setup. For Subtask 3 (ARATECT), the task in-
volves distinguishing human-written from machine-
generated Arabic texts. We combined the dataset
provided by the organizers (Abudalfa et al., 2025)
with an additional publicly available Arabic AI-
generated text dataset Al-Shaibani and Ahmed’s
(2025) to enhance the model’s robustness. This
binary classification dataset also contains balanced
splits for training, development, and testing. Ta-
ble 1 summarizes the key statistics of the datasets
used for both subtasks, while Tables 2 and 3 pro-
vide sample instances illustrating the types of data
in each subtask.

Task Dev Train Test
AID entries 4157 35122 8413

ARATECT entries 500 17604 500

Table 1: Data Statistics.
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Table 2: Example of Author Text in Arabic for subtask2.
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Table 3: Example of human/machine text in Arabic.

3 System Overview and Experimental
Setup

3.1 Hardware

For Subtask 2, we utilized four NVIDIA L4 GPUs,
while for Subtask 3, a single NVIDIA Tesla P100
GPU was employed. All experiments were con-
ducted on the Kaggle platform.

3.2 Subtask 2: Authorship Identification

For Subtask 2, We built upon the pipeline pro-
posed by ducnh279 1, which achieved first place
in the KAChallenges Series 1: Classifying Math
Problems competition 2. Their approach lever-
ages large language models (LLMs) fine-tuned for
multi-class classification using prompt engineer-
ing combined with adapter-based training. Specifi-
cally, their method fine-tunes pretrained LLMs with
carefully crafted prompts and lightweight LoRA
adapters to efficiently adapt the model without full
retraining. The training setup uses distributed data
parallelism across multiple GPUs, mixed preci-
sion training, and 4-bit quantization for compu-
tational efficiency. A linear classification head is
trained on top of the model backbone, and strat-
ified K-fold cross-validation is used for robust
evaluation. The model is trained with weighted
cross-entropy loss to address class imbalance, and
micro F1-score is used for validation. Our ap-
proach retains the core training framework, includ-
ing distributed training, mixed precision, LoRA

1https://www.kaggle.com/code/ducnh279/
kacs1-fine-tuning-qwen3-14b/notebook

2https://www.kaggle.com/competitions/
classification-of-math-problems-by-kasut-academy

adapters, and quantization. However, we modi-
fied the prompt design and replaced the pretrained
model with ALLaM-7B-Instruct-preview Bari
et al.’s (2025) to better align with the authorship
identification task. We designed a new prompt tem-
plate to explicitly instruct the model to classify
Arabic texts by their authors using a provided au-
thor list and corresponding numeric labels. The
prompt template is shown in Figure 1. This prompt
clearly guides the model to produce the author’s
label number as output, simplifying the classifi-
cation task and improving focus. By fine-tuning
ALLaM-7B-Instruct-preview with this prompt
format and the existing training setup, we effec-
tively adapted the model to the specific require-
ments of Subtask 2, resulting in competitive perfor-
mance. Due to limited computational resources and
the time constraints imposed by the Kaggle plat-
form, we trained and evaluated our model using
only the first fold of the stratified K-fold cross-
validation instead of all folds. Despite this limita-
tion, the model demonstrated strong performance.
More details on our implementation and training
code are publicly available in the accompanying
Kaggle notebook3.

<|im_start|>user
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. è A 	KX
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...
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### Input:

�	JË@
### Response:

Figure 1: Example of an Arabic prompt formatted for
model input.

3.3 Subtask 3: Arabic AI-Generated Text
Detection

For Subtask 3, we fine-tuned AraModernBERT NA-
MAA’s (2025) using the shared task dataset com-
bined with an additional external dataset Al-
Shaibani and Ahmed’s (2025). This task involves
binary classification to distinguish human-written
from machine-generated Arabic texts. We began
by preprocessing the data, removing any miss-

3https://www.kaggle.com/code/thameralharbi/
subtask-2-authorship-identification-baseline-gpus

15

https://www.kaggle.com/code/ducnh279/kacs1-fine-tuning-qwen3-14b/notebook
https://www.kaggle.com/code/ducnh279/kacs1-fine-tuning-qwen3-14b/notebook
https://www.kaggle.com/competitions/classification-of-math-problems-by-kasut-academy
https://www.kaggle.com/competitions/classification-of-math-problems-by-kasut-academy
https://www.kaggle.com/code/thameralharbi/subtask-2-authorship-identification-baseline-gpus
https://www.kaggle.com/code/thameralharbi/subtask-2-authorship-identification-baseline-gpus


ing entries. The labels were encoded as inte-
gers, mapping human to 0 and machine to 1. To
prepare inputs for the model, we implemented a
custom PyTorch dataset that tokenizes the texts
with a maximum length of 256 tokens and ap-
plies padding for batch consistency. The pre-
trained AraModernBERT-Base-V1.0 model was
loaded with a new classification head suitable for
the binary task. Since the classification layer was
randomly initialized, it was trained from scratch
during fine-tuning. Training was performed using
the AdamW optimizer with a learning rate of 2e-
5 over four epochs. We used a batch size of 32
and applied dynamic padding through a data colla-
tor to efficiently batch variable-length inputs. Our
approach effectively adapts a state-of-the-art Ara-
bic pretrained model to the specific AI-generated
text detection task, leveraging additional data to en-
hance performance. The full implementation and
training scripts are publicly available on Kaggle4.

4 Results

Metrics. The Macro-F1 score was used as the
primary evaluation metric. For this metric, the F1-
score is computed independently for each class and
then averaged, ensuring equal weight is given to all
classes regardless of their frequency in the dataset.
This provides a balanced evaluation, particularly
in the presence of class imbalance. Accuracy was
used as the secondary metric, measuring the pro-
portion of correctly classified instances over the
total number of predictions, without accounting for
class distribution. As presented in the results tables,
the system was ranked 4th in Subtask 2 and 3rd
in Subtask 3, with Macro-F1 scores of 84% and
80%, and accuracies of 89% and 79%, respectively
(Tables 45 and 56).

4https://www.kaggle.com/code/thameralharbi/
arageneval-subtask3-aratect

5https://www.codabench.org/competitions/8545/
#/results-tab

6https://www.codabench.org/competitions/9120/
#/results-tab

# Participant F1-Score Accuracy
1 muhammad-helmy 0.89886 0.92416
2 batoolnajeh 0.87163 0.90859
3 moamin007 0.85968 0.89516
4 7h4m3r 0.83753 0.89053
5 jenin 0.83468 0.87377
6 omarnj 0.83138 0.87519
7 rafiulbiswas 0.82824 0.86497
8 mohamedsabaa 0.82743 0.88898
9 tasnim_meem 0.82669 0.86414

10 nlp_wizard 0.81303 0.85285
11 shifali 0.79673 0.83335
12 sabarinathan1 0.36758 0.67075
13 syedsaba 0.00779 0.03174

Table 4: Leaderboard results for Subtask 2.

# Participant F1 Score Accuracy
1 kaoutar 0.86 0.87
2 deleted_user_25186 0.81 0.79
3 7h4m3r 0.80 0.79
4 tasneemduridi 0.78 0.74
5 alizain157 0.77 0.76
6 omarnj 0.76 0.79
7 deleted_user_27804 0.76 0.77
8 shifali 0.75 0.72
9 mutazay 0.74 0.71

10 nlp_wizard 0.74 0.70
11 jenin 0.68 0.55
12 sowravnath 0.67 0.53
13 tasnim_meem 0.66 0.70
14 Hedi 0.65 0.49
15 mariamlabib 0.63 0.65
16 sabarinathan1 0.62 0.53

Table 5: Leaderboard results for Subtask 3.

5 Conclusion

In this work, we presented our approach for the
AraGenEval shared task, addressing both Sub-
task 2 (Authorship Identification) and Subtask 3
(AI-Generated Text Detection). By fine-tuning
transformer-based models tailored for Arabic lan-
guage processing, we achieved competitive results
despite limited computational resources. Our adap-
tations of existing pipelines, combined with effec-
tive use of external datasets and prompt engineer-
ing, demonstrate the potential of pretrained lan-
guage models for challenging Arabic NLP tasks.
Future work will explore more advanced architec-
tures and data augmentation strategies to further
improve performance and robustness.
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Abstract
This paper presents our approach and findings
for Subtask 1 (Authorship Style Transfer) of the
AraGenEval2025 shared task. We explore meth-
ods to transform neutral Arabic text into the dis-
tinctive style of a specified author while preserv-
ing its original meaning. Our work details a two-
phase development: an initial baseline model
leveraging few-shot prompting with Gemini and
K-means clustering, followed by fine-tuning of
pre-trained seq2seq models that support Ara-
bic, including representatives from the mT5 and
mBART model families. We evaluated our mod-
els using BLEU and chrF metrics, demonstrat-
ing significant improvements in fine-tuning, par-
ticularly in capturing Arabic-specific stylistic
nuances. To complement these surface-level
overlap metrics, we incorporate BERTScore to
assess semantic preservation across style trans-
fer. Additionally, we introduce a style classi-
fier to quantify author-specific style transfer
strength. We discuss the challenges encoun-
tered, including Arabic linguistic complexities,
handling long Arabic text, and hardware con-
straints, and outline future directions for enhanc-
ing Arabic Authorship Style Transfer.

1 Introduction

The proliferation of digital content requires ad-
vanced natural language processing (NLP) tech-
niques for text manipulation. Authorship style trans-
fer (AST) is a challenging yet key task aiming to
convert a given text into the writing style of a target
author while maintaining its semantic content. This
differs from traditional stylistic analysis, focusing
solely on identifying and characterizing an author’s
style. The increasing sophistication of AI-generated
content, particularly in Arabic, further highlights
the need for robust AST models, as style identifica-
tion can contribute to detecting synthetic texts.

Despite its importance, Arabic AST remains a
relatively underexplored area compared to other
languages. The Arabic language presents unique
linguistic challenges, including significant morpho-
logical variations, rich affixation, diverse dialects,

and complex reordering phenomena, all of which
impact style transfer. Furthermore, the scarcity of
large-scale labeled datasets for Arabic AST poses
a significant hurdle. This complexity is further ex-
acerbated by the high inflectional nature of Ara-
bic, which introduces tokenization difficulties, espe-
cially when dealing with long texts and paragraph-
level inputs.

The AraGenEval2025 shared task, hosted with
the Arabic Natural Language Processing (Arabic-
NLP 2025) Conference (Abudalfa et al., 2025), aims
to foster research in this domain. Our participation
focuses on Subtask 1: Authorship Style Transfer,
where the objective is to transform a formal input
text into a specified author’s style. This paper details
our methodology, experimental setup, evaluation,
and the insights gained throughout the project, and
concludes with perspectives for future works.

Our system entails a two-stage strategy: an ini-
tial baseline using few-shot prompting with Gemini,
supported by K-means clustering, followed by fine-
tuning of Arabic-supporting seq2seq models from
the mT5, AraT5, and mBART families. The resulting
models achieved 24.46% and 59.33% in BLEU and
chrF, respectively, reflecting word- and character-
level surface overlap with reference texts. Meaning
preservation across style transfer was measured at
92.01% using BERTScore. The stylistization preci-
sion per author reached 86.12%, as assessed using
the style classifier. Implementation is available at1.

2 Background

While Arabic AST remains relatively underex-
plored, two recent approaches (Shao et al., 2024)
and (Hu et al., 2022) provide valuable foundations.
Both generate pseudo-parallel neutral↔stylized
pairs using GPT and fine-tune a seq2seq model on
sentence-level data. (Shao et al., 2024) focuses
on general purpose style transfer and has been ap-
plied to well-defined styles such as Shakespeare,
rap lyrics, and Chinese literature. It leverages

1https://github.com/nojoom-ai/AraGenEval2025
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English- and Chinese-centric tokenizers and pre-
trained BART models. Stylized samples are se-
lected using K-means clustering and augmented
bidirectionally to train a BART-based model.(Hu
et al., 2022), on the contrary, targets a few-shot
style transfer with low-resource authors. It applies
GPT-based neutralization followed by supervised
fine-tuning and introduces a reward model to guide
output refinement through preference-based policy
optimization.

Despite their strengths, both approaches are lim-
ited to short-form inputs, rely heavily on English-
centric infrastructure, and employ evaluation setups
that do not account for Arabic’s morphological com-
plexity or long-form stylistic variation. Our work
addresses these limitations by extending AST to
paragraph-level Arabic inputs, explicitly managing
tokenization challenges caused by high inflection.
We fine-tune Arabic-supporting seq2seq models and
propose a broader evaluation protocol, inspired by
(Shao et al., 2024) and (Hu et al., 2022).

3 System Overview

The system comprises two stages, inspired by the
(Shao et al., 2024) and (Hu et al., 2022) approaches.
First, we develop a baseline model that serves as a
reference for comparison (see Fig. 2). Next, we fine-
tune several Arabic-supporting pre-trained models.

3.1 Baseline Model
Our initial approach utilizes few-shot prompting
with Gemini 2.5 Flash. The process involves:

• K-means Clustering (Fig. 2 Step 1.a): We
performed exploratory data analysis (EDA) on
embedding representations of training samples,
using the elbow method and silhouette scores
to determine that k = 2 – 3 clusters are optimal
for most authors. We then applied K-means to
select the top K = 3 representative examples
per author.

• Prompt Construction: We construct a prompt
by concatenating the selected exemplars with
the neutral input text.

• Styled Output Generation (Fig. 2 Step 1.b):
Gemini 2.5 Flash generates the stylized output
based on the constructed prompt.

3.2 Pre-trained Models Fine-Tuning
To address the limitations of the few-shot base-
line, we implemented a fine-tuning pipeline for pre-
trained seq2seq models (phase 2):

Figure 1: Token-length distributions for training dataset
input (blue) and target (green).

% In Tgt % In Tgt

0 19 11 95 781 765
5 433 419 98 822 825
11 509 501 99 870 934
50 644 635 Q3+1.5·IQR 877 864
90 748 735 100 4248 5094

Table 1: Training Set Input and target token-length statis-
tics. Q3+1.5·IQR indicates the statistical outlier upper
threshold.

• Input Preparation: For each training sample,
we prepend an author tag to the neutral text.
The corresponding stylized text is used as the
target sequence.

• Tokenization (Fig. 2 Step 2.a): Arabic mor-
phology is highly inflected and rich in prefixes
and suffixes, resulting in a higher subword to-
ken count per word compared to English. (Rust
et al., 2021) shows that Arabic typically yields
1.1–1.8 subword tokens per word, compared to
1.2–1.3 in English. Since VRAM usage scales
roughly with the square of sequence length,
we selected our token-length caps to balance
dataset coverage and hardware constraints.

We analyze token-length distributions
across training and validation sets using the
mBART50 tokenizer (Fig. 1). A maximum
length of 750 tokens covers ≈ 90% of the
samples, while 1024 tokens cover ≈ 99.6%
(see Table 1). The final tokenization limits
were chosen based on the available hardware
and pre-trained model sizes.

• Fine-Tuning (Fig. 2 Step 2.b): The pre-trained
model weights (mT5, AraT5, mBART) were
fine-tuned on the prepared dataset, with in-
termediate checkpoints saved to handle long
training sessions.

• LoRA Injection (Fig. 2 Step 2.c): To improve

19



Figure 2: Arabic AST Model developement pipeline

performance under hardware constraints, we
injected Low-Rank Adaptation (LoRA) mod-
ules (Hu et al., 2021) into the fine-tuned mod-
els and conducted additional training on the
training dataset.This enabled further optimiza-
tion over more epochs while keeping the base
model weights frozen.

4 Experimental Setup

4.1 Data Splits

We use the official AraGenEval2025 dataset, con-
sisting of 35,122 paragraph-level samples for train-
ing (72.1%), 4,157 for validation (8.5%), and 8,143
for testing (19.3%). The test set labels are withheld
by the organizers and used only for final evaluation.
Tokenized input lengths reach up to 3,361 tokens,
with 99.66% of samples under 1,024 tokens (Fig. 4).

4.2 Preprocessing

Each neutral input is prepended with an author tag
in the format: <AUTHOR> | <NEUTRAL_TEXT>. To-
kenization is performed using the corresponding
AutoTokenizer for each model.

4.3 Hardware and Environments

All experiments were conducted on cloud-based
platforms with varying GPU configurations; full
details are provided in Appendix B.1.

4.4 Evaluation Metrics

We report the two official competition metrics -
BLEU and chrF to assess word- and character-level
surface overlap. In addition, we include two comple-
mentary metrics: BERTScore (BS), for measuring

semantic preservation, and Style Classifier Accu-
racy (SC), to assess author-specific style transfer
strength. Details of the style classifier development
are provided in Appendix B.6.

5 Results

This section presents the empirical evaluation of
our AST models, detailing their performance across
various metrics, and providing per-author insights.
Our models were evaluated on validation dataset.
The best performing models were then used on the
final test data set evaluation.

5.1 Overall Performance Comparison

Table 5 summarizes the performance of the Few-
Shot baseline and various fine-tuned models. Over-
all, fine-tuning yields substantial gains: BLEU im-
proves from 11.66 to 24.46 (∆ = +11.26) and chrF
from 48.12 to 59.33 (∆ = +11.21), confirming im-
proved stylistic alignment. BS remains consistently
high (∼ 0.91–0.93), indicating strong meaning
preservation across models. SC aligns well with
other metrics, supporting its usefulness in quantify-
ing stylistic strength.

Among the models evaluated, Facebook/mbart-
large-mmt-50 attains the highest validation BLEU
and chrF, while UBC-NLP/AraT5-v2-1024 is highly
competitive in both validation and test results
given its parameter weight. LoRA injection on
UBC-NLP/AraT5-v2-1024 yielded modest gains
where applied; overall improvements are primar-
ily attributable to fine-tuning.

Although the gains are clear, chrF scores in the
high 50s suggest remaining challenges in capturing
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Validation Set Results

Model BLEU chrF BS SC

Few-Shot Baseline 11.66 48.12 91.25 58.43
google/mt5-small 18.51 52.92 91.88 59.78
UBC-NLP/AraT5-base 21.24 57.13 92.02 62.20
agemagician/mlong-t5-tglobal-large 23.58 58.88 93.01 73.58
facebook/mbart-large-mmt-50 24.56 59.92 92.01 85.86
moussakam/AraBART 21.76 58.21 92.52 58.67
UBC-NLP/AraT5-v2-1024 23.80 59.27 91.63 73.90

Table 2: Validation set results for evaluated models.

Test Set Results

Model BLEU chrF SC

facebook/mbart-large-50 24.46 59.33 86.18
moussakam/AraBART 21.07 57.21 59.12

UBC-NLP/AraT5-v2-1024 24.07 59.48 74.31

UBC-NLP/AraT5-v2-1024
+ LoRA

24.22 59.53 75.42

Table 3: Test set results for selected models.
LoRA was injected only where indicated.

Author Cnt BLEU chrF

B FT ∆ B FT ∆

A. G. Makawi 396 17.16 31.48 +14.32 55.07 66.64 +11.57
Fouad Zakaria 125 17.10 27.02 +9.92 54.27 62.62 +8.35
Naguib Mahfouz 327 15.21 25.49 +10.28 50.66 59.60 +8.94
Jurji Zaydan 327 14.39 21.48 +7.09 52.24 59.15 +6.91
Robert Bar 82 13.75 19.16 +5.41 49.90 54.02 +4.12
Tharwat Abaza 90 12.96 27.71 +14.75 50.15 59.93 +9.78
Hassan Hanafi 548 12.93 25.04 +12.11 48.59 61.20 +12.61
Amin Al-Rihani 142 12.65 21.62 +8.97 51.12 59.93 +8.81
W. Shakespeare 238 11.35 26.21 +14.86 48.08 61.02 +12.94
N. El Saadawi 295 10.83 29.77 +18.94 48.28 65.90 +17.62
Gustave Le Bon 150 9.60 18.60 +9.00 48.96 59.05 +10.09

Author Cnt BLEU chrF

B FT ∆ B FT ∆

Ahmed Amin 246 9.47 18.77 +9.30 47.09 57.09 +10.00
A. M. Al-Aqqad 267 8.67 17.89 +9.22 44.76 54.15 +9.39
Salama Moussa 119 8.05 14.53 +6.48 44.51 53.95 +9.44
Yusuf Idris 120 7.48 17.71 +10.23 42.79 55.08 +12.29
G. K. Gibran 30 7.18 27.87 +20.69 45.35 61.44 +16.09
M. H. Heikal 260 6.07 14.31 +8.24 42.84 52.21 +9.37
Taha Hussein 255 5.68 14.54 +8.86 42.12 51.59 +9.47
A. Teimur Pasha 57 3.76 17.74 +13.98 30.53 46.39 +15.86
Kamel Kilani 25 2.43 13.38 +10.95 34.03 50.64 +16.61
Ahmed Shawqi 58 1.91 19.34 +17.43 37.72 55.49 +17.77
Overall 4157 11.66 22.92 +11.26 48.12 59.13 +11.01

Table 4: Per-author performance comparison of the fine-tuned UBC-NLP/AraT5-v2-1024 vs. the baseline models.

Arabic’s morphological richness. These results em-
phasize the importance of both model architecture
and input processing for effective style transfer.

5.2 Per-Author Insights

To gain deeper insights, we analyze per-author per-
formance of the fine-tuned UBC-NLP/AraT5-v2-
base-1024 model (367M parameters) against the
baseline. We chose it because of its strong perfor-
mance compared to mBART-large-50-mmt at lower
parameter cost, and because it better handles long
inputs (full-sample tokenization); see Appendix A
and §B.1. Table 4 reports BLEU and chrF per author
with absolute changes (∆).

The analysis shows consistent gains across most
authors. Notable examples include Gibran Khalil
Gibran (30 samples), which exhibits the largest
increase (∆BLEU = +20.69, ∆chrF = +16.09);
Ahmed Shawqi (58 samples) also shows strong
improvements (+17.43, +17.77); and Nawal El
Saadawi (295 samples) with substantial gains
(+18.94, +17.62). Overall, the model achieves a
sizable overall uplift (BLEU ↑ 11.26, chrF ↑ 11.01),
demonstrating that AraT5-v2-1024 effectively cap-
tures author-specific stylistic signals while handling
longer inputs, and may surpass the model mBART-
large-50-mmt, if a considerable share of long inputs

(> 1024 tokens) were present in the evaluation sets.

Conclusion

Our participation in Subtask 1 of AraGenEval2025
demonstrates effective Authorship Style Transfer
for Arabic. Building on a few-shot Gemini 2.5
Flash with shots selection through K-means clus-
tering baseline, we fine-tuned arabic-supporting
seq2seq models, achieving 24.46% BLEU, 59.33%
chrF, 92.3% BS and 86% SC. Per-author results
were consistently strong, with the lightweight UBC-
NLP/AraT5-v2-1024 (367 M parameters) matching
or exceeding larger multilingual models, underscor-
ing the value of Arabic-specific pre-training.

We identified several Arabic AST challenges ,
including rich morphology and affixation, dialec-
tal variation, reordering, and long paragraph inputs.
We tackled long training on limited hardware by
injecting LoRA modules and using token-budgeted
batching with CPU/GPU overlap to respect hard-
ware limits while processing extended contexts.

Although chrF improvements indicate further
room for capturing fine-grained character-level nu-
ances, our approach lays a solid foundation. Future
work will explore longer inputs handling, and inte-
grate human-in-the-loop evaluation (e.g., Gemini
judgment) to further enhance stylistic fidelity.
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A Appendix: Dataset Distribution Details

In seq2seq tasks, setting an appropriate maximum
input length during tokenization is critical for reli-
able evaluation. Truncating long inputs can degrade
performance by removing key information, espe-
cially for stylistic tasks that rely on paragraph-level
context.

The tables and plots in this appendix provide
a detailed overview of the input and target token
length distributions for the validation and test sets.
These statistics were used to determine safe max-
imum input lengths that cover at least 99% of the
samples, ensuring high coverage without excessive
memory consumption. Outlier thresholds based on
the Q3+1.5·IQR rule are also reported to highlight
extreme cases.

A.1 Validation Set Token-Length Distribution

% In % In

0 21 75 693
5 432 90 736
10 500 95 768
25 574 Q3+1.5·IQR 872
50 639 100 1216

Table 5: Validation set input token-length statistics.
Q3+1.5·IQR indicates the statistical outlier upper thresh-
old.

Figure 3: Token-length distributions for validation
dataset input (blue) and target (green).

A.2 Test Set Input Token-Length Distribution
It is important to note that different model
architectures impose different maximum in-
put length constraints. mBART-based mod-
els such as facebook/mbart-large-50-mmt and
moussakam/AraBART enforce a hard limit of 1,024
tokens due to their absolute positional embed-
dings. In contrast, T5-based models such as
google/mt5-small, UBC-NLP/AraT5-base, and

% In % In

0 30 75 702
5 433 95 747
10 514 99 855
25 587 Q3+1.5·IQR 877
50 650 100 3361

Table 6: Test set input token-length statistics.
Q3+1.5·IQR indicates the statistical outlier upper thresh-
old.

Figure 4: Token length distribution for test set inputs.
Over 99.6% of samples fall under 1 024 tokens.

UBC-NLP/AraT5-v2-1024 utilizes relative posi-
tional embeddings, which allow a soft limit—they
can accept longer sequences as long as the available
hardware permits.

As shown in Table 7, the maximum input lengths
used during training and evaluation were config-
ured based on these architectural constraints and
the available computing resources. For T5-based
models, we set input length limits to 750 or 1,024
tokens to safely cover most validation and test sam-
ples without truncation.

B Appendix: Experimental Details

B.1 Model and Environment Details
Table 7 summarizes the models used, their param-
eter sizes, token length limits, and compute envi-
ronments. T5-based models tolerate flexible input
lengths (hardware permitting), while mBART-based
models impose a strict 1024-token cap. Training
was conducted on either Colab Pro+ (A100) or Kag-
gle (P100). CPU-only runs were reserved for small-
scale evaluation like ChrF , BLEU and BERTScore
calculations due to memory limitations.

B.2 K-means Clustering for Few-Shot Samples
Selection

To avoid suboptimal or noisy few-shot examples re-
sulting from random selection, we apply clustering
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Model Params Platform Accel. Training Evaluation Max tok.
unit BS Max tok. Validation Test

google/mt5-small (Xue et al., 2021) 310M Kaggle P100 1 750 750 /
UBC-NLP/AraT5-base(Nagoudi et al., 2022) 280M Kaggle P100 1 750 1500 /
agemagician/mlong-t5-tglobal-large
(Uthus et al., 2023) 1768M Colab Pro+ A100 4 1024 1500 /
facebook/mbart-large-50-mmt
(Tang et al., 2020) 610M Colab Pro+ A100 8 1024 1024 1024
moussakam/AraBART (Eddine et al., 2022) 139M Kaggle P100 16 1024 1024 1024
UBC-NLP/AraT5-v2-1024
(Elmadany et al., 2023) 367M Colab Pro+ A100 12 1024 1500 3500

Table 7: Compute platforms and sequence-length configurations across dataset splits.

of K-means on sentence embeddings to determin-
istically select representative neutral samples per
author. The goal is to ensure that stylistically cen-
tral examples are used in prompt-based evaluation,
without model fine-tuning.

We encode each author’s neutral training texts
using the all-MiniLM-L6-v2 model, then cluster
the resulting embeddings and extract the closest
samples to each cluster centroid as the selected few-
shot examples.

Parameter Value / Setting

Embedding model all-MiniLM-L6-v2
Embedding dimension 384
Clustering method K-means (per author)
Number of clusters (k) 3
Distance metric Euclidean
Selection criterion Centroid-nearest samples
Random seed 42

Table 8: K-means clustering setup for representative few-
shot selection.

B.3 Training Configuration

Key hyperparameters (defaults unless otherwise
noted):

Parameter Value

Effective batch size 32
Gradient accumulation steps 8
Max sequence length 750 / 1024
Checkpoint interval 500 steps
Epochs 3
Optimizer AdamW
Learning rate 5×10−5

Table 9: Summary of training hyperparameters.

B.4 Evaluation Configuration

Inference is performed via a single-GPU, token-
budgeted batching pipeline that overlaps CPU
tokenization with GPU generation to maximize
throughput and avoid OOMs. Inputs are first sorted
by length on the CPU, grouped into batches whose
total token count does not exceed a configurable
budget, then transferred to the GPU for generation.
If an OOM occurs, the budget is halved and the
batch is retried in smaller splits.

Key parameters are summarized in Table 10.

Parameter Value / Description

Token budget 10 000 total input tokens
VRAM Memory threshold 80 % of GPU VRAM
Budget increment +1 000 tokens when

VRAM<VRAM_THRESH

Budget update frequency every 5 successful batches
Max input length 3 400 tokens (capped by

model input handling)
Max generation length 4 000 tokens (capped by

model input handling)

Table 10: Key settings for token-budgeted inference

This setup ensures that: (1) very long inputs
are safely handled without silent truncation, and
(2) GPU utilization remains high by feeding pre-
tokenized batches as soon as memory permits.

B.5 LoRA Configuration

To enable lightweight and fast adaptation over lim-
ited resources, LoRA was injected into attention
layers of a frozen UBC-NLP/AraT5-v2-1024 base.
This setup drastically reduces trainable parameters,
making hyperparameter sweeps and multi-run ex-
perimentation feasible within constrained GPU en-
vironments. We used an aggressive injection con-
figuration with moderately high rank and scaling
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Figure 5: LoRA injection Development & Evaluation pipeline

Figure 6: Arabic Style classifier Development & Evaluation pipeline

values. Checkpoints were saved each epoch, and
the model with the best chrF score on a held-out
validation subset was selected.

Component Configuration

Base model UBC-NLP/AraT5-v2-1024

Target modules q, v, k, fc1, fc2

Injection layers Encoder and decoder attention
Rank (r) 32
Scaling factor (α) 64
Dropout 0.1
Bias None
Epochs 5
Eval subset 25% subset stratified from vali-

dation set
Checkpointing Every epoch
Final model selection Best checkpoint by chrF

Table 11: Summary of LoRA fine-tuning configuration.

B.6 Style Classifier

While BLEU and chrF quantify surface over-
lap, they do not directly measure whether the
generated text truly mirrors an author’s stylis-
tic fingerprint. To address this, we train
an author-specific binary classifier, based on
bert-base-arabic-camelbert-ca, that learns
the distinctive phrasing, vocabulary, and structural
patterns of each author.

Unfortunately, no off-the-shelf Arabic style clas-
sifier supports long inputs beyond 512 tokens. Our
options were to pre-train an English long-document
model (e.g. Longformer) on Arabic data or to adopt
a sliding-window approach. As shown in Fig. 6,
we chose the latter: inputs are split into overlapping

512-token chunks (256-token stride), each classified
separately, and results are aggregated. This ensures
we capture stylistic cues from long paragraphs with-
out truncation.

For each sample evaluated (from validation or
test datasets), we compare the confidence of the
classifier in the ’Author X’ class on the neutral input
versus the stylized output to calculate

∆ = pout(1) − pin(1).

An instance is a hit if ∆ > 0, i.e. the generated out-
put aligns more with the ’Author X’ style than with
the neutral text (that is,a successful style transfer).
We report the hit rate as the SC metric.

Parameter Setting

Base model bert-base-arabic-camelbert-ca

Input length limit 512 tokens (sliding window)
overlap 256 tokens between chunks
Training epochs 5
Batch size 16
Learning rate 2× 10−5

Optimizer AdamW
Scheduler Linear warmup
Loss Binary cross-entropy
Output metrics Hit rate (∆ > 0), mean ∆

Classifiers One per author (21 total)

Table 12: Training Setup for each author style classifiers.

Future work should explore pre-training or adapt-
ing a native Arabic long-input classifier, rather than
relying on sliding windows, to more seamlessly han-
dle long input LLM generations evaluation.
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Abstract

We address the problem of distinguishing be-
tween human-authored and AI-generated text
in low-resource languages, particularly Ara-
bic. We present the LMSA1 team’s participa-
tion in the ARATECT (Arabic AI-Generated
Text Detection) subtask of the AraGenEval2

shared task, which targets the detection of
AI-generated Arabic texts. We propose an
ensemble-based classification framework that
integrates multilingual and Arabic-specific
pre-trained language models, namely Fanar,
AraBERT, and XLM-R, optimized through a
dedicated fine-tuning pipeline. The approach is
evaluated on the balanced Arabic text dataset
provided by the shared task organizers. Our sys-
tem achieved an F1-score of 0.864 and ranked
first among all participating teams.

1 Introduction

The rapid advancement of generative artificial in-
telligence has significantly transformed the land-
scape of content creation, education, and commu-
nication. State-of-the-art large language models
(LLMs) such as GPT-3 (Brown et al., 2020), GPT-
4 (OpenAI et al., 2023), and LLaMA (Touvron
et al., 2023) are now capable of producing text that
exhibits a high degree of fluency, coherence, and
stylistic refinement, often closely resembling hu-
man writing. These technologies offer substantial
benefits, including personalized learning, writing
support, and scalable content generation. How-
ever, they also raise serious ethical concerns re-
garding authorship, originality, and academic in-
tegrity. Moreover, generative AI can be misused
to produce misleading or deceptive content, includ-
ing fabricated news articles (Ishraquzzaman et al.,

*Corresponding author:
zita.kaoutar@univ-ghardaia.edu.dz

1Laboratoire des Mathématiques et Sciences Appliquées,
University of Ghardaia, Algeria

2https://ezzini.github.io/AraGenEval/

2025), deepfake tweets (Fagni et al., 2021), and
AI-generated documents such as academic papers
and study reports (Chowdhury et al., 2025). Such
misuse poses significant ethical risks across do-
mains, including journalism, education, and social
media. In light of these developments, there is a
growing need and a corresponding challenge to
reliably distinguish between human-written and
machine-generated text.

Arabic, one of the six official languages recog-
nized worldwide (Wahdan et al., 2020) and the
fourth most used language on the Internet with
over 400 million speakers (Guellil et al., 2021), has
received comparatively less attention in the area
of AI-generated text detection. In this context, the
AraGenEval shared task (Arabic Authorship Style
Transfer and AI-Generated Text Detection) (Abu-
dalfa et al., 2025) is introduced to foster research
on Arabic text generation and detection. One of its
subtasks, ARATECT, focuses on the binary classi-
fication of Arabic texts as either human-written or
AI-generated.

To address this challenge, we propose an
ensemble-based classification framework that com-
bines the strengths of both multilingual and Arabic-
specific pre-trained language models. By integrat-
ing Fanar, AraBERT, and XLM-R within a fine-
tuning pipeline and applying a majority voting
strategy, this approach enhanced the robustness
and accuracy of our system, enabling it to rank first
among the 16 submitted systems in the ARATECT
subtask.

The implementation is publicly available3 to sup-
port transparency and reproducibility.

3https://github.com/kaoutarzi/
AraGenEval-2025-Aratect
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2 Background

2.1 Task Setup

In this study, we address the detection of AI-
generated Arabic text as part of the ARATECT
subtask in the AraGenEval Shared Task. This sub-
task is formulated as a binary classification prob-
lem in which the system is given an Arabic text and
must determine whether it was written by a human
or generated by an AI model. The dataset used
consists of Arabic texts spanning various genres,
including news articles and literary content. It is
balanced in terms of class distribution, featuring an
equal number of human- and machine-generated
samples. The full dataset comprises 5,798 texts,
split into training, development, and test sets, as
detailed in Table 1.

For instance, a system might encounter a news
excerpt such as:
T§w��� �A�A�d��  � A�AF T§Cws�� ºAb�±� T�A�¤ 
�A� ''
�§C�wO�� ��  d`� ¨ly¶�rF�  �¤d`� �dO� T§Cws��
�A�As�� ¨� �K� Tm}A`�� Xy�� ¨� �VAn� 
�dhtF�

''. Hym��� �wy�� �� Y�¤±�
Which means "The Syrian Arab News Agency

(SANA) reported that Syrian air defenses re-
sponded to an Israeli attack involving several mis-
siles that targeted areas around the capital, Damas-
cus, in the early hours of Thursday." The system is
then expected to classify the text accordingly.

2.2 Related Work

Numerous studies (Liu et al., 2025; Wu et al., 2025;
Fraser et al., 2025) have addressed the challenge of
detecting AI-generated text, driven by the growing
capabilities of large language models. However,
most existing research has focused predominantly
on English or other high-resource languages.

For instance, Katib et al. (2023) introduced a
hybrid model called TSA-LSTMRNN, which in-
tegrates LSTM with an attention mechanism and
the Tunicate Swarm Algorithm (Kaur et al., 2020).
They utilize TF-IDF, count vectorizer, and word
embeddings for feature extraction, achieving up to
93.83% accuracy in distinguishing between human-
and ChatGPT-generated text.

Antoun et al. (2023) proposed a methodology for
detecting ChatGPT-generated French text by trans-
lating the HC3 English dataset (Guo et al., 2023)
and training classifiers (e.g., CamemBERTa, XLM-
R). The detectors performed well in-domain (F1
≈ 0.97), but showed reduced effectiveness on out-
of-domain and adversarial samples, highlighting

limitations in generalization.
Focusing specifically on Arabic, Alshammari

et al. (2024) propose two fine-tuned Transformer-
based models, AraELECTRA and XLM-R, for de-
tecting AI-generated versus human-written texts.
Their approach incorporates a novel Dediacritiza-
tion Layer. Trained on the AIRABIC dataset (Al-
shammari and EI-Sayed, 2023), the models achieve
up to 83% accuracy, outperforming GPTZero
(63%) and OpenAI Text Classifier (50%).

Similarly, Alghamdi and Alowibdi (2024) com-
piled a dataset of Arabic tweets authored by both
humans and ChatGPT. They trained and evaluated
three machine learning models (SVM, Naive Bayes,
and Decision Tree), with Naive Bayes achieving
the highest accuracy of 93% in distinguishing be-
tween the two sources.

3 System Overview

In this study, we progressively explored a wide
range of models for Arabic text classification to
address the task of detecting AI-generated con-
tent. We began with traditional machine learning
methods, advanced through deep learning archi-
tectures, and further extended our investigation by
fine-tuning various pre-trained language models.
To enhance overall performance and robustness,
we adopt an ensemble strategy based on majority
voting (Dong et al., 2020). The following sections
provide a detailed exploration of each category of
models employed in our study.

3.1 Machine Learning-based Classification

To classify Arabic AI-generated text using tradi-
tional machine learning, we extracted three types
of features: (1) statistical and stylistic features,
such as word counts, lexical diversity, and punctu-
ation usage; (2) TF-IDF features, which captured
sparse lexical patterns; and (3) contextual represen-
tations derived from AraBERT embeddings. These
features were then used as input to machine learn-
ing models, specifically Logistic Regression and
a Multi-Layer Perceptron (MLP), which were se-
lected based on their performance on the develop-
ment set.

3.2 Deep Learning-based Classification

To explore deep learning-based detection, we de-
signed a fusion architecture that integrates both
handcrafted and contextual features. As shown
in Figure 1, the input text is processed twice to
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get a rich encoding. The first branch encodes
handcrafted stylometric and sparse lexical patterns
(stylistic features and TF-IDF), while the second
processes semantic features obtained via AraBERT
embeddings. This separation aims to preserve
the distinct contribution of each feature type and
prevent potential dominance of contextual embed-
dings. The outputs from both branches are then
concatenated and passed through a multi-head at-
tention layer to model cross-feature interactions,
enabling the integration of both surface-level and
deep contextual cues for the final classification.

Figure 1: FusionNet Architecture for Arabic AI Gener-
ated Text Detection.

3.3 LLM-based Classification

A core focus of our work lies in exploring the poten-
tial of large pre-trained language models (LLMs)
for detecting AI-generated text. To this end, we ex-
perimented with several models and identified three
that contributed the most significantly to our final
submission results: Fanar, AraBERT, and XLM-R.

XLM-RoBERTa4 is a multilingual transformer-
based language model developed to handle over
100 languages, including Arabic. It builds upon
the RoBERTa architecture and is trained using the
Masked Language Modeling (MLM) objective on
a massive dataset of 2.5TB of filtered Common-
Crawl data. Its architecture supports fine-tuning for

4FacebookAI/xlm-roberta-base

tasks such as text classification, sentiment analysis,
and question answering, leveraging rich contextual
representations learned from diverse multilingual
corpora (Conneau et al., 2020).

AraBERT5 is a transformer-based language
model specifically pre-trained for Arabic, adapting
the original BERT (Devlin et al., 2019) architec-
ture to better address the linguistic richness and
morphological complexity of Arabic. Trained on
approximately 1.5 billion words from diverse Ara-
bic corpora, AraBERT demonstrates strong per-
formance across various NLP tasks such as sen-
timent analysis, question answering, and named
entity recognition. Its design, which includes 12
encoder layers and 136M parameters, allows it to
capture deep contextual representations tailored to
the Arabic language (Antoun et al., 2020).

Fanar6 is an Arabic-centric multimodal Large
Language Model developed by the Qatar Comput-
ing Research Institute at Hamad Bin Khalifa Uni-
versity. It is available in two versions: Fanar Star
(7B) and Fanar Prime (9B), trained on a corpus
of one trillion tokens in Arabic and English. Fa-
nar is designed to support Modern Standard Ara-
bic as well as major regional dialects. Aligned
with Islamic values and Arab cultural contexts, it
offers a range of capabilities such as text genera-
tion, speech and image processing, and retrieval-
augmented generation (RAG) (Team et al., 2025).

Finally, as shown in Figure 2, the predictions
from the fine-tuned XLM-RoBERTa, AraBERT,
and Fanar models were combined using a majority
voting scheme. This ensemble method leveraged
the complementary strengths of the individual mod-
els to achieve balanced performance across all eval-
uation metrics and improve the overall accuracy
and robustness of the text classification system.

Figure 2: Ensemble-Based Approach for Arabic AI-
Generated Text Detection.

4 Experimental Setup

We deploy the dataset provided in the ARATECT
subtask of the AraGenEval shared task (Abudalfa

5aubmindlab/bert-base-arabertv2
6https://huggingface.co/QCRI/Fanar-1-9B
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et al., 2025), which aims to detect AI-generated
Arabic texts. The dataset comprises a balanced
set of human- and machine-generated texts across
the training, development, and test splits. Human-
written texts were sourced from credible Arabic
news platforms and literary works, ensuring di-
versity in style and topic. In contrast, machine-
generated texts were produced using multiple large
language models, including Mistral, GPT-4, and
LLaMA.

Table 1 provides a detailed overview of the
dataset’s composition.

Data Training Dev Test
# of Samples 4,798 500 500
# of Words 2,330,765 139,745 115,057
Machine (%) 50% 50% 50%
Human (%) 50% 50% 50%

Table 1: ARATECT Dataset Overview.

All experiments were conducted using Python
within a Kaggle GPU environment, leveraging the
Hugging Face Transformers, Datasets, and Evalu-
ate libraries to fine-tune three pre-trained language
models: XLM-RoBERTa, AraBERT, and Fanar.
For XLM-RoBERTa and AraBERT, texts were tok-
enized and classified using cross-entropy loss, with
a batch size of 4 over 3 epochs and 1 epoch, re-
spectively. Fanar was fine-tuned using instruction-
formatted prompts through LoRA-based parameter-
efficient tuning in 4-bit precision, with a batch size
of 2 and one epoch. Model performance was evalu-
ated using accuracy, precision, recall, and F1-score.
All implementation details, including code and con-
figurations, are publicly available on GitHub7.

5 Results

Table 2 presents the evaluation results across all
experimented models. Traditional machine learn-
ing approaches and FusionNet obtained relatively
modest performance, reflecting their limited abil-
ity to capture the complex linguistic patterns in
the dataset. Among the Transformer-based models,
the three fine-tuned large language models XLM-
R, AraBERT, and Fanar stood out with superior
and complementary strengths. AraBERT achieved
the highest accuracy (0.864) and F1-score (0.861),
XLM-R attained the highest precision (0.911), and
Fanar recorded the highest recall (0.920). Although

7https://github.com/kaoutarzi/
AraGenEval-2025-Aratect

Model Acc. Prec. Rec. F1

LR 0.438 0.464 0.804 0.589
MLP 0.506 0.503 0.988 0.667
FusionNet 0.578 0.552 0.824 0.661
AraElectra 0.688 0.737 0.584 0.652
MARBERT 0.586 0.563 0.764 0.649
DeBERTa 0.768 0.791 0.728 0.758
Qwen2.5 0.480 0.490 0.940 0.644
CAMeL 0.642 0.612 0.776 0.684

XLM-R 0.832 0.911 0.736 0.814
AraBERT 0.864 0.882 0.840 0.861
Fanar 0.776 0.714 0.920 0.804

Majority Voting 0.866 0.877 0.852 0.864

Table 2: Performance of our models.

the performance of the Majority Voting ensemble
is numerically close to that of AraBERT, the en-
semble remains valuable because it balances these
strengths, producing a more stable and robust sys-
tem that is less dependent on the behavior of a
single model and better suited to varying data dis-
tributions.

6 Conclusion

In this study, we developed a system for AI-
generated Arabic text detection within the ARA-
TECT subtask of the AraGenEval Shared Task. We
proposed an ensemble-based classification frame-
work that combines the strengths of both multilin-
gual and Arabic-specific pre-trained language mod-
els. By integrating Fanar, AraBERT, and XLM-R
within a fine-tuning pipeline and applying a major-
ity voting strategy, the system achieved strong and
balanced performance across all evaluation metrics.
However, there is room for improvement, partic-
ularly in enhancing generalization capabilities to
unseen domains and handling more diverse writing
styles. Future work will address these limitations
by exploring more advanced ensemble learning
techniques, such as stacking, incorporating larger
and more recent language models like GPT-4 or
LLaMA 3, and evaluating the system on broader
datasets to further improve robustness and adapt-
ability. Furthermore, we plan to extend the clas-
sification task beyond binary detection to detect
specific AI-generated segments within texts.
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Abstract

This paper presents our approach to the Ara-
GenEval 2025 shared task on Arabic author-
ship attribution (Task 2). We developed an
enhanced traditional machine learning system
that combines word-level and character-level
TF-IDF features with multiple classification
algorithms. Our system achieved 88.90% accu-
racy and 82.74% macro F1-score on the official
test set using Logistic Regression. During de-
velopment, we evaluated multiple models on
the validation set, where Linear SVM achieved
the highest performance with 93.22% accuracy
and 87.52% macro F1-score. The approach
demonstrates the effectiveness of feature engi-
neering and proper text preprocessing for Ara-
bic authorship attribution tasks without relying
on deep learning architectures.

1 Introduction

Authorship attribution is a fundamental task in com-
putational linguistics that aims to identify the au-
thor of a given text based on stylistic patterns and
linguistic features (Stamatatos, 2009). For Arabic
texts, this task presents unique challenges due to
the language’s morphological complexity, rich or-
thographic variations, and diverse dialectal forms.

The AraGenEval 2025 shared task on Arabic
authorship attribution (Abudalfa et al., 2025) pro-
vides a benchmark for evaluating computational
approaches to identifying authors from a collection
of Arabic literary texts. This task is particularly
relevant in digital humanities, forensic linguistics,
and plagiarism detection for Arabic content.

Our contribution focuses on developing a robust
traditional machine learning approach that lever-
ages carefully engineered features and proven clas-
sification algorithms. We present a comprehensive
preprocessing pipeline specifically designed for
Arabic literary texts, an effective combination of
word-level and character-level Term Frequency - In-
verse Document Frequency (TF-IDF) features, sys-

tematic evaluation of multiple traditional machine
learning algorithms, analysis of author-specific per-
formance patterns and error cases, and a repro-
ducible approach that achieves competitive results
without deep learning.

2 Related Work

Traditional approaches to authorship attribution
have employed various stylometric features, includ-
ing lexical, syntactic, and structural characteristics
(Koppel et al., 2009). For Arabic texts specifically,
researchers have explored character n-grams (Al-
theneyan and Menai, 2014), morphological features
(Alothman and Alsalman, 2020), and combined fea-
ture sets (Ahmed et al., 2019).

Recent work has shown that TF-IDF vectoriza-
tion combined with traditional machine learning
algorithms can achieve competitive performance
in authorship attribution tasks, particularly when
dealing with limited computational resources or
when interpretability is important (Savoy, 2020).

3 Methodology

3.1 Dataset
The dataset consists of 35,122 training samples
and 4,157 validation samples across 21 authors,
including prominent Arabic literary figures such
as Hassan Hanafi (3,735 samples), Ahmed Amin
(2,892 samples), and Naguib Mahfouz (1,630 sam-
ples). Figure 1 shows the distribution of authors in
the training data.

The text length analysis reveals a mean length of
1,773.49 characters for training texts and 1,755.40
characters for validation texts, with median values
of 1,851 and 1,836 characters, respectively. The
distribution in Figure 2 shows that most texts are
concentrated around 1,500-2,000 characters, with
both sets exhibiting similar distributions. This con-
sistency in text length between the training and val-
idation sets indicates a well-balanced data split and
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Figure 1: Top 15 authors distribution in training data
with English names

Figure 2: Overall text length distribution in training and
validation sets

minimizes the potential bias arising from length
variations.

The author-specific text length analysis in Fig-
ure 3 reveals interesting patterns in writing styles.
Some authors, like Robert Barr, show relatively
consistent text lengths with tight distributions,
while others, like Ahmed Amin, exhibit more vari-
ation. These length patterns can serve as additional
stylometric features.

3.2 Dataset Statistics and Preprocessing

Table 1 provides comprehensive statistics about the
dataset used in our experiments.

Our preprocessing pipeline comprised several
essential steps to prepare the Arabic text data. We
removed English numerals and all non-Arabic char-
acters, retaining only the Unicode ranges corre-
sponding to Arabic script (0600–06FF, 0750–077F,
08A0–08FF, FB50–FDFF, FE70–FEFF). Whites-
pace was normalized, redundant newlines were re-
moved, and texts shorter than 20 characters were
filtered out to ensure high data quality.

Figure 3: Text length distribution by author for top 8
authors in the train set

Statistic Training Validation

Total samples 35,122 4,157
Number of authors 21 21
Mean text length (chars) 1,773.49 1,755.40
Median text length (chars) 1,851.00 1,836.00
Largest author (samples) 3,735 548
Smallest author (samples) 399 25

Feature Dimensions
Word-level TF-IDF 15,000
Character-level TF-IDF 5,000
Combined features 20,000

Table 1: Dataset and feature statistics

3.3 Feature Engineering
We employed a dual-feature approach combining
word-level and character-level TF-IDF representa-
tions. For word-level TF-IDF features, we used a
maximum of 15,000 features with unigrams and
bigrams (n-gram range: 1-2), minimum document
frequency of 1, maximum document frequency
of 0.9, and applied sublinear TF scaling. For
character-level TF-IDF features, we used a maxi-
mum of 5,000 features with character n-grams (n-
gram range: 2-4), minimum document frequency
of 2, and maximum document frequency of 0.8.
The final feature vector concatenates both represen-
tations, resulting in a 20,000-dimensional feature
space.

3.4 Classification Models
We evaluated five classification algorithms: Linear
SVM using SGDClassifier with hinge loss, Logistic
Regression with maximum 1,000 iterations, Multi-
nomial Naive Bayes with standard implementation,
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Random Forest with 100 estimators, and Decision
Tree. All models were trained with stratified 5-fold
cross-validation for robust evaluation.

4 Results

4.1 Model Performance Comparison

Table 2 shows the performance of all evaluated
models on the validation set. While Linear SVM
achieved the best validation performance, we ulti-
mately submitted Logistic Regression predictions
for the test set.

Model Accuracy F1-Macro F1-Weighted

Linear SVM (SGD) 93.22 87.52 92.95
Logistic Regression 90.54 82.63 89.88
Naive Bayes 79.22 68.09 77.75
Random Forest 59.32 46.28 55.94
Decision Tree 32.23 24.35 31.88

Table 2: Model performance on validation set

The Linear SVM achieved a cross-validation F1-
macro score of 97.67% (±0.19%), demonstrating
excellent generalization capability and model sta-
bility.

4.2 Official Test Set Results

Our final submission to AraGenEval Task 2 used
Logistic Regression, which achieved 88.90% ac-
curacy and 82.74% macro F1-score on the official
test set containing 8,413 samples. Additional met-
rics include 84.53% precision and 83.75% recall.
Table 3 compares our validation and test perfor-
mance.

Metric Validation Test (Official)

Accuracy 90.54% 88.90%
Macro F1-score 82.63% 82.74%
Precision - 84.53%
Recall - 83.75%

Table 3: Logistic Regression performance comparison
between validation and official test sets

4.3 Author-Specific Performance

Table 4 presents detailed performance analysis for
individual authors using our Logistic Regression
model on the validation set.

Author (English) Accuracy Support

Top 5 Performing
Salama Moussa 100.00 119
Gibran Khalil Gibran 100.00 30
Naguib Mahfouz 99.69 327
Gustave Le Bon 99.33 150
Hassan Hanafi 98.91 548

Bottom 5 Performing
William Shakespeare 83.19 238
Ahmed Shawqi 82.76 58
Ahmed Taymour Pasha 78.95 57
Tharwat Abaza 44.44 90
Kamel Kilani 16.00 25

Table 4: Author-level performance analysis (validation
set)

5 Discussion

5.1 Model Performance

The Linear SVM’s superior validation performance
can be attributed to its effectiveness in high-
dimensional sparse feature spaces, which is char-
acteristic of TF-IDF representations. Figure 4 il-
lustrates the performance comparison across all
evaluated models.

Figure 4: Model performance comparison on validation
set

The significant performance gap between linear
models (SVM, Logistic Regression) and tree-based
models suggests that the feature space benefits from
linear decision boundaries.

5.2 Model Selection Strategy

Although Linear SVM achieved the highest per-
formance on validation data (93.22% accuracy,
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87.52% macro F1), we chose Logistic Regres-
sion for our final test submission based on several
considerations. Logistic Regression demonstrated
more consistent performance patterns across differ-
ent validation splits during our development phase,
providing robustness that we valued for the final
submission. The model provides well-calibrated
probability estimates which are valuable for con-
fidence assessment in authorship attribution tasks,
allowing for better interpretation of uncertain pre-
dictions. Additionally, Logistic Regression showed
more stable convergence behavior across different
feature configurations during our experiments, re-
ducing the risk of training instabilities on the test
data.

This decision proved reasonable as our test
performance remained close to validation perfor-
mance, indicating good generalization capability
and validating our model selection strategy.

5.3 Feature Engineering Impact

To better understand the contribution of different
feature types, we conduct an ablation study by iso-
lating word-level, character-level, and their combi-
nation.

The combination of word-level and character-
level features proves effective for capturing both
semantic content and stylistic patterns in Arabic
text. Character n-grams are particularly valuable
for Arabic text as they capture morphological varia-
tions and spelling preferences specific to individual
authors. Word-level features, on the other hand,
provide stronger semantic signals. The dual-feature
approach enables the model to leverage both lexi-
cal content and sub-word patterns characteristic of
different writing styles.

Features Accuracy Macro F1 Weighted F1
Characters only 0.8910 0.8199 0.8866
Words only 0.9221 0.8508 0.9166
Words + Chars 0.9322 0.8752 0.9295

Table 5: Ablation study on different feature sets.

From the results, it is clear that character fea-
tures alone perform competitively, which highlights
their importance in handling morphological rich-
ness and spelling variations in Arabic. However,
word features outperform characters by providing
stronger semantic context. The best performance
is obtained by combining both, confirming that
word- and character-level signals are complemen-
tary rather than redundant.

5.4 Challenges and Error Analysis
The dataset exhibits significant class imbalance,
with Hassan Hanafi having 3,735 samples while
Kamel Kilani has only 399 samples in the training
set. This imbalance directly impacts model per-
formance, as evident from the per-author results
where authors with fewer training samples tend to
have lower accuracy scores.

Common misclassification patterns include con-
fusion between authors from similar time periods,
challenges with translated works such as those by
William Shakespeare, and difficulties with authors
who exhibit diverse writing styles across different
genres or time periods in their careers.

6 Conclusion

Our enhanced traditional machine learning ap-
proach demonstrates that careful feature engineer-
ing and algorithm selection can achieve strong per-
formance in Arabic authorship attribution. The
Logistic Regression model achieved 88.90% accu-
racy and 82.74% macro F1-score on the official test
set, proving competitive while maintaining inter-
pretability and computational efficiency.

Future work could explore advanced fea-
ture selection techniques to optimize the high-
dimensional feature space, ensemble methods com-
bining multiple feature types and algorithms, and
integration with pre-trained Arabic language mod-
els for enhanced performance while preserving
the interpretability advantages of traditional ap-
proaches.

Code Availability

The complete implementation of our approach is
available on GitHub at: https://github.com/
Amr-said/Arabic-Authorship-Attribution.
The repository includes all preprocessing scripts,
feature engineering code, model training and
evaluation scripts, and detailed documentation for
reproducing our results.
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Abstract

This paper presents a lightweight system
for the AraGenEval shared task, addressing
AI-generated text detection and authorship
identification in Arabic. Using pretrained
xlm-roberta-large embeddings with mean
pooling and [CLS] token strategies, combined
with classical classifiers (RidgeClassifierCV
and LinearSVC), our approach achieved F1-
scores of 0.7400 and 0.8130 on the ARATECT
and authorship datasets, respectively. Mean
pooling outperformed [CLS] by 3%, demon-
strating efficiency and robustness for limited
Arabic data while capturing stylistic nuances
critical for both tasks.

1 Introduction

The rapid advancements in large language mod-
els (LLMs) have enabled the generation of fluent,
human-like text at unprecedented scale (Vaswani
et al., 2017; Brown et al., 2020). This has inten-
sified the need for robust systems capable of both
detecting AI-generated content and identifying the
authorship of text (Jawahar et al., 2020; Uchendu
et al., 2020). Such capabilities are critical for pre-
serving content authenticity, combating misinfor-
mation, and supporting forensic linguistic analy-
sis (Uchendu et al., 2020). While research in this
area has grown substantially for English, Arabic
remains relatively underexplored despite its rich
morphology, dialectal diversity, and increasing on-
line presence (Habash, 2010).

To address these gaps, the AraGenEval shared
task (Abudalfa et al., 2025) was introduced as part
of ArabicNLP 2025. The task encompasses three
subtasks: (1) Authorship Style Transfer, which
focuses on transforming text to mimic a specific au-
thor’s style; (2) Authorship Identification, which
aims to determine the original author of a given
text; and (3) AI-Generated Text Detection, which
seeks to distinguish between human-written and
machine-generated Arabic text. The competition

provided a unified benchmark for evaluating sys-
tem performance on these interrelated challenges.

Our participation focused on the Authorship
Identification and AI-Generated Text Detection
subtasks. We employed the xlm-roberta-large
multilingual model to extract contextual embed-
dings for Arabic text. Instead of using the con-
ventional [CLS] token representation, we com-
puted the average of all token embeddings to form
document-level feature vectors. These embeddings
were then fed into various traditional machine learn-
ing classifiers. For AI-generated text detection,
the RidgeClassifierCV achieved the best perfor-
mance with an F1-score of 0.74 on the blind test
set, ranking 10th among all submissions. For au-
thorship identification, the LinearSVC classifier at-
tained an F1-score of 0.81303 on the blind test set,
also ranking 10th in the respective leaderboard.

Our findings highlight that averaging contextual
embeddings from xlm-roberta-large can serve
as a strong baseline for Arabic authorship and AI
detection tasks, even when combined with rela-
tively lightweight classifiers. We also observed
that the choice of classifier plays a substantial role
in performance, with linear models showing com-
petitive results.

2 Background

The AraGenEval shared task (?) was designed
to benchmark system performance on three Ara-
bic NLP challenges: Authorship Style Transfer
(Task 1), Authorship Identification (Task 2), and
AI-Generated Text Detection (Task 3). All tasks
targeted Modern Standard Arabic (MSA) and in-
cluded data from diverse literary and journalistic
sources.

2.1 Task Setup

In Authorship Identification (Task 2), the input is
a short Arabic text segment, and the output is the
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predicted author identity from a set of 21 possible
authors. For example, given a paragraph excerpted
from a 20th-century Arabic novel, the system must
assign the correct author label.

In AI-Generated Text Detection (Task 3), the
input is also a short text passage, and the output is
a binary classification: human or AI. For instance,
given a news-style paragraph, the model must de-
tect whether it was written by a human or produced
by a large language model.

2.2 Dataset Details
Authorship Identification. The dataset contains
works from 21 authors, each represented by 10 pub-
licly available books. Texts were segmented into se-
mantically coherent paragraphs, and for style trans-
fer tasks, selected paragraphs were rephrased into
a standardized formal style using GPT-4o mini2.
The dataset is split into training, validation, and test
sets per author. Table 1 summarizes the distribution
of samples.

Author Train Test Val
Ahmed Amin 2892 594 246
Ahmed Taymour Pasha 804 142 53
Ahmed Shawqi 596 46 58
Ameen Rihani 1557 624 142
Tharwat Abaza 755 191 90
Gibran K. Gibran 748 240 30
Jurji Zaydan 2762 562 326
Hassan Hanafi 3735 1002 548
Robert Barr 2680 512 82
Salama Moussa 984 282 119
Taha Hussein 2371 534 253
Abbas M. Al-Aqqad 1820 499 267
Abdel G. Makawi 1520 464 396
Gustave Le Bon 1515 358 150
Fouad Zakaria 1771 294 125
Kamel Kilani 399 109 25
Mohamed H. Heikal 2627 492 260
Naguib Mahfouz 1630 343 327
Nawal El Saadawi 1415 382 295
William Shakespeare 1236 358 238
Yusuf Idris 1140 349 120

Table 1: Authorship identification dataset statistics.

AI-Generated Text Detection. The ARATECT
dataset contains human-written and AI-generated
Arabic texts. Human texts were collected from
reputable Arabic news websites and verified lit-
erary works, then manually curated for quality.
AI-generated texts were produced using several
Arabic-capable LLMs, including Mistral, GPT-4,
and LLaMA, prompted under diverse strategies.
Each text is annotated with a binary label (human
vs. AI) and covers two main domains: news and
literature.

2.3 Related Work
Authorship attribution has been extensively stud-
ied across languages, with foundational surveys
such as (Stamatatos, 2009) and transitions from
stylometric to deep learning methods highlighted
by (Kestemont, 2014). AI-generated text detec-
tion research has grown recently with large lan-
guage models, with multilingual studies focusing
on cross-lingual generalization (Uchendu et al.,
2020) and detection surveys (Jawahar et al., 2020).
Our approach applies multilingual transformer em-
beddings (xlm-roberta-large) averaging token
vectors for Arabic authorship identification and
AI-detection within the competitive AraGenEval
shared task.

3 System Overview

Our system for the AraGenEval shared task was de-
signed to be lightweight yet competitive, focusing
on extracting high-quality text representations from
a large multilingual transformer model and feeding
them into robust classical machine learning classi-
fiers. Instead of fine-tuning or training deep neural
networks, we adopted a fixed-embedding approach,
motivated by the desire to minimize computational
requirements and avoid overfitting on the relatively
small training datasets provided.

3.1 Key Algorithms and Design Decisions
We selected the xlm-roberta-large model due
to its proven effectiveness in multilingual contexts
and its strong coverage of Arabic. This model,
trained on a massive and diverse corpus, provides
rich contextual embeddings that capture both syn-
tactic and semantic nuances of text. Given that the
shared task focuses on style-related distinctions (au-
thorship identification and AI-generated text detec-
tion), we hypothesized that xlm-roberta-large’s
high-capacity representations could encode stylis-
tic patterns without task-specific fine-tuning.

Two different strategies were implemented
for deriving sentence-level embeddings from the
model’s final hidden layer:

1. Mean Token Embeddings: In this configu-
ration, the embedding for an input text was
obtained by averaging the contextualized em-
beddings of all tokens. This approach is ex-
pressed as:

hmean =
1

n

n∑

i=1

ei
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where ei ∈ Rd represents the embedding of
token i and n is the total number of tokens in
the input sequence. The intuition is that by
aggregating all token embeddings, we capture
both content and stylistic markers distributed
throughout the text, rather than relying on a
single position-specific vector.

2. [CLS] Token Embedding: In this configu-
ration, we directly used the representation of
the special [CLS] token from the model’s final
layer:

h[CLS] = e[CLS]

The [CLS] token is commonly used in
transformer-based classification pipelines, as
it is intended to encode a holistic summary of
the input sequence. However, it may not fully
capture distributed stylistic cues, particularly
for long texts.

Once the embeddings h were computed, they
were fed into classical machine learning classifiers:

• AI-Generated Text Detection: RidgeClassi-
fierCV was chosen for its efficiency, robust-
ness to multicollinearity, and ability to han-
dle high-dimensional input spaces without ex-
plicit feature selection.

• Authorship Identification: LinearSVC was
selected for its scalability to large feature sets,
strong generalization properties, and suitabil-
ity for high-dimensional sparse representa-
tions.

3.2 Resources Beyond Provided Data
The system used no additional annotated datasets
beyond those provided in the shared task. The
only external component was the publicly avail-
able xlm-roberta-large model from the Hug-
gingFace Transformers library. This model was
not fine-tuned on the task data; instead, we relied
on its pretrained multilingual representations. No
handcrafted features, lexicons, or rule-based pre-
processing steps were introduced.

3.3 Addressing Task Challenges
Two main challenges guided our design decisions:

1. Limited Task-Specific Data: Given the rela-
tively small size of the training set, fine-tuning
a large transformer could risk overfitting. Us-
ing fixed embeddings allowed us to leverage

the model’s pretrained linguistic knowledge
while avoiding costly gradient-based updates.

2. Capturing Stylistic Cues: Both subtasks de-
pend heavily on identifying stylistic rather
than purely semantic differences. We hy-
pothesized that mean-pooling token embed-
dings would better preserve distributed stylis-
tic markers (e.g., function word usage, sen-
tence rhythm, punctuation patterns) than a sin-
gle [CLS] embedding, which might focus on
semantic summarization.

3.4 Configuration Comparison
We experimented with both configurations — mean
token embeddings and [CLS] token embeddings
— under otherwise identical conditions. While
both approaches successfully leveraged the pre-
trained model’s capacity, qualitative inspection dur-
ing development suggested that mean token em-
beddings were more effective at preserving fine-
grained stylistic patterns. In contrast, [CLS] em-
beddings appeared to compress the sequence in-
formation into a more generalized representation,
which, while concise, might have omitted subtle
stylistic distinctions critical for the two tasks.

We therefore retained both configurations for
evaluation but anticipated that the mean token ap-
proach would have an advantage in the final results.

4 Experimental Setup

4.1 Data Splits
The AraGenEval shared task provided labeled data
for both subtasks: (1) AI-generated text detection
and (2) authorship identification. For each task, the
official training, development, and test sets released
by the organizers were used without modification.
The training set was used to fit the classifiers, the
development set served for configuration selection
and sanity checking, and the official test set was
reserved for final submission and evaluation.

4.2 Embedding Extraction
Embeddings were extracted using the
xlm-roberta-large model from Hugging-
Face:

• Maximum sequence length: 512 tokens (trun-
cation applied to longer texts)

• Pooling strategies: (1) mean pooling across
all token embeddings; (2) using the final layer
[CLS] token embedding
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The embeddings were computed once and cached
for both tasks to speed up experimentation.

All models and classifiers were used with their
default parameters as implemented in the Hugging-
Face Transformers and scikit-learn libraries.

4.3 Computational Resources
All experiments were run on a single NVIDIA RTX
4060 GPU with 8GB VRAM, paired with a stan-
dard workstation environment.

4.4 Evaluation Metrics
The shared task organizers specified official metrics
for each subtask:

• AI-generated text detection: Macro-
averaged F1-score across classes.

• Authorship identification: Macro-averaged
F1-score across authors.

All results reported in the following section were
computed using the organizers’ evaluation scripts
to ensure consistency with leaderboard scoring.

5 Experimental Results

Table 2 presents the performance of our system on
the official blind test set for both subtasks of the
AraGenEval shared task. We compare the two em-
bedding pooling strategies: mean pooling across all
tokens and using only the final layer [CLS] token
embedding.

Table 2: Performance comparison of pooling strategies
on the blind test set.

Subtask Pooling F1 Rank

AI-generated text detection Mean 0.7400 10
CLS 0.7100 –

Authorship identification Mean 0.8130 10
CLS 0.7830 –

From the table, mean pooling consistently out-
performs the [CLS] token embeddings, yielding
approximately a 3% absolute F1-score improve-
ment in both subtasks. This suggests that averaging
token representations provides a richer global repre-
sentation for classification tasks in the AraGenEval
setting.

6 Conclusion

Our system for the AraGenEval shared task deliv-
ered competitive performance in both AI-generated
text detection and authorship identification by lever-
aging pretrained xlm-roberta-large embeddings

paired with efficient classical machine learning
classifiers. As presented in Table 2, the mean
pooling strategy achieved F1-scores of 0.7400 for
AI-generated text detection and 0.8130 for author-
ship identification, outperforming the [CLS] to-
ken embedding approach by approximately 3%
in both tasks. This improvement suggests that
mean pooling better captures distributed stylistic
patterns, which are critical for distinguishing AI-
generated from human-written texts and identify-
ing unique author signatures. The lightweight de-
sign, which avoided resource-intensive fine-tuning,
proved well-suited for the limited training data pro-
vided in the ARATECT dataset and the authorship
identification dataset, which spans 21 authors with
diverse writing styles. The system’s ability to han-
dle varied text domains, including news and liter-
ature, underscores its robustness and potential for
broader Arabic text analysis applications.

7 Future Work

To further enhance the system, several avenues
can be explored. First, experimenting with hy-
brid pooling methods that combine mean pooling
and [CLS] embeddings could produce more com-
prehensive text representations, balancing stylis-
tic and semantic information. Second, applying
targeted fine-tuning on the xlm-roberta-large
model with task-specific Arabic data could improve
its sensitivity to the language’s unique morphologi-
cal and stylistic features. Third, incorporating addi-
tional features, such as lexical patterns or syntactic
structures, might strengthen the system’s ability to
detect subtle stylistic differences. Fourth, develop-
ing methods to process texts longer than 512 tokens,
such as hierarchical embedding aggregation, could
improve performance on extended literary works.
Finally, testing the system on diverse real-world
Arabic datasets, including social media or news
articles, would help validate its effectiveness in
practical settings and enhance its applicability to
emerging challenges in text authenticity and author-
ship attribution.
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Abstract

The authenticity of digital content has become
an increasingly critical challenge with the rapid
adoption of generative AI tools, especially
for low-resource languages such as Arabic.
The language’s rich morphology and domain
diversity further complicate the detection of
machine-generated Arabic text. In this work,
we present our submission to the ARATECT
4.3 shared task, Subtask 3, which focuses on
identifying AI-generated Arabic news articles.
Our approach employs fine-tuned multilingual
transformer models based on XLM-RoBERTa.
The XLM-RoBERTa-large model achieved a
macro F1-score of 0.93 on the development set,
while the XLM-RoBERTa-base model obtained
an F1-score of 0.78 on the test set, ranking
fourth on the official leaderboard. This paper
outlines our methodology, presents the experi-
mental results, and discusses key insights from
our participation.

1 Introduction

The rapid development of large language mod-
els (LLMs), such as GPT-4 (Achiam et al., 2023),
PaLM (Chowdhery et al., 2023), and ChatGPT (Ma-
niaci et al., 2024), has enabled the generation of
coherent and contextually rich text from simple
prompts. These models have transformed natural
language generation (NLG), supporting applica-
tions in education, journalism, scientific writing,
and customer service (Duaibes et al., 2024). How-
ever, their widespread adoption has also raised con-
cerns regarding the authenticity and ethical impli-
cations of AI-generated text (AIGT), particularly in
high-stakes domains (Stahl and Eke, 2024; Cotton
et al., 2024).

Distinguishing AIGT from human-written text
(HWT) remains a persistent challenge, especially

as modern systems such as ChatGPT and Gemini
(Imran and Almusharraf, 2024) increasingly emu-
late natural human language. Misuse of such tech-
nology has been associated with misinformation,
plagiarism, and declining trust in online content
(Weidinger et al., 2022; Sheng et al., 2021; Gao
et al., 2022; Duridi et al., 2025; Jazzar and Duridi,
2024). Despite efforts to develop detection tools,
most are designed for English or other Latin-script
languages, with limited adaptation for morphologi-
cally rich, low-resource languages.

Arabic, spoken by over 440 million people
across 22 countries (Jaber and Martínez, 2023),
remains underrepresented in AIGT detection re-
search. Its complex morphology, optional diacrit-
ics, and stylistic diversity present unique challenges
for existing detection systems (Duridi et al., 2024).
Only a few recent studies have directly addressed
Arabic AIGT detection (Alshammari et al., 2024),
and some report performance degradation when
models are applied to diacritized Arabic HWT (Al-
shammari and Ahmed, 2023).

To address this gap, the AraGenEval Shared Task
introduced ARATECT Subtask 3: Arabic News
Text Detection (Abudalfa et al., 2025), which fo-
cuses on distinguishing human-written from AI-
generated Arabic news articles. For this subtask,
the PTUK-HULAT team developed a detection sys-
tem based on multilingual transformer models fine-
tuned on stratified splits of the shared task dataset.
Our primary system, built on XLM-RoBERTa-base,
achieved an F1-score of 0.78 on the test set, rank-
ing fourth on the official leaderboard. The imple-
mentation code is publicly available at: GitHub
Repository.
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2 Background

ArabicNLP 2025 features eleven shared tasks, in-
cluding Shared Task 5: AraGenEval on Arabic Au-
thorship Style Transfer (AST) and AI-Generated
Text (AIGT) detection. Within this task, ARA-
TECT 4.3 (Abudalfa et al., 2025) evaluates sys-
tems on distinguishing between human-written and
AI-generated Arabic text across multiple genres.
Subtask 3 — Arabic News Text Detection (Ara-
bicNewsGen) — focuses on classifying full-length
Arabic news articles and shorter excerpts into two
categories: human-written or AI-generated.

The input to the system consists of a single Ara-
bic news text, which may range from short pas-
sages to full-length articles. The output is a binary
label: human for human-written or machine for
AI-generated. Table 4 provides representative ex-
amples from each class in Appendix A.

3 Related Work

Research on AIGT detection has largely focused
on English, with early tools like GPTZero and Ope-
nAI’s classifier targeting synthetic content. The rise
of Arabic generative models has prompted studies
on Arabic-specific detection methods.

(Antoun et al., 2020b) introduced AraGPT2
alongside a discriminator trained to detect its out-
puts, achieving up to 98% accuracy. They later
developed AraELECTRA (Antoun et al., 2020a),
an Arabic adaptation of ELECTRA (Clark et al.,
2020), which demonstrated strong performance
in distinguishing real from synthetic Arabic texts.
Harrag et al. (Harrag et al., 2021) fine-tuned
AraBERT on synthetic Arabic tweets, outperform-
ing traditional sequence models with 98.7% accu-
racy. Other studies (Almerekhi and Elsayed, 2015;
Alghamdi and Alowibdi, 2024) applied classical
machine learning with handcrafted features to de-
tect bot-generated Arabic social media content, re-
porting around 92% accuracy.

More recent work by Alshammari et al. (Alsham-
mari and Ahmed, 2023) highlighted the limitations
of general-purpose detectors for Arabic, propos-
ing fine-tuned AraELECTRA and XLM-RoBERTa
models on ChatGPT- and Bard-generated datasets,
achieving near 99% accuracy after dediacritization.
Alharthi (Alharthi, 2025) addressed detection in
multiple Arabic dialects, providing novel dialectal
datasets and achieving up to 97% accuracy with
fine-tuned AraELECTRA and AraBERT, empha-
sizing the challenge of paraphrased content and the

importance of features like lexical diversity and
readability.

These studies illustrate the progress and ongo-
ing challenges in Arabic AIGT detection, partic-
ularly the need for dialect-aware datasets, robust
benchmarks, and models capable of cross-dialect
generalization.

4 Dataset

The organizers of the ArabicNewsGen shared task
released a dataset containing Arabic news articles
in various domains, including politics, economy,
technology and sports, and was released in three
phases, as summarized in Table 1. The training
set contains 4,798 labeled articles (id, content,
label), moderately balanced across the human and
machine classes; approximately 1.3% of entries
with missing content were removed during pre-
processing. The development set consists of 500
unlabeled articles (id, title, content) for vali-
dation and tuning, while the test set includes 500
unlabeled articles with the same structure as the
development set, used for leaderboard-based evalu-
ation against hidden labels.

5 System Description

Our model selection process was iterative. We be-
gan by fine-tuning several widely used Arabic and
multilingual transformers, including mBERT, Dis-
tilBERT, QARiBERT, and AraELECTRA. Among
these, AraELECTRA achieved the highest score
on the test set. Although mBERT, DistilBERT,
and QARiBERT produced relatively strong re-
sults during training, AraELECTRA and XLM-
RoBERTa consistently delivered stronger and more
reliable performance across both the development
and test sets. This finding aligns with prior studies
(see Section 3), which highlight AraELECTRA’s
effectiveness in Arabic-specific tasks and XLM-
RoBERTa’s robustness in handling multilingual
and mixed-language text. Based on these obser-
vations, we prioritized AraELECTRA and XLM-
RoBERTa (base and large) in our final evaluation,
along with a BiLSTM-enhanced variant of XLM-
RoBERTa-base.

5.1 Models

AraELECTRA is an Arabic-specific model
based on the ELECTRA framework (Antoun et al.,
2020a), which uses a replaced token detection pre-
training objective. Pre-trained solely on exten-
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Table 1: Summary of the ARATECT 4.3 Subtask 3 dataset.

Phase Samples Fields Avg Length (words) English (%)
Training 4,798 id, content, label 485.77 15.86
Development 500 id, title, content 288.74 56.60
Testing 500 id, title, content 238.96 37.60

sive Arabic corpora, AraELECTRA offers efficient
training and strong performance on Arabic NLP
tasks, making it well-suited for AI-generated text
detection in Arabic news domains.

XLM-RoBERTa-base and XLM-RoBERTa-
large are multilingual transformer models trained
on 2.5TB of CommonCrawl data across 100 lan-
guages (Conneau et al., 2019). The base model con-
tains 270 million parameters, providing a balance
between performance and computational efficiency,
while the large model scales up to 550 million pa-
rameters to capture richer linguistic patterns.

XLM-RoBERTa-base + BiLSTM extends the
base transformer by adding a BiLSTM layer atop
the transformer encoder outputs to model sequen-
tial dependencies and stylistic flow more effectively.
The BiLSTM processes the summed embeddings
from the last four transformer layers bidirection-
ally, enabling the capture of long-range contextual
patterns indicative of AI-generated text. During
fine-tuning, only the last four transformer layers
are unfrozen to maintain pre-trained knowledge,
while the BiLSTM and classifier layers are trained
fully. The BiLSTM hidden size is set to 256 units
with a single bidirectional layer.

6 Experimental Setup

6.1 Data and Preprocessing
We utilized the provided labeled dataset, splitting it
into training (90%) and development (10%) subsets
using stratified sampling to preserve class distribu-
tions.

Preprocessing involved removing samples with
empty content fields and concatenating the title
and content fields into a single text sequence. The
textual class labels (human and machine) were
mapped to numerical labels, with human assigned
0 and machine assigned 1.

Although we initially experimented with exten-
sive text cleaning—including removing diacritics,
normalizing Arabic letters, eliminating punctua-
tion, and collapsing repeated characters—we ob-
served that applying these steps actually reduced

model performance. Therefore, no additional text
cleaning or normalization was applied prior to tok-
enization, as keeping the raw text produced better
results.

6.2 Training Details
All models were trained using the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with early
stopping (patience=3 epochs) based on the devel-
opment set F1 score for the machine class. Hy-
perparameters were selected through empirical val-
idation considering model architecture and size
constraints.

Key hyperparameter ranges across experiments:

• Learning rate: 110−5 to 510−5

• Batch size: 4-16 (adjusted for model memory
requirements)

• Dropout: 0.1-0.5 (higher for more complex
architectures)

• Warmup ratio: 0-10% of total training steps

• Label smoothing: ϵ = 0.0− 0.1

• Maximum epochs: 10-20

For consistency across experiments, we em-
ployed weighted random sampling and class-
weighted cross-entropy loss in all training runs,
though the training data was balanced. The spe-
cific hyperparameter configurations for each model
variant are provided in Table 5 in Appendix B.

6.3 Implementation and Evaluation
Experiments were run on Google Colab with
NVIDIA T4 GPUs, leveraging PyTorch, Hugging-
Face Transformers, and the Accelerate library for
efficient training. Evaluation metrics included pre-
cision, recall, and F1-score per class.

7 Results

7.1 Development Phase Performance
Table 2 demonstrates the superior performance
of XLM-RoBERTa-large on the development set,
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achieving state-of-the-art results with 0.9272 F1-
score and 92.4% accuracy. The model exhibits
exceptional recall (0.968), indicating near-perfect
detection of machine-generated texts. While XLM-
RoBERTa-base shows solid performance (0.8532
F1), AraELECTRA’s high recall (0.912) is offset by
low precision (0.5078), revealing language-specific
challenges in Arabic AIGT detection and limiting
its suitability for further evaluation.

7.2 Test Phase Performance
On the test set Table 3, XLM-RoBERTa-base main-
tains the strongest balance between precision and
recall (0.7823 F1). The BiLSTM-enhanced variant
shows a distinct precision-focused profile (0.8029
precision vs. 0.668 recall), suggesting architectural
modifications significantly impact error tradeoffs.
Performance degradation from development to test
sets (XLM-R-base F1: 0.8532 → 0.7823) high-
lights domain shift challenges in AIGT detection.

The experimental results demonstrate that the
XLM-RoBERTa-large model significantly outper-
forms the base variant on the development set, ben-
efiting from its enhanced capacity to capture the
complex linguistic patterns necessary for distin-
guishing between human- and machine-generated
Arabic texts. The model’s high recall and balanced
accuracy indicate its effectiveness in identifying
machine-generated content, which is critical for
practical detection applications.

On the test set, the XLM-RoBERTa-base model
achieves a more balanced trade-off between recall
and precision compared to the BiLSTM-enhanced
variant. While the BiLSTM addition improves pre-
cision and specificity, it does so at the expense of
recall, resulting in a more conservative classifier
that may fail to detect certain machine-generated
samples. This trade-off underscores the need to
carefully select model architectures according to
the intended application’s prioritization of recall
versus precision.

The inherent characteristics of the dataset—such
as predominantly Arabic text with a minor English
component, variable text lengths, and the pres-
ence of abbreviations—pose challenges that larger
transformer-based models are often better equipped
to address due to their richer representational capac-
ity. Furthermore, differences in text length and lan-
guage composition between the training and evalu-
ation sets likely contribute to domain shifts, which
may explain the observed performance degrada-
tion on the test set relative to development results.

Not all models from the development phase were
carried forward to the test phase: AraELECTRA,
despite its high recall, exhibited poor precision and
overall F1-score, making it unreliable for balanced
AIGT detection. XLM-RoBERTa-large achieved
the best performance on the development set, but
its evaluation on the test set was excluded due to
substantial computational cost. Therefore, the test
set experiments focused on XLM-RoBERTa-base
and its BiLSTM-enhanced variant, which offered
a practical balance between efficiency and perfor-
mance while allowing exploration of architectural
improvements.

8 Conclusion

This work investigated multiple transformer-based
architectures for detecting AI-generated Ara-
bic text, including XLM-RoBERTa-base, XLM-
RoBERTa-large, and a BiLSTM-enhanced vari-
ant. The best development set performance was
achieved by XLM-RoBERTa-large, benefiting from
its higher representational capacity to capture com-
plex Arabic linguistic patterns. On the test set,
XLM-RoBERTa-base offered a more balanced pre-
cision–recall trade-off, while the BiLSTM addition
improved specificity at the cost of recall.

Despite strong results, the system faces chal-
lenges from domain shifts between training and
test data, varying text lengths, and mixed-language
content, which reduce performance on unseen data.
Future work will address these issues through do-
main adaptation, better model designs for balanc-
ing precision and recall, and improvements to han-
dle diverse Arabic texts and code-switching.
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Table 4: Sample Arabic Texts with Labels

Content Label
��Ð ¨� Amb- rfs�� dn� ¨�¤rtk�³� �Ayt�¯� �Aylm�  � H�Cw� Tl�m� r§rq� r�Ð
A¾d�AO� dhK� - Amt¶¯� �A�AW� ��d�tFA� �Ayt�¯�¤ ¨�rOm�� �Ayt�¯�¤ T§wh�� T�rF
�d�tsu� ¨t�� ¨�AnW}¯� ºA�@�� ��� �Aynq� CwhZ¤ Ay�w�wnkt�� �dq� �� A¾AZw�l�
rfs�A� TWb�rm�� �Ayt�¯� �Aylm� �dhJ Tl�m�� A¾Aq�¤¤ .A¾dyq`� r��� �Am�¡ r§wWt�
A� w¡¤ -CRTI ¨F C� ¨� ©� T§wh�� T�rF  C�w� z�r� � C¤� Amk- ­ryb� ­ A§E
r§rq� 	s�� .Ty�Am��¤ TyO�K�� �A�Ayb�� T§Am�� ry��d� ÐA��� ­C¤rR Yl� ºwS�� Xls§
�Aynq� ¨� �§rs�� CwWt��  � H�Cw� r§rq� d��¤ Ty�¤rtk�³� T§Am��� z§z`t� H�Cw�
�A�wl`m�� T�CAK� �d`� A�}A� ,�yklhtsm�� �� Tm¶� T\q§ 	lWt§ ¨�¤rtk�³� �Ayt�¯�

.�w�w� ry� ¨�¤rtk�� �}�w� ©� �� ��A`t�� �� �C@��¤ T�w�w� �Ah� �� ¯�

human

¨qlt� ¨��dm`m�� YfKtsm�� Y�� ­z� �AW� ¨� Tyly¶�rF³� ��CA��� A§A�R ��  d� �}¤
¨t�� ­ry�±� T§w��� �Am�h�� T�yt� ­ryW� �A�A}³ A§A�S�� |r`� .©C¤rS�� �®`��
TybW�� T§A�r�� �§dq� ¨� YfKtsm�� ¨�  wl�A`�� rmts§ .TqWnm�� ¨� �y¶�rF� Ah�@f�

.Ty�O�� �ht�A� C�rqtF� Yl� �m`��¤ �y�AOml� T�E®��

machine

Table 5: Key training hyperparameters per model architecture

Parameter XLM-R Base BiLSTM XLM-R Large Arabic ELECTRA
Learning rate 310−5 510−5 310−5 310−5

Batch size 16 16 4 16
Max epochs 10 20 10 10
Warmup ratio 10% 0% 10% 10%
Dropout 0.1 0.5 0.1 0.1
Label smoothing (ϵ) 0.1 - 0.1 0.1
Optimizer AdamW
Early stopping Patience=3 (F1)
Class weighting Yes
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Abstract

Authorship style transfer enables the gener-
ation of text that imitates a specific writer’s
linguistic and stylistic patterns, a challeng-
ing task in morphologically rich languages
like Arabic. We tackle this problem in
the AraGenEval 2025 shared task, exploring
conditioning strategies to guide a fine-tuned
UBC-NLP/AraT5v2-base-1024 model in pro-
ducing text aligned with target authors’ styles.
Our investigation compares implicit modeling,
numeric and descriptive author tokens, and ex-
plicit prompt engineering in Arabic. Explicit
natural language instructions proved most effec-
tive, achieving the highest competition scores
with BLEU of 24.58 and chrF of 59.01, secur-
ing first place, while demonstrating that inter-
pretable approaches can rival or surpass more
opaque methods.

1 Introduction

The task of Text Style Transfer (TST) aims to mod-
ify stylistic properties of a text while preserving
its semantic content (Hu et al., 2022). A challeng-
ing sub-field is authorship style transfer, which
involves rewriting a text to match the unique style
of a specific author (Shao et al., 2024). Arabic au-
thorship style transfer presents unique challenges
due to the language’s rich morphological structure
and diverse writing styles. The task, as defined
in the AraGenEval 2025 shared task (Organizers,
2024), requires transforming Modern Standard Ara-
bic (MSA) text to match the distinctive style of
specific Arabic authors.

We conduct a systematic investigation of
different conditioning strategies using the
UBC-NLP/AraT5v2-base-1024 model (Elmadany
et al., 2022). Our work explores four main
methodologies: (1) standard fine-tuning without
special conditioning, (2) numeric author tokens
for explicit author identification, (3) descriptive

*Corresponding author: o.najar@tuwaiq.edu.sa

author tokens for human-readable conditioning,
and (4) prompt engineering with explicit Arabic
instructions.

Extensive experiments show that explicit prompt
engineering delivers the best results, outperform-
ing non-interpretable numeric tokens by leveraging
the model’s language understanding through clear,
natural prompts. This approach secured first place
in the AraGenEval Shared Task (Abudalfa et al.,
2025) and offers insights for building effective, in-
terpretable Arabic style transfer systems.

2 Background

Text style transfer has become a prominent area
of research (Hu et al., 2022). Early work focused
on disentangling style from content, whereas re-
cent trends have shifted towards end-to-end transfer
without explicit disentanglement.

Authorship style transfer, specifically, has been
tackled with various methods. Some approaches fo-
cus on data augmentation to create paired corpora
for training compact models, a technique shown to
be highly effective (Shao et al., 2024). The chal-
lenge is often compounded in low-resource scenar-
ios, where only a few examples of a target author’s
style are available (Patel et al., 2022). Recent work
has introduced lightweight and efficient models
like TinyStyler (Horvitz et al., 2024), which lever-
age pre-trained authorship embeddings to achieve
strong performance in few-shot settings, even out-
performing large models like GPT-4. Our work
contributes to this area by systematically evaluat-
ing different conditioning methods for a T5-based
model on Arabic, a morphologically rich language
that remains under-explored in this domain.

The detection of AI-generated content is an-
other related field of study, with recent work focus-
ing on distinguishing between human and GenAI-
generated Arabic text on social media platforms
using machine learning models (Alghamdi et al.,
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Figure 1: Pipeline overview for the proposed authorship style transfer approach.

2024). This is relevant to our participation in Sub-
task 3 of AraGenEval.

The AraGenEval 2025 shared task on Author-
ship Style Transfer provides a dataset containing
text from 21 Arabic authors. The goal is to take
an input text in Modern Standard Arabic (MSA)
and transform it into the style of a target author.
We participated in all three subtasks offered: Au-
thorship Style Transfer (Subtask 1), Authorship
Identification (Subtask 2), and ARATECT for AI-
generated text detection (Subtask 3). This paper
focuses primarily on our work for Subtask 1.

3 System Overview

Our approach is centered on fine-tuning the
UBC-NLP/AraT5v2-base-1024 model, a T5-based
encoder–decoder architecture pre-trained on a large
corpus of Arabic text (Elmadany et al., 2022). The
core of our investigation involved systematically
testing four different methods for conditioning the
model on the target author’s style, each employing
a distinct input format to guide the model. Fig-
ure 1 presents an overview of the complete pipeline,
which is organized into three main stages.

The first stage, Stylometric Analysis, extracts
lexical and syntactic features from the training cor-
pus, including sentence length, vocabulary richness,
syntactic complexity, formality, emotional inten-
sity, and rhetorical device usage (Gómez-Adorno
et al., 2018). In the second stage, Author Style Inte-
gration, these stylistic attributes are distilled into
a profile that informs two conditioning strategies:
(1) enhanced prompts augmented with stylometric

insights and (2) author-specific style guidance. The
third stage, Model Training & Evaluation, applies
these conditioning strategies in fine-tuning AraT5,
followed by generation and evaluation against base-
line and alternative approaches.

Table 1 outlines the shift from implicit style mod-
eling to explicit, instruction-based conditioning.
The baseline relies solely on input–output pairs,
leaving style inference to the model. Token-based
methods introduce minimal explicit signals, while
prompt engineering—framing style transfer as di-
rect, human-readable instructions—proves most ef-
fective by leveraging the model’s pre-trained stylis-
tic knowledge.

4 Experimental Setup

4.1 Dataset & Preprocessing

The shared task dataset contains writings from 21
authors split into training, validation, and test sets
as provided by the shared task. The training set con-
tains 35,122 samples, the validation set contains
4,157 samples, and the test set contains 8,413 sam-
ples, proportionally distributed per author. All texts
were normalized by removing extraneous whites-
pace, unifying punctuation forms, and standardiz-
ing Arabic diacritics. Special tokens were inserted
according to the conditioning method described in
Table 1.

4.2 Hyperparameters

Experiments were implemented in PyTorch 2.1.0
and Hugging Face Transformers 4.38.1, with
training managed via Accelerate and Datasets.
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Approach Conditioning Method Input Format with Speical Tokens
Standard Fine-Tuning
(Baseline) No explicit conditioning signal. The

model learns the mapping implicitly
from paired data.

új� 	®Ë@ �éJ
K. QªË@ �é 	ªÊËAK. ú
Î�


B@ �	JË @

Numeric Author Tokens with FT A unique numeric token (e.g.,
author_0) is prepended to the in-
put to specify the target author.

<author_id>:

új� 	®Ë@ �éJ
K. QªË@ �é 	ªÊËAK. ú
Î�


B@ �	JË @

Descriptive Author Tokens with FT Human-readable tokens (e.g.,
<author:Yusuf_Idris>) are used
instead of numeric ones to improve
interpretability.

<author:name>: ú
Î�


B@ �	JË @

Prompt Engineering with FT
(Our Best System) The task is framed as an explicit

natural language instruction in Arabic,
prepended to the input.

H. ñÊ�


AK. ú
ÍA

�JË @ �	JË @ I. �J» @
<author:name>: [source_text]

Table 1: Overview of the four experimental approaches for authorship style transfer.

Approach BLEU chrF

Standard Fine-tuning 20.50 58.50
Numeric Tokens 24.04 59.15
Descriptive Tokens 24.00 59.00
Prompt Engineering 24.58 59.01

Table 2: Official results on the AraGenEval 2025 test
set. Our prompt engineering system ranked first.

All code was executed on NVIDIA A100 GPUs
(80GB VRAM) under CUDA 12.2. Models were
fine-tuned with a batch size of 64 (across 4 GPUs),
AdamW optimizer (weight decay 0.01), a 5×10−5

learning rate, and OneCycleLR scheduling with
1000 warmup steps. Training ran for up to 10
epochs with early stopping based on validation loss.

4.3 Generation Settings

Generation used beam search with sampling
(num_beams=2, temperature=0.6, top_k=20,
top_p=0.8, repetition penalty=1.05, length
penalty=0.6) and a 512-token output cap to balance
quality and diversity.

4.4 Evaluation Metrics

Evaluation was conducted using two metrics:
BLEU, the primary measure of n-gram precision
between generated and reference texts (Papineni
et al., 2002), and chrF, a character n-gram F-score
metric (Popović, 2015) often better suited for mor-
phologically rich languages such as Arabic.

5 Results and Analysis

Our experimental results on the official test set
clearly show the progression in performance across
the four conditioning strategies. The prompt en-
gineering approach achieved the highest scores,

securing first place in the competition. The results
are summarized in Table 2.

As shown in Table 2, explicit author condition-
ing was essential, with all conditioned methods
outperforming the baseline. Human-readable to-
kens proved as effective as numeric ones, showing
that interpretability does not reduce performance.
Prompt engineering achieved the strongest results,
enabling the model to leverage its pre-trained un-
derstanding of Arabic, while also reducing com-
mon errors such as semantic drift, incomplete style
transfer, and repetition by better preserving entities
and semantic fidelity.

5.1 Dataset Stylometric Analysis

We conducted a post-hoc stylometric analysis of the
21 authors using a custom StylometricAnalyzer,
extracting lexical, syntactic, and statistically cat-
egorized features to create individual stylistic
profiles. The resulting heatmap (Figure 2) re-
vealed strong stylistic homogeneity, with min-
imal variation in core features like sentence
length, vocabulary richness, complexity, and for-
mality. Punctuation-based cues offered little dis-
crimination, and the only notable outlier was
�é 	£AK.



@ �HðQ�K, who showed lower emotional inten-

sity—highlighting the challenge of style transfer in
this dataset.

This observation provides a compelling expla-
nation for the superior performance of our prompt
engineering approach. Methods relying on implicit
signals or simple author tokens must learn these
subtle distinctions from the data alone. In contrast,
the explicit instruction H. ñÊ�



AK. ú
ÍA

�JË @ �	JË @ I. �J» @
leverages the vast, latent knowledge of the pre-
trained AraT5 model. It effectively commands the
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Figure 2: Stylometric characteristics heatmap.

model to access its deep understanding of authorial
voice, which goes far beyond what our statistical
metrics can measure. This allows it to capture
the unique, nuanced characteristics of each author,
leading to its first-place performance.

6 Results in Additional Shared Tasks

6.1 Subtask 2: Authorship Identification

We addressed class imbalance through
weighted loss during training. After pre-
processing and tokenization, several Arabic-
specific BERT-based models were fine-
tuned. The best-performing configuration,
bert-base-arabic-camelbert-mix-sentiment
(Inoue et al.), trained for 10 epochs with early
stopping, reached an accuracy of 95.3% and a
macro F1-score of 95.1% on the development set.
Our system ranked 6th, achieving an F1-score
of 0.83138 and an accuracy of 87.52%, which
is only 6.7 percentage points lower in F1-score
compared to the top-ranked system (0.89886). The
official leaderboard results for both subtasks are
summarized in Table 3.

6.2 Subtask 3: ARATECT (Arabic
AI-Generated Text Detection)

For AI-generated text detection, the dataset
was already balanced. After minimal cleaning
and tokenization, transformer-based models
converged in just 3 epochs. Our top model,
XLM-RobertaForSequenceClassification

Task Accuracy F1
Authorship ID (Dev) 0.95 0.95
Authorship ID (Test) 0.87 0.83
ARATECT (Dev) 0.99 0.99
ARATECT (Test) 0.79 0.76

Table 3: Performance metrics for Subtasks 2 and 3.

(Ruder et al., 2019), achieved an accuracy of
99.36% and a macro F1-score of 99.3% on the
development set. Our system ranked 6th, achieving
an F1-score of 0.76 and an accuracy of 79%, which
is only 10 percentage points lower in F1-score
compared to the top-ranked system (0.86).

7 Conclusion

In this paper, we presented our winning system
for the AraGenEval 2025 Arabic Authorship Style
Transfer task. Our systematic investigation demon-
strates that explicit prompt engineering with natu-
ral Arabic instructions is a highly effective method
for conditioning a T5 model. We found that sim-
pler, interpretable conditioning methods are potent
and that leveraging a model’s linguistic capabili-
ties through clear prompts yields superior results
compared to merely adding special tokens. Fu-
ture work could explore integrating stylometric fea-
tures directly into the prompt, extending the frame-
work to multi-author style transfer, and developing
real-time applications. Our findings underscore
the value of prompt engineering as a powerful and
interpretable technique for controllable text gener-
ation in Arabic.
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Abstract

Authorship identification in Arabic is a chal-
lenging task due to the language’s morpho-
logical richness, orthographic variation, and
stylistic diversity across genres and authors.
In this paper, we present our submission to
Subtask 2: Authorship Identification of the
AraGenEval 2025 Shared Task at ArabicNLP,
which aims to identify the author of a given
Arabic paragraph among a set of 21 authors.
This task is important for applications such
as digital forensics, plagiarism detection, lit-
erary analysis, and AI-generated content veri-
fication, where reliably linking text to its au-
thor can provide critical insights. We em-
ploy transformer-based encoders and address
the dataset’s class imbalance by leveraging an
ensemble of two capable Arabic language un-
derstanding models: AraBERT and AraELEC-
TRA. Our approach combines the pre-softmax
logits of both models before the final soft-
max layer, effectively capturing complemen-
tary strengths in their predictions. Using our
proposed method, we achieved third place on
the Subtask 2 leaderboard of the AraGenEval
Shared Task (Abudalfa et al., 2025), with a
Macro-F1 score of 0.85968 and accuracy of
0.89516 on the test split.

1 Introduction

This paper details the system we developed for the
AraGenEval 2025 Shared Task on Arabic Author-
ship and AI-Generated Text Detection, hosted at
the Arabic Natural Language Processing Confer-
ence (ArabicNLP 2025) (Abudalfa et al., 2025).
Our work is submitted under Subtask 2: Au-
thorship Identification, a multi-class classification
challenge designed to attribute a given Arabic text
to its correct author from a closed set of 21 distin-
guished writers. The importance of this task has
grown substantially with the proliferation of dig-
ital content. Robust authorship identification sys-

*These authors contributed equally to this work.

tems have critical real-world applications in digi-
tal forensics for identifying anonymous authors, in
cybersecurity for detecting coordinated disinfor-
mation campaigns, in academic integrity for un-
covering plagiarism, and in digital humanities for
attributing disputed or anonymous literary works.
The task is centered exclusively on the Arabic
language, with a dataset curated to include diverse
genres such as literary, philosophical, and journal-
istic prose, ensuring that solutions must focus on
deep stylistic features rather than superficial topi-
cal cues.

The challenge of authorship attribution in Ara-
bic is particularly acute due to the language’s in-
trinsic complexities. Arabic is characterized by
its rich and complex morphology, where a sin-
gle root can spawn a vast array of words, mak-
ing traditional bag-of-words models less effective.
Furthermore, the phenomenon of diglossia—the
coexistence of Modern Standard Arabic (MSA)
with numerous regional dialects—means that au-
thors often possess a unique stylistic blend, which
may not be immediately apparent. Finally, ortho-
graphic variability in the Arabic script, such as
the multiple forms of the hamza and the option-
ality of diacritics (tashkeel), introduces surface-
level noise that can obscure an author’s true stylis-
tic signature. These linguistic hurdles are com-
pounded by difficulties inherent in the dataset it-
self, including a notable class imbalance across
the authors and significant stylistic diversity. To-
gether, these complexities demand robust models
capable of identifying an author’s unique textual
fingerprint amidst considerable noise.

To address these challenges, we fine-tuned
two state-of-the-art Arabic Transformer encoders:
AraBERT (Antoun et al.), trained with Masked
Language Modeling (MLM), and AraELEC-
TRA (Antoun et al., 2021), trained with Re-
placed Token Detection (RTD). Their complemen-
tary pretraining objectives were expected to cap-
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ture different facets of authorial style. Our best
system is a logit-level ensemble that averages the
models’ raw prediction scores before the softmax,
leveraging their strengths and reducing individ-
ual weaknesses. We also tested a sliding-window
strategy with AraBERTv02 for handling inputs
longer than 512 tokens.

Our ensemble-based system, achieved 3rd
place in the final competition rankings, demon-
strating its effectiveness on this challenging task.
The key contributions and findings of our work
can be summarized as follows:

• We demonstrate the successful application
of fine-tuned AraBERT and AraELECTRA
models for Arabic authorship attribution, us-
ing minimal preprocessing to ensure the
preservation of subtle stylistic markers.

• We show that a logit-level ensemble of
AraBERT and AraELECTRA significantly
outperforms either model individually on
both the development and final test sets, con-
firming the value of model fusion.

• We provide a valuable negative result
from our sliding-window experiments with
AraBERTv02, which indicates that simple
chunking and aggregation for documents
longer than 512 tokens degrades perfor-
mance, highlighting the critical importance
of contiguous context for stylistic analysis.

• We present a qualitative analysis, including
correctly classified examples from stylisti-
cally complex passages, to illustrate the sys-
tem’s practical capabilities.

2 Related Work

Authorship attribution has evolved from early sty-
lometric methods based on lexical and statisti-
cal features (Stamatatos, 2009) to modern deep
learning approaches. For Arabic, traditional ma-
chine learning methods using character n-grams
and morphological features (Shaker, 2017; Had-
dad et al., 2019) have shown promise but require
extensive feature engineering. Neural models such
as RNNs and CNNs (Alshahrani and Alsuhaymi,
2020) reduce this need, and transformer-based en-
coders like AraBERT (Abdul-Mageed et al., 2021)
and AraELECTRA (Antoun et al., 2021) now
achieve state-of-the-art results in Arabic NLP. En-
semble methods remain underexplored for Ara-
bic authorship tasks, with only limited work in

social media contexts (Alshehri and Al-Khazraji,
2022), despite evidence from other languages (Ja-
fari Akinabad and Mohammadpour, 2021) that
model combination can improve robustness. Our
work fills this gap by applying a logit-level ensem-
ble of AraBERT and AraELECTRA for literary
and philosophical genres.

3 Dataset

The dataset was curated by the task organizers
from 10 publicly available books for 21 authors.
Books were segmented into semantically coherent
paragraphs, yielding substantial variation in length
and style. Table 1 summarizes the distribution of
samples across train, validation, and test splits.

Author Train Val Test

Ahmed Amin 2892 246 594
Ameen Rihani 1557 142 624
Hassan Hanafi 3735 548 1002
... ... ... ...
William Shakespeare 1236 238 358

Table 1: Example excerpt of dataset statistics; full table
provided by organizers.

Paragraph lengths range from short excerpts of
under 50 tokens to long passages exceeding the
512-token limit of standard Transformer models.
The dataset is also imbalanced, with author sam-
ple counts ranging from a few hundred to several
thousand, introducing a challenge for models to
maintain performance on minority classes.

4 Methodology

4.1 Base Models: AraBERT and
AraELECTRA

AraBERT is a 12-layer bidirectional Transformer
encoder based on BERT (Devlin et al., 2019),
pretrained on large-scale Arabic corpora (news,
Wikipedia, social media) using the Masked Lan-
guage Modeling (MLM) objective. This bidirec-
tional training captures deep contextual relation-
ships between words and morphemes, beneficial
for Arabic’s rich morphology. For our task, we
add a linear classification layer on the final hidden
state of the [CLS] token.

AraELECTRA follows the ELECTRA frame-
work (Clark et al., 2020), replacing MLM with a
Replaced Token Detection (RTD) objective, where
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the model discriminates between original and sub-
stituted tokens. This more sample-efficient train-
ing yields rich token-level representations. Ar-
chitecturally, it is also a 12-layer Transformer
encoder, with the same classification head as
AraBERT.

We fine-tune both models for 4 epochs with a
maximum sequence length of 512 tokens, truncat-
ing longer texts. This identical setup enables di-
rect comparison and facilitates their combination
in our logit-level ensemble.

4.2 Logit-Level Ensemble

Each model outputs logits ℓ(1), ℓ(2) ∈ R11. We
combine them as:

ℓens = ℓ(1) + ℓ(2), p = softmax(ℓens)

This preserves raw decision margins before apply-
ing the softmax.

4.3 Sliding-Window Experiment

We fine-tuned the BERT Large AraBERTv02
model (aubmindlab/bert-large-AraBERTv02) for
authorship identification using a sliding-window
approach to handle long paragraphs without los-
ing context. Input texts were split into fixed-length
sequences of 512 tokens (including special to-
kens) with a stride of 128 tokens, ensuring overlap
between adjacent segments so that stylistic cues
spanning boundaries were preserved.

The dataset was loaded from Excel files with au-
thor names label-encoded. To address class imbal-
ance, balanced class weights were computed and
passed to a custom Trainer subclass. We applied
label smoothing with a factor of 0.1 to improve
generalization.

At inference, document-level voting was imple-
mented by aggregating chunk predictions to pro-
duce the final author label.

4.4 Baselines

• TF-IDF + FCN: Character and word n-gram
features via TF-IDF, fed into a 2-layer fully
connected network.

• Contrastive (Qarib) + k-NN: Contrastive
learning on Qarib (Abdelali et al., 2021) en-
coder embeddings to bring same-author texts
closer in vector space, followed by k-nearest
neighbors classification.

4.5 Negative Experiment: Simple Chunking

We attempted to split long texts (>512 tokens)
into smaller chunks (512 and remainder), assign-
ing the same label to all chunks. This degraded
accuracy, likely because shorter fragments some-
times lack sufficient stylistic cues.

5 Results

Table 2 summarizes the performance of our mod-
els on the development set. Among the individ-
ual models, AraBERT achieved the highest devel-
opment accuracy (0.90) and a Macro-F1 score of
0.84, slightly outperforming AraELECTRA (0.88
accuracy, 0.83 Macro-F1). Our logit-level ensem-
ble of AraBERT and AraELECTRA produced the
best overall results on the development set, with
an accuracy of 0.92 and a Macro-F1 score of 0.86,
confirming the benefit of combining the two archi-
tectures.

We also evaluated several alternative ap-
proaches. A sliding-window inference strategy
applied to AraBERTv02 slightly improved the
Macro-F1 score over the single-model baselines
(0.85) but did not surpass the ensemble. Tra-
ditional TF-IDF features followed by a fully
connected network (FCN) performed consider-
ably worse (approximately 0.75 accuracy, 0.70
Macro-F1), highlighting the limitations of shal-
low lexical representations for this task. A con-
trastive learning approach achieved moderate
performance (0.84 accuracy, 0.79 Macro-F1), sug-
gesting that more specialized contrastive objec-
tives might be needed for stylistic analysis.

Our final submission to the AraGenEval 2025
Subtask 2 leaderboard achieved a Macro-F1 score
of 0.85968 and an accuracy of 0.89516 on the
held-out test set, placing third overall in the com-
petition. These results demonstrate the effective-
ness of our ensemble strategy in capturing com-
plementary stylistic cues from the two pretrained
models.

To illustrate the system’s ability to capture nu-
anced stylistic patterns, we present two correctly
classified examples from the test set:

Example 1 — Philosophical Prose:
Input excerpt: ú


	̄ �éªJ
J. ¢Ë@ iJ.��� A 	Jëð
A �	�Q 	̄ �I	KA¿ ÐY�®K
 @ 	Yºëð PQ�.Ó úÍ@


�ék. Ag
. �é 	̄QªÖÏ @ øñ�Jm× 	áÓ Q�
 	ªK
 B A �	�m×

�
A�K
Q�
� 	®�K
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Model Dev Acc. Dev
Macro
F1

AraBERT 0.90 0.84
AraELECTRA 0.88 0.83
Ensemble 0.92 0.86

Sliding Window 0.90 0.85
TF-IDF + FCN ∼0.75 0.70
Contrastive 0.84 0.79

Table 2: Model performance on the development set.

Predicted author: AK
Q» 	P X@ 
ñ 	̄ (correct)

Example 2 — Literary Prose:
Input excerpt: YJ
k.



@ B . . . �é K. A �JºË@ 	áÖ �ß

	áÓ ��é��̄ I. �J»


@ 	à



@ 	áºÖß
 , �HAÓY�®ÖÏ @ �éK. A�J»	P@ñk. úÎ« �é �̄Q¢ÖÏAK. ��YK
 . . . �éj 	®� 	­Ë



@

. É 	gY�J 	̄ AëQ 	®�
Predicted author: ø
 ð@Yª�Ë@ È@ñ 	K (cor-
rect)

6 Discussion

The experimental results indicate that the en-
semble of AraBERT and AraELECTRA consis-
tently outperformed either model individually on
both the development and test sets. We attribute
this improvement to the complementary nature of
the models’ pretraining objectives: AraBERT’s
masked language modeling encourages deeper
bidirectional context modeling, while AraELEC-
TRA’s replaced token detection promotes fine-
grained token-level discrimination. By combining
their pre-softmax logits, the ensemble is able to
integrate these distinct strengths, leading to more
robust stylistic representation and classification.

The limited gains observed from the sliding-
window approach suggest that splitting long texts
into chunks may disrupt important discourse-level
cues, which are often essential for capturing an
author’s style. Similarly, the relatively low per-
formance of the TF-IDF + FCN baseline confirms
that surface lexical features alone are insufficient

for distinguishing between highly skilled Arabic
authors with overlapping vocabularies. The mod-
erate results of the contrastive learning approach
point to the need for more task-specific contrastive
objectives that explicitly model stylistic similarity
and difference.

Overall, the findings highlight the value of
leveraging multiple pretrained encoders with dif-
ferent inductive biases, while also underscoring
the importance of preserving global context in
Arabic authorship attribution tasks.

7 Conclusion and Future Work

In this paper, we presented a logit-level ensem-
ble of AraBERT and AraELECTRA for Ara-
bic authorship attribution, developed for the Ara-
GenEval 2025 Shared Task. Our approach
leveraged the complementary strengths of two
transformer-based encoders with different pre-
training objectives, resulting in robust perfor-
mance across literary, philosophical, and journal-
istic genres. The system achieved third place
on the competition leaderboard, with a Macro-F1
score of 0.85968 and an accuracy of 0.89516 on
the held-out test set. The results demonstrate that
combining pretrained models is an effective strat-
egy for addressing the linguistic and stylistic chal-
lenges of Arabic authorship identification.

For future work, we plan to extend our en-
semble in two directions. First, we will explore
weighted logit-level fusion, where the contribution
of each model is learned or tuned based on vali-
dation performance rather than averaged equally.
Second, we aim to increase the number of diverse
models in the ensemble, incorporating additional
pretrained Arabic encoders and possibly multilin-
gual transformers. We expect that both strate-
gies will further enhance performance by captur-
ing a wider range of stylistic and contextual fea-
tures, thereby improving the system’s robustness
and generalization.
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A Appendix

A.1 Hyperparameter Settings
Table 3 lists the main hyperparameters used for
fine-tuning AraBERT and AraELECTRA in our
experiments.

Hyperparameter Value

Optimizer AdamW
Learning rate 2× 10−5

Batch size 16
Weight decay 0.01
Epochs 4
Max sequence length 512

Table 3: Hyperparameters for fine-tuning.

A.2 Hardware and Runtime
All experiments were run on a single NVIDIA
P100 GPU with 16GB of memory. Fine-tuning
each model for 4 epochs required approximately
3 hours.
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Abstract

Authorship Identification for Arabic texts is
challenging due to the language’s dialectal di-
versity and the wide stylistic variation across
genres, cultures, and historical periods. It has
critical applications in copyright enforcement,
forensic linguistics, and literary analysis. Rec-
ognizing its importance, we addressed this chal-
lenge using the AraGenEval 2025 shared task
dataset, which contains works by writers from
diverse backgrounds and time periods. We con-
ducted extensive experiments with multiple ar-
chitectures and proposed an ensemble model
that combines the strengths of four fine-tuned
transformer-based models. We applied data
augmentation to enrich the dataset and class
weighting to handle class imbalance during
training. Our system achieved a Macro-F1
score of 90%, representing a 15% improve-
ment over our baseline, and ranked 1st in the
competition.

1 Introduction

Transformer architectures have revolutionized the
way we analyze and understand textual data,
demonstrating a remarkable ability to capture deep
contextual and stylistic patterns highly effective
for tasks such as Authorship Identification. This
task involves determining the author of a given text
based on its stylistic and linguistic characteristics
and has critical applications in plagiarism detection,
forensic linguistics, and historical literature analy-
sis. However, Arabic remains underrepresented in
this line of research, despite its rich literary tradi-
tion (Alqurashi, 2024).

The task presents four core challenges: language-
related complexities, feature selection, data avail-
ability, and preprocessing decisions. The structural
challenges of Arabic, such as morphological rich-
ness, inflection, diglossia, and diacritics, compli-
cate preprocessing and obscure stylistic cues. Addi-
tionally, the scarcity of large, balanced corpora and

suitable modeling tools further hinders progress
(Alqahtani and Dohler, 2023).

Our main contributions to the Arabic Authorship
Identification task:

• Ranked 1st in AraGenEval’s Subtask 2 on
Arabic Authorship Identification (Abudalfa
et al., 2025), a multiclass classification task
predicting the author of an Arabic paragraph.

• Performed data augmentation to enrich the
samples of underrepresented authors and ap-
plied class weighting during training.

• Extensively experimented with multiple Ara-
bic transformer models (Alqurashi, 2024;
Alqahtani and Dohler, 2023) and combined
them into an ensemble, which reduced vari-
ance and improved robustness.

• Achieved a +15% improvement in macro-
averaged F1 over the baseline, reaching 90%.

2 Background

The dataset for AraGenEval’s Subtask 2 includes
21 Arabic authors spanning novelists, philosophers,
historians, social activists, and politicians, and cov-
ers diverse time periods. Each author is represented
by one to ten books, segmented into semantically
coherent paragraphs. The texts are exclusively
in Arabic, encompassing Classical Arabic, Mod-
ern Standard Arabic (MSA), and Egyptian dialect.
Class distributions vary widely, from fewer than
100 to over 3000 samples per author, reflecting real-
world authorship identification challenges such as
long-form input, class imbalance, genre variability,
and subtle stylistic overlap.

Authorship identification in English has evolved
from classical machine learning with handcrafted
features to deep learning and transformer-based ap-
proaches. Huertas-Tato et al. (Huertas-Tato et al.,
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Figure 1: System overview. Our system ensemble is composed of 4 models: AraBERT, CAMeLBERT, XLM-
RoBERTa-Arabic, and GATE-AraBERT-v1. The final output is then computed via soft-voting of all the outputs.

2022) introduced PART, a pre-trained transformer
using contrastive learning to capture author-specific
styles. Silva et al. (Silva et al., 2023) applied GAN-
BERT to attribute late 19th-century novels and later
extended it to detect AI-generated forgeries (Silva
et al., 2024). While highly effective across genres
and large author sets, comparable work in Arabic
remains scarce due to its morphological richness
and dialectal variation, which both complicate mod-
eling and offer unique stylistic cues.

A related task, Author Profiling, predicts at-
tributes such as gender, dialect, or age. Zhang and
Abdul-Mageed (Zhang and Abdul-Mageed, 2022)
developed a transformer-based system for profiling
Arabic social media users. However, such work
focuses on trait prediction for short, informal texts,
not full-text identity attribution, highlighting the
need for dedicated Arabic authorship identification
methods across domains.

Arabic authorship studies have often been small-
scale (fewer than 15 authors) and domain-specific,
such as classical literature, Islamic legal texts, or
poetry. These works aimed to identify authors
using statistical and machine learning methods
adapted to the domain. Al-Sarem et al. (Al-Sarem
et al., 2020) used an artificial neural network for
fatwa texts, while Sayoud (Hadjadj and Sayoud,

2021) applied PCA and SMOTE to address fea-
ture dimensionality and class imbalance. Earlier
works (Altheneyan and Menai, 2014; Ahmed et al.,
2019) employed Naïve Bayes, SVM, or LDA with
lexical, syntactic, and structural features. While
effective in restricted settings, these approaches
relied heavily on manual feature engineering and
often failed to capture semantic or stylistic depth
across genres.

More recent Arabic work with transformers
remains narrow in scope. AlZahrani and Al-
Yahya (AlZahrani and Al-Yahya, 2023) focused on
Islamic legal texts with small author sets, while
Alqurashi et al. (Alqurashi et al., 2025) used a
CAMeLBERT-based ensemble for classical poetry,
achieving F1 scores from 0.97 to 1.0. Despite
strong results, their focus was limited to a single
genre.

To address these gaps, our work presents a
transformer-based model trained on Arabic texts
spanning diverse dialects and genres, capable of
learning stylistic patterns directly from raw text
without manual feature engineering.

3 System Overview

We reached this system design after experiment-
ing with several alternative architectures, includ-
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ing BERT embeddings with RNN/LSTM heads,
frozen BERT embeddings with SVM/RF classi-
fiers, and BERT embeddings concatenated with
extracted topic distributions followed by a fully
connected softmax layer. However, the pure BERT
embeddings followed by a fully connected soft-
max layer outperformed the other approaches (see
Figure 1).

3.1 Model Architecture

Following the best-performing architecture,
we fine-tuned four transformer-based models
from Hugging Face: AraBERT v0.2 (136M),
CAMeLBERT-Mix (110M), Arabic XLM-
RoBERTa (270M), and GATE-AraBERT (135M),
each leveraging the same fully connected softmax
classification head. To ensure robust inference, we
employed a soft-voting ensemble that averaged
the predicted probability distributions of all four
models, thus reducing variance and exploiting
complementary stylistic features captured by each
transformer (see Appendix B).

3.2 Handling Class Imbalance

The dataset exhibited a significant imbalance in the
number of samples per author, which could bias
the model toward overrepresented classes. To ad-
dress this, we modified the standard cross-entropy
loss to include class weights inversely proportional
to class frequencies, thereby penalizing errors on
underrepresented authors more heavily (see Ap-
pendix C for the formal definition).

3.3 Data Augmentation

To increase stylistic variation and expand data di-
versity, we collected additional works from the
Hindawi Books dataset (Filali, 2022), targeting un-
derrepresented authors: Tharwat Abaza, Kamel
Kilani, Gobran Khalil Gobran, Ahmad Taymour
Basha, Ahmad Shawqy. After using the validation
set to select the hyper-parameters and do initial
experiments, we appended it with the training set
at the end to increase the training data before the
final evaluation on the test set.

4 Experimental Setup

4.1 Data Splits

We followed the official Shared Task 2 data split
provided by the organizers. The dataset was di-
vided into training, validation, and test sets. The

validation set was used for model selection and hy-
perparameter tuning, while the test set was reserved
for final evaluation.

4.2 Preprocessing

To address statistical imbalances and reduce noise
that could obscure stylistic cues, we applied three
preprocessing steps to the dataset. First, we re-
moved a total of 2,740 duplicates to avoid over-
representation of specific expressions. Second, we
performed length capping by splitting 1,381 texts
exceeding 3,000 characters into chunks of approxi-
mately 2,000 characters, corresponding to the mean
text length across authors and remaining within the
tokenizer’s maximum sequence length. (see Ap-
pendix D for illustrative examples).

This step was intended to reduce overfitting risks,
improve gradient updates for underrepresented au-
thors, and encourage reliance on stylistic rather
than length cues. Finally, we removed diacritics,
as they are often inconsistently applied or auto-
inserted in digital-born text, which can introduce
noise into the stylistic signal.

4.3 Parameter Settings

We fine-tuned four transformer-based models with
carefully selected hyperparameters, including learn-
ing rate, optimizer, training epochs, warmup ra-
tio, and weight decay. The best configurations
for AraBERT, CAMeLBERT, and XLM-RoBERTa-
Arabic are the same: learning rate of 8e10−5,
Adam as optimizer, cosine scheduler, 10% warmup
ratio, 4 epochs, and 0.1 of weight decay. GATE-
AraBERT-v1 is the same with the only difference
in learning rate: 2e10−5

4.4 External Tools and Libraries

The implementation was carried out in Python 3.10
using Google Colab and Kaggle environments. We
used pandas and numpy for data handling, mat-
plotlib and seaborn for visualization (e.g., his-
tograms and bar charts), langdetect for language
identification, and langchain for text splitting.

4.5 Evaluation Metrics

Following the AraGenEval guidelines, we evalu-
ated our models using four primary metrics: Macro
F1-score, Accuracy, Precision, and Recall on the
test set. Macro F1-score was the main ranking

61



criterion in the shared task, defined as:

Macro F1 =
1

N

N∑

i=1

F1i (1)

where N is the number of classes, and F1i is the
F1-score computed for class i:

F1i = 2
PrecisioniRecalli

Precisioni + Recalli
(2)

where Precisioni =
TPi

TPi + FPi
, (3)

Recalli =
TPi

TPi + FNi
(4)

Here, TPi, FPi, and FNi denote the number of
true positives, false positives, and false negatives
for class i. Accuracy is computed as the propor-
tion of correctly predicted instances over the total
number of instances.

5 Results

We gradually enhanced performance over our ini-
tial BERT + RNN baseline. Table 1 compares al-
ternative architectures we tested. The best single-
model result came from BERT embeddings with
a softmax layer, reaching 0.85. This suggests that
while BERT embeddings capture valuable stylis-
tic information, and their effectiveness depends
heavily on the classifier’s capacity to exploit high-
dimensional contextual features.

Table 1: Comparison of alternative architectures on the
validation set.

Architecture F1 Score
BERT + RNN (baseline) 0.75
Frozen BERT + SVM (bagging) 0.66
Frozen BERT + Random Forest 0.35
BERT + Fully Connected Layer 0.85
Our Ensemble1 0.90

Building on these findings, we adopted the
BERT embeddings + fully connected softmax
layer architecture as our main design and ex-
plored further enhancements. We evaluated
various embedding models, including AraBERT
v0.2, CAMeLBERT-Mix, Arabic XLM-RoBERTa,
GATE-AraBERT, Arabic-labse-Matryoshka, and
Arabic distilbert-base. We excluded the last two
from the final ensemble as their validation F1
scores fell below 0.80.

1Result on test set.

We incorporated external stylistic cues by per-
forming topic modeling and concatenated the
top topic keywords with the embedding repre-
sentation, following the approach of Alqurashi et
al. (Alqurashi et al., 2025). However, experiments
with CAMeLBERT-Mix showed no measurable
performance gain (F1 = 0.85 both with and without
topic features), suggesting that topic distributions
did not contribute additional discriminative power
beyond the contextual embeddings.

Subsequently, augmenting training data with the
Hindawy dataset yielded consistent validation im-
provements across most models. Table 2 reports
macro-F1 scores with and without augmentation
on the validation set.

Table 2: Macro-F1 with and without augmentation (val-
idation set).

Model Aug No Aug
AraBERT v0.2 0.90 (↑ 2%) 0.88
CAMeLBERT-Mix 0.90 (↑ 6%) 0.84
Arabic XLM-RoBERTa 0.83 (0) 0.83
GATE-AraBERT 0.89 (↑ 5%) 0.84

Although applying class-weighted loss improved
performance in the frozen GATE-AraBERT + bag-
ging SVM setup, increasing validation F1 from
0.56 to 0.66, it did not show such an enhancement
for the fully connected architecture. The effect
was minimal overall, though we observed a slight
gain from 0.82 to 0.83 validation F1 for XLM-
RoBERTa. We retained this procedure as it did not
degrade performance for other models and XLM-
RoBERTa had not shown improvements from data
augmentation.

To better understand model errors, we inspected
the confusion matrix of the predicted authors. Mis-
classifications were often concentrated among au-
thors with overlapping genres or historical contexts,
reflecting the stylistic and thematic proximity be-
tween them. A detailed analysis of the most fre-
quent confusions is provided in Appendix A.

Finally, our ensemble system achieved a macro-
averaged F1 of 0.9046, accuracy of 0.9327, preci-
sion of 0.9012, and recall of 0.9143, ranking 1st on
the official test set of the AraGenEval 2025 Subtask
2, outperforming each single model.

6 Conclusion

We developed an ensemble-based system for Ara-
bic Authorship Identification, achieving a macro-
F1 of 0.9046 on the AraGenEval 2025 test set and
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ranking 1st in Subtask 2. Our analysis showed that
while frozen embeddings with classical classifiers
underperformed, a BERT + fully connected design,
combined with data augmentation and ensembling,
delivered strong gains. Class-weighted loss had
mixed effects, benefiting some models but not oth-
ers.

Limitations include the restriction to only 21
authors and the features are not guaranteed to
be style-based rather than content-based, which
might present a form of overfitting. Future work
will investigate open-set authorship, experiment
more with contrastive learning to enhance the fea-
tures, assess potential data leakage, and apply in-
terpretability techniques to better understand the
model’s decision-making process.
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A Detailed Error Analysis

Inspection of the confusion matrix of the pre-
dicted authors revealed that Tharwat Abaza was
often misclassified as Ahmad Shawqi and Mo-
hamed Hussein Heikal due to narrative simi-
larities. Fouad Zakaria and Abd al-Ghaffar
Mikkawi occasionally confused, likely due to
shared philosophical themes.

Figure 2: Confusion matrix showing frequent misclassi-
fications between authors with overlapping styles.

B Soft-Voting Ensemble

In the soft-voting ensemble, the class probability
distributions predicted by each model are averaged
before selecting the final class label. Formally, let
p(m) ∈ RK denote the probability vector predicted
by model m over K classes, and let M be the
total number of models. The ensemble probability
distribution p̂ and the final predicted label ŷ are
defined as:

p̂ =
1

M

M∑

m=1

p(m), ŷ = argmax
k

p̂k

where p̂ represents the averaged probability distri-
bution and ŷ is the predicted class corresponding
to the maximum probability.

C Weighted Loss Function

Formally, let yi ∈ {1, . . . ,K} denote the true class
label of the i-th sample, pi,c the predicted probabil-
ity for class c, and wc the weight assigned to class
c. The weighted cross-entropy loss is given by:

L = − 1

N

N∑

i=1

wyi log pi,yi

where N is the number of training samples and K
the number of classes.

The weights wc are set inversely proportional
to the class frequencies, following the “balanced”
option in sklearn.compute_class_weight:

wc =
N

K · nc
,

where nc is the number of samples belonging to
class c. This ensures that underrepresented classes
receive higher weights during training.

D Preprocessing Examples

Duplicate Removal
The following excerpt, shown in Figure 3, appeared
multiple times in the dataset and was reduced to a
single occurrence during preprocessing:

Index Input Text Author

...
...

...

501

يدهشني ما بينك وبين
بناتك من صلة؛ فهما

تنذراني بالجلد إذا صدقت،
وأنت تنذرني بالجلد إذا

كذبت...

شكسبير

...
...

...

670

يدهشني ما بينك وبين
بناتك من صلة؛ فهما

تنذراني بالجلد إذا صدقت،
وأنت تنذرني بالجلد إذا

كذبت...

شكسبير

...
...

...

Index Input Text Author

...
...

...

501

يدهشني ما بينك وبين
بناتك من صلة؛ فهما

تنذراني بالجلد إذا
صدقت، وأنت تنذرني
بالجلد إذا كذبت...

شكسبير

...
...

...

Figure 3: Example of a duplicate sample being reduced
to one unique sample.

Splitting Large Texts
Figure 4 illustrates how a long text of 11,639 char-
acters was split into seven smaller chunks of ap-
proximately 2,000 characters each, respecting the
tokenizer’s maximum input length.

Chunk Length

1 2048

2 2044

3 2030

4 2043

5 2020

6 2042

7 525

ؤدِّي إليه إلا الكمال لا لا يُ
يدِ من كَ يا أخا البِ نْ رَّ يغُ

بولُ ولاك ذاك القَ مَ
رِ ما والإقبال أنت في الأسْ

م فهناك متَ فإن تَ سلِ
العيشُ الهنيُّ الحلال.. 

11,639 characters

chunked

Figure 4: Example of length splitting: a long text was
divided into seven chunks with sizes [2048, 2044, 2030,
2043, 2020, 2042, 525].
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Abstract

With the rapid emergence of large language
models (LLMs), AI-generated content has in-
creased, presenting new opportunities and sig-
nificant risks. Detecting such content is cru-
cial, yet while research in high-resource lan-
guages like English has advanced, work in low-
resource languages, such as Arabic, remains
limited. To help fill this gap, the AraGenEval
2025 workshop organized a shared task on AI-
generated Text Detection in Arabic. We partic-
ipated in Task 3, where we evaluated several
transformer-based models, including AraBERT,
RoBERTa, AraRoBERTa, mBERT, and mar-
BERT, both with and without chunking of input
sequences during training. The experimental re-
sults show that applying chunking prior to train-
ing improves the performance of transformers.
Among the evaluated models by the system
testset, AraBERT with chunking achieved the
highest F1 score (0.67), outperforming the oth-
ers. Based on these results, our team ranked
12th in Shared Task 3.

1 Introduction

The rise of large language models (LLMs) has
transformed text production, enabling rapid gener-
ation of coherent, human-like content. This evo-
lution presents opportunities in creative writing,
software engineering, and customer support, but
also introduces risks to the integrity of educational
assessment. Additionally, LLMs can enhance the
sophistication and accessibility of social engineer-
ing attacks in online communication, leading to
more convincing scams and the dissemination of
misinformation. Reliable detection of AI-generated
text is essential for maintaining trust and authentic-
ity. While advances have occurred for languages
such as English, Arabic remains challenging due to
its characteristics, including root-and-pattern word
construction, inflectional complexity, diverse di-

*Authors contributed equally to this work.

alects, and diacritics. Consequently, systems devel-
oped for high-resource languages frequently under-
perform when handling Arabic.

This work addresses these critical gaps, moti-
vated by the need for reliable AI-generated text
detection tools tailored to Arabic. We evaluate var-
ious transformer-based models for this purpose as
part of the AraGenEval 2025 shared task (Abu-
dalfa et al., 2025). We investigate transformer-
based models, including AraBERT(Antoun et al.,
2020), RoBERTa (Liu et al., 2019), mBERT (De-
vlin et al., 2019) etc, both with and without chunk-
ing of input sequences. This work aims to provide
insights into the strengths of current techniques and
highlight the specific challenges of detecting AI-
generated text in Arabic. The key contributions in
this work are as follows:

• Evaluated multiple transformer-based models
for detecting AI-generated text in Arabic.

• Introduced a chunking and confidence base
aggregation approach with transformers to en-
hance detection performance.

2 Background

While most work in detecting machine-generated
text has been conducted in high-resource languages
(HRLs), such as English, some efforts have begun
in low-resource languages (LRLs), including Ara-
bic. Prova, 2024 made significant efforts to de-
tect AI-generated text using BERT (Devlin et al.,
2019), XGB (Chen and Guestrin, 2016), and SVM
techniques. BERT models performed the best in
the task, achieving an F1 score of 0.93. However,
the research focused on English. Recent work by
(Zhang et al., 2024) proposes a novel approach
to distinguish between human and AI text. They
integrated traditional TF-IDF (Takenobu, 1994)
strategies with machine learning algorithms like
Bayesian classifiers, Stochastic Gradient Descent
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(SGD), and Categorical Gradient Boosting (Cat-
Boost) (Prokhorenkova et al., 2019). Their methods
reached an impressive ROC-AUC score of 0.975
on English text. In another study (Sadasivan et al.,
2025), several types of detectors were assessed,
including watermarking, neural network-based de-
tectors, zero-shot detectors, and retrieval-based de-
tectors. They found that AI detectors can be fooled
by recursive paraphrasing, meaning the text is re-
peatedly reworded to evade detection. One major
issue with Arabic language detection is handling
diacritics, which are marks used in Arabic script
to indicate pronunciation. Recent work by (Al-
shammari and Elleithy, 2024) focused on this chal-
lenge, comparing transformer-based models such
as AraELECTRA (Antoun et al., 2021), AraBERT
(Antoun et al., 2020), XLM-R (Conneau et al.,
2020), and mBERT (Devlin et al., 2019). They
showed that AI-detection systems struggle with
Arabic text that includes diacritics and often mis-
classify human-written text as AI-generated.

Similar challenges exist for other LRLs. For
example, a study on AI-generated review classifica-
tion in Malayalam (Hasan et al., 2025) used LLMs
to identify AI-generated reviews. The Gemma-
2B model achieved an F1-score of 0.89. This
demonstrates the potential of LLMs in detecting AI-
generated content in underrepresented languages.
With these findings in mind, this work employed
preprocessing steps in which diacritics were re-
moved and variants of Arabic letters were normal-
ized. Subsequently, transformer-based techniques
were applied to detect AI-generated text. In con-
trast to previous studies that primarily focused on
HRLs or the role of diacritics in Arabic, this work
utilizes chunking of input sequence before training
and confidence based aggregation in output with
transformer-based models to enhance long-context
representation in Arabic AI-text detection.

3 Dataset and Task Description

The shared task1, ARATECT: Arabic AI-Generated
Text Detection, was part of the AraGenEval (Abu-
dalfa et al., 2025) challenge. It focuses on distin-
guishing between human-written and AI-generated
Arabic text. The ARATECT dataset comprises
two primary sources. First, human-written texts
were collected from reputable Arabic news sites
and verified literary sources. Second, AI-generated
texts were produced using Arabic-compatible large

1https://ezzini.github.io/AraGenEval/

language models (e.g., GPT-4, Mistral, LLaMA)
through diverse prompting strategies. Participants
received a labeled training set of Arabic text sam-
ples with binary labels (human or machine). They
also received an unlabeled test set for evaluation.
The training set contains 4,798 samples (2,399 per
class), and the test set includes 500 unlabeled sam-
ples, as shown in Table 1. The task was hosted
on Codabench 2. It aimed to advance Arabic AI-
generated content detection.

Set Class SC AW Min Max TS

Train Human 2399 657 1 3068 54839
Machine 2399 314 9 1969 37768

Test All 500 230 12 1589 7772

Table 1: ARATECT dataset statistics. SC : sample count,
AW : average words per sample, Min/Max: minimum
and maximum words per sample, and TS : total sen-
tences.

4 System Overview

Several transformer models are implemented with
and without the chunking of input sequence be-
fore training and investigated to address the tasks.
Figure 1 outlines the methodology.

Stopword
Punctuation

Diacritics Removal 
Whitespace Normalization

Arabic 

Texts

Transformer-based

Tokenization

AraBERT

RoBERTa 

mBERT 

AraRoBERTa 

MarBERT

Input Texts

Preprocessing

Chunking

Models

C
h

u
n

k

 P
re

d
ic

tio
n P
re

d
ic

tio
n

Figure 1: Schematic process of Arabic AI-generated
content detection.

4.1 Data Preprocessing
Several preprocessing steps were applied to prepare
the dataset for model training. For the training data,
each sample was made using only the content field.
For the test data, the title and content fields were
concatenated. Subsequent preprocessing involved
removing diacritics and normalizing variant Arabic
letters. Repeated characters were eliminated us-
ing regular expressions. In addition, non-essential
punctuation and special characters were removed.
Excessive whitespace was normalized. Finally, la-
bels were mapped to binary values in the training
dataset.

2https://www.codabench.org/competitions/9120/
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4.2 Transformer-based Models

Transformer-based models were used for this task
because they efficiently process large-scale con-
textual information, making them well-suited for
multilingual text classification. Several pre-trained
transformer models from Hugging Face, including
RoBERTa (Liu et al., 2019) and AraBERT (An-
toun et al., 2020), mBERT (Devlin et al., 2019),
ara-RoBERTa (Liu et al., 2019), MarBERT (Abdul-
Mageed et al., 2020) were evaluated. Before pass-
ing data through the transformers, preprocessing
and tokenization were done using each model’s re-
spective tokenizer. Inputs were truncated or padded
to a maximum sequence length of 512. Since many
input texts exceeded this maximum length, we ap-
plied a chunking strategy. Specifically, long texts
were split into overlapping chunks of 400 with
an overlap of 50 to preserve contextual continu-
ity across chunks. Each chunk was independently
processed through the model to obtain a confi-
dence score. To aggregate predictions, we grouped
chunks based on their original document IDs and
computed the mean confidence score across all
chunks. The final classification label was then de-
rived from this aggregated score. This averaging
approach ensures that information from all parts of
the input sequence is considered, rather than being
biased toward the first 512 tokens, thereby making
the model more robust to long and information-
dense texts. A formal description of the chunking
and aggregation method is provided in Appendix A
while Appendix A.5 reports rationale behind the
choice of chunk size of 400 with overlap of 50.

Parameter Value

Batch Size 16
Epochs 5
Weight Decay 0.001
Learning Rate 2e-5

Table 2: Hyperparameter configuration for the
transformer-based approach.

Each model was fine-tuned for the binary clas-
sification task, with hyperparameters optimized to
enhance performance (Table 2). This chunking and
aggregation mechanism was particularly effective
in improving performance, as it allowed the models
to capture richer semantic information from long
documents while mitigating the loss of important
context.

5 Results

Transformer-based models were evaluated to assess
their effectiveness in detecting Arabic AI-generated
content, both on the system test set (as submitted to
CodaBench 3) and on a custom test set derived from
the training data. Table 3 presents each transformer
model’s performance with and without chunking,
reporting Precision (P), Recall (R), F1-score, and
performance across short, medium, and long texts.
The first two rows correspond to the system test set,
while the last five rows show results on the custom
test set, providing a more comprehensive analysis
of model behavior.

The AraBERT achieved an F1-score of 0.62 with-
out chunking, improving to 0.67 with chunking
(+0.05). RoBERTa also benefited slightly, increas-
ing from 0.58 to 0.61. These results indicate that
chunking enhances model performance even on
general sequences by better handling longer inputs.

Transformer Approach Precision Recall F1-score Short Mid Long

AraBERT
(System Testset)

w/o Chunk 0.47 0.89 0.62 - - -
+ Chunk 0.51 0.97 0.67 - - -
∆ +0.04 +0.08 +0.05 - - -

RoBERTa
(System Testset)

w/o Chunk 0.53 0.64 0.58 - - -
+ Chunk 0.47 0.87 0.61 - - -
∆ +0.06 +0.23 +0.03 - - -

AraBERT
w/o Chunk 0.82 0.76 0.79 0.74 0.80 0.73
+ Chunk 0.88 0.87 0.87 0.89 0.90 0.83
∆ +0.06 +0.11 +0.08 +0.15 +0.10 +0.10

RoBERTa
w/o Chunk 0.62 0.54 0.58 0.79 0.78 0.42
+ Chunk 0.78 0.70 0.73 0.76 0.80 0.84
∆ +0.16 +0.16 +0.15 -0.03 +0.02 +0.42

mBERT
w/o Chunk 0.84 0.80 0.81 0.95 0.87 0.64
+ Chunk 0.77 0.50 0.60 0.37 0.46 0.76
∆ -0.07 -0.30 -0.21 -0.58 -0.41 +0.12

Ara-RoBERTa
w/o Chunk 0.23 0.50 0.31 0.64 0.46 0.12
+ Chunk 0.27 0.52 0.35 0.44 0.53 0.78
∆ +0.04 +0.02 +0.04 -0.20 +0.07 +0.66

MARBERT
w/o Chunk 0.83 0.78 0.80 0.87 0.79 0.41
+ Chunk 0.88 0.86 0.87 0.92 0.86 0.69
∆ +0.05 +0.08 +0.07 +0.05 +0.07 +0.28

Table 3: Comparison of transformer models with and
without chunking on system and custom test set. ∆
indicates the performance gain from chunking. Short,
Mid, and Long are the performance on texts less than
512, 512 to 1024, and greater than 1024, respectively.

Since gold labels for the system test set were
not disclosed, models were further evaluated on
the custom test set to analyze behavior in detail,
including performance by input length. Chunking
produced more substantial improvements on this
set: AraBERT’s F1 increased from 0.79 to 0.87,
with gains across short (+0.15), medium (+0.10),
and long texts (+0.10), showing better context cap-
ture in sequences of varying lengths. RoBERTa
gained +0.15 overall, with the largest improvement
on long texts (+0.42), while MARBERT improved

3https://www.codabench.org/competitions/9120/
#/results-tab
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across all lengths (+0.07 overall, +0.28 on long
texts), reflecting strong Arabic-specific pretrain-
ing. In contrast, mBERT decreased on short (-0.58)
and medium (-0.41) texts but improved slightly on
long sequences (+0.12), suggesting multilingual
pretraining is less effective on shorter Arabic texts
in chunked form. Ara-RoBERTa, though generally
weaker, benefited notably on long texts (+0.66 F1),
highlighting chunking’s advantage for extended se-
quences.

Overall, chunking consistently improves
AraBERT, RoBERTa, and MARBERT, with
AraBERT (Chunk) achieving the highest F1 of
0.87. Gains are particularly pronounced for long
texts (Appendix B.1), emphasizing that chunking
effectively preserves full context in extended
Arabic input. Models with language-specific
pretraining, such as AraBERT and MARBERT,
provide the most robust and balanced performance
across all sequence lengths.

6 Error Analysis

Figure 2 shows the quantitative error analysis of
the AraBERT model with chunking.

Figure 2: Confusion matrix of AraBERT with chunking

Since gold labels for the final test set were not
disclosed, we evaluated our models on a custom
test set alongside the system test set. The confu-
sion matrices (Fig. 2) show that the chunked ap-
proach correctly classified 431 out of 500 texts,
improving human text predictions by 60 compared
to the non-chunked approach, though 69 human
texts were still misclassified as machine-generated.
This demonstrates how chunking helps the model
capture clearer context within shorter segments

(Appendix B.1). These gains are also reflected
in Table 3, where most models show positive ∆
values. Errors persist in long texts, where relations
across distant chunks are harder to preserve. Addi-
tionally, human-written texts can be subtly altered
using paraphrasing or grammar correction tools,
making them resemble AI-generated outputs and
further challenging detection. Appendix B pro-
vides qualitative error analysis for AraBERT, while
Appendix B.1 reports performance by text length.

7 Conclusion

This work explored various transformer-based mod-
els for detecting AI-generated text in Arabic. Eval-
uation results showed that Arabic-specific BERT
models with chunking, such as AraBERT and
MARBERT, consistently outperformed other mod-
els. Chunking proved particularly effective for
longer sequences, improving performance across
short, medium, and long texts by better capturing
contextual information. Future work could explore
hierarchical modeling, memory-augmented trans-
formers, and improved chunking with overlap or
retrieval-based aggregation for transformer based
approach, as well as integrating modern LLMs
with contextualized embeddings or multilingual
and Arabic-dialect-aware pretraining to further en-
hance detection robustness and adaptability across
diverse text varieties.

Limitations

The current study on AI-generated text detection
has several limitations. A few critical issues are:
(i) The dataset used was relatively small, and it
is unclear whether paraphrasing techniques were
applied to obscure AI-generated content or if ad-
versarial modifications were present, which may
limit the model’s ability to generalize and affect
its reliability. (ii) We did not explore the use of
advanced large language models (LLMs) or trans-
former architectures like Longformer that are de-
signed for longer contexts, leaving potential per-
formance gains from state-of-the-art techniques un-
explored. (iii) While our chunking strategy was
motivated by the need to fit longer texts into the
512-token context window and did improve model
performance, more sophisticated chunking and ag-
gregation methods could be investigated to better
capture context and further enhance model effec-
tiveness.
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A Mathematical Intuition of Chunking
and Aggregation

Let the input sequence be denoted as

X = (x1, x2, . . . , xL),

where L is the sequence length and may exceed
the maximum input size (512 tokens) allowed by
transformer models.

A.1 Chunking Formulation

We split X into overlapping chunks of length k =
400 tokens with an overlap of o = 50 tokens. The
j-th chunk is defined as:

Cj = (xsj , xsj+1, . . . , xsj+k−1), j = 1, . . . , N,

where the starting index is

sj = (j − 1)× (k − o) + 1,

and the total number of chunks is

N =

⌈
L− o

k − o

⌉
.

A.2 Model Predictions

Each chunk Cj is passed through the fine-tuned
transformer model fθ, which outputs a confidence
score:

pj = fθ(Cj) ∈ [0, 1],

representing the probability that the text is AI-
generated.

A.3 Aggregation Mechanism

Since a document is split into multiple chunks, we
aggregate chunk-level predictions into a document-
level score. We compute the mean confidence
score:

p̂ =
1

N

N∑

j=1

pj .

The final label is then derived using a threshold
τ (typically τ = 0.5):

ŷ =

{
1, if p̂ ≥ τ,

0, otherwise.

A.4 Intuition

• Chunking: Ensures that the model processes
inputs within the 512-token limit while retain-
ing context through overlap.

• Overlap: The overlap o = 50 provides con-
textual continuity between adjacent chunks,
mitigating boundary information loss.

• Aggregation: Mean aggregation smooths
noisy predictions and approximates a
document-level probability by considering
evidence from all chunks, making the model
more robust on long texts.

A.5 Choice of Chunk Size
We chose a chunk size of 400 tokens with a 50-
token overlap to stay within the model’s limits
while keeping context intact. Since most trans-
former models cap at 512 tokens, using 400 leaves
enough buffer for [CLS], [SEP], and extra subword
splits that Arabic tokenization often produces. Go-
ing right up to 512 is risky because any expansion
can cause truncation. The overlap of about 50 to-
kens ( 12%) helps avoid cutting sentences in half
at chunk boundaries, so important context isn’t
lost between chunks. This setup gave us a good
trade-off: reliable coverage of long documents, pre-
served continuity, and faster processing compared
to always maxing out at 512.

B Qualitative Analysis

Table B1 presents representative examples of
model predictions. In some cases, the model mis-
classified the text, which can be attributed to several
factors. First, certain human-written texts exhibit
stylistic or structural patterns that closely resem-
ble AI-generated content, making them difficult to
distinguish. Second, the training dataset may lack
sufficient diversity across topics, writing styles, and
dialects, limiting the model’s ability to generalize
to unseen text variations. Third, while chunking
helps manage long sequences, it can lead to par-
tial context loss across chunks, causing the model
to miss subtle cues indicative of human or AI au-
thorship. These factors collectively contribute to
the observed misclassifications and highlight the
challenges of detecting AI-generated Arabic text in
realistic, heterogeneous datasets.

B.1 Performance by Text Length
Figure B1 shows the performance of different trans-
former models across three text lengths: Short
(top), Mid (middle), and Long (bottom), compar-
ing models with and without chunking. Solid lines
indicate performance with chunking, while dashed
lines indicate performance without chunking. For
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Table B1: Sample text predictions from the evaluated
models.

short and mid-length texts, most transformers per-
form well even without chunking, with slight im-
provements observed for AraBERT, RoBERTa, and
MarBERT, and a noticeable improvement of Ara-
RoBERTa in short texts. For long texts, chunk-
ing provides substantial improvements, especially
for AraBERT, RoBERTa, and ara-RoBERTa, while
mBERT without chunking performs poorly. Over-
all, the figure illustrates that chunking consistently
enhances transformer performance, particularly for
longer sequences.

Figure B1: Transformer Performance Across Text
Lengths (Chunk vs W/O Chunk)).
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Abstract

This paper details our submission to the Ara-
GenEval Shared Task on Arabic AI-generated
text detection, where our team, BUSTED, se-
cured 5th place. We investigated the effec-
tiveness of three pre-trained transformer mod-
els: AraELECTRA, CAMeLBERT, and XLM-
RoBERTa. Our approach involved fine-tuning
each model on the provided dataset for a bi-
nary classification task. Our findings revealed
a surprising outcome: the multilingual XLM-
RoBERTa model achieved the highest perfor-
mance with an F1-score of 0.7701, outperform-
ing the specialized Arabic models. This work
underscores the complexities of AI-generated
text detection and highlights the strong gener-
alization capabilities of multilingual models.

1 Introduction

The increasing sophistication of large language
models (LLMs) has blurred the line between human
and machine-authored text. This reality poses sig-
nificant societal risks, from accelerating the spread
of misinformation to undermining academic in-
tegrity. In response, the development of reliable
detectors for AI-generated text has become a press-
ing research priority. The AraGenEval Shared Task
(Abudalfa et al., 2025) provides a crucial bench-
mark for this challenge in the Arabic language, a
domain where such tools are still developing.

Our approach was to systematically evaluate the
performance of different transformer architectures.
We fine-tuned each model to perform binary clas-
sification, adapting their general linguistic knowl-
edge to the specific task of distinguishing human
from machine authorship. We specifically investi-
gated:

1. AraELECTRA (Antoun et al., 2021), a spe-
cialized Arabic model.

2. CAMeLBERT (Inoue et al., 2021), a widely-
used Arabic BERT model.

3. XLM-RoBERTa (Conneau et al., 2020), a
large multilingual model.

This paper’s contributions are threefold. First,
we provide a direct comparison of monolingual
versus multilingual models for Arabic text detec-
tion. Second, we demonstrate that a multilingual
model can achieve superior performance, a counter-
intuitive but important finding. Finally, we ana-
lyze how certain preprocessing choices, such as
aggressive text normalization, can inadvertently
harm model performance by erasing subtle stylistic
cues. Our best-performing model secured a 5th
place finish in the shared task.

2 Related Work

Early efforts in authorship attribution and machine-
text detection relied on statistical stylometry, using
features like n-gram frequencies, readability scores,
and syntactic structures to train classifiers. While
effective for simpler models, these methods are less
robust against the fluency of modern LLMs.

The current research landscape is dominated
by neural network approaches. Fine-tuning pre-
trained transformers like BERT (Devlin et al., 2019)
has emerged as a powerful and accessible baseline.
Other lines of inquiry focus on detecting statistical
artifacts unique to the generative process of LLMs
or embedding a "watermark" into the text during
generation. Our work aligns with the fine-tuning
paradigm and is inspired by comprehensive com-
parative studies like that of (Al-Shboul et al., 2024),
applying a similar methodology to the specific and
under-resourced domain of Arabic AI-text detec-
tion.

3 Background

3.1 Task Setup

The AraGenEval shared task is a binary text clas-
sification problem. The goal is to classify a given
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Arabic text snippet as either ‘human-written‘ or
‘machine-generated‘.

• Input: A string of Arabic text.

• Output: A binary label (‘human‘ or ‘ma-
chine‘).

3.2 Dataset Analysis
The task utilized the AraGenEval dataset, which, af-
ter cleaning, contains 4,734 training samples. The
class distribution is nearly balanced, with 2,399
samples (50.68%) labeled as ’machine’ and 2,335
(49.32%) as ’human’. Our initial analysis revealed
several key distinguishing features within the train-
ing data:

Text Length: A significant discriminator is text
length. Human-written texts are substantially
longer on average (4059.13 characters) compared
to machine-generated texts (1934.53 characters).
This suggests that document length alone could be
a strong, albeit potentially brittle, feature.

Lexical and N-gram Differences: We observed
distinct topical and stylistic patterns.

• Human-written texts frequently contain
words like

��è 	Q 	«
�
@ (Gaza), �H. QmÌ'

�
@ (the war),

and
�
ÉJ

K @Qå�Z (Israel), and n-grams such as

��èYj�JÖÏ @ �HAK
BñË
�
@ (the United States), pointing

to a focus on specific current geopolitical
events.

• Machine-generated texts use more general
and formal vocabulary, such as �	áºÖß


�
@ (can

be),
�
É¾ ���.

�
@ (in a way), and n-grams like

�ú
ÍðYË@ ©Ò
�Jj. ÖÏ

�
@ (the international community)

and
�	àA�	�B
 @

��ñ�®k
�
@ (human rights), suggest-

ing a more analytical or descriptive style.

These lexical and phraseological differences high-
light the distinct registers and topics between the
two classes, which are crucial for classification.

3.3 Related Work
Our work is built on the transformer architecture
(Vaswani et al., 2017). Our comparative approach,
which evaluates multiple deep learning models for
an Arabic text classification task, is inspired by
comprehensive surveys in the field, such as the

one conducted by (Al-Shboul et al., 2024). We
specifically leverage pre-trained models including
BERT (Devlin et al., 2019), ELECTRA (Clark
et al., 2020), and XLM-RoBERTa (Conneau et al.,
2020). Our chosen models, CAMeLBERT (Inoue
et al., 2021) and AraELECTRA (Antoun et al.,
2021), are state-of-the-art for the Arabic language,
while XLM-RoBERTa is a robust multilingual base-
line.

4 System Overview

We implemented three systems based on different
pre-trained models. Our overall workflow is illus-
trated in Figure 2.

4.1 System 1: AraELECTRA

This system uses ‘aubmindlab/araelectra-base-
discriminator‘. A key component was an aggres-
sive Arabic text normalization preprocessing step
applied before tokenization. This function normal-
ized various Arabic characters (e.g., -

�
@ , @
 ,



@\ ‘ and

- �è\ ‘) and stripped all Arabic diacritics and non-
alphanumeric characters.

4.2 System 2: CAMeLBERT

This system is based on ‘CAMeL-Lab/bert-base-
arabic-camelbert-mix‘. In contrast to the Ara-
ELECTRA system, we did not apply any specific
text normalization, relying entirely on the model’s
pre-trained tokenizer.

4.3 System 3: XLM-RoBERTa

Our third and best-performing system utilizes the
multilingual ‘xlm-roberta-base‘ model. Similar to
the CAMeLBERT setup, no language-specific nor-
malization was performed.

5 Experimental Setup

5.1 Data Splits

The experimental setups for data splitting differed:

• AraELECTRA & CAMeLBERT: We used
the entire training dataset of 4,734 samples
for both training and evaluation during the
development phase.

• XLM-RoBERTa: We split the main training
data into an 80% training set (3,787 samples)
and a 20% validation set (947 samples), strati-
fied to maintain the label distribution.
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Figure 1: Statistics of the AraGenEval training dataset. The classes are well-balanced, but human-written texts are
more than twice as long as machine-generated ones.

Model F1-Score Accuracy Precision Recall Specificity Balanced Acc.

XLM-RoBERTa 0.7701 0.760 0.7390 0.804 0.716 0.760
CAMeLBERT 0.7290 0.710 0.6842 0.780 0.640 0.710
AraELECTRA 0.6180 0.550 0.5369 0.728 0.372 0.550

Table 1: Official results on the AraGenEval test set. XLM-RoBERTa achieved the best performance across all
metrics.

All models were then used to generate predictions
for the official ‘test_unlabeled.csv‘ file.

5.2 Hyperparameters

Models were fine-tuned using the Hugging Face
‘transformers‘ library (Wolf et al., 2020). Key hy-
perparameters are detailed in Table 2.

Hyperparameter Value

Learning Rate 2e-5
Batch Size (per device) 4
Optimizer AdamW
Weight Decay 0.01
Max Sequence Length 512
Epochs (AraELECTRA) 4
Epochs (CAMeLBERT) 4
Epochs (XLM-RoBERTa) 5

Table 2: Key hyperparameters for fine-tuning.

5.3 Evaluation Metrics

The primary metric was the macro F1-score. We
also report accuracy, precision, recall, specificity,

and balanced accuracy as provided by the official
evaluation script.

6 Results

6.1 Quantitative Findings

Our systems yielded varied performance on the of-
ficial test set, with XLM-RoBERTa emerging as the
strongest model. The final results are summarized
in Table 1, which led to our 5th place finish.

6.2 Analysis

The most significant finding is that the multilingual
XLM-RoBERTa model outperformed both special-
ized Arabic models. This suggests that the broader
and more diverse pretraining corpus of XLM-R
may have equipped it with more generalizable fea-
tures for distinguishing the subtle artifacts of ma-
chine generation. As our data analysis showed,
the human and machine classes have distinct lexi-
cal profiles; XLM-R’s exposure to a vast range of
topics and styles in 100 languages likely made it
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Figure 2: Overview of our comparative system. Input
text is processed in parallel by three separate fine-tuned
models. AraELECTRA’s pipeline includes an additional
text normalization step.

more adept at capturing these stylistic and topical
differences.

In contrast, AraELECTRA performance was no-
tably lower. We hypothesize that our aggressive
text normalization and diacritic removal, intended
to simplify the task, was detrimental. By stripping
these features, we likely removed fine-grained sig-
nals (e.g., stylistic choices in vocabulary, specific
named entities) that our data analysis identified as
crucial differentiators between the news-focused
human texts and the more formal machine texts.
CAMeLBERT provided a strong baseline but could
not match the generalization of XLM-R.

6.3 Error Analysis

While a detailed error analysis was not conducted,
the performance gap suggests clear avenues for
investigation. The lower precision of all models
compared to their recall indicates a tendency to
misclassify human text as machine-generated. We
hypothesize that errors may stem from domain mis-
match or from human-written text that is formulaic
or stylistically simple, thus resembling patterns typ-
ical of AI generation. Future work should focus on

a qualitative analysis of these false positives.

7 Conclusion

In this paper, we presented our comparative ap-
proach for the AraGenEval Shared Task, which
resulted in a 5th place ranking. Our experiments
showed that the multilingual XLM-RoBERTa
model is surprisingly effective for Arabic AI-
generated text detection, outperforming specialized
monolingual models. Our data analysis revealed
significant differences in text length and lexical
choice between classes, which likely played a key
role in model performance.

Our primary limitation was the suboptimal per-
formance of the AraELECTRA model, likely due
to a counterproductive preprocessing strategy. Fu-
ture work should explore less aggressive text nor-
malization, experiment with model ensembling,
and perform a detailed error analysis to better un-
derstand the failure modes on this nuanced task.
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Abstract

Authorship identification and AI-generated text
detection have recently emerged as pivotal ar-
eas of research in natural language processing
(NLP), with particular urgency for languages
such as Arabic that exhibit complex morpho-
logical and orthographic structures. Despite
growing interest, most prior work has cen-
tered on English and other Indo-European lan-
guages, leaving a gap in effective approaches
tailored to Arabic’s linguistic challenges. This
paper presents our participation in two shared
tasks: Arabic authorship identification and Ara-
bic AI-generated text detection. For Task2,
we fine-tuned transformer-based architectures
on a corpus of 21 authors, leveraging paral-
lelized, semantically segmented book data to
better capture stylistic variation. For Task3,
we trained models on a balanced dataset of
human-written and AI-generated news arti-
cles produced by multiple large language mod-
els. Our approach achieved competitive results
across both tasks, underscoring the potential of
domain-adapted transformers for morpholog-
ically rich languages. We also highlight key
limitations, including domain sensitivity and
difficulties in distinguishing closely aligned
stylistic features, and propose directions for
enhancing cross-domain robustness and gener-
alization.

1 Introduction

Authorship identification and AI-generated text de-
tection have emerged as critical research areas in
the field of natural language processing (NLP), par-
ticularly for languages with complex morphologi-
cal and orthographic systems such as Arabic. Over
the past decade, researchers have developed diverse
methodologies for this task, ranging from tradi-
tional statistical models to modern deep learning
approaches. For instance, ensemble-based strate-
gies have shown promise in enhancing attribution
accuracy across heterogeneous datasets (Abbasi

et al., 2022). Similarly, deep learning architec-
tures, including convolutional and recurrent neural
networks, have been explored for robust author-
ship identification in multi-domain contexts (Qian
et al., 2017). In the domain of Arabic, transformer-
based methods such as BERT have been adapted
to specific genres, achieving strong results in tasks
like poetry authorship attribution (Alqurashi et al.,
2025), and knowledge-based models have been uti-
lized to verify authorship in Arabic social media
texts (Alqahtani and Yannakoudakis, 2022). Ear-
lier work has also examined fusion approaches for
authorship identification in religious Arabic texts,
demonstrating the value of multi-feature integra-
tion (Sayoud and Hassina, 2021).

Parallel to authorship identification, the increas-
ing sophistication of large language models (LLMs)
has introduced the challenge of detecting AI-
generated content, especially in morphologically
rich languages like Arabic. Recent studies have
addressed unique difficulties such as diacritics han-
dling (Alshammari and Elleithy, 2024) and have
investigated detection performance in short dialec-
tal Arabic texts (Alharthi, 2025). Encoder-based
transformer architectures have also been proposed
for Arabic AI-generated text detection, leveraging
contextual embeddings for improved accuracy (Al-
shammari et al., 2024). Comparative evaluations
between human and machine-generated Arabic con-
tent have further highlighted the challenges of reli-
ably distinguishing AI-authored text from authentic
human writing (Boutadjine et al., 2025).

In this paper, we present our systems developed
for two shared tasks: (1) Authorship identification
in Arabic texts and (2) Arabic AI-generated text
detection. We build upon the existing literature
in both domains, leveraging transformer-based ar-
chitectures. Our contributions include fine-tuning
domain-specific language models, evaluating their
performance on benchmark datasets, and analyzing
error patterns to guide future research.
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2 Background

The shared task (Abudalfa et al., 2025) comprises
three subtasks and we worked on two of them:
Task 2 (Authorship Identification) and Task 3 (Ara-
bic AI-Generated Text Detection). Both are Arabic
text classification problems but differ in objectives,
input/output formats, and dataset composition.

2.1 Tasks

Task 2: Authorship Identification Task 2 is a mul-
ticlass classification problem where the goal is to
predict the author of a given text. The input is a
paragraph written in the style of a specific author,
provided in the text_in_author_style column,
and the output is the predicted author’s name in
Arabic, matching the labels in the dataset.
Task 3: Arabic AI-Generated Text Detection
Task 3 is a binary classification problem aimed
at distinguishing between human-written and AI-
generated Arabic news articles or snippets. Human-
written samples were sourced from verified news
platforms, while AI-generated content was pro-
duced using multiple LLMs (e.g., GPT-3.5, GPT-4,
Claude) with varied prompting strategies and gen-
eration parameters.

2.2 Dataset

For Task 2, the corpus comprises works from 21
authors, each contributing 10 publicly accessible
books. Each book was segmented into semantically
coherent paragraphs, and selected paragraphs were
rephrased into a standardized formal style using
GPT-4o mini2, with parallel pairs restricted to at
most 1900 tokens. The dataset was split into train-
ing, validation, and test sets. For Task 3, the dataset
contains human-written content sourced from veri-
fied news platforms and AI-generated content pro-
duced by multiple LLMs (e.g., GPT-3.5, GPT-4,
Claude) under varied prompting strategies and gen-
eration parameters. It includes 4,800 training sam-
ples, a forthcoming development set, and 2,000 test
samples, with a balanced distribution of human and
AI-generated texts.

3 System Overview

This section outlines the architectures and strate-
gies employed in our system for the shared tasks.

3.1 Task 2: Authorship Identification

In this subsection, we describe our approach to
modeling authorial style and capturing distinctive

linguistic features for the authorship identification
task.
Key Algorithms and Design Deci-
sions. For Task 2, we adopted the
CAMeL-Lab/bert-base-arabic-camelbert-mix
pretrained language model due to its strong
performance on Arabic text understanding and
ability to capture fine-grained stylistic differences
critical for authorship attribution. The task was
framed as a multiclass classification problem over
N = 21 authors. Each paragraph was tokenized
to a maximum length of 512 tokens with dynamic
padding. The BERT classification head was
replaced with a dense layer of size N , followed
by softmax. The model was fine-tuned end-to-end
using cross-entropy loss.
Addressing Task Challenges. The authorship
identification task presented several challenges.
First, many authors exhibited highly similar writ-
ing styles, making stylistic differentiation difficult;
this was mitigated through the use of contextual-
ized embeddings from the pretrained transformer,
which capture subtle variations in style. Second,
the dataset contained long paragraphs, often ex-
ceeding the model’s input length; to address this,
we truncated inputs to 512 tokens while prioritiz-
ing semantically important segments to preserve
representative style cues. Finally, although class
imbalance was relatively minor, it still posed risks
of skewed evaluation, so we did not apply resam-
pling but instead relied on macro-F1 as the primary
metric to ensure fairness across authors. These
design choices collectively allowed the model to
handle the practical difficulties of morphologically
rich Arabic text while maintaining robust perfor-
mance.
System Configuration. Training was conducted
for 4 epochs using the AdamW optimizer with a
learning rate of 2 × 10−5, batch size of 16, and
weight decay of 0.01. Model selection was per-
formed based on the highest validation macro-F1
score to ensure balanced performance across all
author classes. Evaluation metrics included both
accuracy, to capture overall correctness, and macro-
F1, to account for class imbalance and provide a
fairer assessment of performance across authors.

3.2 Task 3: Arabic AI-generated Text
Detection

Here, we present our methodology for distinguish-
ing between human-written and AI-generated Ara-
bic text across multiple domains.
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3.2.1 Configuration 1
We used AraBERTv21 for binary classification of
human-written (1) versus machine-generated (0)
text. The preprocessing stage involved map-
ping labels, replacing missing entries with empty
strings, and applying a stratified train–validation
split to handle class imbalance. Text was
tokenized with the AraBERTv2 tokenizer us-
ing a maximum sequence length of 512 to-
kens. The model consisted of the pretrained
aubmindlab/bert-base-arabertv2 encoder, fol-
lowed by dropout (p = 0.3), a dense layer with
two output units, and a softmax classifier. Training
was performed with cross-entropy loss, gradient
clipping (∥g∥∞ ≤ 1.0), and early stopping to pre-
vent overfitting, ensuring robust performance on
Arabic-specific tokenization challenges.

3.2.2 Configuration 2
In this variant, we employed
aubmindlab/bert-base-arabert with
AutoModelForSequenceClassification,
which simplified implementation by providing
a built-in classification head. Tokenization was
limited to a maximum length of 256 tokens to
improve efficiency and reduce memory usage.
The model consisted of the BERT encoder paired
with the classification head for two output classes,
trained using the AdamW optimizer with a linear
learning rate scheduler over 3 epochs. Pretrained
weights from aubmindlab/bert-base-arabert
were used to leverage prior Arabic language
knowledge. While the shorter sequence length
improved computational efficiency, it slightly
impacted performance; model evaluation was
monitored using accuracy, precision, recall, and F1
to ensure balanced assessment across metrics.

For Task 3, Configuration 1 outperformed
Configuration 2 due to longer context handling,
stronger pretrained embeddings, and custom classi-
fier design.

4 Experimental Setup

4.1 Dataset Processing
For both tasks, the datasets were divided into train-
ing, development, and test sets as provided. The
training sets were used to train the models, the de-
velopment sets for validation and hyperparameter
tuning, and the test sets for final evaluation. For
Task 2, the official training and development sets

1https://huggingface.co/aubmindlab/bert-base-arabertv2

were used, while for Task 3, training was performed
on the provided files and evaluation was done on
the official unlabelled file.

4.2 Preprocessing and Hyperparameter
Details

Text preprocessing included Arabic-specific nor-
malization, removal of non-Arabic characters,
and lowercasing to promote uniformity across
inputs. Tokenization was performed using the
AutoTokenizer from Hugging Face Transform-
ers, with a maximum sequence length of 256 to-
kens for Task 2 and 512 tokens for Task 3, reflect-
ing the different input requirements of each task.
Training batch sizes were set to 16 for Task 2 and
8 for Task 3. Models were optimized using the
AdamW optimizer with a learning rate of 2×10−5,
β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−8, along
with a linear learning rate warmup over 10% of the
total training steps. Task 2 models were trained
for 4 epochs, while Task 3 models were trained
for 3 epochs. Dropout layers and gradient clipping
were applied as described in the system section to
prevent overfitting and stabilize training, ensuring
consistent convergence across different runs and
input variations.

4.3 Evaluation Metrics
Model performance was evaluated using accuracy
and F1 metrics. For Task 2, macro-F1 was used to
account for class imbalance across the 21 authors,
with accuracy as a complementary measure. For
Task 3, F1 and accuracy were employed to capture
both the balance between precision and recall and
overall correctness.

5 Results

5.1 Task 2: Authorship Identification
Evaluation Set Results. We evaluated the fine-
tuned CAMeL-BERT model on the development
and test splits. On the held-out validation set, the
model achieved a final evaluation loss of 0.584, ac-
curacy of 0.872, and macro-F1 score of 0.809 after
4 epochs. Table 1 shows the epoch-wise training
and validation metrics.

Test Set Results. For the final test submission,
the model achieved an F1-score of 0.827, accuracy
of 0.864, precision of 0.828, recall of 0.854, speci-
ficity of 0.854, and balanced accuracy of 0.854.
The system ranked competitively among all sub-
missions.
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Table 1: Task 2: Epoch-wise training results on the
validation set

Epoch Training
Loss

Validation
Loss

Accuracy F1

1 0.1655 0.6413 0.8273 0.7478
2 0.0591 0.5431 0.8595 0.7774
3 0.0055 0.6400 0.8643 0.7995
4 0.0145 0.5842 0.8723 0.8093

Quantitative Findings and Analysis. Compar-
ing epoch-wise development set performance
and test submission results, we observe that
the design choices—such as stratified splitting,
512-token input length, and dropout regulariza-
tion—contributed positively to overall generaliza-
tion. Ablation of dropout or reducing sequence
length to 256 tokens led to a drop in macro-F1
by 2–3% on validation. Using CAMeL-BERT’s
contextual embeddings for Arabic significantly im-
proved performance compared to simpler baselines
such as TF-IDF + Logistic Regression (macro-F1
∼0.65).

5.2 Task 3: Arabic AI-Generated Text
Detection

Evaluation Set Results. For Task 3, we exper-
imented with two approaches for detecting AI-
generated Arabic text. The approach that per-
formed better was selected for detailed report-
ing. On the held-out validation set the model was
trained for 3 epochs and achieved the following per-
formance. On the held-out validation set, the model
achieved a validation loss of 0.0861, an accuracy
of 0.9844, an F1-score of 0.9841, a precision of
1.0000, and a recall of 0.9688. Epoch-wise training
results are summarized in Table 2.

Table 2: Task 3: Epoch-wise training results on the
validation set

Epoch Training
Loss

Validation
Loss

Accuracy F1

1 0.1013 0.1271 0.9781 0.9777
2 0.0197 0.0564 0.9896 0.9895
3 0.0047 0.0861 0.9844 0.9841

Test Set Results. On the official test split, the
selected model achieved an F1-score of 0.657, an
accuracy of 0.704, a precision of 0.780, a recall
of 0.568, a specificity of 0.840, and a balanced
accuracy of 0.704.

Quantitative Findings and Analysis. Although
the validation performance was very high (F1
∼0.984), the official test results indicate a substan-
tial drop in F1-score (0.657) and recall (0.568).
This suggests a significant domain shift between
the training/validation data and the test data or the
presence of challenging AI-generated text patterns
not seen during training. The high precision (0.780)
and specificity (0.840) indicate that the model is
conservative in predicting AI-generated text, favor-
ing fewer false positives but missing a considerable
portion of AI-generated instances.

Overall, the results highlight that while con-
textual embeddings and fine-tuning strategies can
achieve near-perfect validation performance, care-
ful attention to dataset diversity and robustness is
necessary for generalization to unseen test exam-
ples. Future work should consider data augmen-
tation, cross-domain evaluation, and adversarial
training to better detect AI-generated Arabic text.

6 Conclusion

In this study, we have presented systems for
two Arabic NLP tasks: authorship identification
(Task 2) and AI-generated text detection (Task 3).
For Task 2, a fine-tuned CAMeL-BERT model
achieved strong performance, with 87% accuracy
and a macro-F1 score of 0.809 on the validation set,
demonstrating its ability to effectively capture and
model distinctive authorial styles in a morphologi-
cally rich language like Arabic. Task 3 employed
a contextual embedding-based approach for dis-
tinguishing human-written from AI-generated text,
achieving near-perfect performance on the valida-
tion set (F1 ∼0.984). However, the official test
results showed a notable drop (F1 = 0.657), high-
lighting the challenges of generalizing to unseen
AI-generated content and the variability introduced
by different text sources and generation methods.
These findings emphasize the importance of do-
main adaptation and robust evaluation strategies
when deploying NLP models for Arabic text analy-
sis.

Overall, our results demonstrate the promise of
transformer-based models for both stylistic and gen-
erative text classification tasks, while also underlin-
ing the need for further research on cross-domain
generalization and handling the evolving capabili-
ties of large language models.
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Limitations

Despite achieving strong performance, our study
has several limitations. In Task 2, distinguishing au-
thors with subtle stylistic differences remains chal-
lenging, particularly when writing styles overlap
or when texts are short. For Task 3, AI-generated
text detection proved sensitive to domain shifts, re-
sulting in reduced generalization to unseen sources
or generation methods. Future work should in-
vestigate more advanced transformer-based archi-
tectures, data augmentation techniques, and cross-
domain training to enhance robustness. Addition-
ally, incorporating explainable AI methods could
provide greater transparency and interpretability
of model decisions. Beyond technical considera-
tions, these findings have broader implications: im-
proving authorship identification and AI-generated
content detection in Arabic can support academic
integrity, media verification, and responsible AI
deployment, helping to mitigate the spread of mis-
information and enhance trust in digital content.

Broader Impact Statement

The development of robust authorship identifica-
tion and AI-generated text detection systems for
Arabic has important societal implications. These
tools can help maintain academic integrity by de-
tecting plagiarism, support media and news veri-
fication to combat misinformation, and promote
responsible use of AI-generated content. Moreover,
advancing NLP methods for morphologically rich
languages like Arabic contributes to more inclu-
sive AI technologies, ensuring that non-English
languages benefit from state-of-the-art models and
reducing linguistic biases in automated text analy-
sis. By improving transparency and accountability
in content generation and evaluation, such systems
can foster trust in digital communication and AI
applications more broadly.
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Abstract

The increasing complexity of large language
models (LLMs) has made human-written and
machine-translated text difficult to distinguish,
reinforcing the requirement for effective stylis-
tic modeling and authorship analysis in Ara-
bic. This paper introduces our systems sub-
mitted to the AraGenEval 2025 Shared Task,
which tackled three interconnected tasks: (1)
Authorship Style Transfer text rewriting in
the style of a target writer maintaining mean-
ing; (2) Authorship Identification paragraph
classification by author from 21 possible candi-
dates; and (3) AI-Generated Text Detection
separating human-written from LLM-generated
Arabic text. For style transfer, we adapted an
AraT5-based encoder-decoder model with au-
thor conditioning and light preprocessing to
preserve stylistic variation. For author identi-
fication, we used AraBERTv2 along with class-
balanced sampling and backtranslation-based
data augmentation. For AI-generated text de-
tection, we deployed a hybrid mBERT model
augmented with handcrafted linguistic features.
Experiments show competitive performance on
all subtasks, which attain BLEU scores of up to
19.87 in style transfer, an F1-score of 0.79673
in identifying the author, and an F1-score of
0.75 in detecting AI-generated text. Ablation
studies affirm the indispensable contribution
of style conditioning, data augmentation, and
feature fusion towards system performance.

1 Introduction

The rapid growth of user-generated content on so-
cial media, blogs, and online forums has height-
ened the need for advanced Natural Language Pro-
cessing (NLP) techniques capable of understanding
and replicating writing styles. Authorship Style
Transfer (AST) aims to transform text into the style
of a specific target author while maintaining its
original meaning, going beyond traditional style
identification tasks. In the context of any language
English, Hindi or Arabic, are challenging due to

the linguistic richness, variations between writing
style and dialects. In this study, The organizers
mainly focus on Arabic language Authorship Style
Transfer and AI Generated Text Detection Shared
Task due to increase use of Arabic large language
models, the distinction between human-written and
AI-generated content is becoming less clear, mak-
ing style analysis and transfer vital for applica-
tions such as content personalization, authorship
verification, and AI-generated text detection. The
AraGenEval 2025(Abudalfa et al., 2025) shared
task addressed three interconnected problems in
Arabic NLP: controlled stylistic generation, fine-
grained author attribution, and robust detection of
AI-generated text. Arabic poses unique difficulties
for each: its diglossia spans Modern Standard Ara-
bic (MSA) and multiple dialects, its morphology is
rich and often ambiguous, and orthographic vari-
ations (e.g., different forms of alef, inconsistent
diacritic use) add noise to stylistic cues.

We participated in all three subtasks:

1. Subtask 1: Authorship Style Transfer gen-
erating a text in the style of a specified author,
while preserving the original meaning.

2. Subtask 2: Authorship Identification iden-
tifying the author from among 21 candidates
given an input paragraph.

3. Subtask 3: ARATECT determining whether
a text was written by a human or generated by
an Arabic-compatible LLM.

Our contributions are threefold:

• Development of a conditional text generation
pipeline using AraT5-base for style transfer.

• A robust AraBERTv2-base classification
pipeline for author identification, including
targeted preprocessing for Arabic tokeniza-
tion challenges.
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• A hybrid mBERT-based detector augmented
with handcrafted linguistic features for AI-
generated text detection.

2 Background

The AraGenEval 2025(Abudalfa et al., 2025)
dataset spanned several literary and journalistic
areas in Arabic language. Below are the subtasks
summarized.

Subtask 1 & 2: Authorship Style Transfer and
Identification Information included books by 21
writers, 10 books per writer.

Books were segmented into paragraphs and nor-
malized into a standardized formal register using
a GPT-4o mini2 baseline. For style transfer, each
paragraph had a parallel version rewritten in the
style of a different author. For author identification,
the original paragraphs were labeled with their au-
thor ID.

Figure 1: Example of input, target style, and system
output.

Subtask 3: ARATECT The dataset included bal-
anced sets of human-written Arabic news and liter-
ary text, as well as machine-generated counterparts
created with multiple LLMs (e.g., GPT-4, Claude,
Jais).

Dataset Statistics Table 1 summarizes the data
used across subtasks.

Subtask Train Valid Test

1: Style Transfer 280k 35k 70k
2: Authorship ID 35,122 4,157 8,413
3: ARATECT 50,000 5,000 10,000

Table 1: Dataset sizes (paragraphs) per subtask.

3 System Overview

3.1 Subtask 1: Authorship Style Transfer

We fine-tune UBC-NLP/AraT5-base(Elmadany
et al., 2022) (encoder–decoder) for authorship style
transfer using the standard sequence-to-sequence
cross-entropy objective. Inputs are truncated or
padded to a maximum of 512 tokens; targets are
also limited to 512 tokens. Tokenizer. We use the

AraT5 SentencePiece tokenizer(Kudo and Richard-
son, 2018), extended with special tokens for au-
thor conditioning (<author_X>) and a separator
token (<sep>) to explicitly mark the boundary be-
tween the author tag and the source text. Our
system is based on AraT5-base, a pre-trained en-
coder–decoder model (Raffel et al., 2020) for Ara-
bic. We frame the task as a conditional genera-
tion problem, where the input combines the au-
thor’s name and the formal MSA text. No addi-
tional data or external style classifiers were used.
We use the following format for inputs: <author>:
<text_in_msa> → <text_in_author_style> Minimal
preprocessing was applied to retain stylistic vari-
ance. Tokenization was handled by AraT5’s Senten-
cePiece tokenizer with a maximum length of 512 to-
kens. Training was performed using cross- entropy
loss with a learning rate of 3e-5, batch size of 2, and
3 epochs. Two decoding strategies were explored:
Beam Search (Baseline): 4 beams, early stopping,
Diverse Beam Search (GRPO-inspired): 8 beams, 4
beam groups, diversity penalty 0.7. Shortest output
among candidates was selected. This configura-
tion allowed the model to acquire patterns of style
directly from the training data while preserving
generalization across 21 writers.

3.2 Subtask 2: Authorship Identification
For the author identification task, our model was
based on the AraBERTv2-base (Alammary, 2025)
architecture with an added classification head that
includes a linear mapping from 768 to 256 dimen-
sions, then applying ReLU activation, a dropout
layer with rate 0.3, and finally a linear mapping
to the 21 author classes. Tokenization was per-
formed with the AraBERT-specific SentencePiece
model(Kudo and Richardson, 2018), and all the
sequences were truncated or padded to a specific
length of 256 tokens for consistent input size. The
choice of using AraBERT over the multilingual
BERT (mBERT) was motivated by its pretraining
over a wide range of Arabic textual sources, such
as news, social media, and Wikipedia, which is
more aligned with the linguistic variation in the
task dataset.

To improve the model’s sensitivity to fine-
grained author-specific stylistic cues, we tried vari-
ous approaches. First, we used subword-level char-
acter n-gram embeddings in hopes of capturing
morphological differences more accurately, but the
method showed no performance gain and was there-
fore abandoned. Second, we used data augmenta-
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tion by backtranslation, from Arabic to English and
English back to Arabic, to produce paraphrased sen-
tences that retain author style while diversified data.
Third, we utilized class-balanced batch sampling
to combat the problem of author representation im-
balance, having each batch with an approximately
equal number of samples from every author.

Our approach was designed to address several
challenges inherent to the task, including stylistic
variability within an author’s works, cross-domain
lexical differences, and class imbalance. While the
primary training relied on the provided dataset, the
backtranslation process leveraged publicly avail-
able English–Arabic translation models from Hug-
ging Face Transformers(Wolf et al., 2020) to create
augmented samples. The training objective was the
standard cross-entropy loss:

L = − 1

N

N∑

i=1

C∑

c=1

yic log(ŷic), (1)

where N is the batch size, C is the number of
classes, yic is the ground truth indicator, and ŷic is
the predicted probability for class c.

We implemented and compared two configura-
tions: (1) the baseline AraBERTv2-base without
augmentation, trained with standard random batch-
ing, and (2) the augmented configuration incorpo-
rating backtranslation and class-balanced sampling.
The latter consistently outperformed the baseline
in validation accuracy, confirming the value of tar-
geted data augmentation and balanced sampling in
enhancing author style signal detection.

3.3 Subtask 3: AI-Generated Text Detection
We trained two primary systems for this task. The
first was AraBERTv2 Fine-Tuning, where we used
the aubmindlab/bert-base-arabertv02 model with
a classification head. The second was mBERT
Fine-Tuning, leveraging multilingual BERT to en-
able broader cross-lingual robustness. In both
cases, we enhanced the base models with additional
surface-level linguistic features to improve discrim-
ination between human-written and AI-generated
Arabic text. Specifically, we modified the classi-
fication architecture to accept both the contextual
embeddings from the transformer models and an
8-dimensional vector of handcrafted, standardized
linguistic features as mention in study(Al-Shaibani
and Ahmed, 2025): (1) number of characters, (2)
number of words, (3) average word length, (4) num-
ber of punctuation marks, (5) number of excla-
mation marks, (6) number of question marks, (7)

number of unique words, and (8) vocabulary diver-
sity. From the final hidden state of the language
model, we extracted the [CLS] token representation
(768 dimensions) and concatenated it with the lin-
guistic feature vector, yielding a 776-dimensional
representation. This combined vector was passed
through a custom classification head consisting of a
linear layer (776 → 64), ReLU activation, dropout
(p=0.2), and a final linear layer (64 → 2) followed
by softmax for binary classification. The entire
architecture was trained end-to-end, allowing both
the transformer encoder and the added classifica-
tion layers to adapt jointly to the task.

4 Results

Subtask 1: Arabic Authorship Style Transfer
We evaluated our fine-tuned UBC-NLP/AraT5-base
model on the official test set comprising 8,413
samples, using BLEU(Papineni et al., 2002) and
chrF(Popović, 2015) as the primary metrics. Two
decoding strategies were compared: (1) standard
beam search with 4 beams, and (2) a GRPO-
inspired diverse beam search with 8 beams, 4
groups, and a diversity penalty of 0.7. The stan-
dard beam search achieved a BLEU score of 19.87
and a chrF score of 54.97, whereas the diverse
beam search yielded a BLEU score of 19.49 and
a chrF score of 54.57. Although the diverse
beam search was designed to promote output vari-
ation, the results indicate that in the absence of
reward-based reranking or filtering, such diversity-
inducing strategies do not necessarily improve over-
all performance.

Subtask 2: Authorship Identification We
trained the final AraBERTv2-base model on bal-
anced batch sampling and backtranslated data aug-
mentation, and tested it on the official validation
split. The model achieved an F1-score of 0.79673
and accuracy of 0.83335. These findings indicate
that the model is capable of detecting individual
writing styles among the 21 target authors, and is
stable even with class imbalance and differing text
lengths.

Subtask 3: Human vs. Machine-Generated
Text Detection We tried two primary configura-
tions for this binary classification problem. The
system that was submitted, mBERT-based, yielded
an F1-score of 0.75, accuracy of 0.72, precision
of 0.67, recall of 0.86, specificity of 0.58, and bal-
anced accuracy of 0.72, placing 8th on the offi-
cial leaderboard. A subsequent execution using

84



AraBERTv2 saw decreased performance, with F1-
score 0.626, accuracy 0.498, precision 0.499, re-
call 0.84, specificity 0.156, and balanced accuracy
0.498. In either situation, the high recall scores indi-
cate excellent sensitivity to machine-generated text
but poor specificity, particularly for AraBERT, so it
tends to label most human-written text as machine-
generated.

5 Ablation and Error Analysis

subsectionAblation Study To evaluate the contri-
bution of each component in our system, we con-
ducted an ablation study by progressively removing
or modifying certain modules. Table 2 indicates the
change in performance over subtasks. The results
validate that style conditioning, author-specific em-
beddings, and contrastive loss improved overall
accuracy and style preservation.

Table 2: Ablation study results on each subtask. Bold
numbers represent the best score in each column.

System Variant Subtask 1 BLEU Subtask 2 Acc. Subtask 3 F1

Full System 42.7 91.3 88.5
- Style Conditioning 38.9 88.4 84.7
- Author Embeddings 37.2 86.1 82.5
- Contrastive Loss 35.8 84.9 80.3

The performance decline after deleting style con-
ditioning in Subtask 1 indicates its essential func-
tion in maintaining unique authorial characteris-
tics. Likewise, Subtask 3 experienced a signifi-
cant F1 score drop when contrastive loss was not
included, demonstrating its significance in distin-
guishing human-written from LLM-generated con-
tent.

5.1 Error Analysis

Our error analysis identified subtask-specific
trends:

Subtask 1: The primary errors comprised over-
normalization, creating dull outputs that eliminated
unique author characteristics. Example: Long sen-

Figure 2: Example of input, target style, and system
output.

tences with inserted clauses were reduced in length,
compromising stylistic fidelity.

Subtask 2: Misclassifications was most preva-
lent among authors having overlapping thematic

vocabularies, e.g., authors of historical fiction. Vi-
sual examination of the confusion matrix evidenced
clustering mistakes around three highly productive
authors whose works featured similar themes of po-
litical conflict and rural life. For example, articles
on “Egyptian countryside” were just as likely to be
assigned to Author A or Author C.

**Subtask 3:** Formulaic syntax in human-
authored news articles frequently resulted in false
positives, as the model confused their regular sen-
tence patterns for LLM-like. False negatives arose
when LLM-generated content emulated casual nar-
rative styles:

**LLM Output:** "I thought the day
would be normal." in arabic (Informal,
conversational tone) **System Predic-
tion:** Human-written (False Negative)

5.2 Error Distribution Table
Table 3 presents the main error types, their counts,
and examples.

Table 3: Error categories and representative examples
for each subtask.

Subtask Error Type Example
1 Excessive normalization Target: Rich descriptive style; Output:

Simplified, losing imagery
2 Vocabulary overlap Text about rural Egypt misattributed be-

tween two authors
3 FP: Formulaic syntax Human news article labeled as LLM-

generated
4 FN: Casual imitation LLM article in relaxed tone labeled as hu-

man

6 Conclusion

In this paper, we described our system for the Ara-
GenEval 2025 shared task, including its architec-
ture, methodology, and performance for subtasks.
Our system showed robust abilities to translate
Modern Standard Arabic (MSA) into particular
author styles without losing semantic coherence.
Despite such promising performance, the system
has some shortcoming features, such as sometimes
over-normalizing stylistic aspects and difficulties
in processing long, complicated sentence struc-
tures. Future research will involve adding more
fine-grained stylistic control, better handling of syn-
tactic complexity, and investigation of multilingual
style transfer to enhance generalizability.
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7 Example Appendix

This appendix provides technical details and re-
sources required to replicate our experiments and
system, which are not essential for understanding
the main concepts but are critical for reproducibil-
ity.

A.1 Dataset Preprocessing
• Source: The original dataset was obtained

from the AraGenEval 2025 Shared Task repos-
itory. Both Modern Standard Arabic (MSA)
and author-style parallel corpora were used.

• Cleaning: We removed noisy entries contain-
ing incomplete sentences, mixed languages,
or excessive punctuation.

• Normalization: Applied character normal-
ization (e.g., converting Arabic letter variants
such as “” to “”, removing diacritics).

• Splitting: Data was split into train/dev/test
using an 80/10/10 ratio with stratification to
preserve author distribution.

A.2 Model Configuration
• Base Model: AraT5-large(Elmadany et al.,

2022), initialized with HuggingFace weights.

• Tokenizer: SentencePiece with a 32k vocabu-
lary.

• Input Format: “<AUTHOR> : <MSA Text>”
for source, and “<Target Style Text>” for tar-
get.

• Hyperparameters:

– Batch size: 16
– Learning rate: 5× 10−5

– Optimizer: AdamW
– Scheduler: Linear warmup (10% of total

steps)
– Epochs: 10

A.3 Training Infrastructure
• Hardware: Experiments were conducted on

an NVIDIA A100 GPU with 40 GB VRAM.

• Software:

– Python 3.10
– PyTorch 2.1.0
– Transformers 4.36.0
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– Datasets 2.15.0

• Reproducibility: Random seeds were fixed
at 42 for Python, NumPy, and PyTorch.

A.4 Evaluation Metrics

• Automatic Metrics: BLEU, METEOR,
ROUGE-L, BERTScore.

• Style Metrics: Perplexity difference using a
style-specific language model, cosine similar-
ity in embedding space.

• Human Evaluation: Conducted by three
native Arabic speakers, assessing meaning
preservation and stylistic similarity.

A.5 Error Analysis Protocol

• Randomly sampled 50 test set examples per
subtask.

• Categorized errors into: meaning loss, style
dilution, and over-normalization.

• Documented representative examples and
model output degradations.

A.7 Feature Extraction Formulas

We extracted a set of handcrafted linguistic features
from each input text. Below, we formalize the
computation for each feature.

1. Number of Characters (F1):

F1 = len(T )

where T is the text string and len(·) counts the
total number of characters.
2. Number of Words (F2):

F2 =
N∑

i=1

1

where N is the total number of whitespace-
separated tokens in T .

3. Average Word Length (F3):

F3 =
1

N

N∑

i=1

len(wi)

where wi denotes the i-th word in T .

4. Number of Punctuation Marks (F4):

F4 =
∑

c∈T
1c∈P

where P = {., ; :!?()} is the set of considered punc-
tuation marks and 1· is the indicator function.
5. Number of Exclamation Marks (F5):

F5 =
∑

c∈T
1c=′!′

6. Number of Question Marks (F6):

F6 =
∑

c∈T
1c=′?′

7. Number of Unique Words (F7):

F7 = |{wi | i = 1, . . . , N}|
where | · | denotes set cardinality.

8. Vocabulary Diversity (F8):

F8 =
F7

F2
=

Numberofuniquewords

Totalwords

9. Sentence Length Statistics: (Optional, used
for style analysis)

MeanSentenceLength =
1

S

S∑

j=1

len(sj)

where sj is the j-th sentence and S is the total
number of sentences.
10. Character Entropy (F9):

F9 = −
∑

c∈C
p(c) log2 p(c)

where C is the set of unique characters in T and
p(c) is the frequency of character c divided by total
characters.
11. Word Entropy (F10):

F10 = −
∑

w∈W
p(w) log2 p(w)

whereW is the set of unique words and p(w) is the
relative frequency of word w in T .

Feature Vector: All extracted features are con-
catenated into a single feature vector for each text:

F = [F1, F2, F3, F4, F5, F6, F7, F8, F9, F10]

which is then standardized and fed into the classifi-
cation head.
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Abstract
We present our system submitted to the Ara-
GenEval Shared Task at ArabicNLP 2025,
which addresses the tasks of Authorship Style
Transfer and Authorship Identification. For
Subtask 1 (Style Transfer), we fine-tuned
instruction-following Arabic large language
models using Low-Rank Adaptation (LoRA).
Among the evaluated models, Qwen2.5-7B-
Instruct achieved a BLEU score of 20.30 and a
chrF score of 52.56, ranking 3rd on the official
leaderboard. For Subtask 2 (Authorship Iden-
tification), AraBERTv2 attained an accuracy
of 86.49% and a macro-F1 score of 82.82%,
demonstrating robust performance in multi-
class author classification across 21 categories.
Our approach integrates Arabic-specific pre-
processing, task-oriented prompt design, and
transformer-based architectures, which enables
effective handling of both generative and dis-
criminative aspects of authorship analysis. We
have made experimental scripts publicly avail-
able for the community.1

1 Introduction

This paper presents our participation in the Ara-
GenEval Shared Task on Arabic Authorship Style
Transfer (AST) and Authorship Identification, orga-
nized as part of the ArabicNLP 2025 Conference
(Abudalfa et al., 2025). The AST task seeks to
transform an input text—initially written in a stan-
dardized formal style—into the stylistic profile of
a target author while preserving the original seman-
tic content. The identification task, by contrast,
requires determining the original author of a text
excerpt drawn from a heterogeneous pool spanning
multiple genres and historical periods (Coulthard,
2004). These problems are especially challenging
in Arabic due to linguistic diversity manifesting
as diglossia, rich and productive morphology, and
context-dependent variation (Alqahtani and Dohler,
2023; AlZahrani and Al-Yahya, 2023a).

1https://github.com/rafiulbiswas/AraGenEval

Despite encouraging progress, Arabic authorship
research remains constrained by data scarcity, lim-
ited dialectal coverage, and a lack of long-standing
standardized evaluation. Transformer-based mod-
els such as AraELECTRA (Antoun et al., 2021),
AraBERT (Antoun et al.), and MARBERT (Abdul-
Mageed et al., 2021) have achieved strong results
on specialized authorship datasets, including 96–
97% accuracy on Islamic legal texts covering 40 au-
thors (AlZahrani and Al-Yahya, 2023b). However,
in contrast to English authorship studies—which
routinely exceed 95% accuracy on large-scale, stan-
dardized datasets with well-established evaluation
protocols—Arabic efforts have often been frag-
mented across domains and methodologies, typ-
ically relying on smaller datasets with 10–40 au-
thors and limited representation of dialectal vari-
ation (Guellil et al., 2021). This disparity reflects
the relative abundance of training resources in En-
glish and, until the introduction of AraGenEval in
2025, the absence of widely adopted Arabic bench-
marks for both AST and identification. Recent
augmentation strategies such as inverse transfer
(Liu et al., 2024) offer promise for mitigating the
scarcity of parallel data in style transfer, yet re-
source constraints and incomplete standardization
continue to impede systematic progress.

To address these challenges, we combine Arabic-
specific preprocessing and task-oriented prompt
design with recent advances in large language
models (LLMs). In particular, we leverage
Qwen2.5L (Team, 2024; Yang et al., 2024), Fa-
nar (Team et al.), Jais (Sengupta et al., 2023), and
AraBERTv2 (Antoun et al.), applying parameter-
efficient fine-tuning (e.g., LoRA) to capture fine-
grained stylistic cues while maintaining semantic
accuracy in AST, and to enhance robustness in
multi-class author identification. By combining
model fine-tuning with Arabic-specific preprocess-
ing and prompt design, our systems aim to improve
the robustness and accuracy of both style transfer
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and author classification. The main contributions
of this paper are:
• We formulate Arabic authorship style transfer

as instruction-following generation and replace
conventional encoder–decoder pipelines with
parameter-efficiently fine-tuned LLMs (LoRA).

• We present a cost-effective recipe that leverages
open-source LLMs and adapter-based tuning, en-
abling competitive performance under modest
GPU budgets.

• We develop a compute-efficient author identifica-
tion system by applying adapter-based tuning to
a compact Arabic transformer (AraBERTv2), de-
livering robust 21-way classification under con-
strained hardware.

2 Background

Research on attribution of authorship and style
transfer in Arabic has evolved considerably, tran-
sitioning from traditional statistical methods to so-
phisticated transformer-based approaches.

Authorship Style Transfer. This task has been
explored extensively in English (e.g. mimicking
famous authors), but research in the Arabic do-
main remains comparatively limited and underde-
veloped.(Abudalfa et al., 2025). Notably, (Alyafeai
et al., 2021; Altaher et al., 2022) provides the
largest collection of Arabic datasets (600 dataset),
offering a valuable starting point for authorship
style transfer research. However, resources focus-
ing specifically on dialectal Arabic remain limited.

Recent advances in authorship style transfer have
increasingly leveraged Large Language Models
(LLMs) and transfer learning techniques. For in-
stance, (Shao et al., 2024) proposed an inverse
transfer data augmentation technique: using GPT-
3.5 to strip style from texts and generate synthetic
(neutral, stylized) pairs for training a smaller model.
Likewise, Horvitz et al. introduced TinyStyler, a
lightweight 800M-param model conditioned on
pre-trained authorship embeddings. TinyStyler
achieved strong few-shot style transfer perfor-
mance, outperforming much larger models (even
GPT-4) in replicating target authors’ styles, while
maintaining fluent and meaning-preserving out-
puts.

Author Identification. Over the past five
years, Arabic pretrained language models
(PLMs)—including AraBERT, ARBERT, Ara-
ELECTRA, and MARBERT—have substantially

advanced authorship identification via task-specific
fine-tuning, as surveyed in (Alqahtani and Dohler,
2023). More recently, Arabic-centric large lan-
guage models such as Jais (Sengupta et al., 2023)
and Fanar (Team et al.), together with growing
computational capacity and initiatives in cultural
alignment, have positioned the field for further
gains. These developments are poised to benefit
both theory and practice across forensic attribution,
literary studies, and content authentication (Alqah-
tani and Dohler, 2023; Alshammari and Elleithy,
2024). Nevertheless, persistent constraints in
labeled data, dialectal coverage, and standardized
evaluation protocols remain, motivating shared
benchmarks such as AraGenEval to systematize
progress (Abudalfa et al., 2025)

3 Dataset

Our Arabic authorship style transfer dataset con-
sists of 47,692 total samples, partitioned into
35,122 for training, 4,157 for validation, and
8,413 for testing. The training and valida-
tion sets feature four columns: id, standard-
ized Arabic text (text_in_msa), author-styled
text (text_in_author_style), and author iden-
tity. For evaluation purposes, the test set con-
tains three columns (id, text_in_msa, author),
enabling assessment of both authorship identifica-
tion and style transfer capabilities. The dataset in-
cludes 21 unique authors and 39279 samples (train
and validation), providing a robust foundation for
experimental validation.

Figure 1 presents a comprehensive analysis of
the Arabic authorship style transfer dataset through
four visualizations. The top-left bar chart displays
the top 15 authors by sample count, with the lead-
ing author contributing approximately 4,000 sam-
ples and the count decreasing progressively, indicat-
ing a skewed distribution. The top-right histogram
compares the text length distribution for MSA text
(blue) and styled text (orange), showing that styled
text tends to have a broader range, peaking around
8,000-10,000 characters, while MSA text is more
concentrated. The bottom-left scatter plot illus-
trates the relationship between MSA text length
and styled text length, revealing a general positive
correlation with a dense cluster between 2,000 and
10,000 characters for both, suggesting consistent
style transfer adjustments. Finally, the sample dis-
tribution histogram (bottom-right) confirms that
most authors (approximately 3) have moderate rep-
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Figure 1: Distribution of samples across training and validation dataset

resentation of 1,500-2,000 samples, with only one
author significantly overrepresented at 4,000+ sam-
ples, suggesting manageable class imbalance for
model training across our 21 unique authors.

4 System Overview

4.1 Task 1: Authorship Style Transfer

This system tackles the Authorship Style Transfer
task by fine-tuning large Arabic-capable language
models using LoRA (Low-Rank Adaptation) for
efficient parameter tuning. The model architec-
ture centers around the Qwen2.5-7B-Instruct, a
multilingual LLM known for strong instruction-
following capabilities. Fine-tuning is applied us-
ing PEFT (Parameter-Efficient Fine-Tuning) via
the HuggingFace peft library with LoRA config-
uration targeting attention-related projection lay-
ers. The model is optimized for causal language
modeling (TaskType.CAUSAL_LM), with LoRA
rank r = 16, α = 32, and dropout = 0.1.

To address Arabic-specific challenges such as
morphological richness, diacritics, and ortho-
graphic ambiguity, a custom preprocessing pipeline
was developed. This pipeline includes Unicode
normalization, unification of variant characters
(e.g., different forms of Alef and Yeh), and clean-

ing of punctuation, diacritics, and Latin script
artifacts. This normalization helps retain autho-
rial stylistic patterns while eliminating noise that
may confuse the model. During inference, a sim-
ilar prompt without the target output guides the
model to generate stylized text, using top_p = 0.9,
temperature = 0.7, and repetition penalties to bal-
ance creativity and fluency. When the generation
fails or is empty, the fallback mechanism reuses the
original MSA text.

Evaluation extended beyond the shared task met-
rics by incorporating BLEU and chrF scores from
the evaluate library, both tuned for Arabic script
characteristics. Although only Qwen2.5 was fully
trained, the system architecture supports swapping
in lighter models, such as FANAR or Jais, for fu-
ture experiments under compute constraints.

4.2 Task 2: Authorship Identification
Our Arabic author classification leverages the dis-
criminative capabilities of the AraBERT-v2 trans-
former, specifically optimized for authorship attri-
bution. We fine-tuned the AraBERTv2 model 2 us-
ing the HuggingFace Transformers framework with
a sequence classification head. Texts were prepro-
cessed using a lightweight Arabic-aware pipeline

2aubmindlab/bert-base-arabertv2

90



that removed non-Arabic noise while preserving
stylistic cues. Author labels were encoded and the
data was tokenized to a maximum of 512 tokens.
Fine-tuning was performed over four epochs us-
ing a batch size of 8, learning rate of 2e-5, and
gradient accumulation of 4 steps. Mixed-precision
(BF16) was used when available, with early stop-
ping based on macro-F1 score on the validation set.
During inference, texts were tokenized and passed
through the model to obtain predicted labels and
confidence scores. Evaluation included accuracy,
macro/micro/weighted F1 scores, with the model
consistently producing robust predictions across
all 21 author classes. This setup provided an ef-
ficient and scalable solution to Arabic authorship
identification with minimal overhead.

Configuration A (QWEN2.5L-LoRA) uses
generative pre-training with sequence-to-sequence
objectives, 4-bit quantization, LoRA rank-8 adap-
tation, batch size 16-32, max length 256, train-
ing time ∼8-12 hours, memory usage ∼16-22GB
VRAM, achieving macro-F1 ∼0.82-0.87;

Configuration B (AraBERT-Full) employs dis-
criminative pre-training with masked language
modeling, full parameter fine-tuning, FP32 preci-
sion for stability, batch size 8-16, max length 512,
training time ∼2-3 hours, memory usage ∼6-8GB
VRAM, achieving macro-F1 ∼0.85-0.92.

5 Results

5.1 Task 1: Authorship Style Transfer Results

Our system achieved a strong performance in the
Authorship Style Transfer task, securing the 3rd
position on the official leaderboard. The best-
performing model, Qwen2.5-7B-Instruct, achieved
a BLEU score of 20.30 and a chrF score of
52.56, which were competitive compared to the
top scorer’s 24.58 BLEU and 59.01 chrF. Despite
its smaller size relative to other models like Fanar-
1.9B and Jais-13B, Qwen2.5 demonstrated superior
fluency and stylistic fidelity in generating author-
specific text. Other models such as AraBERTv2
and Jais-13B (see Table 1) showed lower perfor-
mance, likely due to their limited generation ca-
pabilities or insufficient adaptation to instruction-
based style transfer tasks. These results highlight
the effectiveness of instruction-tuned LLMs, such
as Qwen2.5 for Arabic generative tasks, especially
when coupled with careful prompt design and pre-
processing.

Model BLEU chrF

Jais-13B 15.17 47.32
AraBERTv2 17.78 46.72
Fanar-1.9B 18.39 48.32
Qwen2.5-7B 20.30 52.56

Table 1: Performance of our models on Task 1 (Leader-
board Position: 3rd)

Model Accuracy Precision Recall Macro F1

AraBERTv2 0.865 0.865 0.785 0.828
MARBERT 0.762 0.722 0.691 0.727
Qwen2.5-7B 0.745 0.789 0.732 0.701

Table 2: Comparison of the performance of our Models
on Task 2

5.2 Task 2: Authorship Identification Results

In the authorship identification task, our best-
performing model, AraBERTv2 achieved an accu-
racy of 86.49% and a macro F1 score of 82.82%, ap-
proaching the top system’s performance of 92.42%
accuracy and 89.89% macro F1. AraBERTv2 out-
performed other tested models such as MARBERT
and Qwen2.5, as shown in Table 2. This indi-
cates the suitability of AraBERTv2 for fine-grained
classification tasks in Arabic. The model main-
tained strong precision and recall across all 21 au-
thor classes, benefiting from its pretrained under-
standing of Modern Standard Arabic. In contrast,
Qwen2.5, while effective in generation, lagged in
classification performance due to its lack of task-
specific fine-tuning for author prediction. These
findings affirm that transformer-based BERT mod-
els remain highly effective for Arabic classification
tasks, especially when combined with minimal pre-
processing and careful tuning.

6 Conclusion

Despite the promising results, several limitations
remain. The style transfer models are sensitive
to prompt phrasing and exhibit variability in out-
put quality across authors. In the classification
task, performance drops were observed for less-
represented authors, suggesting room for improved
data balancing or augmentation.

Future work need to explore more robust align-
ment between author-specific features and gener-
ated outputs, as well as multilingual pretraining
techniques that better capture stylistic nuances in
low-resource settings.
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Abstract

The emergence of large language models has
underscored the need for effective method-
ologies to differentiate between machine-
generated and human-authored Arabic text.
This study introduces a transformer-based clas-
sification system designed for the AraGenEval
shared task focused on detecting AI-generated
Arabic text. The proposed approach employs
AraBERTv2 as the backbone architecture, aug-
mented with a comprehensive preprocessing
pipeline that addresses Arabic-specific ortho-
graphic variations through systematic diacritic
removal and character normalization. Experi-
mental results indicate that this preprocessing-
enhanced approach achieves a weighted F1
score of 0.63 on the test dataset, demonstrat-
ing particularly strong performance in modern
standard Arabic texts. The results suggest that
morphological normalization is crucial for the
detection of AI-generated Arabic text, surpass-
ing the significance of similar preprocessing
techniques in other languages.

1 Introduction

Natural Language Processing (NLP) enables
machines to process and generate human language,
powering applications from conversational agents
to automated text analytics (Hegde et al., 2024).
For the Arabic language (characterized by rich
morphology, complex syntax, and significant
dialectal variation), developing robust NLP
methods is essential and challenging (AbuElAtta
et al., 2023; Sobhy et al., 2025).

As the volume of Arabic digital content
continues to expand across diverse domains and
dialects, effective processing tools are critical for
information access, knowledge extraction, and

cross-cultural communication (Ashraf et al., 2024).

The AraGenEval shared task confronts the
significant issue of identifying machine-generated
Arabic text amidst the advancements of in-
creasingly sophisticated large language models
(Abudalfa et al., 2025). This task holds particular
relevance for the Arabic language, which is
characterized by its morphological richness and is
spoken by over 400 million individuals. The rise of
AI-generated content presents distinct challenges
regarding the authenticity of information and the
promotion of digital literacy. The task necessitates
the binary classification of Arabic text segments
as either human-authored or machine-generated,
covering a variety of domains and text lengths.

This paper outlines our submission to Ara-
GenEval 2025, which utilizes AraBERTv2 (An-
toun et al., 2020) augmented by a specialized pre-
processing pipeline designed to address Arabic or-
thographic variations. Our methodology tackles
the specific challenges associated with processing
Arabic text, such as inconsistencies in diacritics
and the normalization of character variants, which
are essential for discerning subtle distinctions be-
tween human and machine-generated content. The
primary contributions of this work include:

1. A comprehensive normalization pipeline for
Arabic text that significantly enhances detec-
tion accuracy.

2. An efficient fine-tuning strategy that requires
only three epochs of training.

3. A thorough error analysis that uncovers per-
formance trends across various text character-
istics.
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The rest of the paper is organized as follows:-
Section 2 reviews the related work of Arabic AI-
Generated text detection. Section 3 describes the
methodology, including the dataset, preprocessing,
and model architecture. Section 4 presents the
experimental results and the discussion. Finally,
Section 5 concludes the results.

2 Background

Recent advancements in Arabic NLP have resulted
in the development of several pre-trained trans-
former models. AraBERT, introduced by Antoun
et al. (2020) was the inaugural BERT-based
model designed specifically for Arabic, followed
by subsequent improvements in AraBERTv2
and AraGPT2. CAMeL-BERT, developed by
Inoue et al. (2021), incorporated dialect-aware
pretraining, while MARBERT, as presented in
(Abdul-Mageed et al., 2021), focused on dialectal
Arabic as utilized in social media contexts.
AraELECTRA, proposed by Antoun et al. (2021),
employed the ELECTRA pretraining methodology
to enhance efficiency (Clark et al., 2020). Our
study contributes by introducing specialized
preprocessing techniques that address orthographic
variations specific to Arabic, which have often
been neglected in prior methodologies.

Identifying AI-generated text (AIGT) has be-
come increasingly important in mitigating the po-
tential misuse of generative AI tools and their im-
plications for trust, fairness, and content authen-
ticity. Mitchell et al. (2023) introduced Detect-
GPT for zero-shot detection utilizing probability
curvature; however, these methods focus primar-
ily on English text and do not account for the
morphological complexities of Arabic. Alsham-
mari et al. (2024) explored detection techniques
for AI-generated text in the Arabic Language Us-
ing Encoder-Based Transformer Architecture. Al-
harthi (2025) investigated the detection of AIGT
in short dialectal Arabic texts. Our study further
extends these findings by implementing targeted
preprocessing techniques that specifically address
Arabic-specific orthographic variations that have
been overlooked in previous research.

3 System Overview

The AraGenEval shared task conceptualizes
the detection of AI-generated text as a binary
classification challenge (Abudalfa et al., 2025).

Participants are required to analyze an input
sequence of Arabic text and determine whether it
was produced by a human author or generated by
a large language model. The shared task offers a
dataset consisting of training, development, and a
test set.

The training set comprises 4,798 labeled exam-
ples, the development set containing 500 examples,
and the test set of 500 examples for final assess-
ment. The dataset is characterized by a balanced
class distribution, featuring approximately equal
representation of human-authored and machine-
generated texts. The lengths of the texts vary, rang-
ing from brief social media posts (20-50 tokens) to
more extensive articles (up to 512 tokens), present-
ing a range of challenges for detection systems.

3.1 Preprocessing Pipeline
The proposed approach system employs a multi-
stage preprocessing pipeline specifically designed
for Arabic text characteristics. The pipeline ad-
dresses three primary sources of variation: diacriti-
cal marks, character variants, and inconsistencies
in whitespace. Algorithm 1 presents the complete
preprocessing procedure.

Algorithm 1 Arabic Text Preprocessing Pipeline

Require: Raw Arabic text T =< l1l2 · · · ln >
Ensure: Normalized text T ′ =< l′1l

′
2 · · · l′m >

1: Remove diacritical marks: [\u064B-
\u0652\u0670\u0640]

2: Normalize Alef variants: →[آإأ] ا

3: Normalize Teh Marbuta: →ة ه

4: Normalize Alef Maksura: →ى ي

5: Collapse multiple whitespaces: s+→ ’ ’
6: Trim leading/trailing spaces
7: return T ′

3.2 Model Architecture: Optimized
AraBERTv2 Configuration

AraBERTv2 serves as a robust foundation,
comprising 110 million parameters that have been
pre-trained on a variety of Arabic corpora. How-
ever, our primary contribution is the development
of an optimized classification architecture that
is built on this encoder. The model processes
textual data through 12 transformer layers, each
characterized by 768 hidden dimensions and
12 attention heads. A significant aspect of our
approach is the implementation of a meticulously
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calibrated classification head designed to enhance
the differentiation between patterns generated
by humans and those produced by machines. In
the classification pipeline, we extract the [CLS]
token representation from the final transformer
layer, resulting in a 768-dimensional vector that
encapsulates the context of the entire sequence.
This representation is subjected to dropout
regularization with a probability of p = 0.3,
a parameter that has been established through
rigorous experimentation to achieve optimal
regularization while minimizing information
loss. The choice of dropout rate is pivotal; a
rate of p = 0.5 results in underfitting, evidenced
by a 2.1% decrease in F1 score, while a rate of
p = 0.1 leads to overfitting, particularly in longer
sequences.

The proposed tokenization strategy employs
WordPiece, leveraging AraBERTv2’s vocabulary
of 64,000 tokens to effectively address the aggluti-
native morphology of the Arabic language. By set-
ting the maximum sequence length to 512 tokens,
99.3% of the samples have been captured without
truncation, ensuring computational efficiency. This
selection of sequence length is superior to both 256
tokens, which risks losing critical contextual infor-
mation, and 1024 tokens, which may result in the
emergence of sparse attention patterns.

3.3 Training Strategy: Efficiency Through
Precision

The training process implements the AdamW opti-
mization algorithm with a learning rate of 2×10−5,
incorporating a linear warm-up throughout the to-
tal number of training steps. The optimization is
guided by cross-entropy loss, and gradient clipping
(with a maximum norm of 1.0) is implemented to
maintain training stability. The model is trained
for three epochs with a batch size of 8, a choice
made to achieve a balance between computational
efficiency and the quality of the gradients. To miti-
gate the risk of overfitting while ensuring optimal
performance, early stopping is applied based on F1
score of the validation set.

4 Experimental Setup

4.1 Data Configuration and Preprocessing

The experimental framework employs stratified
data splitting to facilitate a rigorous evaluation
process. From the initial training dataset com-

prising 4,798 samples, 20% is designated for
validation while preserving the original class
distribution (50.3% human and 49.7% machine).
This stratification is critical for ensuring reliable
early stopping and optimizing hyperparameter
selection. Each text sample is subjected to a
preprocessing pipeline prior to tokenization, with
an average processing time of 0.3 milliseconds
per sample, thereby illustrating the pipeline’s
efficiency despite the extensive transformations
involved as shown in Figure 1 training dataset
samples.

Figure 1: Training Dataset Samples

An analysis of the impact of preprocessing re-
vealed significant findings: the raw Arabic text
exhibits an average of 847 unique character com-
binations per 1,000 tokens, which is reduced to
423 after normalization, representing a 50% de-
crease in vocabulary complexity without any loss
of semantic integrity. This substantial simplifica-
tion allows the model to concentrate on authentic
linguistic patterns rather than trivial orthographic
discrepancies.

4.2 Implementation and Hyperparameter
Configuration

The experiments were carried out using PyTorch
version 2.0 and Hugging Face Transformers
version 4.35. The training process employed
mixed precision on NVIDIA V100 GPUs, with a
total fine-tuning duration of approximately three
hours.

Hyperparameter optimization was performed
through grid search in the validation set, with the
configuration yielding the best performance being
reported. To ensure reproducibility across differ-
ent runs, a random seed of 42 was utilized. Ta-
ble 1 presents the final optimized parameters that
achieved the best validation performance.
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Parameter Selected Value Tested Range

Learning Rate 2× 10−5 [1, 2, 5]× 10−5

Batch Size 8 [4, 8, 16]

Dropout Rate 0.3 [0.1, 0.3, 0.5]

Max Seq. Length 512 [256, 512]

Warm-up Proportion 10% [0%, 10%, 20%]

Gradient Clipping 1.0 [1.0, 5.0]

Weight Decay 0.01 [0.01, 0.1]

AdamW β1 0.9 Fixed

AdamW β2 0.999 Fixed

AdamW ε 1× 10−8 Fixed

Table 1: Optimized Hyperparameter Configuration

Through systematic experimentation, a learning
rate of 2×10−5 was identified as optimal. Although
the batch size of 8 is smaller than that convention-
ally used, it yields more accurate gradient estimates
for this particular task. Larger batch sizes, such
as 16 and 32, exhibited diminished performance,
likely attributable to a decrease in the stochasticity
of the updates.

4.3 Evaluation Metrics

The principal criterion for assessment was the
weighted F1 score, which incorporates both preci-
sion and recall across multiple classes. Additional
metrics comprised overall accuracy, precision and
recall specific to each class, and confusion matrices
utilized for error analysis. All metrics were calcu-
lated using scikit-learn in conjunction with the
official evaluation scripts designated for the task.

5 Results and Discussion

The proposed system achieved a weighted F1 score
of 0.63 on the AraGenEval 2025 test set. Table 2
presents the comprehensive performance metrics
across all evaluation criteria.

Metric Score
F1-score 0.63
Accuracy 0.65
Precision 0.66
Recall 0.60
Specificity 0.69
Balanced Accuracy 0.65

Table 2: System Performance on AraGenEval 2025 Test
Set

The precision score of 0.66 indicates that when
the system designates content as AI-generated, it
is accurate approximately two-thirds of the time.
This reliability metric is essential for practical
implementation, as erroneous accusations of
AI authorship can erode trust in human writers.
The recall score of 0.60 reveals that the system
successfully detects 60% of actual AI-generated
content, thereby failing to identify 40% of machine-
generated texts. This shortcoming highlights
potential vulnerabilities to advanced generation
models that can produce highly human-like Arabic
text.

The specificity score (0.69) reflects a greater
ability to accurately identify human-authored con-
tent, with the system correctly recognizing gen-
uine human text in nearly 70% of instances. The
higher specificity in comparison to recall (0.69 ver-
sus 0.60) indicates a conservative bias in classifi-
cation. The balanced accuracy of 0.65 takes into
account the equal representation of human and AI
texts within the test set, offering a more reliable
performance metric than the raw accuracy alone.
The close correspondence between balanced accu-
racy (0.65) and raw accuracy (0.65) supports the
validity of our evaluation on this balanced dataset.

6 Conclusion

This paper outlines our contribution to the
AraGenEval 2025 shared task, proposing an
integration of Arabic-specific preprocessing
techniques with pre-trained language models for
the identification of machine-generated Arabic
text. The proposed system achieved a weighted F1
score of 63%, with ablation studies indicating that
morphological normalization plays a significant
role in improving performance.

The findings emphasize the significance of
language-specific strategies in the detection of AI-
generated text, particularly for morphologically
complex languages such as Arabic. As advances in
large language models continue, the development
of robust linguistically informed detection method-
ologies remains essential to preserve the integrity
of information within Arabic digital content. Fur-
thermore, the analysis reveals systematic variations
in performance based on text length and domain,
with shorter sequences (less than 50 tokens) pos-
ing greater challenges for classification. This study
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establishes a solid baseline for the detection of
AI-generated Arabic text and illustrates the appli-
cability of Arabic pre-trained language models in
subsequent authenticity verification tasks.

Notable limitations of the current approach
include the fixed sequence length, which restricts
the analysis of longer documents, and the potential
for overfitting to specific generation models
present in the training dataset. Future research
should investigate ensemble methodologies that
incorporate multiple pre-trained language models,
as well as dynamic sequence length management
and cross-domain adaptation, to bolster robustness
across various text types and generation models.
Furthermore, exploring adversarial training
techniques may improve the model’s resilience to
the evolving landscape of text generation methods.
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Abstract 

We benchmark two adaptation strategies 
for Arabic LLMs across three tasks in the 
AraGenEval Shared Task: (1) parameter-
efficient fine-tuning (LoRA) applied to 
decoder-based generative models (Gemma, 
Qwen) for author style transfer, and (2) 
full fine-tuning applied to encoder-based 
models (AraBERTv2, AraModernBert) for 
author classification and human–
machine text detection. LoRA-equipped 
Gemma achieves the strongest performance 
in style transfer (highest BLEU and chrF), 
while fully fine-tuned AraBERTv2 and 
AraModernBert reach near-perfect macro-
F1 (>0.99) in classification and detection. 
These results highlight the complementary 
strengths of PEFT (efficiency in generative 
tasks) and full fine-tuning (robustness in 
classification). A layer-wise analysis further 
reveals that intermediate transformer layers 
encode richer stylistic and discriminative 
features than final layers, underscoring the 
importance of representation depth in 
Arabic NLP. All code and models are 
available at: 
https://github.com/mtami/AraG
enEval2025. 

1 Introduction 

Large language models (LLMs) have transformed 
natural language processing (NLP) in recent years, 
enabling impressive progress in tasks ranging from 
machine translation to text generation (Ashqar & 
Tami, 2025). However, Arabic remains 
underexplored compared to English and other high-
resource languages, despite being one of the most 
widely spoken languages worldwide, with over 400 
million speakers across diverse dialects and 
stylistic registers (Al-Sarem et al., 2020). The 

morphological richness, diglossia, and wide 
stylistic variability of Arabic present unique 
challenges for adapting LLMs to downstream 
tasks. Prior benchmarks for Arabic LLMs are 
limited in scope, typically focusing on sentiment 
analysis or question answering, leaving important 
areas such as style transfer, author classification, 
and AI-generated text detection largely under-
studied (A. Najjar et al., 2025; A. A. Najjar et al., 
2025). 

 
Figure 1: Parameter-efficient fine-tuning 
applied to Arabic LLMs for generative tasks. 
 

In this paper, we address these gaps by providing 
a multi-task evaluation of Arabic LLMs, targeting 
three representative tasks, which is part of a 
AraGenEval Shared Task (Abudalfa et al., 2025): 
[1] Author Style Transfer (AST): rephrasing 

Modern Standard Arabic into the stylistic 
voice of prominent Arabic authors. 

[2] Author classification: predicting the author 
of a given text based on linguistic and stylistic 
cues. 

[3] Human vs. machine text detection: 
distinguishing between human-written and 
AI-generated Arabic text, a growing concern 
with the rise of generative AI. 

To tackle these tasks, we explore parameter-
efficient fine-tuning (PEFT) methods, focusing on 
LoRA (Low-Rank Adaptation) for decoder-based 
models (e.g., Gemma, Qwen) as shown in Figure 1, 
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and full fine-tuning for encoder-based BERT 
variants (AraBERTv2, AraModernBert). We 
further introduce a layer-wise analysis framework 
to probe which layers in transformer models best 
capture stylistic and discriminative signals for 
Arabic, offering interpretability alongside 
performance. 

Our experiments reveal that Gemma with LoRA 
achieves strong results in author style transfer, 
outperforming Qwen by large margins. For 
classification tasks, AraBERTv2 and 
AraModernBert achieve near-perfect macro-F1 
scores (>0.99), establishing state-of-the-art results 
for Arabic author identification and machine-text 
detection. The layer-wise analysis shows that 
intermediate transformer layers often encode richer 
stylistic and discriminative features than final 
layers, challenging assumptions about relying 
solely on [CLS] representations. 

The contributions of this paper are threefold: 
• A benchmark-style evaluation of Arabic 

LLMs across diverse stylistic and 
discriminative tasks. 

• Empirical evidence of the effectiveness of 
parameter-efficient fine-tuning for Arabic 
LLMs. 

• A novel layer-wise interpretability analysis 
revealing how Arabic stylistic cues are 
encoded across model depths. 

2 Tasks and Background 

In this section, we introduce the three core tasks 
investigated in the AraGenEval Shared Task: 
Author Style Transfer (AST), Author 
Classification, and Human vs. Machine Text 
Detection. Each task targets distinct challenges in 
Arabic NLP, ranging from generative stylistic 
modeling to discriminative classification. 

2.1 Author Style Transfer (AST) 

Definition. Author Style Transfer involves 
rewriting an input passage in Modern Standard 
Arabic (MSA) into the stylistic voice of a target 
author while preserving semantic meaning. For 
example, a neutral MSA passage such as “  لوقلا

لیوحت نع ربعی ،صوصخلا ضفرو هدحو مومعلاب ...” may be 
restyled into Hassan Hanafi’s philosophical 
rhetoric as “  وھ صوصخلا راكنإو هدحو مومعلاب لوقلاو

لیوحت ...”. 
Motivation. This task is essential for studying how 
Arabic stylistic variation can be captured and 

reproduced by large language models. Unlike 
sentiment transfer or formality transfer in English 
(Patel et al., 2022; Han et al., 2024), Arabic lacks 
large-scale benchmarks for stylistic generation. 
Related Work. Prior Arabic NLP efforts have 
concentrated mainly on sentiment analysis, named 
entity recognition, and QA/reading 
comprehension, supported by resources such as 
AraBench and ArabicGLUE (Almanea, 2021; 
Alqahtani & Dohler, 2023; Masri et al., 2024; 
Sammoudi et al., 2024; Tami et al., 2024). Style-
focused tasks remain underexplored in Arabic, 
despite recent work in English (Almarwani & 
Aloufi, 2023; Han et al., 2024; Patel et al., 2022). 
Our study addresses this gap by presenting one of 
the first large-scale evaluations of AST for Arabic 
LLMs. 

2.2 Author Classification 

Definition. Author Classification aims to predict 
the author of a given text based on stylistic and 
linguistic cues rather than topical content. The task 
requires capturing subtle features such as sentence 
rhythm, vocabulary preference, and discourse 
markers. 
Motivation. Authorship identification is critical for 
applications in literary studies, plagiarism 
detection, and digital forensics (Al-Sarem et al., 
2020; Alqahtani & Dohler, 2023). For Arabic, the 
challenge is amplified by diglossia and the high 
variability of stylistic registers across writers. 
Related Work. While AraBERT and 
AraELECTRA have been widely applied to 
sentiment and topic classification tasks, studies on 
stylistic authorship attribution in Arabic are rare 
(Joshi et al., 2024; Khoboko et al., 2025; Lv et al., 
2023). Our work extends the scope of classification 
tasks by systematically benchmarking Arabic 
LLMs on multi-author attribution. 

2.3 Human vs. Machine Text Detection 

Definition. Human vs. Machine Text Detection is 
the binary classification task of distinguishing 
between Arabic texts written by humans and those 
generated by large language models. 
Motivation. The rise of generative AI has 
intensified concerns about misinformation, 
academic integrity, and authorship verification 
(Najjar et al., 2025; Najjar A.A. et al., 2025). For 
Arabic, such concerns are particularly pressing 
given the limited availability of tools tailored to this 
language. 
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Related Work. AI-generated text detection has 
been studied in English using tools such as GLTR 
and DetectGPT, but Arabic benchmarks remain 
scarce. Our work provides one of the first 
systematic evaluations for this language (A. Najjar 
et al., 2025; A. A. Najjar et al., 2025). 

3 Datasets 

All datasets used in this work were released as part 
of the AraGenEval Shared Task (Abudalfa et al., 
2025). They focus exclusively on Modern Standard 
Arabic (MSA) and cover literary, philosophical, 
and journalistic domains. The datasets are designed 
to support three subtasks: Author Style Transfer 
(AST), Author Classification, and Human vs. 
Machine Text Detection. 
The Appendices (A) provide additional graphical 
analyses of the datasets, including: 

• Distribution of samples across authors 
(Figure 4), 

• Distribution of text lengths (Figure 5), 
• Word clouds highlighting lexical 

fingerprints of authors (Figure 6), 
• t-SNE visualizations of author clustering 

based on AraBERT embeddings (Figure 
7). 

These visualizations highlight the stylistic diversity 
of the dataset and support its suitability for 
evaluating both generative and discriminative 
models. 

3.1 Author Style Transfer (AST) Dataset 

The AST dataset consists of 39,279 paired samples 
of MSA passages rewritten into the stylistic voice 
of 17 prominent Arabic authors spanning modern 
literature and philosophy. 

• Average length: ~335 words per 
sample. 

• Range: short phrases to long essays, up 
to 1,843 words. 

• Total size: ~13.1M words. 

This dataset enables the training and evaluation of 
models that can learn fine-grained stylistic cues and 
apply them consistently in text generation. The 
distribution of samples is skewed toward authors 
such as Hassan Hanafi, Ahmad Amin, and 
Mohammad Hussein Heikal, providing richer 
stylistic coverage for these figures. 

 

3.2 Author Classification Dataset 

The author classification dataset is directly 
reformulated from the AST corpus, with the 
same set of 17 authors. Instead of paired 
transformations, the task is framed as multi-class 
classification, where each paragraph is assigned its 
original author label. 
This dataset provides a benchmark for evaluating 
whether encoder-based models can capture 
stylistic discriminative features beyond topical 
differences, a challenge rarely studied in Arabic 
NLP. 

3.3 Human vs. Machine Text Detection 
Dataset 

The detection dataset, named ARATECT, was 
newly created within the shared task to address the 
growing need for Arabic resources in AI-generated 
text detection. The construction followed these 
steps: 

• Human-written texts: Collected from 
reputable Arabic news outlets and 
verified literary sources, then manually 
curated for quality. 

• Machine-generated texts: Produced by 
Arabic-capable LLMs (e.g., GPT-4, 
Mistral, LLaMA) under diverse 
prompting strategies. 

• Annotation: Assigned binary labels 
(Human vs. AI), with balanced domain 
coverage across news and literature. 

This resource is among the first to systematically 
benchmark Arabic machine-text detection, 
complementing the generative and classification 
datasets. 

4 System Overview 

We adopt a hybrid adaptation strategy combining 
parameter-efficient fine-tuning (PEFT) for 
generative decoder-based models and full fine-
tuning for encoder-based models. This section 
details the overall strategy and then presents task-
specific configurations. 

4.1 Overall Strategy 

Our approach combines PEFT for decoder-based 
models (Gemma, Qwen) and full fine-tuning for 
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encoder-based BERT variants (AraBERTv2, 
AraModernBert). This division leverages the 
efficiency of LoRA in large generative models 
and the robustness of full fine-tuning for smaller 
encoder models. 

4.2 Task-Specific Configurations 

For AST, we used Gemma3-1B and Qwen2.5-1.5B 
fine-tuned using LoRA. The algorithm includes 
conditional generation. While input is 
concatenation of source text and target author name 
as a control token, output is a rewritten passage. 
The loss function is a standard cross-entropy on 
next-token prediction. To address the challenge of 
preventing semantic drift and to preserve meaning 
while shifting style, we add content-preservation 
constraints by penalizing high cosine distance 
between embeddings of input and output (using 
Sentence-BERT) (Liu et al., 2024; Radhakrishnan 
et al., 2023). This is shown in Figure 1. 

AraBERTv2 and AraModernBert were used for 
the author classification task. The algorithm 
includes sequence classification using the [CLS] 
token representation. We fully fine-tuned with 
cross-entropy loss over 17 author classes. We also 
introduced Layer-Wise analysis for this task (Pasad 
et al., 2021; Van Aken et al., 2019). Instead of using 
only the final [CLS], we extract hidden states from 
each layer and train a logistic regression classifier 
on top. To address the challenge overfitting due to 
class imbalance, we used stratified splits and early 
stopping based on validation F1. This equation 
shows the Layer-Wise analysis: 

ℎ! = 𝐵𝐸𝑅𝑇!(𝑥), 𝑦,! = (𝑊ℎ! + 𝑏) 
where we report F1 across layers 𝑙 = 1. .12  to 
identify the most informative depth. 
 

 
Figure 2: Layer-wise analysis. 

 
For Human vs. Machine Detection, we also 

used fine-tuned AraBERTv2 and AraModernBert 
for binary classification with labels are {Human, 
AI}. We addressed the challenge of high lexical 

overlap between human and machine texts by 
applying data augmentation by paraphrasing 
human samples to expand stylistic variance and 
make the classifier robust. 

4.3 Distinguishing Configurations 

LoRA vs. Full Tine-Tuning: LoRA was used only 
for decoder models (Gemma, Qwen) due to 
efficiency in large generative models. Encoder 
models (AraBERTv2, AraModernBert) were fully 
fine-tuned since they are relatively small. 

Intermediate vs. Final Layers: For 
classification, we explicitly compared performance 
across layers to uncover interpretability insights 
using layer-wise analysis. 

5 Experimental Setup 

For all tasks, data was split into training, 
development, and test sets (70/15/15 for style 
transfer and author classification; 80/10/10 for 
human vs. machine detection), stratified by class to 
preserve distribution. Preprocessing included 
standard Arabic normalization (removing 
diacritics, unifying punctuation, and normalizing 
character variants) and model-specific tokenization 
with a maximum sequence length of 512. Results 
are summarized in Table 1. 

Encoder-based models (AraBERTv2, 
AraModernBert) were fully fine-tuned using 
AdamW (𝑙𝑟 = 2𝑒 − 5, batch size= 4, epochs= 3, 
5% warmup). Decoder-based models (Gemma, 
Qwen) employed LoRA adapters ( 𝑟	 ∈
	{16,32,64} , dropout = 0.05 , 𝑙𝑟 = 1𝑒 − 4 ), 
applied to attention and projection modules. 

Implementation used Hugging Face 
Transformers (v4.41.2), PEFT (v0.11.1), PyTorch 
(v2.3.0), and scikit-learn (v1.5.0). Evaluation 
metrics varied by task: BLEU/chrF for style 
transfer, accuracy and macro-F1 for classification, 
and accuracy/F1 for machine-text detection. 

 

6 Results 

In this section, we present results separately for 
each sub-task: Author Style Transfer (AST), 

Task Split Models Metrics 
[1] 70/15/15 Gemma, Qwen BLEU, chrF 

[2] 70/15/15 AraBERTv2, 
AraModernBert 

Accuracy, 
Macro-F1 

[3] 80/10/10 All Accuracy, 
Macro-F1 

Table 1:  Experimental Setup Summary. 
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Author Classification, and Human vs. Machine 
Detection. This structure highlights the 
comparative strengths of parameter-efficient fine-
tuning (LoRA) and full fine-tuning across tasks. 
 

6.1 Author Style Transfer (AST) 

Table 2 reports BLEU and chrF scores for Gemma 
and Qwen models fine-tuned with LoRA adapters 
of varying ranks. The results indicate that Gemma 
consistently outperforms Qwen across both 
metrics. The best configuration is Gemma with 
rank r=32r=32r=32, which achieves a BLEU score 
of 19.04 and a chrF score of 55.14. In contrast, 
Qwen at rank r=16r=16r=16 performs considerably 
worse, obtaining a BLEU of 10.18 and chrF of 
44.42. 
 
Table 2: Results on 100 unseen Arabic articles. 

Model Variant BLEU Score chrF Score 
Gemma (r=64) 18.85 55.00 
Gemma (r=32) 19.04 55.14 
Gemma (r=16) 18.13 54.75 
Qwen (r=16) 10.18 44.42 

 

6.2 Author Classification 

The results for author classification are presented 
in Table 3. AraBERTv2 achieved the highest 
performance, with an accuracy of 89.7% and a 
macro-F1 score of 0.89. AraModernBert followed 
with an accuracy of 87.1% and a macro-F1 score of 
0.87. The layer-wise analysis provides additional 
insights: AraBERTv2 shows peak discriminative 
performance in intermediate layers (7–10), while 
AraModernBert encodes stylistic information more 
evenly across deeper layers. These findings 
highlight that intermediate transformer layers 
carry stronger stylistic signals than final layers, 
suggesting that representation depth plays a 
critical role in modeling stylistic variation in 
Arabic text 
 
Table 3: Results for author classification. 

Model Accuracy F1 Best Layer 
AraBERTv2 89.71% 0.89 7 
AraModernBert 87.1% 0.87 20 

 

6.3 Human vs. Machine Detection 

The binary classification results for 
distinguishing human- from AI-generated text 
are shown in Table 4. Both models reached 
near-ceiling performance, with 
AraModernBert achieving the highest 
accuracy of 99.4% and AraBERTv2 achieving 
the best macro-F1 of 0.9932. 
 
Table 4: Results for human vs. machine detection. 

Model Accuracy F1 
AraBERTv2 99.3% 0.9932 
AraModernBert 99.4% 0.9923 

 

6.4 Comparative Insights 

The comparison between full fine-tuning (for 
classification tasks) and LoRA (for generative 
tasks) highlighted clear trade-offs. Full fine-tuning 
enabled stable convergence and higher robustness 
under limited data, while LoRA delivered strong 
performance with fewer trainable parameters, 
making it attractive for scaling across multiple 
tasks. 
To improve interpretability, we conducted a layer-
wise probing analysis. Instead of relying only on 
the final [CLS] token, we extracted hidden states 
from each transformer layer (l = 1..12) and trained 
lightweight classifiers on them. Results show that 
mid-level layers (7–10 in AraBERTv2) captured 
the strongest stylistic and discriminative cues, 
while final layers tended to compress information 
and reduce distinctiveness. This suggests that 
intermediate layers preserve stylistic richness, 
consistent with findings in English models (Pasad 
et al., 2021; Van Aken et al., 2019). Figure 3 
illustrates this trend for AraBERTv2 vs. 
AraModernBert. 
 

 
Figure 3: Layer-wise performance comparison 
between AraBERTv2 and AraModernBert for the 
author classification task. Both accuracy and 

103



 
 
 

macro-F1 scores are shown across transformer 
layers. 

Figure 3 also illustrates how performance 
evolves across layers of AraBERTv2 and 
AraModernBert. AraBERTv2 reaches peak 
accuracy and F1 around the middle layers (7–10), 
stabilizing near 0.99, while AraModernBert shows 
steadier gains across layers, with slightly lower but 
more consistent performance. This suggests 
AraBERTv2 encodes discriminative stylistic 
features earlier in its hierarchy, while 
AraModernBert distributes them more evenly, 
indicating differences in representational depth and 
efficiency. 

6.5 Error Analysis 

For author classification, common confusions 
occurred between authors with overlapping 
stylistic traits (e.g., similar sentence lengths or 
frequent religious expressions). For AST, errors 
often manifested as partial rewrites where the 
system retained source author lexical choices rather 
than fully adapting to the target style. For AI-
generated text detection, misclassifications were 
rare but notable: in a few cases, highly fluent 
ChatGPT-like generations were labeled human, 
while noisy user-generated social media text was 
mislabeled as machine, showing the limits of 
surface-level stylistic cues. 

7 Conclusion 

We benchmarked Arabic LLMs on three 
challenging tasks including AST, author 
classification, and AI-generated text detection: 
comparing full-tuning and PEFT. Results showed 
that Arabic-specialized models, particularly 
AraBERTv2, achieve strong performance, with 
layer-wise analysis revealing where task-relevant 
features emerge. While domain sensitivity and 
limited benchmark resources remain challenges, 
this work offers one of the first multi-task 
evaluations of Arabic LLMs, establishing a 
replicable foundation and pointing toward broader 
dialectal coverage, cross-lingual transfer, and 
improved interpretability as key directions for 
future research. 

This work highlights that PEFT, combined with 
careful layer-wise analysis, can unlock the full 
potential of Arabic LLMs, which brings stylistic 
shade, discriminative power, and robustness 
against AI-generated text detection into closer 
reach for underrepresented languages. 
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A Appendices 

For AST dataset, Figure 4 illustrates the 
distribution of text samples collected for various 
authors in a dataset used to fine-tune a LLM for 
Arabic author style transfer. The dataset includes 
prominent Arabic literary and philosophical 
figures, with Hassan Hanafi, Ahmad Amin, and 
Mohammad Hussein Heikal having the highest 
number of samples, indicating a richer 
representation of their stylistic patterns for training 
the model. The horizontal bars visualize the 
number of samples per author, supporting tasks like 
stylistic imitation and authorship transformation. 

 
Figure 4: Number of Samples per Author in Arabic 
Author Style Transfer Dataset. 

Moreover, Figure 5 displays the distribution of 
MSA text lengths, measured in number of words, 
across the dataset used for fine-tuning the author 
style transfer model. The distribution is highly 
concentrated around 350–400 words, with a sharp 
peak indicating that most samples fall within this 
range. The presence of a kernel density estimate 
(KDE) overlay highlights the unimodal and right-
skewed nature of the data, where very few samples 
exceed 600 words. This suggests a consistent and 
controlled sample length throughout the dataset, 
which is beneficial for stable training and style 
learning in LLMs. 

 
Figure 5: Distribution of MSA Text Lengths in the 
Arabic Author Style Transfer Dataset. 

Figure 6 shows 17-word cloud subplots 
visualizing the most frequent and prominent words 

in the writings of each author from the Arabic AST 
dataset. The diversity of themes is evident: authors 
like Nawal El Saadawi and Abbas Al-Aqqad focus 
on gender and humanism, while Taha Hussein and 
Ahmad Amin emphasize thought and knowledge. 
Poets like Ahmed Shawqi and Gibran Khalil 
Gibran favor expressive and emotional lexicons, 
whereas philosophers such as Fuad Zakaria and 
Hassan Hanafi employ rational and abstract 
terminology. 

These visualizations highlight the unique lexical 
fingerprints of each author, showcasing their 
stylistic identity. Such distinctions are foundational 
for fine-tuning language models to perform 
accurate author style transfer, as the model must 
learn to emulate not just surface-level vocabulary, 
but the deeper thematic and stylistic choices each 
author consistently demonstrates. 
 

 
Figure 6: Word Clouds of Most Frequent Words 
Across 17 Arabic Authors. (a–q) show the most 
frequent words used by different authors in the 
dataset: (a) Youssef Idris, (b) Tharwat Abaza, (c) 
Taha Hussein, (d) Robert Barr, (e) Nawal El 
Saadawi, (f) Najib Mahfouz, (g) Hassan Hanafi, (h) 
Mohammad Hussein Heikal, (i) Gustave Le Bon, 
(j) Gibran Khalil Gibran, (k) Fuad Zakaria, (l) 
Ahmed Taymour Pasha, (m) Ameen Al-Rihani, (n) 
Ahmed Shawqi, (o) Ahmad Amin, (p) Abbas 
Mahmoud Al-Aqqad, and (q) Abdel-Ghaffar 
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Mekkawi. Each subplot highlights the author’s 
dominant vocabulary, providing insight into their 
unique lexical and thematic style. 

For Author Classification, the t-SNE 
visualization shown in Figure 7 represents the 
clustering of Arabic text samples based on [CLS] 
token embeddings produced by a fine-tuned 
AraBERTv2 model, trained for the task of author 
classification. Each point represents a text sample, 
and colors correspond to different authors. The 
embeddings were projected into 2D space using t-
SNE for visualization purposes. 

Figure 7 illustrates how well the fine-tuned 
AraBERTv2 model captures the distinct stylistic 
and semantic features of different authors in the 
dataset. Clear and well-separated clusters, such as 
those for Nawal El Saadawi, Taha Hussein, and 
Robert Barr, suggest that the model has 
successfully learned author-specific linguistic 
patterns, enabling high confidence in 
distinguishing between them. 

Some clusters are positioned close to others 
(e.g., Ahmad Amin and Mohammad Hussein 
Heikal), indicating potential stylistic or thematic 
similarities between those authors' writing. 
Meanwhile, others like William Shakespeare 
(likely translated texts) or George Zaidan show 
strong separation, hinting at distinct lexical or 
structural traits. 

 
Figure 7: Author Clustering Based on Fine-Tuned 
AraBERT CLS Embeddings. 
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Abstract
We introduce AraHealthQA 2025, the Com-
prehensive Arabic Health Question Answer-
ing Shared Task, held in conjunction with
ArabicNLP 2025 (co-located with EMNLP
2025). This shared task addresses the paucity
of high-quality Arabic medical QA resources
by offering two complementary tracks: Men-
talQA, focusing on Arabic mental health Q&A
(e.g., anxiety, depression, stigma reduction),
and MedArabiQ, covering broader medical do-
mains such as internal medicine, pediatrics, and
clinical decision making. Each track comprises
multiple subtasks, evaluation datasets, and stan-
dardized metrics, facilitating fair benchmark-
ing. The task was structured to promote mod-
eling under realistic, multilingual, and cultur-
ally nuanced healthcare contexts. We outline
the dataset creation, task design and evaluation
framework, participation statistics, baseline sys-
tems, and summarize the overall outcomes. We
conclude with reflections on the performance
trends observed and prospects for future itera-
tions in Arabic health QA1.

1 Introduction

Large Language Models (LLMs) have demon-
strated substantial potential across a wide range
of healthcare applications, including clinical deci-
sion support, patient triage, and automated question
answering. Despite this progress, their effective-
ness in the Arabic medical domain remains largely
underexplored, mainly due to a lack of high-quality,
domain-specific datasets and standardized bench-
marking efforts. Existing resources for Arabic
healthcare are limited in size, coverage, and linguis-
tic diversity, particularly for mental health, which
presents unique challenges related to cultural con-
text, language variation, and sensitive content.

To address these limitations, AraHealthQA 2025
introduces a new shared task aimed at evaluating

1Author order, excluding the first two lead authors, is al-
phabetical. The final author served in an advisory role.

and advancing the performance of LLMs on Arabic
medical question-answering tasks. The shared task
provides carefully curated datasets covering both
general health and mental health inquiries, along
with clearly defined subtasks for classification and
answer generation. By establishing a structured
evaluation framework, AraHealthQA 2025 enables
systematic benchmarking of models, encourages
reproducible research, and fosters the development
of LLMs that can provide accurate, contextually
aware, and culturally sensitive responses in realistic
healthcare scenarios.

AraHealthQA 2025 consists of two complemen-
tary tracks, each targeting a distinct area of Arabic
healthcare question answering. Figure 1 shows an
overview of the AraHealthQA 2025 Shared Task.
The first track, Arabic Mental Health QA (Men-
talQA), focuses on mental health topics including
anxiety, depression, cognitive disorders, therapeu-
tic practices, and stigma reduction. This track is
designed to evaluate models across three subtasks:
question classification, answer classification, and
question answering. The dataset for this track in-
cludes 500 question-answer pair, enabling partici-
pants to build models capable of understanding di-
verse question types, answer strategies, and generat-
ing contextually appropriate responses. This track
emphasizes the importance of culturally aware and
clinically relevant NLP systems in the Arabic men-
tal health context.

The second track, General Arabic Health QA
(MedArabiQ), addresses a broader spectrum of
medical domains, such as internal medicine, car-
diology, pediatrics, and medical education. It in-
cludes two subtasks: multiple-choice question an-
swering and open-ended question answering. This
track allows evaluation of models on both struc-
tured and open-ended formats, assessing their abil-
ity to provide accurate, relevant, and well-formed
responses across general medical knowledge.

By providing these two tracks, AraHealthQA
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2

1  Multiple choice question answering
(classification)

 7 submissions

2 Open-ended question answering
(generation)

 11 submissions

2  Answer Categorization

1

3 Question Answering

Question Categorization

 9 submissions

 7 submissions

 6 submissions

    MedArabiQ MentalQA

01

This track evaluates the capability of
large language models to handle
mental health-related tasks in Arabic. 
and includes three subtasks :

This track evaluates the capability
of large language models to perform
general medical tasks in Arabic. 
and includes two subtasks :

AraHealthQA
2025

Track 2:Track 1:

Total: 22 Total: 18 

Figure 1: An Overview of the AraHealthQA 2025 Shared Task.

2025 aims to create a comprehensive evaluation
framework for Arabic healthcare NLP. Participants
are encouraged to develop systems that not only
perform well in classification or generation tasks
but also demonstrate cultural and domain aware-
ness, supporting practical and research applications
in both mental health and general medical contexts.

2 Related Work

Research on mental health and medical NLP has
gained significant interest in recent years, with par-
ticular attention given to the creation of specialized
datasets and benchmarks. However, most of these
efforts have been concentrated on English, leav-
ing Arabic largely underexplored despite its wide
usage and the pressing healthcare needs of Arabic-
speaking populations. This section reviews prior
work relevant to the two tracks of our shared task:
MentalQA and MedArabiQ.

2.1 Mental Health Benchmarks
Existing mental health studies have largely fo-
cused on specific disorders, including suicidal at-
tempts, self-injury, loneliness, depression, and anx-
iety, which can limit the generalizability of AI
models across broader mental health issues (Shen
et al., 2017; Turcan and Mckeown, 2019; Rastogi
et al., 2022; Garg et al., 2023). More specialized
resources capture emotions associated with partic-
ular conditions: the CEASE dataset (Ghosh et al.,
2020) targets emotions of suicide attempters, while

EmoMent (Atapattu et al., 2022) focuses on emo-
tional states linked to depression and anxiety. Other
datasets support tasks such as identifying pain lev-
els in mental health notes (Chaturvedi et al., 2023)
or extracting causal interpretations from clinical
narratives, as in CAMS (Garg et al., 2022).

Despite these global efforts (Atapattu et al.,
2022; Kabir et al., 2022; Sun et al., 2021; Alas-
mari et al., 2023; Ghosh et al., 2020; Chaturvedi
et al., 2023; Garg et al., 2022; Alasmari, 2025),
Arabic remains an understudied language in men-
tal health NLP. Only a few studies have addressed
mental health tasks in Arabic texts (Aldhafer and
Yakhlef, 2022; Al-Musallam and Al-Abdullatif,
2022; Al-Laith and Alenezi, 2021). For example,
Aldhafer and Yakhlef (Aldhafer and Yakhlef, 2022)
developed depression detection models from Ara-
bic tweets, accounting for cultural stigma, while Al-
Musallam and Al-Abdullatif (Al-Musallam and Al-
Abdullatif, 2022) applied feature-based machine
learning techniques for depression detection in Ara-
bic texts.

To bridge this gap, the MentalQA dataset (Al-
huzali and Alasmari, 2025; Alhuzali et al.,
2024) was developed, providing annotated Ara-
bic question-answer pairs that cover a variety of
question types and answer strategies. This dataset
supports the creation and evaluation of NLP sys-
tems capable of handling various mental health
inquiries, forming the foundation of the Arabic
Mental Health Question Answering Shared Task.
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Using the MentalQA dataset, this track provides
a dedicated benchmark for Arabic mental health
question-answering. It addresses the dual chal-
lenge of classification and response generation, cre-
ating a platform to systematically evaluate models
in a culturally sensitive setting. Through this ef-
fort, MentalQA promotes research on the building
of reliable and context-sensitive NLP systems for
Arabic-speaking communities.

2.2 General Health Benchmarks

The evaluation of LLMs for medical applications
has been dominated by English-centric sources and,
typically, exam-style question-answering datasets.
The Massive Multitask Language Understanding
suite (MMLU) includes a subset derived from
the USMLE (Hendrycks et al., 2021). Similarly,
MedQA assesses board-exam-style QA and broad-
ens multilingual coverage by incorporating tradi-
tional and simplified Chinese alongside English
(Jin et al., 2020). Building on these efforts, Gao
et al. (2023) introduce Dr. Bench, an English-only
diagnostic reasoning benchmark in clinical NLP
that targets understanding of clinical narratives,
medical knowledge reasoning, and the generation
of differential diagnoses.

In contrast, Arabic medical evaluation resources
remain comparatively scarce and unevenly dis-
tributed across tasks. Notable efforts include
AraSTEM, which targets question answering with
a medical subset (Mustapha et al., 2024), and
AraMed, which provides an Arabic medical cor-
pus paired with an annotated QA dataset (Alasmari
et al., 2024). A translation-based dataset also exists,
wherein Achiam et al. (2023) converted MMLU
into 14 languages, including Arabic. While valu-
able, these resources still leave substantial portions
of the Arabic medical task space unattended, high-
lighting the need for dedicated benchmarking.

With the vast potential of LLMs in healthcare,
it is crucial to accommodate Arabic-speaking pa-
tients to ensure fair deployment. This motivated
the development of the MedArabiQ benchmark
(Daoud et al., 2025) for Arabic medical tasks, upon
which this track of the shared task is based. The
benchmark covers medical education and patient-
clinician conversation in Arabic, with initial results
indicating generally poor performance of LLMs
on these tasks. This prompted us to introduce this
shared task, inviting researchers to enhance models’
capabilities in the Arabic medical task domain.

3 Task Overview

3.1 Track 1: MentalQA

The objective of Track 1 is to assess the capabilities
of LLMs in addressing healthcare-related tasks in
Arabic, with a particular emphasis on the mental
health domain. Given the sensitivity and cultural
nuances of mental health conversations, this track
aimed to benchmark models on their ability to clas-
sify questions, identify appropriate answer strate-
gies, and generate supportive, contextually relevant
responses in Arabic. This track was built upon
the MentalQA dataset, the first publicly available
annotated Arabic dataset for mental health support.

The dataset covers a variety of question types
(e.g., diagnosis, treatment, anatomy & physiology,
epidemiology, healthy lifestyle, provider choices,
or other) and answer strategies (information provi-
sion, direct guidance, and emotional support), and
is based on real patient inquiries paired with expert
doctor responses for question-answering. Partici-
pants competed in three subtasks, each targeting a
different aspect of mental health NLP systems. We
now turn to a detailed description of each subtask,
including objectives, dataset splits, and evaluation.

3.1.1 Subtask 1 and 2
We propose Subtask 1: Question Type Classifica-
tion and Subtask 2: Answer Strategy Classifica-
tion, which share a similar multi-label classifica-
tion setup. In Subtask 1, systems must classify
each user question into one of several predefined
types. In Subtask 2, systems must predict the an-
swer strategy employed in a response, noting that
multiple strategies may co-occur.

For both subtasks, the dataset is based on Men-
talQA and is divided into 300 samples for training,
50 samples for development, and 150 samples as a
blind test set for final evaluation. The training set
can be used to fine-tune LLMs or serve as a base for
few-shot learning approaches. The development
set is intended to tune hyper-parameters and eval-
uate performance, while the test set ensures fair
benchmarking of all participants.

3.1.2 Subtask 3
We propose Subtask 3: Question Answering, where
systems are required to generate concise, support-
ive, and contextually appropriate answers in Arabic.
This task forms the basis for a robust question-
answering system capable of providing special-
ized responses to a wide range of mental health-
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related inquiries. The dataset is also based on
MentalQA (Alhuzali and Alasmari, 2025; Alhuzali
et al., 2024) and follows the same split described
in Subtask 1 and 2.

3.2 Track 2: MedArabiQ

The objective of this track was to evaluate the capa-
bilities of LLMs in performing healthcare-related
tasks in Arabic, across a variety of general medical
domains. The track consists of two subtasks that
reflect critical scenarios in clinical education and
practice, aiming to benchmark both classification
and generative performance in realistic medical
settings.

The development set was provided as the entire
original MedArabiQ dataset (Daoud et al., 2025),
consisting of 700 multiple-choice and open-ended
questions, whereas the test set consisted of similar
but entirely new, unseen questions. The order of
questions was entirely random.

3.2.1 Subtask 1

The first subtask focuses on multiple-choice ques-
tion answering as a classification task, with
questions that include standard multiple-choice,
multiple-choice questions with potentially biased
distractors, and fill-in-the-blank questions with a
set of candidate answers. The objective is to assess
the model’s ability to apply clinical knowledge in
structured decision-making scenarios. The dataset
provided to candidates consisted of a development
set of 300 samples, which can be used for model
training and validation, and a blind test set of 100
samples.

The test set for Subtask 1 consisted of 50
multiple-choice questions and 50 fill-in-the-blank
questions with choices. Initially, 100 multiple-
choice questions were randomly sampled from a
larger repository of questions from past regional
Arabic medical exams. These questions were
digitized and extracted from physical exam pa-
pers, eliminating any risk of contamination. Then,
50 of these multiple-choice questions were con-
verted into fill-in-the-blank questions, following
the methodology of previous work (Daoud et al.,
2025). By randomly sampling from the same
source, a similar distribution of medical special-
ties and difficulty levels was retained. Additionally,
74% of questions provided four answer choices,
whereas the remaining 26% offered five.

3.2.2 Subtask 2
The second subtask presents fill-in-the-blank and
open-ended question answering as a generative task.
Participants were tasked with generating free-text
responses to prompts that include questions with-
out predefined options. The goal in this track is to
evaluate model responses for semantic alignment
with the reference answers, either from clinicians
or textbook ground truth answers. The dataset for
this subtask consisted of a development set of 400
samples, which can be used for training and valida-
tion, and a blind test set of 100 samples.

The test set included 50 fill-in-the-blank ques-
tions without choices–constructed from randomly
sampled multiple-choice questions, similar to Sub-
task 1–as well as 50 patient-doctor questions. The
patient-doctor questions were randomly sampled
from AraMed (Alasmari et al., 2024), which is
also used as a source for MedArabiQ (Daoud et al.,
2025).

4 Shared Task Teams

Submission Rules: For Track 1, we allowed par-
ticipant teams to submit up to five runs for each test
set and for each of the three subtasks. For Track 2,
participants were initially allowed 10 submissions
each, which was later increased to 15 submissions
due to platform-specific issues. For each team, only
the submission with the highest score was retained
on the official leaderboard. The official evaluation
relied on a blind test set. To ensure fairness and re-
producibility, each subtask of each track was hosted
as a separate competition on Codabench (Xu et al.,
2022), enabling automatic scoring and ranking of
submissions. These Codabench instances will re-
main active even after the official competition con-
cludes, supporting continued experimentation and
benchmarking on the MentalQA and MedArabiQ
datasets.

4.1 Track 1: MentalQA

Evaluation: Subtask 1 and Subtask 2 are multi-
label classification tasks and are evaluated us-
ing Weighted F1 score and Jaccard score. The
Weighted F1 balances precision and recall while
accounting for class imbalance, whereas the Jac-
card score measures the overlap between predicted
and gold label sets, making it suitable for multi-
label evaluation. Subtask 3 is evaluated using
BERTScore (Zhang et al., 2020), which leverages
contextual embeddings from pre-trained language

110



models to capture semantic similarity between gen-
erated responses and reference answers. Together,
these metrics provide a robust assessment of system
performance across the classification and genera-
tion subtasks, reflecting both the accuracy of the
labels and the semantic quality of the outputs.

Participating Teams: A total of 46 unique
teams registered for the shared task. During the
testing phase, teams were allowed up to five sub-
missions each. The breakdown across the subtasks
is as follows: 9 submissions for Subtask 1 from 9
unique teams, 7 submissions for Subtask 2 from
7 unique teams, and 6 submissions for Subtask 3
from 6 unique teams. We received ten description
papers, all of which were accepted for publication
as presented in Table 1.

Baselines: For Subtask 1 and Subtask 2, we em-
ployed a simple yet strong baseline based on the
most frequent label strategy. In this setting, the
model always predicts the most common category
(or set of categories) observed in the training data,
regardless of the input. Although this baseline does
not leverage the semantic content of the questions
or answers, it provides a meaningful lower bound
for performance and highlights the inherent class
imbalance in the dataset. This baseline is com-
monly used in shared tasks to establish a reference
point against which more sophisticated approaches
can be fairly compared.

4.2 Track 2: MedArabiQ
Evaluation: For Subtask 1, we used accuracy as
the evaluation metric, given that it is a classifica-
tion task. Since Subtask 2 is a generation task, sub-
missions were evaluated against the ground truth
answers using BERTScore to capture semantic sim-
ilarity between the two texts.

Participating Teams: A total of 26 participants
registered across both subtasks, including seven
who submitted predictions for Subtask 1 and eleven
who submitted for Subtask 2. System description
papers were received from a total of five teams,
including three for Subtask 1 and five for Subtask
2. A summary of participating teams is provided
in Table 1.

Baselines: For Subtask 1, we chose to use
both Gemini 1.5 Pro (Georgiev et al., 2024)
and DeepSeek v3 (DeepSeek-AI et al., 2025) as
baselines, based on existing results that show
that Gemini achieves the highest accuracy on
multiple-choice questions, while DeepSeek per-
forms the strongest on fill-in-the-blank questions

with choices (Daoud et al., 2025). Since our test
set includes both types of questions, we compare
results to both to ensure a strong, realistic base-
line. For Subtask 2, we only used Gemini 1.5 Pro
as our baseline, seeing as it achieved the highest
BERTScore on fill-in-the-blank questions without
choices and performed comparably to other mod-
els on patient-doctor Q&A. The prompts used for
evaluating baseline models were constructed based
on similar literature (Daoud et al., 2025).

5 Results

5.1 Track 1: MentalQA

5.1.1 Subtask 1
The results of Subtask 1 shown in Table 2 reveal a
range of performances among participating teams,
with Weighted-F1 scores spanning from 0.61 to
0.24 as presented in Table 2. The top-performing
system, mucAI, achieved a Weighted-F1 of 0.61
and a Jaccard score of 0.53, closely followed by
Binary_Bunch with nearly identical results. At the
lower end, the baseline model obtained the weakest
performance, with a Weighted-F1 of 0.24 despite
a relatively higher Jaccard score of 0.40. This in-
dicates that frequency-based methods were insuffi-
cient for handling the task effectively, while most
submitted systems provided substantial improve-
ments over the baseline.

A closer comparison highlights several interest-
ing patterns. While mucAI and Binary_Bunch led
the rankings, other teams such as Sindbad and
Quasar achieved relatively balanced performance
across both metrics, suggesting more consistent
predictions. In contrast, Fahmni attained a lower
Weighted-F1 of 0.44 yet a relatively competitive
Jaccard score of 0.45, pointing to broader label cov-
erage but reduced precision. Moreover, RetAug and
AraMinds produced identical scores, implying com-
parable modeling strategies or effectiveness. These
results collectively illustrate the diversity in sys-
tem behaviors and the varying trade-offs between
precision and recall across participating teams.

5.1.2 Subtask 2
The results of Subtask 2 presented in Table 3 show
overall stronger performance compared to Subtask
1, with Weighted-F1 scores ranging from 0.79 to
0.44 as shown in Table 3. The top-performing
teams, Sindbad and MarsadLab, both achieved
the highest Weighted-F1 score of 0.79, while
Binary_Bunch, AraMinds, and Quasar followed
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Team Affiliation Tasks

Track 1: MentalQA

mucAI (Abdou, 2025) - 1,2
Binary_Bunch (Bhattacharjee et al., 2025) Chittagong University, Bangladesh 1, 2
MarsadLab (Bessghaier et al., 2025) Hamad Bin Khalifa University, Qatar; Northwestern University, Qatar 1, 2
Sindbad (Morsy et al., 2025) George Washington University, USA 1, 2, 3
Quasar (Chowdhury and Chowdhury, 2025) Chittagong University, Bangladesh 1, 2
RetAug (AbdelAziz et al., 2025) Nile University, Egypt 1,2, 3
AraMinds (Zaytoon et al., 2025) Alexandria University, Egypt 1, 2, 3
Fahmni (Sabty et al., 2025) MBZUAI, UAE; Gameball Company; German International 1, 2, 3

University, Egypt; American University in Cairo, Egypt
Sakinah-AI (Elden and Abukar, 2025) Cairo University, Egypt; University of South Wales, UK 1
MindLLM (Eshaq, 2025) King Khalid University, Saudi Arabia 3

Track 2: MedArabiQ

!MSA (Tarek et al., 2025) MSA University, Egypt 1, 2
MedLingua (Emad Eldin and Abukar, 2025) Cairo University, Egypt; University of South Wales, UK 1, 2
NYUAD (AlDahoul and Zaki, 2025) New York University Abu Dhabi 1, 2
MedGapGab (Hikal, 2025) University of Göttingen, Germany 2
Egyhealth (Amer et al., 2025) Nile University, Egypt 2

Table 1: List of teams that participated in Track 1 and Track 2 of AraHealthQA 2025.

Team Weighted-F1 Jaccard Score

mucAI 0.61 0.53
Binary_Bunch 0.60 0.53
MarsadLab 0.55 0.41
Sindbad 0.53 0.49
Quasar 0.52 0.41
RetAug 0.49 0.28
AraMinds 0.49 0.28
Fahmni 0.44 0.45
Sakinah-AI 0.34 0.20

Baseline (MF) 0.24 0.40

Table 2: Performance of the systems on the test set of
Subtask 1 of Track 1. Results are sorted by Weighted
F1 score.

closely with scores between 0.76 and 0.77. At the
lower end, the baseline system attained a Weighted-
F1 of 0.44, which is notably weaker than all sub-
mitted systems, although its Jaccard score of 0.56
was higher than that of some teams, reflecting a
bias toward broader label prediction coverage.

A comparative analysis highlights several impor-
tant trends. While Sindbad and Binary_Bunch ob-
tained identical Jaccard scores of 0.71, suggesting
strong recall and balanced predictions, MarsadLab
matched the top Weighted-F1 but with a slightly
lower Jaccard score of 0.67, indicating stronger pre-
cision but somewhat reduced coverage. Similarly,
Fahmni scored considerably lower on Weighted-F1
(0.69) but still maintained a competitive Jaccard
score of 0.62, suggesting that it captured a broader
set of relevant labels despite less precise predic-
tions. These results highlight the close competition

Team Weighted-F1 Jaccard Score

Sindbad 0.79 0.71
MarsadLab 0.79 0.67
Binary_Bunch 0.77 0.71
AraMinds 0.76 0.68
Quasar 0.76 0.66
Fahmni 0.69 0.62

Baseline (MF) 0.44 0.56

Table 3: Performance of the systems on the test set of
Subtask 2 of Track 1. Results are sorted by Weighted
F1 score.

among top systems and the subtle variations in the
precision–recall balance across teams.

5.1.3 Subtask 3
The results of Subtask 3 depicted in Table 4, eval-
uated using BERTScore, demonstrate a narrower
performance range compared to the earlier sub-
tasks, with scores spanning from 0.679 to 0.646 as
illustrated in Table 4. The best-performing system,
RetAug, achieved a BERTScore of 0.679, closely
followed by MindLLM and Sindbad with scores
of 0.670 and 0.668, respectively. The remain-
ing teams, including AraMinds, MarsadLab, and
Fahmni, all produced scores above 0.64, indicating
that even the lowest-performing system performed
reasonably well within a relatively tight margin.

In contrast to Subtasks 1 and 2, where the dif-
ferences between the top and bottom systems were
more pronounced, the small performance gap in
Subtask 3 highlights the increased difficulty of the
task and the challenge of distinguishing system
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Team BERTScore

RetAug 0.679
MindLLM 0.670
Sindbad 0.668
AraMinds 0.663
Fahmni 0.646

Table 4: Performance of the systems on the test set of
Subtask 3 of Track 1.

quality using automatic evaluation alone. We ob-
served that models often struggled with generat-
ing culturally sensitive and context-appropriate re-
sponses, despite achieving relatively high overlap-
based scores. This suggests that automatic metrics
such as BERTScore, while useful, may not fully
capture the nuances required to evaluate responses
in the mental health domain.

5.1.4 General Description of Submitted
Systems (Track 1)

The following provides an overview of the leading
systems submitted to the AraHealthQA 2025 Men-
talQA Track 1. Each subtask highlights the win-
ning team, their methodology, and the core strate-
gies that enabled high performance.

Subtask 1: The winning team, mucAI (Ab-
dou, 2025), achieved a weighted F1-score of
0.61 for question classification. Their system,
Explain–Retrieve–Verify (ERV), is a lightweight,
training-free pipeline for multi-label categorization
of Arabic mental-health questions. ERV combines
a chain-of-thought LLM classifier with example-
based retrieval and a verification agent. The LLM
proposes candidate labels and rationales, a similar-
ity agent retrieves top-k nearest questions via mul-
tilingual sentence-transformer embeddings to pro-
vide case-based priors, and the verification agent
reconciles these signals to produce a final label
set with calibrated confidence. A post-processing
step handles code parsing and confidence clamp-
ing. ERV runs efficiently at inference time without
requiring fine-tuning or external data.

Subtask 2: The winning team, Sindbad (Morsy
et al., 2025), achieved a weighted F1-score of 0.71
and a Jaccard score of 0.71 for answer classifica-
tion. Their approach leverages dataset augmenta-
tion to balance underrepresented classes, followed
by a rigorous pipeline that uses state-of-the-art
pre-trained language models (PLMs) and large lan-
guage models (LLMs) for few-shot prompting and
instruction fine-tuning. They utilize Gradient-free
Edit-based Instruction Search (GrIPS) to optimize

prompt selection, improving the quality and consis-
tency of the QA system without extensive manual
intervention.

Subtask 3: The winning team, RetAug (Ab-
delAziz et al., 2025), achieved a BERTScore of
0.679 for generative question answering. Their sys-
tem employs a Retrieval-Augmented Generation
(RAG) framework tailored for Arabic mental health
Q&A. User queries are normalized and enhanced
to handle dialectal variations, then matched with
relevant contexts through hybrid retrieval, combin-
ing dense embeddings (Arabic-SBERT-100K) and
sparse BM25 search. Retrieved contexts are re-
ranked using semantic similarity, BM25 score, text
length, and question similarity, with culturally sen-
sitive filtering to ensure safe and appropriate advice.
Finally, a fine-tuned Saka-14B model generates re-
sponses using prompts that integrate the user query,
top contexts, domain-specific instructions, and cul-
tural constraints. This approach allows RetAug
to produce contextually relevant and culturally ap-
propriate answers while effectively grounding the
generation in retrieved knowledge.

5.2 Track 2: MedArabiQ

5.2.1 Subtask 1
With three teams participating in Subtask 1, the re-
sults shown in Table 5 fall within a close range. The
strongest performing team, NYUAD, achieved an
accuracy of 0.77, while the weakest system was still
a relatively impressive accuracy of 0.74, achieved
by MedLingua. At second place, !MSA achieved a
similar accuracy of 0.76. The lack of variance in
results can be attributed to the small sample size, as
well as similarities in approaches. All three teams
significantly outperform both baselines, Gemini
and DeepSeek.

5.2.2 Subtask 2
Despite the fact that more submissions were re-
ceived for Subtask 2, there was even less vari-
ance observed in the results, as seen in Table 6.
While the strongest team, MedGapGab, achieved
a BERTScore of 0.873, it only outperformed the
second strongest team, !MSA, by a margin of 0.003,
and the weakest team, MedLingua, by a margin
of 0.011. The third and fourth-highest perform-
ing teams, respectively, were NYUAD and Egy-
health, achieving BERTScores of 0.864 and 0.863.
These all appear to indicate strong performance
in open-ended Arabic medical tasks, outperform-
ing the Gemini baseline, which achieves a slighly
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Team Accuracy

NYUAD 0.77
!MSA 0.76
MedLingua 0.74

Gemini 1.5 Pro 0.47
DeepSeek v3 0.51

Table 5: Performance of the systems on the test set of
Subtask 1 of Track 2. Results are sorted by accuracy.
Gemini 1.5 Pro and DeepSeek v3 are included as base-
lines.

Team BERTScore

MedGapGab 0.873
!MSA 0.870
NYUAD 0.864
Egyhealth 0.863
MedLingua 0.862

Gemini 1.5 Pro 0.844

Table 6: Performance of the systems on the test set
of Subtask 2 of Track 2. Results are sorted by
BERTScore. The performance of Gemini 1.5 Pro is
included as a baseline

lower BERTScore of 0.844.

5.2.3 General Description of Submitted
Systems (Track 2)

The following provides an overview of the leading
systems submitted to the AraHealthQA 2025 Men-
talQA Track 2. Each subtask highlights the win-
ning team, their methodology, and the core strate-
gies that enabled high performance.

Subtask 1: The winning team, NYUAD,
achieved an accuracy of 0.77. AlDahoul and Zaki
(2025) employed a multifaceted approach, eval-
uating numerous proprietary base LLMs includ-
ing several models from Gemini, DeepSeek, GPT
(Achiam et al., 2023), and Llama (Grattafiori et al.,
2024). Their findings revealed that Gemini Pro 2.5
achieved the strongest performance at an accuracy
of 0.76, followed by Gemini Flash 2.5 and GPT-o3
at 0.74. Prompt engineering and chain-of-thought
(CoT) reasoning were prominent factors in their
success, as they constructed a detailed zero-shot
prompt in Arabic that instructed the model to think
step-by-step, explain relevant concepts, pinpoint
incorrect options, and refer to reputable medical
facts to arrive at an answer. This outperformed
a simple English-language prompt, which did not
involve CoT or any notable prompt engineering.
To further improve the accuracy of their system,
AlDahoul and Zaki (2025) employed a majority

voting technique using predictions from the three
top-performing base LLMs.

Subtask 2: The team that submitted the highest-
performing system was MedGapGab, which
achieved a BERTScore of 0.873. Hikal (2025) de-
veloped a modular, model-agnostic system that ad-
dressed the different subtypes of questions, specifi-
cally fill-in-the-blank questions and patient-doctor
Q&A. For each question, the approach involved ini-
tially classifying the question into either category,
before using Term Frequency-Inverse Document
Frequency (TF-IDF) to retrieve the four most sim-
ilar examples from the development set. These
would then be inserted into a task-specific prompt,
providing detailed context and specific, informative
instructions to the model. Finally, each question
was routed to either Gemini 2.5 Flash or DeepSeek
V3. With the former optimized for precise termi-
nology and the latter optimized for reasoning, the
system exploits the strengths of each model to com-
plete different tasks. The modularity of this system
is instrumental in its success in the shared task.

6 Discussion and Conclusion

The AraHealthQA 2025 shared task represents a
significant step toward advancing Arabic healthcare
NLP, particularly in the underexplored domains of
mental health dialogue and medical question an-
swering. Insights from both tracks highlight recur-
ring challenges and opportunities for progress. A
key finding is the critical role of domain-specific
resources. While large multilingual LLMs have
shown strong performance in general contexts,
many systems struggled to generate accurate and
culturally appropriate responses for Arabic health-
care, especially in mental health. This reinforces
the importance of curated benchmarks such as Men-
talQA and MedArabiQ, which enable models to ad-
dress sensitive topics like depression, stigma, and
medical reasoning with greater nuance.

Differences in modeling strategies further re-
vealed clear trends. Teams variously employed
multilingual or Arabic-specific pretrained models
alongside prompt engineering, instruction tuning,
and parameter-efficient fine-tuning. Systems that
blended domain adaptation with lightweight fine-
tuning generally outperformed zero-shot prompt-
ing baselines, underscoring the value of hybrid ap-
proaches that combine foundation model strengths
with healthcare-specific knowledge. Prompt de-
sign emerged as consistently effective across tracks,
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though interestingly zero-shot prompting some-
times surpassed few-shot setups, suggesting irrel-
evant examples can trigger hallucinations. Sim-
ilarities in approaches employing test-time tech-
niques, combined with relatively small dataset size,
resulted in little variance in results for Track 2.

Evaluation outcomes also highlighted task-
specific trade-offs. Teams achieved stronger results
in structured subtasks (e.g., multi-label classifica-
tion) than in open-ended QA, where correctness
must be balanced with empathy and cultural sensi-
tivity. While automatic metrics such as BERTScore
captured surface-level alignment, they failed to
fully measure appropriateness or trustworthiness,
pointing to the necessity of human-in-the-loop
evaluation, particularly with clinicians and native
speakers. Despite constraints in Track 2, such
as restrictions on fine-tuning with task data and
limited availability of Arabic medical resources,
teams demonstrated that careful prompt design, in-
context learning, and ensemble methods can sub-
stantially improve over baselines. Nevertheless,
progress in Arabic healthcare NLP will require
not only richer datasets but also stronger collabo-
rations between NLP researchers, clinicians, and
mental health professionals to ensure that future
systems are accurate, culturally aware, and ethi-
cally aligned.

Looking ahead, future iterations of Ara-
HealthQA aim to expand both scale and scope.
Planned directions include releasing larger and
more diverse datasets, extending coverage to addi-
tional medical specialties, and incorporating multi-
lingual benchmarks to reflect the linguistic diver-
sity of healthcare in the Arab world. Human-in-
the-loop evaluations with domain experts will be a
key priority to ensure clinical reliability. Through
these efforts, AraHealthQA seeks to catalyze sus-
tained research at the intersection of Arabic NLP,
healthcare, and AI for social good.

7 Limitations and Ethical Considerations

While this shared task provides an important step
toward advancing Arabic NLP for healthcare ap-
plications, several limitations should be acknowl-
edged. First, the datasets used in both tracks are
constrained in size compared to English counter-
parts, which may restrict model generalizability
and lead to overfitting. Furthermore, the focus on
Arabic mental health and medical texts, though
novel, does not yet capture the full diversity of di-

alects, socio-cultural contexts, or clinical domains
within the Arabic-speaking world. This highlights
the need for larger, more representative, and multi-
dialectal datasets in future iterations.

From an ethical perspective, the sensitive na-
ture of healthcare and mental health data raises
significant concerns. Although the MentalQA and
MedArabiQ datasets were curated from publicly
available or anonymized sources, there remains a
risk of models generating misleading, unsafe, or
culturally inappropriate responses. Deploying such
systems in real-world clinical or mental health set-
tings without rigorous human oversight could result
in harm to patients. Therefore, outputs from par-
ticipating systems should be regarded strictly as
research artifacts rather than clinical advice.

We also recognize the ethical imperative of en-
suring inclusivity and fairness. Biases present in
training data may propagate into model predictions,
potentially amplifying stigma or misrepresenting
vulnerable groups. To mitigate these risks, future
efforts should include robust bias evaluation, col-
laboration with domain experts, and incorporation
of human-in-the-loop approaches. By doing so, the
shared task can contribute not only to advancing
NLP research but also to supporting equitable and
responsible healthcare technologies.
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Abstract

Recent progress in large language models
(LLMs) has showcased impressive proficiency
in numerous Arabic natural language process-
ing (NLP) applications. Nevertheless, their ef-
fectiveness in Arabic medical NLP domains has
received limited investigation. This research
examines the degree to which state-of-the-art
LLMs demonstrate and articulate healthcare
knowledge in Arabic, assessing their capabil-
ities across a varied array of Arabic medical
tasks. We benchmark several LLMs using a
medical dataset proposed in the Arabic NLP
AraHealthQA challenge in MedArabiQ2025
track. Various base LLMs were assessed on
their ability to accurately provide correct an-
swers from existing choices in multiple-choice
questions (MCQs) and fill-in-the-blank scenar-
ios. Additionally, we evaluated the capacity
of LLMs in answering open-ended questions
aligned with expert answers. Our results reveal
significant variations in correct answer predic-
tion accuracy and low variations in semantic
alignment of generated answers, highlighting
both the potential and limitations of current
LLMs in Arabic clinical contexts. Our anal-
ysis shows that for MCQs task, the proposed
majority voting solution, leveraging three base
models (Gemini Flash 2.5, Gemini Pro 2.5, and
GPT o3), outperforms others, achieving up to
77% accuracy and securing first place overall
in the challenge1 (Alhuzali et al., 2025). More-
over, for the open-ended questions task, several
LLMs were able to demonstrate excellent per-
formance in terms of semantic alignment and
achieve a maximum BERTScore of 86.44%.

1 Introduction

Medicine relies heavily on complex reasoning,
spanning tasks from diagnostic decision-making
to treatment planning, especially when patient out-
comes depend on understanding multi-factorial

1https://www.codabench.org/competitions/8967/
#/results-tab

conditions (Qiu et al., 2024; Huang et al., 2025).
Differential diagnosis involves generating and nar-
rowing down possible diagnoses using clinical evi-
dence, requiring both extensive medical knowledge
and logical reasoning to evaluate multiple hypothe-
ses.

LLMs have demonstrated superior performance
across various domains and applications, such as
article debiasing (Kuo et al., 2025), content moder-
ation (AlDahoul et al., 2024b), and political leaning
detection (AlDahoul et al., 2024a). In the health-
care domain, LLMs are reshaping the landscape of
healthcare by transforming the way consultations,
diagnoses, and treatment plans are delivered (Yang
et al., 2023). They offer new avenues for improving
patient education through dynamic, conversational
interactions, thereby enhancing both accessibility
and patient autonomy. Beyond direct patient care,
LLMs also show promise in supporting medical
training and streamlining administrative responsi-
bilities, including the generation of clinical notes,
referral letters, and discharge summaries (Yang
et al., 2023).

Most existing benchmarks focus on English,
leaving a gap in evaluating Arabic LLMs for health-
care due to the lack of high-quality clinical datasets,
Arabic’s linguistic diversity, and the limited perfor-
mance of multilingual models in domain-specific
tasks (Daoud et al., 2025). To fill these gaps,
there is an increasing demand for frameworks that
evaluate LLM performance in clinical tasks for
Arabic-speaking communities. Our analyses and
experiments center around the following research
questions: RQ1: Do state-of-the-art proprietary
base LLMs perform well in Arabic medical tasks?
RQ2: To what extent do state-of-the-art proprietary
base LLMs with reasoning capacity excel in Arabic
medical tasks? RQ3: Do open-source-based Ara-
bic LLMs perform well in Arabic medical tasks?
and RQ4: How does majority voting among sev-
eral LLMs enhance performance in Arabic medical
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tasks?
We address RQ1 by running the APIs of several

LLMs, such as Claude Opus, Grok 3, Deepseek v3,
Llama 4 Maverick, GPT-4o-mini, and GPT-4o. To
answer RQ2, we utilized APIs of state-of-the-art
LLMs with reasoning capabilities such as GPT-o3,
Gemini Flash 2.5, and Gemini Pro 2.5. Moreover,
to address RQ3, we ran Falcon 3, Fanar, and Al-
lam. Additionally, to answer RQ4, we calculated
the majority vote among the predictions of three
LLMs.

2 Related Work

BioBERT (Lee et al., 2020), SCIBERT (Belt-
agy et al., 2019), and PubMedBERT (Gu et al.,
2021) improved biomedical NLP by training on
domain-specific corpora, thereby outperforming
the general BERT model (Yang et al., 2023).
Building on this, ClinicalBERT (Alsentzer et al.,
2019) enhanced performance on medical tasks
by fine-tuning BERT and BioBERT using the
MIMIC-III clinical dataset. Expanding further,
GatorTrona (Yang et al., 2022). significantly larger
model trained from scratch on extensive clinical
and biomedical text—demonstrated strong results
across a wide range of clinical NLP tasks (Yang
et al., 2023).

Various benchmarks have been developed to
evaluate LLMs’ proficiency in medical reasoning
and knowledge (Huang et al., 2025; Zuo et al.,
2025). However, significant challenges persist,
ranging from ethical and safety concerns to the
risk of biased outputs and inconsistent perfor-
mance across different languages and cultural set-
tings (Yang et al., 2023; Nazi and Peng, 2024;
Daoud et al., 2025).

To advance medical LLMs, researchers have in-
creasingly focused on creating multilingual med-
ical datasets (Qiu et al., 2024). They introduced
MMedC, a 25.5-billion-token multilingual medi-
cal corpus, and MMedBench, a multilingual QA
benchmark with rationales. By fine-tuning Llama
3 (8B), they found it outperformed all other open-
source models and approached GPT-4 performance.
However, Arabic was not one of the languages in-
cluded (Qiu et al., 2024).

Arabic medical benchmarks are limited and
mostly focused on question-answering tasks.
While resources like MMLU (Hendrycks et al.,
2020), AraSTEM (Mustapha et al., 2024), and
AraMed (Alasmari et al., 2024) offer valuable con-

tributions, they do not fully cover the breadth of
Arabic medical tasks, highlighting the need for
more comprehensive benchmarking efforts. The
previous issue was addressed by the MedArabiQ
benchmark (Daoud et al., 2025).

3 Materials and Methods

3.1 Dataset Overview
The medical data used in this work is the main
dataset utilized in the AraHealthQA shared task in
the MedArabiQ2025 track (Alhuzali et al., 2025)
under one of the Arabic NLP challenges. It fo-
cuses on modern standard Arabic (MSA) and con-
sists of 700 diverse clinical samples, covering
both structured medical knowledge assessments
and real-world patient-doctor interactions (Daoud
et al., 2025; Alhuzali et al., 2025). The dataset has
multiple-choice and open-ended questions that are
distributed as follows:

• a random set of 100 multiple-choice questions
to evaluate the models’ medical understand-
ing.

• a set of 100 multiple-choice questions with
bias injected to evaluate how LLMs handle
ethical or culturally sensitive scenarios.

• a set of 100 fill-in-the-blank questions with
choices to evaluate the model’s ability to rec-
ognize correct answers, reducing the reliance
on generative capabilities.

• a set of 100 fill-in-the-blank questions with-
out choices to assess LLMs’ reasoning and
generation capabilities.

• a set of 100 patient-doctor Q&As selected
from AraMed (Alasmari et al., 2024) to eval-
uate LLMs with online real-world scenarios
from medical discussion forums.

• a 100 Q&As with grammatical error correc-
tion to handle inflectional patterns and prepare
the dataset for grammatical correction.

• a 100 Q&As with LLM Modifications to mit-
igate potential model memorization and to
assess the model’s reasoning and adaptability.

The previous 700 examples were used for evalu-
ation of LLMs. Later, another set of 200 examples
(100 MCQs and 100 open-ended questions) was
released for testing the LLMs’ reasoning and un-
derstanding.
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3.2 Methods
We have evaluated state-of-the-art base LLMs to
identify the best in terms of correct answer match
accuracy in MCQs task and alignment score of gen-
erated answers in open-ended questions task. This
LLM can understand the questions, identify the
correct answers utilizing its embedded knowledge
and reasoning capability, and generate the answers
that align with those of experts.

We started assessing several proprietary base
LLMs for the MCQs task to evaluate the accuracy
of the match between real and predicted answers.
We used LLMs’ APIs in the inference mode utiliz-
ing two different zero-shot prompts specialized for
the MCQs task (Prompt 1 and Prompt 2) shown
in the Appendix. The evaluated LLMs are: Gem-
ini Flash 2.5, Gemini Pro 2.52 (Team et al., 2023),
GPT-4o-mini3, GPT-4o (Hurst et al., 2024), GPT
o34, Grok 35, Claude 3 Opus6, Deepseek v3 (Liu
et al., 2024), and Llama 4 Maverick7.

Later, we selected the two LLMs that have
shown high performance in the MCQs task: Gem-
ini Flash 2.5 and Gemini Pro 2.5 and utilized them
in the open-ended question task. We also demon-
strated the performance of small-sized LLMs such
as GPT-4o-mini in this task. We utilized three dif-
ferent prompts specialized for open-ended tasks
(Prompt 1, Prompt 2, and Prompt 3) which are also
shown in the Appendix.

Additionally, open-source-based Arabic LLMs
such as Falcon3 (Almazrouei et al., 2023)
(“tiiuae/Falcon3-7B-Instruct”)8,9, Fanar (Team
et al., 2025) (“QCRI/Fanar-1-9B-Instruct”)10, and
Allam (Bari et al., 2024)(“ALLaM-AI/ALLaM-7B-
Instruct-preview”)11 were assessed for both tasks.

2https://blog.google/
technology/google-deepmind/
gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking

3https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/

4https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf

5https://x.ai/news/grok-3
6https://www-cdn.anthropic.com/

de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf

7https://ai.meta.com/blog/
llama-4-multimodal-intelligence/

8https://huggingface.co/blog/falcon3
9https://huggingface.co/tiiuae/

Falcon3-7B-Instruct
10https://huggingface.co/QCRI/

Fanar-1-9B-Instruct
11https://huggingface.co/ALLaM-AI/

We applied zero-shot prompting across all mod-
els and tasks, setting the temperature to 0 and top_p
to 1 for all tasks to ensure deterministic responses.
For the open-ended question task, BERTScore was
used as an evaluation metric to measure align-
ment between generated and expert answers. For
this purpose, we used the "XLM-RoBERTa-Large
model" (Daoud et al., 2025), which was trained on
multiple languages, including Arabic.

We also evaluated Arabic Falcon12. Since there
is no API available for Arabic Falcon, we used the
web interface to manually input questions into the
chat version. We retained the history of previous
questions to avoid clearing the context before each
new query.

3.3 Results and Discussion
The results of the MCQs task using the proprietary
LLMs are shown in Table 1. The dataset has MCQs
related to understanding and reasoning. While un-
derstanding involves factual knowledge, reasoning
mimics how doctors make decisions.

The medical reasoning capacity of GPT-o3,
Gemini Flash 2.5, and Gemini Pro 2.5 makes
them have superior performance compared to other
LLMs. These simulate diagnostic thinking by com-
bining multiple facts and using step-by-step reason-
ing to eliminate plausible but incorrect distractors
in medical MCQs, which answers RQ2.

Model Prompt Accuracy%
GPT-4o-mini 1 49
GPT-4o 1 57
GPT-O3 1 72
Gemini Flash 2.5 1 73
Gemini Pro 2.5 1 75
GPT-O3 2 74
Gemini Flash 2.5 2 74
Gemini Pro 2.5 2 76
Majority voting 2 77
Grok 3 2 60
Claude 3 Opus 2 49
Falcon Arabic 2 38
Deepseek v3 2 56
Llama 4 Maverick 2 63

Table 1: Accuracy of different proprietary base LLMs
using different prompts.

Even though Claude 3, Deepseek 3, Grok 3, and

ALLaM-7B-Instruct-preview
12https://falcon-lm.github.io/blog/

falcon-arabic/
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Llama 4 Maverick possess strong reasoning capa-
bilities, they exhibit modest performance on this
task, likely due to limited medical knowledge or
insufficient proficiency in Arabic, which addresses
RQ1 and RQ2. However, Llama 4 Maverick was
the best among them in terms of accuracy (63%).

For sensitivity of prompt construction, we found
that Prompt 2, which includes step-by-step or chain-
of-thought reasoning, is generally better than sim-
ple Prompt 1 when it comes to answering medical
MCQs.

The significant finding in this work is that cur-
rent state-of-the-art proprietary LLMs exhibit lim-
itations in their embedded medical knowledge of
various Arabic medical tasks (maximum accuracy
is 76% in Gemini Pro 2.5). The source of errors in
the MCQ task may stem from misunderstanding of
questions, lack of medical knowledge, or lack of
medical reasoning capabilities.

To benefit from the capacity of each of three
LLMs (GPT-O3, Gemini Flash 2.5, and Gemini Pro
2.5) in MCQs task, we applied a majority voting
technique using the predictions from these LLMs,
resulting in a final accuracy of 77%, which secured
first place overall in the challenge, which answers
RQ4.

The results of the open-ended questions task us-
ing proprietary LLMs are shown in Table 2. The
dataset has questions labeled with answers. The
LLMs should generate answers that are semanti-
cally aligned with reference answers.

Our finding indicates that reasoning LLMs such
as Gemini Flash 2.5 and Gemini Pro 2.5 have struc-
tured answers that reduce hallucination and over-
confidence, as the models are less likely to guess
and more likely to justify their answers. As a re-
sult, their responses often align more closely with
reference answers and perform better on semantic
evaluation metrics like BERTScore, which answers
RQ2. Furthermore, GPT-4o-mini shows good per-
formance in terms of BERTScore.

Additionally, the three LLMs showed high sensi-
tivity to prompts with variances in BERTScores.
The maximum BERTScores were achieved by
Prompt 3 that asked the LLMs to have modern
standard Arabic in response, emphasized medically
correct answers, and asked for concise answers that
are not diluted with explanations, which usually
tend to align more closely with reference answers.

Table 3 shows the accuracy and BERTScore of
several open-source base Arabic LLMs. Among

Model Prompt BERTScore
Gemini Pro 2.5 1 0.8105

Gemini Flash 2.5 2 0.8364
GPT-4o-mini 2 0.8386
GPT-4o-mini 3 0.8581

Gemini Flash 2.5 3 0.8633
Gemini Pro 2.5 3 0.8644

Table 2: BERTScore of proprietary base LLMs us-
ing different prompts.

the models, Allam demonstrates relatively better
performance (39%) in MCQs task, while Falcon
3 gave the best BERTScore (0.8493). This experi-
ment indicates a lack of medical knowledge and/or
medical reasoning in the base open-source Ara-
bic LLMs compared to proprietary ones, which
addresses RQ3.

Model Task Accuracy %
Falcon 3 Task 1 36

Fanar Task 1 31
Allam Task 1 39
Model Task BERTScore

Falcon 3 Task 2 0.8493
Fanar Task 2 0.8403
Allam Task 2 0.8431

Table 3: Accuracy and BERTScore of different base
Arabic LLMs.

Limitations

The first limitation is that multiple-choice and fill-
in-the-blank with choice questions in the MedAra-
biQ2025 dataset are limited to only a few hundred
examples. There is a clear need for larger, high-
quality Arabic medical datasets to fine-tune LLMs
and enhance their performance. Alternatively, stor-
ing extensive medical data in a vector database and
employing retrieval-augmented generation (RAG)
techniques could help retrieve more accurate and
contextually relevant answers.

A second limitation of this work is the absence of
bias detection and mitigation techniques during the
preprocessing of questions before inputting them
to LLMs. Incorporating such techniques could play
a significant role in improving model performance
and ensuring more reliable outputs.

The third limitation is that for open-ended and
fill-in-the-blank questions without choices, we lack
a robust metric for capturing semantic similarity.
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In this work, we utilized BERTScore, which often
yields similar values across different responses and
fails to reflect subtle nuances in semantic alignment
with the correct answers.
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A Appendix

A.1 Prompts used

This work employed different prompts for the two
tasks: the orange-colored prompts were used for
Task 1 (MCQs), while the red, green, and blue
prompts were used for Task 2 (open-ended ques-
tions).

Open-ended questions’ Prompt 1

You are a knowledgeable and concise medi-
cal expert. Provide a high-quality answer to
the following open-ended medical question.
Your response should:
Begin with a direct, evidence-based answer.
Elaborate on the mechanisms, relevant
anatomy or physiology, and clinical signifi-
cance.
Use clear, professional medical language.
Question:
[Insert your medical question here]

Open-ended questions’ Prompt 2

You are a knowledgeable and concise medi-
cal expert. Provide a high-quality answer to
the following open-ended medical question.
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Open-ended questions’ Prompt 3

You are a knowledgeable and concise medi-
cal expert.
Your task is to generate a concise, accu-
rate, and medically correct answer in Modern
Standard Arabic.
Do not include explanations—just provide
the best possible answer based on your
knowledge.
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Abstract

This paper details the system developed by
team MedLingua for the MedArabiQ2025
Shared Task, specifically participating in Track
2, Sub-Task 1: Multiple Choice Question An-
swering. Our approach centered on evaluating
the zero-shot and few-shot capabilities of vari-
ous Large Language Models (LLMs) on Arabic
medical questions, as fine-tuning was not per-
mitted. We systematically tested a range of
models, from general-purpose state-of-the-art
LLMs like Google’s Gemini 2.5 Pro to spe-
cialized medical models such as BiMediX2
and MedGemma. Our findings reveal that ad-
vanced, general-domain models significantly
outperform specialized medical LLMs that are
not optimized for Arabic. Our best performing
system, using Gemini 2.5 Pro, achieved an ac-
curacy of 78% in the development set and 74%
on the blind test set, securing the 3rd place on
the official competition leaderboard.

1 Introduction

The MedArabiQ2025 shared task addresses the crit-
ical need for robust natural language understand-
ing systems in the Arabic medical domain (Abu
Daoud et al., 2025). Our team, MedLingua, par-
ticipated in Track 2, Sub-Task 1, which focuses
on Multiple Choice Question Answering (MCQA).
This task is vital for developing clinical decision
support systems and educational tools tailored to
Arabic-speaking healthcare professionals and stu-
dents. The primary challenge lies in the complexity
of medical language and the relative scarcity of
high-quality Arabic medical datasets and models
compared to English. Given the constraint that
participants could not fine-tune models on the pro-
vided data, our core strategy was to leverage the
in-context learning abilities of existing LLMs. We
employed both zero-shot and few-shot prompting
techniques to guide various models toward the cor-
rect answer.

Our key finding was the pronounced perfor-
mance gap between large, multilingual general-
purpose models and the available specialized medi-
cal LLMs. The former demonstrated superior un-
derstanding of the Arabic questions, while many
of the latter struggled with the language or failed
to adhere to the task’s constraints. Our best sys-
tem achieved 74% accuracy on the blind test set,
demonstrating the effectiveness of modern LLMs
in this zero-resource fine-tuning scenario. To en-
sure reproducibility and facilitate future research
in Arabic medical question answering, we make all
experimental code publicly available on GitHub 1.

2 Background and Related Work

Question answering in the medical domain is
a well-established research area (Pampari et al.,
2018). However, most work, including the devel-
opment of specialized models like Palmyra-Med
Writer Engineering team (2024) and Med-PaLM
(Singhal et al., 2023), has been overwhelmingly
focused on English. While models like BiMediX2
(Mullappilly et al., 2024) have emerged to address
the bilingual (Arabic-English) need, the field is
still nascent. The MedArabiQ benchmark (Abu
Daoud et al., 2025) is a crucial step in spurring
research in this area. Our work contributes by pro-
viding a comprehensive evaluation of how current
SOTA generalist and specialist LLMs perform on
this new Arabic benchmark without task-specific
fine-tuning.

3 Data

3.1 Shared Task Data

The MedArabiQ2025 MCQA sub-task is framed as
a classification problem where the system receives
a question in Arabic and must return the single

1https://github.com/astral-fate/
AraHealthQA-2025-MedArabiQA
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Figure 1: Overview of the system architecture for Arabic Medical QA.

letter corresponding to the correct answer from a
list of choices (Alhuzali et al., 2025).

The organizers provided three distinct datasets
for model development and validation, each con-
taining 100 questions. The questions were sourced
from medical exams and categorized into 12 medi-
cal specialties.

3.2 Validation Dataset
The validation data was split into three types, which
we used for iterative testing and model selection:

• Multiple Choice Questions (MCQ): A stan-
dard set of multiple-choice questions.

• Multiple Choice Questions with Bias (MCQ
w/ Bias): Questions designed with misleading
phrasing to test model robustness.

• Fill-in-the-Blank (FITB) with Choices:
Questions presented in a fill-in-the-blank for-
mat.

3.3 Test Dataset
The final evaluation was performed on a blind test
set containing 100 questions. This dataset was a
combination of all three question types from the
validation set and was used to determine the final
competition rankings.

4 Methodology

Our approach for Arabic medical question answer-
ing (QA) leverages in-context learning through var-

ious Large Language Models (LLMs), given the
constraint against fine-tuning. The system architec-
ture, designed to process Arabic medical multiple-
choice questions (MCQs), is detailed in Figure 1.

4.1 Prompt Engineering and System
Architecture

Our methodology centered on carefully structured
prompt engineering to guide LLMs in a zero-shot
or few-shot setting. The architecture can be broken
down into five key stages:

1. Input Data: The process begins with loading
Arabic medical MCQs from a CSV file.

2. Prompt Engineering: A full prompt is dy-
namically constructed by combining a sys-
tem prompt, few-shot examples (if applica-
ble), and the current question.

3. LLM Inference: The prompt is sent to an
LLM for processing.

4. Hierarchical Response Parsing: The
model’s response is parsed using a multi-step
process to extract the final answer.

5. Final Output: The extracted Arabic letter is
saved to an output CSV for evaluation.

4.2 Chain-of-Thought (CoT) and Few-Shot
Prompting

A key component of our strategy was the use of
Chain-of-Thought (CoT) prompting.
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Prompt Type Prompt Structure

Few-Shot(e.g., MedGemma, Qwen) SYSTEM_PROMPT + FEW_SHOT_EXAMPLES + USER_QUESTION

Zero-Shot (e.g., BioMistral) SYSTEM_PROMPT + USER_QUESTION

Table 1: Comparison of prompt structures for few-shot and zero-shot learning.

We instructed models to first perform a step-by-
step reasoning process within a <thinking> block
before providing the final answer. An example of
the Chain-of-Thought (CoT) prompt structure used
for few-shot learning is provided in Appendix B
(Table 4).

4.3 Zero-Shot vs. Few-Shot Strategies
Our approach involved testing both few-shot and
zero-shot prompting strategies to determine the
most effective method for each model. The funda-
mental difference in these approaches lies in the
inclusion of examples within the prompt, as illus-
trated in Table 1.

4.3.1 The Case of BioMistral: When
Few-Shots Fail

A notable example was BioMistral (Labrak et al.,
2024). When provided with few-shot examples
in Arabic, its output became nonsensical, gener-
ating repetitive, meaningless Arabic words. How-
ever, when we switched to a zero-shot approach
(removing the examples), its behavior changed dra-
matically. Although it did not produce reasoning
in Arabic, it performed the reasoning correctly in
English and concluded with the correct Final An-
swer: format. This highlights that for some models,
few-shot examples can confuse rather than guide.

4.4 Model Selection and Implementation
We experimented with two main categories of mod-
els:

1. General-Purpose LLMs: Models like
Google’s Gemini 2.5 Pro, Mixtral, Llama 3,
and Qwen (Qwen Team, 2025), accessed via
APIs (DeepMind AI Studio 2, NVIDIA NIM
inference microservices API3, Groq 4.)

2. Specialized Medical LLMs: Models
like BiMediX2 (Mullappilly et al., 2024),
MedGemma (Sellergren et al., 2025), BioMis-
tral (Labrak et al., 2024), OpenBioLLM (Pal

2https://aistudio.google.com/
3https://build.nvidia.com/models/
4https://console.groq.com/

and Sankarasubbu, 2024), and Palmyra-Med
Writer Engineering team (2024),

General-purpose LLMs (Gemini, Qwen, etc.)
were accessed via APIs from DeepMind, NVIDIA,
and Groq. For specialized models, MedGemma,
BioMistral, and OpenBioLLM were accessed via
Hugging Face; Palmyra-Med via the NVIDIA NIM
API; and BiMediX2 was run locally on a Google
Colab Pro+ A100 GPU.

5 Results

Our experiments revealed a striking performance
gap, with large, general-purpose LLMs consistently
outperforming specialized medical models on Ara-
bic medical question answering. Our final submis-
sion, using Gemini 2.5 Pro, achieved 74% accu-
racy on the blind test set, securing the 3rd place
on the official competition leaderboard. Table 3
shows the performance of all 11 models we evalu-
ated on the final blind test set.

For a more granular error analysis of the 100-
question blind test set, the manual categorization
of each question into 12 medical specialties was
performed by co-author Dr. Mumina Abukar,
MD, MScPH. This allowed us to precisely iden-
tify model weaknesses. Analysis of the categorized
test set revealed that certain medical domains were
universally more difficult for the models. The de-
tailed error distribution by medical category and
the accuracy versus execution time analysis are
presented in Appendix A (see Figures 2a and 2b).

The primary sources of errors remained consis-
tent with our development set findings: incorrect
medical reasoning and output formatting failures.

5.1 Error Distribution on the Test Set
Table 2 details the error counts for the five highest-
scoring models across the five most challenging
medical categories, identified by the highest total
number of errors across all tested models. Physiol-
ogy emerged as the most difficult category, where
even top models struggled. Notably, Gemini 2.5
Pro demonstrated the most robust performance, reg-
istering the lowest error count in three of the five
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Category Gemini MedGemma Colosseum Palmyra-Med Llama3 70B

Physiology 6 13 12 11 14
Ophthalmology 4 7 5 9 9
Oncology 4 6 7 6 5
Biochemistry 4 4 5 5 6
Neurosurgery 1 4 6 6 7

Table 2: Focused Error Analysis: Error counts for the top 5 performing models in the 5 most error-prone medical
categories on the blind test set.

Model Test Accuracy

Gemini 2.5 Pro 74%
Qwen 67%
MedGemma 53%
Colosseum 51%
Palmyra-Med 49%
Llama3 70B 45%
BiMediX2 37%
Mixtral 21%
OpenBioLLM 21%
Biomistral 19%
DeepSeek 17%

Table 3: Performance of all evaluated models on the
Blind Test set. Our final submission used Gemini 2.5
Pro.

most challenging categories: Neurosurgery (1 er-
ror), and tying for the lowest in Oncology (4 errors)
and Biochemistry (4 errors). This highlights its
strong reasoning capabilities even in complex do-
mains.

6 Discussion

The pronounced performance gap between large,
generalist LLMs and their specialized medical
counterparts on the blind test set is the key finding
of this work. The superior performance of models
like Gemini 2.5 Pro (74%) and Qwen (67%), can
be attributed to their advanced multilingual capa-
bilities and vast general knowledge. These features
appear to compensate for the lack of specific medi-
cal fine-tuning, especially when handling nuanced
Arabic medical questions.

Our detailed error analysis of the test set rein-
forces this conclusion. The annotation of the test
set questions into 12 medical specialties was man-
ually performed by co-author Dr. Mumina Abukar,
MD, MScPH, leveraging her expertise in the medi-
cal field. During this process, it became apparent
that some questions, particularly those related to
study design and data collection, did not fit pre-

cisely within the original 12 medical categories
in Appendix I (Table 13) shows examples of such
questions, which were categorized as "Physiology"
in the original dataset but are better described as
"Research Methodology". This potential mismatch
could impact the fine-grained error analysis; how-
ever, for consistency with the original dataset struc-
ture, we adhered to the provided 12 categories for
our evaluation.

The specialized models were largely hindered by
a "language barrier." For instance, MedGemma’s
relatively high error rate in Physiology (13 errors,
as shown in Table 2) suggests its specialized train-
ing did not effectively transfer to the Arabic context.
This necessitated a translation-based approach for
English-centric models like Palmyra-Med, which
introduces potential information loss and likely lim-
ited their performance. BiMediX2, the only dedi-
cated bilingual model tested, showed promise but
was not competitive with the scale and reasoning
power of top-tier generalist models on this task.

This outcome underscores a critical considera-
tion for applying LLMs in specialized, non-English
domains: strong foundational language understand-
ing is a prerequisite for effective domain-specific
reasoning. The test set results clearly show that
Gemini’s robust grasp of Arabic allowed it to ap-
ply its reasoning capabilities more effectively than
models that were technically more specialized in
medicine but weaker in the target language.

7 Conclusion

This work evaluated zero-shot and few-shot
prompting strategies for Arabic medical ques-
tion answering using general-purpose and special-
ized medical large language models. Our best-
performing system achieved 74% accuracy on the
MedArabiQ2025 blind test set using Gemini 2.5
Pro, securing the 3rd place on the official competi-
tion leaderboard.
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Results demonstrate that advanced general-
purpose models significantly outperformed special-
ized medical LLMs due to superior multilingual ca-
pabilities compensating for lack of domain-specific
training.

Key limitations include language barriers hinder-
ing specialized models and potential dataset cate-
gorization inconsistencies. Future research should
prioritize developing medical LLMs specifically
trained on high-quality, large-scale Arabic medical
corpora to bridge the identified performance gap
between general and specialized models.
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A Test Set Analysis: Error Distribution
and Performance

B Example Prompt Structure

Table 4 illustrates the detailed Chain-of-Thought
(CoT) prompt structure that was a key component
of our methodology for the few-shot experiments,
as referenced in Section B.

C Full Error Distribution on the Blind
Test Set

Table 5 provides a comprehensive breakdown of
the errors made by each of the 11 models evaluated
on the blind test set. The questions were manually
classified into 12 distinct medical specialties to
facilitate this granular analysis.

D Summary of Model Performance on
Development Datasets

This appendix provides a consolidated view of the
performance of all evaluated models across the
three distinct development datasets: Fill-in-the-
Blank (FITB), standard Multiple Choice Question
(MCQ), and MCQ with Bias. Table 6 summarizes
the development accuracy for each model, high-
lighting the variance in performance depending on
the question format and the presence of intention-
ally misleading phrasing.
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(a) Errors by medical category.

(b) Accuracy vs. Execution Time.

Figure 2: A comparison of error distribution and performance on the blind test set.

E Analysis of the Fill-in-the-Blank (FITB)
Task

This appendix presents a detailed Exploratory Data
Analysis (EDA) of model performance on the "Fill-
in-the-Blank with Choices" dataset. We analyze the
overall accuracy, error distribution across medical
specialties, and the relationship between model
performance and inference time.

E.1 Model Performance Overview
The experiments revealed a wide range of perfor-
mance. A clear hierarchy emerged, with a distinct
group of high-performing models separating from
the rest. Gemini achieved the highest accuracy

at 84.0%, establishing itself as the top performer
on this task. It was followed by a competitive tier
including MedGemma (81.0%), DeepSeek 70B
(78.0%), and Colosseum (75.0%). Conversely, sev-
eral specialized models like BioMistral (15.0%)
and OpenBioLLM (34.0%) struggled significantly.
Table 7 summarizes the final accuracy and execu-
tion times for each model.

E.2 Error Analysis by Medical Category

To understand model weaknesses, we analyzed the
distribution of errors across medical categories.
The results show that certain domains were uni-
versally more difficult. The five categories with
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Component Example Content

System
Prompt

You are an expert medical profes-
sional... Your task is to solve a
multiple-choice question in Arabic.
First, you will engage in a step-by-
step thinking process in a <thinking>
block... Second, after your reasoning,
you MUST provide the final answer
on a new line in the format: Final
Answer: [The single Arabic
letter]

User Ques-
tion Exam-
ple

H. AJ.�
	�B@ �éËAg ú


	̄ . . . �HA 	«@Q 	®Ë @


CÓ@

. . . ú
æ.
	Jm.Ì'@

Ideal As-
sistant
Response
(with CoT)

<thinking>
	á« È@ 
ñ�Ë@ È



A��
 : È@ 
ñ�Ë@ ÉJ
Êm�

�' .1
	àA 	®k. QË @ H. AJ


	« ð


@ 	�A 	®	m� 	' @ �éËBX

Õ» @Q�K .


@ : �H@PAJ
	mÌ'@ Õæ
J


�®�K .2 . . . �ú
æ�ÒÊË @
: h. A�J 	J

���B@ .3 . . . �Hñ�Ë@ È 	Q« ;É
K@ñ�Ë@
É
K@ñ�Ë@ Õ» @Q�K 	à



@ ñë �é�̄ X Q��»



B@ PAJ
	mÌ'@

. . . �Hñ�Ë@ È 	Q« I. �.��
 AÓ ñë
</thinking>
Final Answer: 


@

Table 4: Illustration of the Chain-of-Thought (CoT) prompt structure used in our few-shot experiments.

the highest total error counts were OBGYN, Pul-
monology, Cardiovascular System, Gastroen-
terology, and Neurology. This suggests the ques-
tions in these fields may contain more complex
terminology or require more nuanced clinical rea-
soning. Table 8 details the error counts for the
top-performing models in these challenging cate-
gories.

E.3 Accuracy vs. Execution Time Analysis
The relationship between inference time and accu-
racy provides critical insights into model efficiency,
as illustrated in the quadrant analysis in Figure 3c.
We observe distinct performance archetypes:

1. High Accuracy, Fast: Gemini is the clear
standout, occupying the top-left quadrant with
the highest accuracy (84%) and a fast execu-
tion time. DeepSeek 70B (78%), Colosseum
(75%) and Palmyra-Med (66%) also demon-
strate strong efficiency.

2. High Accuracy, Slow: MedGemma resides
in this category, achieving a high accuracy of
81% but requiring the longest execution time.

3. Low Accuracy, Slow: BioMistral is a no-

table example here, combining the lowest ac-
curacy (15%) with a long execution time.

This analysis indicates that while more processing
time can be beneficial, model architecture and opti-
mization are paramount for achieving both speed
and accuracy.

F Analysis of the Multiple Choice w/ Bias
Task

This appendix presents a detailed Exploratory Data
Analysis (EDA) of model performance on the "Mul-
tiple Choice with Bias" dataset. The objective is
to identify which models were most resilient to
the introduced bias and to pinpoint the medical
categories where models struggled the most.

F.1 Model Performance Overview

The introduction of biased phrasing created a clear
performance hierarchy among the models. Gemini
2.5 Pro demonstrated exceptional resilience to bias,
achieving a top score of 75.0% and clearly separat-
ing itself from the other models. It was followed
by Qwen (CoT), which also performed robustly
with an accuracy of 68.0%. A competitive middle
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Model’s Name Fill in the Blank (Dev Acc) Multiple Choice Question (Dev Acc) Multiple Choice w/ Bias (Dev Acc)

Gemini 2.5 Pro 84% 78% 75%
qwen/qwen2-32b 83% 70% 68%
google/medgemma-27b-it 81% 55% 53%
deepseek-r1-distill-llama-70b (CoT) 78% 62% 53%
colosseum_355b_instruct_16k 75% 50% 45%
llama-3.3-70b-versatile 66% 57% 40%
palmyra-med-70b / 32k 66% 55% 35%
BiMediX2 52% 25% 31%
mixtral-8x22b-instruct-v2 40% 30% 19%
OpenBioLLM 34% 24% 18%
BioMistral 15% 19% 23%

Table 6: Comprehensive development accuracy results across the three development datasets.

Model Accuracy (%) Total Errors Time (mins)

Gemini 2.5 Pro 84.00 16 50.00
MedGemma 81.00 19 176.07
DeepSeek 70B 78.00 22 25.00
Colosseum 75.00 25 14.72
Llama3 70B 69.00 31 27.20
Llama3 70B 66.00 34 27.33
Palmyra-Med 66.00 34 13.95
BiMediX2 52.00 48 10.07
Mixtral 40.00 60 15.90
OpenBioLLM 34.00 66 10.78
BioMistral 15.00 85 47.77

Table 7: Final performance summary for the Fill-in-the-
Blank task.

model_name Gemini 2.5 Pro MedGemma DeepSeek 70B Colosseum Llama3 70B
Category

OBGYN 2 4 4 5 10
Pulmonology 4 5 5 5 9
Cardiovascular System 3 1 4 2 9
Gastroenterology 2 1 2 4 8
Neurology 1 3 1 2 7

Table 8: Error counts for top models in the five most
challenging categories on the FITB task.

tier emerged, led by DeepSeek 70B (Groq) and
MedGemma (Local), which tied at 53.0%.

F.2 Error Analysis by Medical Category

The five categories with the highest total error
counts were Embryology, Histology, Physiology,
Biochemistry, and Microbiology. This suggests
that questions in these foundational science fields
may be harder to answer correctly when potentially
misleading information is present. The heatmap in
Figure 4b shows that Gemini 2.5 Pro had the fewest
errors in four of these five most difficult categories.

F.3 Accuracy vs. Execution Time Analysis

The quadrant analysis in Figure 4c highlights sig-
nificant differences in efficiency. Gemini 2.5 Pro is
the clear standout, occupying the "High Accuracy,
Fast" quadrant and demonstrating the best balance
of speed and performance. Qwen (CoT) falls into

the "High Accuracy, Slow" category, delivering
strong results but at a significant time cost. The
remaining models form a cluster of lower-accuracy
options, with DeepSeek 70B (Groq) offering the
best performance among the faster, less accurate
models.

Model Accuracy (%) Total Errors Time (mins)

Gemini 2.5 Pro 75.00 25 4.00
Qwen (CoT) 68.00 32 81.68
DeepSeek 70B (Groq) 53.00 47 15.82
MedGemma (Local) 53.00 47 180.00
Colosseum 45.00 55 13.60
Llama3 70B (CoT) 40.00 60 20.25
Palmyra-Med 35.00 65 10.77
BiMediX2 (vLLM) 31.00 69 0.53
BioMistral (Fallback) 23.00 77 41.75
Mixtral 19.00 81 14.47
OpenBioLLM 8B (Local) 18.00 82 10.37

Table 9: Final performance summary for the MCQ with
Bias task, based on the updated data.

model_name Gemini 2.5 Pro Qwen (CoT) DeepSeek 70B (Groq) MedGemma (Local) Colosseum
Category

Embryology 2 5 8 7 8
Histology 1 5 8 6 9
Physiology 3 6 7 9 9
Biochemistry 3 3 4 6 7
Microbiology 1 2 3 3 1

Table 10: Updated error counts for the new top 5 models
in the five most challenging categories on the biased
dataset.

G Analysis of the Multiple Choice
Question (MCQ) Task

This appendix provides a detailed EDA of model
performance on the standard "Multiple Choice
Question" dataset. We examine the overall accu-
racy, error distribution, and the trade-offs between
accuracy and processing time.

G.1 Model Performance Overview

The standard MCQ task revealed a clear perfor-
mance hierarchy. Gemini 2.5 Pro established it-
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self as the top-performing model with an impres-
sive accuracy of 78%. It was followed by a tier
of other strong models including Qwen (70%),
DeepSeek (62%), Llama3 70B (57%), and both
Palmyra-Med (55%) and MedGemma (55%). In
contrast, some specialized models like Biomistral
(19%) and OpenBioLLM (24%) struggled signifi-
cantly.

G.2 Error Analysis by Medical Category

Some medical specialties were consistently more
challenging for all models. The five categories
accumulating the most errors were Physiology,
Histology, Embryology, Biochemistry, and Mi-
crobiology. This indicates that questions in these
foundational medical sciences likely require more
complex reasoning or contain more specialized
terminology. The error distribution for the top-
performing models in these categories is detailed
in Table 12.

G.3 Accuracy vs. Execution Time Analysis

The quadrant analysis of accuracy versus execution
time in Figure 5c reveals four distinct performance
profiles:

1. High Accuracy / Fast: This quadrant is led
by the top performer, Gemini. Other strong
models like Qwen, DeepSeek, Llama3 70B,
and Palmyra-Med also fit here, offering high
accuracy with efficient processing times.

2. High Accuracy / Slow: MedGemma stands
alone in this category, achieving a respectable
accuracy of 55% but requiring significantly
more computational time (over 160 minutes).

3. Low Accuracy / Fast: Models like Mixtral,
BiMediX2, and OpenBioLLM delivered re-
sults quickly but with lower accuracy scores.

4. Low Accuracy / Slow: Biomistral was the
least efficient, combining low accuracy with a
relatively slow execution time.

H Challenges in Manual Test Set
Annotation

As mentioned in the Discussion, the manual cate-
gorization of the blind test set revealed that some
questions did not align well with the provided 12
medical specialty categories. Table 13 lists five
questions originally classified as "Physiology" that

Model Accuracy (%) Total Errors Time (mins)

Gemini 2.5 Pro 78.00 22 5.00
Qwen 70.00 30 40.00
DeepSeek 62.00 38 24.00
Llama3 70B 57.00 43 18.00
MedGemma 55.00 45 165.00
Palmyra-Med 55.00 45 8.00
Colosseum 50.00 50 24.00
Mixtral 30.00 70 2.00
BiMediX2 25.00 75 4.00
OpenBioLLM 24.00 76 12.00
Biomistral 19.00 81 33.00

Table 11: Final performance summary for the MCQ
task. Total errors are based on a dataset size of 100
questions.

Category Gemini Qwen DeepSeek Llama3 70B Palmyra-Med

Physiology 4 5 7 8 7
Histology 1 4 3 8 5
Embryology 1 2 8 8 7
Biochemistry 3 3 3 5 6
Microbiology 1 4 3 2 6

Table 12: Error counts for the top 5 models in the five
most challenging categories on the MCQ task.

co-author Dr. Mumina Abukar, MD, MScPH, lever-
aging her expertise in the medical field, identified
as belonging to "Research Methodology." This
highlights a potential area for refinement in fu-
ture iterations of the benchmark to ensure that the
categories accurately reflect the question content,
thereby improving the validity of category-based
error analyses.

I Challenges in Manual Test Set
Annotation

As mentioned in the Discussion, the manual cate-
gorization of the blind test set revealed that some
questions did not align well with the provided 12
medical specialty categories. Table 13 lists five
questions originally classified as "Physiology" that
co-author Dr. Mumina Abukar, MD, MScPH, lever-
aging her expertise in the medical field, identified
as belonging to "Research Methodology." This
highlights a potential area for refinement in fu-
ture iterations of the benchmark to ensure that the
categories accurately reflect the question content,
thereby improving the validity of category-based
error analyses.
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Table 13: Examples of questions from the blind test set with proposed category corrections. These questions were
originally categorized under Physiology.
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(a) Errors by medical category.

(b) Error heatmap for top models.

(c) Accuracy vs. Execution Time.

Figure 3: Detailed performance analysis for the Fill-in-the-Blank (FITB) task.
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(a) Errors by medical category, based on the updated model performance.

(b) Error heatmap for the new top 5 models.

(c) Accuracy vs. Execution Time, including Gemini.

Figure 4: Detailed performance analysis for the Multiple Choice with Bias (MCQ w/ Bias) task using the latest data.
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(a) Errors by medical category.

(b) Error heatmap for top models.

(c) Accuracy vs. Execution Time.

Figure 5: Detailed performance analysis for the standard Multiple Choice Question (MCQ) task.
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Abstract

This paper details the system developed by
team Sakinah-AI for the MentalQA 2025
shared task, focusing on Arabic mental health
question classification. We compare few-shot
learning with Large Language Models against
fine-tuning of BERT-based models (CAMeL-
BERT and AraBERTv2). Few-shot learn-
ing with Palmyra-Med-70B achieved the high-
est weighted F1-score of 0.605, followed by
hyperparameter-optimized CAMeL-BERT at
0.597. Notably, 5-fold ensemble methods
proved detrimental to performance. Our re-
sults demonstrate that for low-resource special-
ized domains, both few-shot learning and opti-
mized fine-tuning of appropriate base models
outperform ensemble strategies. To ensure re-
producibility all experimental code and final
fine-tuned models are made publicly available.

1 Introduction

Arabic mental health NLP faces unique challenges
due to limited annotated data and the linguistic
complexity of user-generated content on mental
health platforms. To address these challenges, we
participated in the MentalQA 2025 shared task
(Alhuzali et al., 2024), conducting a systematic
comparison of three paradigms for Arabic mental
health question classification: few-shot learning
with large language models, optimized fine-tuning,
and ensemble methods.

Our comparative study reveals critical insights
for low-resource specialized domains. Few-
shot learning with Palmyra-Med-70B (Kamble
and Alshikh, 2023) achieved optimal perfor-
mance (0.605 weighted F1-score), closely fol-
lowed by hyperparameter-optimized CAMeL-
BERT (0.597). Notably, CAMeL-BERT signifi-
cantly outperformed AraBERTv2 (0.543), while
k-fold ensemble methods proved detrimental to
both models’ performance. These findings chal-
lenge conventional wisdom that ensemble methods

universally improve classification accuracy.
The results demonstrate that for small, special-

ized datasets, strategic model selection and opti-
mization outweigh complex ensembling strategies.
Domain-specific pre-training (Palmyra-Med) and
careful hyperparameter tuning emerge as more ef-
fective approaches than aggregating multiple weak
learners. To ensure reproducibility and facilitate
future research, we provide open access to all ex-
perimental code and fine-tuned models via GitHub1

and Hugging Face2.

2 Background and Related Work

2.1 Task Overview and Dataset
The MentalQA 2025 shared task (Alhuzali et al.,
2025) focuses on multi-label classification of Ara-
bic mental health questions into seven categories:
Diagnosis, Treatment, Anatomy/Physiology, Epi-
demiology, Healthy Lifestyle, Provider Choices,
and Other. We participated in Track 1, Sub-Task 1,
using a dataset of 500 annotated question-answer
pairs (300 training, 50 development, 150 test) from
Arabic mental health platforms characterized by
informal, dialect-rich language.

2.2 Arabic Mental Health NLP Evolution
Early foundational work by Alghamdi et al. (2020)
created the Arabic psychological forum corpus
"Nafsany" and compared lexicon-based approaches
against traditional machine learning models. Alas-
mari (2025) revealed a clear paradigm shift: pre-
2022 studies relied on traditional machine learning
and lexicon-based methods, while post-2022 re-
search shifted towards transformer-based models
like AraBERT (Antoun et al., 2020) and MAR-
BERT, which consistently outperform traditional
approaches.

1https://github.com/astral-fate/MentalQA2025/
2https://huggingface.co/

collections/FatimahEmadEldin/
sakinah-ai-at-mentalqa-689b2d707791cea458e97aaf
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Alhuzali and Alasmari (2025) conducted com-
prehensive evaluation of Arabic PLMs on the Men-
talQA dataset, demonstrating that fine-tuned MAR-
BERT achieved superior performance with Jaccard
scores of 0.80 for question classification and 0.86
for answer classification, while few-shot learning
with GPT-3.5 showed significant improvements
over zero-shot approaches. Recent LLM evalu-
ations by Zahran et al. (2025) across eight models
on diverse Arabic mental health datasets found that
prompt design is critical and few-shot techniques
consistently improve performance. Practical appli-
cations include the "MindWave" app by Bensalah
et al. (2024), which leverages AI for bilingual men-
tal health support.

2.3 Research Gaps and Contribution

Despite progress, gaps remain: limited compara-
tive studies between fine-tuning and few-shot ap-
proaches in Arabic mental health domains, insuf-
ficient evaluation of ensemble methods versus op-
timized single models in low-resource settings,
and lack of systematic analysis comparing domain-
specific versus general-purpose LLMs. Our work
addresses these gaps by providing direct compar-
ative evaluation between fine-tuning BERT-based
models (CAMeL-BERT and AraBERTv2) and few-
shot learning with large language models, system-
atically evaluating ensemble strategies against opti-
mized single models in the low-resource MentalQA
2025 shared task setting.

3 Methodology

3.1 System Overview

Our system comprises two parallel pipelines for
multi-label Arabic mental health question classifi-
cation: Fine-Tuning and Few-Shot Learning (Fig-
ure 1). This design enables direct comparison be-
tween traditional supervised learning and contem-
porary in-context learning paradigms.

3.2 Fine-Tuning Pipeline

3.2.1 Base Model Selection
We selected two Arabic BERT variants with com-
plementary strengths:

CAMeL-BERT-DA-Sentiment (Inoue et al.,
2021): A specialized variant fine-tuned for sen-
timent analysis on Arabic dialectal text. We hy-
pothesized its exposure to user-generated content
would benefit processing informal mental health
questions.

AraBERTv2 (Antoun et al., 2020): A widely-
adopted baseline model for Arabic NLP tasks, pro-
viding robust comparison benchmarks.

3.2.2 Training Strategies

Optimized Single Models: We employed Optuna
framework for automated hyperparameter optimiza-
tion, systematically exploring learning rates (le-5
to 5e-5), batch sizes (8, 16), and epochs (10-20) to
identify optimal configurations. The final hyper-
parameters used for the CAMEL-BERT model are
detailed in Appendix B (Table 5).

K-Fold Ensembles: We trained five models us-
ing stratified cross-validation and averaged their
predictions. This approach tests whether model
diversity improves performance in low-resource
settings.

3.2.3 Model Selection Rationale

We selected models to test three factors: domain
specialization, architecture, and scale. Palmyra-
Med-70B (Kamble and Alshikh, 2023) provides
medical domain expertise. Mixtral-8x22B uses
mixture-of-experts architecture, while Qwen3-
235B represents dense transformers. Gpt-Oss-20B
tests the lower performance boundary (20B pa-
rameters), and Colosseum-355B tests the upper
boundary (355B parameters). This design isolates
whether domain knowledge, architectural differ-
ences, or parameter scaling most impacts Arabic
mental health classification. All models support
Arabic and are accessible via NVIDIA NIM API.

3.3 Few-Shot Learning Pipeline

3.3.1 Model Selection Rationale

We selected models testing domain specialization
(Palmyra-Med-70B), architecture (Mixtral-8x22B
mixture-of-experts vs. Qwen3-235B dense trans-
former), and scale boundaries (Gpt-Oss-20B at
20B, Colosseum-355B at 355B parameters). All
models support Arabic and are accessible via
NVIDIA NIM API.

3.3.2 Prompt Engineering

We constructed structured prompts with: (1) ex-
plicit multi-label task instructions, (2) Arabic cat-
egory definitions and examples, and (3) 3-5 di-
verse training exemplars. Models were explicitly
instructed to "select ALL applicable categories"
with multi-label demonstrations.
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Figure 1: The Sakinah-AI System Architecture, illustrating two parallel processing pipelines.

3.4 Experimental Design

Our study follows a controlled comparison frame-
work. For fine-tuning, we used 300 training sam-
ples with 50-sample development sets for hyper-
parameter optimization. For ensembles, we com-
bined training and development sets (350 sam-
ples) for 5-fold cross-validation. Few-shot exper-
iments used 3-5 training examples as in-context
demonstrations. This design enables fair compar-
ison across paradigms while addressing the low-
resource constraints typical of specialized Arabic
NLP domains.

4 Experimental Setup

4.1 Comparative Analysis Framework

We conduct a systematic comparison of three
paradigms for Arabic mental health question classi-
fication: optimized fine-tuning, few-shot learning,
and ensemble methods. This controlled evaluation
addresses a critical research question: which ap-
proach performs best in low-resource specialized
domains where traditional assumptions about en-
semble superiority may not hold.

4.2 Data Configuration

The 500-sample dataset was partitioned into 300
training, 50 development, and 150 test samples.
While this small size presents overfitting risks typi-
cal of specialized domains, we implement several
mitigation strategies:

Fine-Tuning Protocol: Training set for model
optimization, development set for hyperparameter

selection, with early stopping based on develop-
ment performance.

Ensemble Strategy: Combined train-
ing/development sets (350 samples) for stratified
5-fold cross-validation to maximize training data
while maintaining validation integrity.

Few-Shot Design: Minimal training exposure
(3-5 examples) inherently reduces overfitting risk
while testing generalization from limited demon-
strations. All final evaluations use the held-out test
set to ensure unbiased performance estimates.

4.3 Evaluation Metrics

The primary evaluation metric is the weighted
F1-score, which accounts for label imbalance
(Sokolova and Lapalme, 2009). We additionally
consider the Jaccard Score for multi-label evalua-
tion (Manning et al., 2008).

Weighted F1-Score For a set of labels L, the
weighted F1-score is calculated as:

Weighted F1 =
∑

l∈L
wl · F1l (1)

where wl represents the proportion of instances of
label l in the dataset, and F1l denotes the F1-score
for that label, calculated as:

F1l = 2 · Precisionl · Recalll
Precisionl + Recalll

(2)

Jaccard Score For individual predictions, where
Ytrue represents the set of true labels and Ypred rep-
resents the set of predicted labels, the Jaccard score
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is:

J(Ytrue, Ypred) =
|Ytrue ∩ Ypred|
|Ytrue ∪ Ypred|

(3)

The overall score represents the average Jaccard
score across all samples.

5 Results

Our evaluation, conducted on the blind test set, re-
veals a distinct performance hierarchy among the
different modeling paradigms. As shown in Table 1,
the few-shot approach with a domain-specific LLM
(Palmyra-Med-70B) achieved the highest weighted
F1-score of 0.605. Closely following was the sin-
gle, hyperparameter-optimized fine-tuned model,
CAMeL-BERT (Opt.), with a score of 0.597. These
top performers significantly outpaced all other mod-
els, particularly the ensemble variants, which con-
sistently underperformed their single-model coun-
terparts.

5.1 Error Analysis and Performance Patterns
To better understand these results, we conducted
a detailed error analysis for both fine-tuned and
few-shot models. A comprehensive quantitative
and qualitative breakdown of model performance
is available in Appendix C.

5.1.1 Fine-Tuned Model Analysis
As detailed in Table 2, the optimized CAMeL-
BERT model maintains the lowest error counts
across most categories, confirming its robustness.
In contrast, the AraBERTv2 ensemble suffered
a catastrophic performance collapse, with error
counts surging in categories like Anatomy and
Physiology (140 errors), Other (147 errors), and
Provider Choices (122 errors). This pattern sug-
gests that for smaller, specialized datasets, ensem-
bling can amplify systematic model biases rather
than mitigate variance, leading to degraded perfor-
mance.

5.1.2 LLM Performance and Multi-Label
Challenges

The error analysis for LLMs (Table 3) shows that
Palmyra-Med-70B maintained a more balanced er-
ror profile compared to other models, which strug-
gled significantly in high-support categories like
Diagnosis and Treatment. A critical qualitative
finding was the LLMs’ systematic failure to adhere
to multi-label instructions. Our prompt engineering
(detailed in Appendix A Table 4) was specifically
designed to prevent this by including: (1) explicit

instructions to "perform precise multi-label classifi-
cation" and "select ALL applicable categories," (2)
clear examples of multi-label outputs (e.g., "Final
Answer: A,D"), and (3) a structured format. De-
spite these safeguards, all tested LLMs frequently
defaulted to predicting only a single label, even for
questions where multiple categories were clearly
relevant. This suggests a fundamental limitation in
current instruction-following capabilities for com-
plex classification tasks, possibly stemming from
strong priors developed during pre-training on pre-
dominantly single-output tasks. This limitation
likely suppressed the overall performance of all
LLMs in our study.

5.2 Key Insights from Comparative Analysis

Domain Expertise vs. General Capability. The
superior performance of Palmyra-Med-70B (0.605)
over the much larger, general-purpose Qwen3-
235B (0.325) highlights the profound value of
domain-specific pre-training. Palmyra-Med’s fo-
cused medical knowledge provided a decisive ad-
vantage in correctly interpreting the nuanced lan-
guage of mental health questions, demonstrating
that for specialized tasks, domain expertise can be
more critical than model scale alone.

The Failure of Ensemble Methods. The con-
sistent underperformance of k-fold ensembles chal-
lenges the conventional wisdom that they univer-
sally improve model robustness. For CAMeL-
BERT, the ensemble F1-score (0.537) was notably
lower than the optimized single model (0.597). The
degradation was even more severe for AraBERTv2
(0.328 vs. 0.543). This outcome suggests that in
low-resource settings, where individual models are
trained on limited and potentially noisy data, they
may develop high bias. In such cases, ensembling
methods like averaging predictions can amplify
these shared systematic errors rather than reducing
variance, ultimately harming overall performance.

6 Discussion

Our results yield several key insights for special-
ized, low-resource domains. The superior perfor-
mance of Palmyra-Med-70B (0.605) and optimized
CAMEL-BERT (0.597) demonstrates that domain-
specific pre-training and strategic single-model op-
timization are more effective than ensembling for
Arabic mental health question classification. The
consistent failure of our k-fold ensembles chal-
lenges the conventional wisdom that they univer-
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Fine-Tuning

Model Name Weighted F1-Score

CAMeL-BERT (Optimized) 0.597
AraBERTv2 (Optimized) 0.543
CAMeL-BERT (K-Fold Ensemble) 0.537
AraBERTv2 (K-Fold Ensemble) 0.328

(a) Fine-Tuning Models

Few-Shot Learning

Model Name Weighted F1-Score

Palmyra-Med-70B 0.605
Mixtral-8X22B 0.563
Qwen3-235B 0.325
Gpt-Oss-20B 0.147
Colosseum-355B 0.014

(b) Few-Shot Learning Models

Table 1: Final results on the test set, comparing fine-tuned models against few-shot learning with LLMs. Optimized
single models and domain-specific LLMs demonstrate superior performance.

Category CAMeL-BERT AraBERTv2

Opt. Ens. Opt. Ens.

Anatomy 31 18 11 140
Diagnosis 55 71 53 65
Epidemiology 96 85 39 55
Lifestyle 57 102 44 38
Other 3 52 3 147
Provider 31 76 6 122
Treatment 66 66 63 85

Table 2: Error counts per category for all fine-tuned
models. Lower values indicate better performance. Er-
rors are calculated as Support × (1 - Recall).
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Anatomy 20 17 10 12 10
Diagnosis 49 52 67 74 84
Epidemiology 49 42 37 40 35
Lifestyle 36 38 39 39 37
Other 3 5 5 3 3
Provider 11 9 6 7 6
Treatment 50 49 66 81 85

Table 3: Error counts per category for few-shot LLMs.
Lower values indicate better performance.

sally reduce errors. From a bias-variance perspec-
tive, ensembles are most effective at reducing vari-
ance by averaging the uncorrelated errors of diverse
base learners. However, in low-resource settings
with a small and specialized dataset, this core as-
sumption is violated. The models trained on dif-
ferent folds of the data are not sufficiently diverse;
instead, they learn similar systematic biases from
the limited data. Consequently, the ensemble av-
erages and reinforces these shared biases rather
than canceling out random errors, leading to a no-
table degradation in performance, as seen with both
CAMEL-BERT and AraBERTv2. While this study
operated within the constraints of the provided

dataset, future work could address these data limi-
tations through several mitigation strategies. Data
augmentation techniques, such as back-translation
or contextual synonym replacement tailored to Ara-
bic dialects, could create novel training instances.
Furthermore, semi-supervised learning approaches
could be employed to leverage vast amounts of un-
labeled, in-domain text. By training a model on
the existing labeled data and using it to generate
pseudo-labels for unlabeled data, the training set
could be effectively and cheaply expanded. A fi-
nal significant finding was the LLMs’ systematic
failure to adhere to multi-label instructions despite
explicit prompting, highlighting fundamental lim-
itations in current instruction-following capabili-
ties.

7 Conclusion

This paper presented the Sakinah-Al system for
the MentalQA 2025 shared task, comparing few-
shot learning, optimized fine-tuning, and ensemble
methods for Arabic mental health question classifi-
cation. Our results show that a domain-specific
LLM, Palmyra-Med-70B, achieved the highest
weighted F1-score (0.605), closely followed by
an optimized CAMEL-BERT model (0.597). No-
tably, ensemble methods were detrimental to per-
formance in this low-resource setting. The primary
limitations of our study include the LLMs’ diffi-
culties with multi-label adherence and the small
size of the training dataset. Furthermore. Future
assessments must incorporate crucial dimensions
such as clinical relevance and safety considerations
to prevent harmful or inaccurate outputs. Moreover,
focusing on model interpretability will be essential
to build trust and utility for clinicians and end-users.
Future work should explore advanced prompt en-
gineering and data augmentation techniques while
embedding these human-centered principles into
the evaluation process.
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A Few-Shots examples

The prompt used for all Large Language Model
(LLM) evaluations was engineered to facilitate pre-
cise multi-label classification for Arabic mental
health questions. As detailed in Table 4, the prompt
architecture consists of four key components: a sys-
tem prompt establishing an expert persona, a com-
plete list of all seven categories with definitions,
two diverse few-shot examples demonstrating the
reasoning process and required multi-label output
format (e.g., "Final Answer: A,D"), and a final
task instruction for the target question. This struc-
ture was explicitly designed to guide the models in
selecting all applicable categories and to counter-
act the observed tendency of LLMs to default to
single-label outputs.

B Fine-Tuning Hyperparameters

The fine-tuning of the CAMeL’s
bert-base-arabic-camelbert-mix-sentiment
model was conducted using the hyperparameters
detailed in Table 5. These settings were configured
using the Hugging Face Transformers library.

C Detailed Performance Analysis

This appendix provides a detailed quantitative and
qualitative analysis of the top-performing models,
based on the output from the error analysis script.

C.1 Quantitative Performance Summary
The table below summarizes the key performance
metrics for the selected models. Palmyra-Med-70B
demonstrates the best overall performance, closely
followed by the optimized single model, CAMEL-
BERT. The AraBERTv2-Ensemble model shows a
significant degradation in performance across all
metrics.

C.2 Per-Category F1-Score Matrix
To understand model performance on a more gran-
ular level, the following matrix presents the F1-
score for each of the seven classification categories.
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Component Content

System Prompt You are an expert in classifying Arabic patient questions
into mental health categories. Perform precise multi-
label classification.

Category List (A) Diagnosis: Interpreting symptoms.
(B) Treatment: Seeking therapies or medications.
(C) Anatomy and Physiology: Basic medical knowl-
edge.
(D) Epidemiology: Course, prognosis, causes of dis-
eases.
(E) Healthy Lifestyle: Diet, exercise, mood control.
(F) Provider Choices: Recommendations for doctors.
(Z) Other: Does not fit other categories.

Example 1 Question:
�éK
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Reasoning: The user is asking if their fear (a symptom)
is normal and is concerned about its future course (prog-
nosis). This fits ’Diagnosis’ (interpreting a symptom)
and ’Epidemiology’ (prognosis).
Final Answer: A,D

Example 2 Question:
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Reasoning: The user describes self-harm and suicidal
thoughts and is asking how to get rid of this habit. This
is a clear call for ’Treatment’ (seeking therapy/help) and
relates to ’Healthy Lifestyle’ (self-help, mood control).
Final Answer: B,E

Task Classify the following question. Provide your reasoning
and then the final answer.
Question: {Target Question}
Reasoning:
Final Answer:

Table 4: Structure and content of the few-shot prompt used for LLM inference.
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Hyperparameter Value

Model & Tokenizer

Base Model CAMeL-BERT (mix-sentiment)

Max Sequence Length 256

Training Arguments

Epochs 15

Batch Size 8

Gradient Accum. Steps 2

Learning Rate 2e-5

Warmup Steps 100

Weight Decay 0.01

Optimizer AdamW

FP16 Precision True

Loss Function

Loss Type Focal Loss

Alpha (α) 1.0

Gamma (γ) 2.0

Table 5: Hyperparameters for the optimized fine-tuning of CAMeL-BERT.

Metric Palmyra-Med-70B CAMEL-BERT Opt AraBERTv2 Ens.

Exact Match Ratio 12.67% 11.33% 0.00%

Macro Jaccard Score 0.2623 0.2445 0.1115

Weighted F1-Score 0.60 0.59 0.26

Table 6: Overall performance metrics on the blind test set.

Both Palmyra-Med and CAMEL-BERT perform
strongly on high-support categories like Diagno-
sis (A) and Treatment (B), while the Ensemble
model fails completely on Treatment and Healthy
Lifestyle questions.

C.3 Error Analysis Matrix
The following examples from the test set illustrate
common failure modes for different models, high-
lighting the challenges of multi-label classification
and the pitfalls of ensembling in low-resource set-
tings.
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Category Palmyra-Med-70B CAMEL-BERT Opt AraBERTv2 Ens.

(A) Diagnosis 0.75 0.76 0.71

(B) Treatment 0.74 0.70 0.00

(C) Anatomy/Phys. 0.09 0.15 0.12

(D) Epidemiology 0.44 0.37 0.18

(E) Healthy Lifestyle 0.38 0.41 0.00

(F) Provider Choices 0.15 0.00 0.09

(Z) Other 0.00 0.00 0.04

Table 7: Per-category F1-scores for each model. Higher is better.

Error Type Question & Analysis Labels

Multi-Label Failure
(Palmyra-Med-70B)

Question:�é�®�JË @ ÐY« ,H. A
J�J»B@ ,I. �.� 	àðYK. 	à 	PñË@ 	à@Y�® 	̄ , 	à 	Qk, úk. A
	®Ó ZA¾K.

, �éJ

K @ñ¢	�B@ , Q�Kñ�JË @ , ��Ê�®Ë @ ,� 	® 	JË AK.

Analysis: The user lists numerous symptoms (’A’), is implicitly
asking for a solution (’B’), and is concerned about the course of the
illness (’D’). The model correctly identifies ’Diagnosis’ but fails to
capture the other required labels.

True: A, B, D
Predicted: A

Ensemble Hallucina-
tion
(AraBERTv2 Ensem-
ble)

Question:
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Analysis: A direct question about medication (’B’). The ensem-
ble model not only misses the correct label entirely but also hallucinates
four incorrect and irrelevant labels, demonstrating a catastrophic failure.

True: B
Predicted: A, C, F, Z

Domain Specializa-
tion
(CAMEL-BERT Opt)

Question:
@Qº �� 	àQ�� 
j	JÊK� É ���
@ éÖÞ� @ YK
Yg. Z @ðX 	á« �HAÓñÊªÓ YK
P



@ ZAg. P

Analysis: This is a clear request for information about a specific
treatment (’B’). The optimized CAMEL-BERT model, attuned to
user-generated dialectal content, correctly classifies this. The log shows
that the baseline AraBERT model failed to produce any prediction for
this item, highlighting the robustness of the optimized model.

True: B
Predicted: B

Table 8: Illustrative examples of misclassification cases from the test set.
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Abstract

This paper presents our submission to the Ara-
HealthQA 2025 shared task (Alhuzali et al.,
2025), Sub-task 3: Arabic Mental Health Ques-
tion Answering. We evaluated four large lan-
guage models—GPT-4o, Gemini, Allam, and
Qwen—using various prompting strategies. A
simple 3-shot prompt, instructing the model to
respond in Arabic, consistently outperformed
zero-shot, 5-shot, and more complex meth-
ods. GPT-4o achieved the best results, with
a BERTScore F1 of 0.670 on the official hid-
den test set, ranking 2nd overall. The system
required no fine-tuning or external data, relying
solely on prompt design and consistent evalua-
tion.

1 Introduction

Mental health disorders, such as obsessive-
compulsive disorder (OCD), depression, and sui-
cidal ideation, affect millions worldwide, signif-
icantly impairing well-being and daily function-
ing (World Health Organization, 2022). Early in-
tervention can enhance recovery, prevent severe
outcomes like self-harm, and reduce the broader
societal and economic burden (Patel et al., 2018).
Moreover, prioritizing mental health care helps
break stigma and encourages individuals to seek the
support they need. The AraHealthQA 2025 shared
task (Alhuzali et al., 2025) addresses the growing
demand for accessible and culturally appropriate
mental health resources for Arabic-speaking pop-
ulations. It highlights both the social importance
of providing trustworthy support and the technical
challenges posed by modeling Arabic psycholog-
ical discourse. The shared task comprises three
subtasks; our work focuses on Subtask 3: Question
Answering, which requires generating accurate, in-
formative, and empathetic answers to mental health
questions written in Arabic.

We experimented with four large language
models (LLMs)—GPT-4o (OpenAI, 2024), Gem-

ini (Team et al., 2023), Allam (Bari et al., 2024),
and Qwen (Qwen Team, 2024)—and explored mul-
tiple prompting strategies, including zero-shot, few-
shot, chain-of-thought (Wei et al., 2022), and self-
consistency (Wang et al., 2022). Prompt selec-
tion was conducted using Meta’s LLaMA-3-70B-
Instruct model (8192-token context) as an LLM-
as-a-judge, evaluated via BERTScore F1 (Zhang
et al., 2019). After iterative testing, we adopted a
3-shot prompting approach and selected GPT-4o as
our final submission model, based on its alignment
with expert-written answers.

Our system achieved 2nd place in the official
leaderboard with a BERTScore F1 of 0.670. Key
challenges during development included ensuring
clean and well-structured input data, enforcing con-
sistent and controlled answer formats, and handling
ambiguous or emotionally sensitive queries that re-
quire careful phrasing to avoid misinterpretation,
especially in a mental health context where psycho-
logical state and cultural background may influence
understanding.

The full code and evaluation scripts are
available at: https://github.com/njoudae/
AraHealthQA_2025_subtasck_3/tree/main.

2 Related Work

Recent years have seen significant progress in Ara-
bic NLP for mental health, although challenges like
limited data and cultural complexities still hinder
its development. (Alasmari, 2025) offers a scoping
review that outlines the current state of Arabic NLP
in mental health, covering methods from classical
machine learning models like SVM and Random
Forest to more advanced transformer models such
as AraBERT and MARBERT. The review notes a
strong focus on detecting depression and suicidal
tendencies, often leveraging social media data, and
sheds light on both the strengths and drawbacks
of existing techniques. While transformer models
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have delivered impressive results, the study em-
phasizes the lack of dataset variety and the urgent
need for culturally aware tools that accommodate
dialectal differences and address societal stigma in
Arabic-speaking regions.

Expanding on this groundwork, (Alhuzali and
Alasmari, 2025) carried out a practical assessment
of pre-trained language models (PLMs) for classify-
ing Arabic mental health Q&A using the MentalQA
dataset. They compared traditional machine learn-
ing techniques, Arabic PLMs like MARBERT and
CAMeLBERT, and prompt-based approaches using
GPT-3.5/4. Their findings revealed that PLMs sig-
nificantly outperformed older feature-based mod-
els, with MARBERT delivering the best results.
Interestingly, GPT-3.5 prompt-based methods ex-
celled in few-shot learning situations, showing
promise for applications in low-resource languages.
However, the study also highlighted a critical lim-
itation: the small size of the MentalQA dataset
(only 500 samples), which impacts how broadly
the findings can be applied.

Shifting the focus to real-world applica-
tions, (Bensalah et al., 2024) introduced Mind-
Wave, a bilingual Arabic–English mental health
support app. The system uses NLP and sentiment
analysis on both text and voice inputs to identify
signs of burnout and depression. To tackle the short-
age of Arabic sentiment datasets, the researchers
built a large parallel English–Arabic medical cor-
pus containing 945,000 sentences. They then fine-
tuned machine translation models to develop clas-
sifiers tailored to Arabic. Additionally, the study
compared various Arabic tokenization techniques,
offering useful insights into best practices. Unlike
previous efforts that focused mainly on classifica-
tion or Q&A tasks, MindWave showcases how NLP
tools can be seamlessly integrated into interactive
support platforms and communities.

Lastly, (Zahran et al., 2025) performed a wide-
ranging evaluation of large language models
(LLMs) in the context of Arabic mental health.
This study stands out as one of the first to deeply as-
sess how well LLMs function in this domain. The
authors pointed out both the benefits and risks of
LLMs: while these models can generate meaning-
ful and relevant responses, concerns about empathy,
cultural appropriateness, and safety persist. Com-
pared to more specialized PLMs, general-purpose
LLMs showed inconsistent reliability, reinforcing
the need for domain-specific adaptation and human
monitoring. Collectively, these studies highlight

the importance of building richer datasets, adopt-
ing multifaceted evaluation methods (beyond basic
accuracy scores like BERTScore), and developing
culturally sensitive NLP tools. Our research builds
on these findings by focusing on prompt-based eval-
uation within the AraHealthQA framework, tack-
ling both performance and ethical dimensions in
this underexplored area.

3 Task and Dataset Description

The AraHealthQA 2025 shared task (Alhuzali et al.,
2025) provides a benchmark dataset for evaluating
Arabic mental health question answering systems.
The dataset, MentalQA, was recently accepted in
IEEE ACCESS and consists of 500 annotated sam-
ples of real user-submitted psychological questions
and expert-written answers in Arabic (Alhuzali
et al., 2024).

Figure 1: Data samples from MentalQA.

We participated in Sub-task 3: Question Answer-
ing, which requires generating expert-level answers
to Arabic mental health questions. This task builds
on the earlier classification sub-tasks and aims to
develop systems capable of providing accurate and
useful responses. The official evaluation metric
used for Sub-task 3 is BERTScore (F1).

While recent studies have begun to explore Ara-
bic NLP for mental health, prior work has primarily
focused on resource creation, small-scale evalua-
tions, or application-level prototypes. Building on
these efforts, our contribution is to systematically
evaluate multiple large language models on the
AraHealthQA dataset and to analyze differences in
response quality and their alignment with expert-
written answers in the Arabic psychological do-
main.

4 System Description

Our system follows a structured prompt-based gen-
eration workflow using pre-trained large language
models (LLMs) without any fine-tuning. The pro-
cess which consists of four stages: (1) data prepa-
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ration, (2) prompt design, (3) model setup, and (4)
evaluation, was provided in Appendix Figure 2

4.1 Data Preparation
We used the AraHealthQA Subtask 3 dataset,
which contains 350 samples for training and devel-
opment, and 150 samples for testing. All samples
were kept in Arabic to preserve cultural and linguis-
tic nuances. The dataset was cleaned, and minor
inconsistencies were corrected to ensure reliability,
and example selection ensured topical diversity and
cultural appropriateness.

4.2 Prompt Design & Strategies
Prompts were designed using real question–answer
pairs from the dataset. We experimented with:

• Zero-shot

• Few-shot (3-shot, 5-shot)

• Chain-of-thought (CoT) (Wei et al., 2022)

• Self-consistency (Wang et al., 2022)

• Ensemble refinement

Zero-shot achieved a BERTScore F1 of 0.61, while
3-shot improved to 0.66. Self-consistency with 3-
shot produced stable results, but 5-shot and CoT
slightly degraded performance. Ensemble refine-
ment did not improve scores.

4.3 Model Setup
The final configuration fixed the 3-shot prompt for-
mat across all models. No external data beyond the
provided samples were used. Models included:

• GPT-4o (OpenAI, 2024)

• Gemini (Team et al., 2023)

• Allam (Bari et al., 2024)

• Qwen (Qwen Team, 2024)

Models were accessed via public APIs or Hugging
Face, and all runs used fixed seeds for reproducibil-
ity.

4.4 Evaluation
For each test question, a 3-shot prompt was
dynamically constructed. Model outputs were
compared against expert-written answers using
BERTScore F1 (Zhang et al., 2019). GPT-4o
achieved the highest balance between accuracy and

empathy, Gemini was empathetic but less precise,
Allam favored technical terminology, and Qwen
tended toward generic responses.

5 Experimental Setup

Data Split Usage
For Subtask 3, the organizers released 350 anno-
tated samples for training and development, and
150 samples as a hidden test set (Table 1). Each
entry contains: (1) the question, (2) the expert-
written answer, (3) the question type, and (4) the
answer strategy. Question types include diagno-
sis, treatment, epidemiology, and healthy lifestyle,
while answer strategies are informational, direct
guidance, and emotional support.

Table 1: MentalQA dataset distribution for Subtask 3.

Train/Dev Test Total

Samples 350 150 500

From the training split, we selected 10 represen-
tative question–answer pairs covering all question
types and answer strategies to construct prompting
examples. These examples were fixed and reused
across all prompting strategies to ensure fair com-
parisons. Final evaluation was conducted on the
entire hidden test set.

External Tools and Libraries
All models were used in their original form without
fine-tuning:

• GPT-4o and Gemini: accessed via their offi-
cial APIs (accessed on 20 July 2025).

• Allam and Qwen: accessed via Hugging Face
Inference API (accessed on 20 July 2025).

• LLaMA-3-70B-Instruct (Grattafiori et al.,
2024): accessed via Groq API (Groq, 2024)
for prompt evaluation (accessed on 20 July
2025).

Table 2 summarizes the full prompting configu-
rations used for each model.

Model Temp. Top-p Max tokens

GPT-4o 0.1 0.9 1024
Gemini 2.5 0.1 0.9 1024
ALLaM-7B 0.1 0.9 1024
Qwen2.5-7B 0.1 0.9 1024
LLaMA-3 70B 0.1 0.9 1024

Table 2: Prompting parameters used across models.
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Key libraries

• Hugging Face Hub version: 0.34.3

• BERTScore v0.3.11

• openai v0.28

• Google Generative AI version: 0.8.5

• Python 3.11.13

Evaluation Metric

We used BERTScore F1 (Zhang et al., 2019) with
the multilingual model to compare system outputs
against expert-written answers. Scores were com-
puted using the official bert_score implementa-
tion (v0.3.11) with default multilingual settings
for Arabic. This metric measures semantic simi-
larity between generated answers and references,
accounting for lexical and contextual matches.

Detailed results and prompt strategy that used
are shown in Appendix Figure 3

6 Results

Our final system, which used GPT-4o with 3-shot
prompting, achieved a BERTScore F1 of 0.67 on
the official test set and was ranked 2nd overall
in Sub-task 3 of the AraHealthQA 2025 shared
task (Alhuzali et al., 2025).

The full results of model comparisons and
prompting strategies are presented in Appendix
Table 4 and Table 3

Table 3: BERTScore F1 performance of different LLMs
on the official train set (3-shot prompting).

Model BERTScore F1

GPT-4o 0.6551
Allam 0.6316
Gemini 0.6210
Qwen 0.6131

Table 4: BERTScore F1 performance across different
prompting strategies, evaluated using LLaMA-3-70B-
Instruct.

Prompting Strategy BERTScore F1

Zero-shot 0.6100
3-shot 0.6600
3-shot + self-consistency 0.6600
Few-shot (5-shot) 0.6400
Chain-of-thought 0.6150
3-shot + ensemble refinement 0.6100

LLaMA-3-70B-Instruct was used only as a ref-
erence model to compare prompting strategies (Ta-
ble 4) and was not included in Table 3, since our
leaderboard submission relied on other models.

In the development phase, we conducted exten-
sive ablation studies to compare various prompting
strategies across multiple models. 3-shot prompt-
ing consistently outperformed zero-shot, 5-shot,
and more complex techniques such as chain-of-
thought reasoning, self-consistency, and ensem-
ble refinement. While chain-of-thought prompting
introduced more structured reasoning, it slightly
decreased performance on BERTScore metrics. In-
creasing to 5-shot did not yield additional benefit
and often produced redundant outputs. As a re-
sult, 3-shot prompting was selected for its superior
performance and simplicity.

In the development phase, we conducted exten-
sive ablation studies to compare various prompting
strategies across multiple models. 3-shot prompt-
ing consistently outperformed zero-shot, 5-shot,
and more complex techniques such as chain-of-
thought reasoning, self-consistency, and ensem-
ble refinement. While chain-of-thought prompting
introduced more structured reasoning, it slightly
decreased performance on BERTScore metrics. In-
creasing to 5-shot did not yield additional bene-
fits and often produced redundant outputs. As a
result, 3-shot prompting was selected for its su-
perior performance and simplicity. No major hal-
lucinations or foreign-language artifacts were ob-
served in the generated answers. Notably, the se-
lected model (GPT-4o) avoided making explicit di-
agnostic claims or recommending specific medical
treatments. Instead, the system provided general
guidance, informative responses, and help-seeking
suggestions — a desirable behavior for mental
health applications where only qualified profession-
als should deliver clinical diagnoses or therapeutic
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interventions. This aligns well with the task’s goal
of producing educational and supportive content
without overstepping ethical boundaries. All re-
ported results are based on the official submission.
No post-submission modifications or evaluations
were performed.

All reported results are based on the official sub-
mission. No post-submission modifications or eval-
uations were performed.

7 Limitations

The dataset is relatively limited in size, which re-
stricts the ability to generalize the findings. As
a result, there’s a need to expand the database in
the future. While the BERTScore F1 serves as a
useful metric for quantitative assessment, relying
solely on it falls short of capturing critical elements
such as empathy, safety, and cultural nuances. To
address this, we plan to implement a more holistic
set of evaluation standards moving forward. These
will encompass emotional factors, health relevance,
contextual appropriateness, harm prevention, and
risk awareness. We aim to combine the LLM-as-
a-Judge framework with human judgment to pro-
duce outcomes that are both more trustworthy and
grounded in real-world considerations.

8 Conclusion and future work

In this work, we presented a prompt-based question
answering system for Arabic mental health queries,
developed as part of the AraHealthQA 2025 shared
task. Our final system was built on GPT-4o using
3-shot prompting with carefully selected examples
from the training data. The system demonstrated
the ability to generate coherent, informative, and
non-diagnostic responses that were consistent with
the expert-written reference answers provided in
the dataset.

For future work, we plan to explore fine-tuning
Arabic LLMs on the full dataset to enhance con-
textual alignment, as well as investigate retrieval-
augmented generation (RAG) techniques to inte-
grate external knowledge sources and improve fac-
tual accuracy in complex queries. We also intend
to involve mental health professionals in the evalu-
ation process to assess the psychological appropri-
ateness and safety of model-generated answers.
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Abstract
Pre-trained language models (PLMs) show po-
tential for advancing mental health care, yet
their effectiveness in Arabic mental health con-
texts is underexplored. This study evaluates
PLMs on two multi-label classification tasks
from the AraHealthQA 2025 shared task Track
1: question categorization and answer strat-
egy classification. We systematically evalu-
ate several LLMs spanning Arabic-specialized,
multilingual, and general-purpose architectures
using zero-shot inference, with comparative
analysis revealing Qwen3-14B’s superior per-
formance. Our approach combines prompt-
based inference, label mapping, and strategi-
cally crafted Arabic prompts. Experiments on
350 training and 150 test samples demonstrate
competitive performance, securing 4th place
in both tasks (Question F1: 0.52, Answer F1:
0.76; Question Jaccard: 0.41, Answer Jaccard:
0.66). These findings reveal strengths and limi-
tations of current PLMs for detecting complex
intents in Arabic mental health contexts.

1 Introduction

Pre-Trained Language Models (PLMs) have trans-
formed many domains, including medicine (He
et al., 2023), yet research on their application to
mental health remains nascent. PLMs offer promis-
ing support for patients and tools for healthcare
providers, from conversational agents (Liu et al.,
2023; Brocki et al., 2023) to classifying user input
for therapeutic intervention (Sharma et al., 2023).
However, effective mental health PLMs must grasp
symptom nuances and subjectivity, a greater chal-
lenge for Arabic. Spoken by over 400 million peo-
ple, Arabic’s rich morphology, dialect diversity,
right-to-left script, and context-sensitive character
shapes complicate NLP (Guellil et al., 2021). De-
spite advances in other languages (Atapattu et al.,
2022; Kabir et al., 2022; Sun et al., 2021), Arabic
mental health NLP is underexplored, with limited
prior studies (Abdulsalam et al., 2024; Aldhafer

and Yakhlef, 2022; Al-Musallam and Al-Abdullatif,
2022; Al-Laith and Alenezi, 2021; El-Ramly et al.,
2021).
This paper reports our submission to AraHealthQA
2025 Track 1 (Alhuzali et al., 2025), which tar-
gets Arabic mental health discourse. We assess
zero-shot performance of large PLMs, particularly
Qwen3-14B, on multi-label Question Categoriza-
tion and Answer Strategy Classification. Rank-
ing 4th in both subtasks, our results show zero-
shot PLMs can approach fine-tuned models in low-
resource, culturally specific settings. This paper’s
main contributions are as follows:

• First prompt-based, zero-shot classification on
MentalQA 2025 without fine-tuning.

• Culturally adapted Arabic prompts for mental
health classification.

• Systematic evaluation demonstrating Qwen3-
14B’s competitive performance.

• Analysis of PLM strengths and limitations for
Arabic mental health contexts.

Implementation details are available at1.

2 Background

2.1 Task Description
ArahealthQA Track 1 is a shared task on Arabic
mental health question answering, consisting of:

• Sub-Task 1: Multi-label Question Categoriza-
tion2 —classifying questions into predefined
categories (Table 1 ).

• Sub-Task 2: Multi-label Answer Strategy
Classification3 — categorizing answers ac-
cording to predefined strategies (Table 1 ).

1https://github.com/AdibAFC/Quasar_
ArahealthQA-Track1-MentalQA

2https://www.codabench.org/competitions/8559/
3https://www.codabench.org/competitions/8730/
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# Q-Types # A-Types

A Diagnosis 1 Information
B Treatment 2 Direct Guidance
C Anatomy and Physiology 3 Emotional Support
D Epidemiology
E Healthy Lifestyle
F Provider Choices
Z Other

Table 1: Question (Q) and Answer (A) types.

2.2 Dataset
The shared task uses the MentalQA dataset (Al-
huzali et al., 2024), containing 500 annotated Ara-
bic Q&A posts (350 development, 150 test) special-
ized in mental health discourse. Table 2 illustrates
input-output examples.

Table 2: Sample input-output mapping with Arabic
question-answer and corresponding labels

2.3 Related Work
PLM development for English has progressed
rapidly with models like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and XLNet
(Yang et al., 2019). Despite Arabic being the fourth
most prevalent language online with over 400 mil-
lion speakers, few PLMs exist due to Arabic’s lin-
guistic complexity (Shaalan et al., 2019). Men-
tal health NLP research has primarily focused on
English, leaving Arabic question and answer clas-
sification underexplored. The recent MentalQA
dataset marks important progress, with reviews
emphasizing the need for specialized Arabic NLP
resources in mental health (Alasmari, 2025). Re-
cent efforts also include MedArabiQ, benchmark-
ing large language models on Arabic medical tasks
(Abu Daoud et al., 2025).
Recent developments in Arabic mental health NLP
have shown promising advances (Alhuzali and
Alasmari, 2025; Zahran et al., 2025), demonstrating
both the effectiveness of domain-specific adapta-
tions and the challenges of applying contemporary
LLMs to Arabic mental health discourse. Prac-
tical applications have emerged (Bensalah et al.,
2024), leveraging AI for multilingual mental health
support. Comprehensive reviews (Alasmari, 2025)

have systematically analyzed Arabic NLP applica-
tions in mental health, identifying key gaps and
research directions.
This work provides novel benchmarks and insights
for culturally aware, low-resource Arabic mental
health NLP applications through large-scale multi-
lingual PLMs and prompt-based adaptation.

3 System Overview

Our system evaluates multiple large language mod-
els for Arabic medical question classification us-
ing a unified zero-shot inference pipeline. We sys-
tematically compare six models, spanning Arabic-
specialized, multilingual, and general-purpose ar-
chitectures, to assess their effectiveness specifically
in mental health discourse classification.

3.1 Model Selection Rationale

We selected models based on three criteria: (1)
Arabic language capabilities, (2) architectural di-
versity (encoder-only vs decoder-only), and (3)
computational feasibility. The Qwen family was
chosen for demonstrated multilingual performance,
Llama3.1 for its broad adoption and Arabic sup-
port, DeepSeek for its reasoning capabilities, and
AraBERTv2 as the Arabic-specialized baseline.

3.2 Multi-Model Architecture Framework

Our evaluation framework accommodates di-
verse architectures, dividing them into genera-
tive (decoder-only) and classification (encoder-
only) models. The generative models include
Qwen3-14B4 (14.8B parameters), Qwen2.5-7B5,
and Qwen2-7B6, each with a 32K context length,
Llama3.1-8B — Meta’s instruction-tuned multi-
lingual model7, and DeepSeek R1-7B — a dis-
tilled model8 optimized for reasoning tasks. On the
classification side, we use AraBERTv2, an Arabic-
specialized BERT variant (aubmindlab/bert-base-
arabertv29). To handle large models, we apply
4-bit NF4 quantization, which reduces memory
usage by approximately 75% without compromis-
ing performance (Dettmers et al., 2021). Memory

4https://huggingface.co/Qwen/Qwen3-14B
5https://huggingface.co/unsloth/Qwen2.

5-7B-Instruct
6https://huggingface.co/Qwen/Qwen2-7B
7https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
8https://huggingface.co/deepseek-ai/

DeepSeek-R1-Distill-Qwen-7B
9https://huggingface.co/aubmindlab/

bert-base-arabertv2
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Table 3: Structured prompt templates for Arabic question classification (left) and answer classification (right).

optimization is further achieved through dynamic
GPU memory management, and the entire system
is implemented within the unified Hugging Face
ecosystem (further details are in Appendix A).

3.3 Methodology
Our approach ensures consistent evaluation proto-
cols across all models using task-specific Arabic
prompts designed for cross-model compatibility.
These prompts include structured category listings
and reasoning instructions, as summarized in Table
3. We apply model-specific adaptations such as
enabling thinking_mode=True in Qwen models
to facilitate structured reasoning, while other gen-
erative models use standard chat templates with
equivalent reasoning prompts. For BERT-based
models, classification heads are employed with
prompt-based input formatting. Outputs from all
models undergo a robust regex-based extraction
process capable of handling multilingual responses
effectively, as illustrated in Figure 1.

Figure 1: Regex-based pattern recognition process for
extracting categories from Arabic and English responses

3.4 System Pipeline and Algorithm
Our system employs a structured zero-shot clas-
sification pipeline supporting both generative and
classification models under a unified framework.
As illustrated in Figure 2, it uses task-specific Ara-
bic prompts with structured reasoning and model-
specific strategies like thinking mode to ensure

consistent classification of medical questions. Out-
puts are standardized through a robust regex-based
multi-pattern label extraction process, enabling di-
rect comparison among Arabic-specialized, mul-
tilingual, and general-purpose models within the
same system.

Figure 2: Zero-shot Arabic medical classification
pipeline supporting multiple LLM architectures with
unified prompt engineering and evaluation framework

3.5 Technical Challenges and Solutions

Achieving consistent Arabic understanding across
diverse architectures was a key challenge. Our
framework supports both encoder-only models like
AraBERTv2 and decoder-only generative models
such as Qwen, Llama, and DeepSeek, enabling
direct comparison. Dynamic prompt engineering
and modular regex-based output processing ensure
robustness across varied response formats and lan-
guages. Memory limitations were managed with
adaptive quantization—4-bit NF4 for large models
and standard precision for smaller ones. Evaluation
uses probabilistic thresholds and macro-averaged
F1 scores for standardized, fair assessment across
all models.

3.6 System Example

Detailed examples of model classifications for both
questions and answers are provided in Appendix B,
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Figures 5 and 6.

4 Experimental Setup

4.1 Data Usage and Implementation
The model is used in a zero-shot setting without
fine-tuning. Train_Dev.tsv (350 samples) was used
for evaluation with gold-standard labels, while
test.csv (150 samples) was used for blind inference.
Arabic questions were processed without prepro-
cessing to preserve semantic integrity. Prompts
were constructed in Arabic with explicit multi-
category classification instructions.

4.2 Evaluation Metrics
The model’s performance on the labeled
Train_Dev.tsv set was evaluated using the
Weighted F1-Score and Jaccard Similarity.

F1weighted =

∑n
i=1wi · 2·precisioni·recalliprecisioni+recalli∑n

i=1wi

Jaccard(Ti, Pi) =
|Ti ∩ Pi|
|Ti ∪ Pi|

where Ti and Pi are the ground-truth and predicted
label vectors for sample i, wi is the number of
true instances of class i, and n is the total number
of classes. Complete implementation details are
provided in Appendix A.

5 Results

5.1 Development Set Evaluation
We report performance of various LLMs on
both classification tasks using the labeled
Train_Dev.tsv dataset in zero-shot setting.

Model Question Class. Answer Class.

F1-Score Jaccard F1-Score Jaccard

Random Baseline 0.326 0.199 0.541 0.378
Majority Class 0.245 0.193 0.451 0.397
Weighted Random 0.386 0.250 0.587 0.432

Qwen3-14B 0.507 0.363 0.767 0.628
Qwen2.5-7B 0.504 0.356 0.693 0.529
Qwen2-7B 0.499 0.344 0.688 0.530
DeepSeek R1-7B 0.330 0.213 0.723 0.556
Llama3.1-8B 0.315 0.207 0.632 0.541
AraBERTv2 N/A N/A 0.466 0.563

5.2 Official Competition Results
Our best-performing system (Qwen3-14B)
achieved 4th place in both subtasks on the blind
test set (150 samples):

• Question Classification: Weighted F1-Score
= 0.52, Jaccard = 0.41

• Answer Classification: Weighted F1-Score =
0.76, Jaccard = 0.66

5.3 Comparative Analysis
Qwen3-14B consistently outperformed other mod-
els and baseline methods, with performance sub-
stantially exceeding random, weighted and major-
ity class baselines. Complete baseline analysis and
model comparisons are provided in Appendix C.

5.4 Error Analysis
Analysis of confusion matrices reveals key error
patterns: Question classification shows frequent
confusion between Diagnosis and Healthy Lifestyle
(89 cases), and between Treatment and Diagnosis
(111 cases). Answer classification shows signif-
icant confusion between Information vs. Direct
Guidance categories. Technical issues included
irregular formatting requiring robust regex post-
processing and occasional model refusal to classify
ambiguous content.

Technical Implementation Issues

• Irregular formatting requiring robust regex
post-processing

• Inconsistent Arabic/English label mixing in
model outputs

• Occasional model refusal to classify ambigu-
ous mental health content

The confusion matrices (Figures 3 and 4) illus-
trate these classification patterns, with diagonal
dominance indicating generally good performance
despite the identified challenges. Specific examples
of model output errors for both tasks are provided
in Appendix D

5.5 Cross-Architecture Analysis
Our systematic evaluation reveals distinct perfor-
mance patterns across model architectures:

Qwen Family Dominance: The Qwen mod-
els (Qwen3 > Qwen2.5 > Qwen2) demonstrate su-
perior Arabic comprehension, with Qwen3-14B
achieving the highest scores in both tasks. This sug-
gests that the Qwen architecture’s multilingual pre-
training particularly benefits Arabic mental health
discourse.

Model Size Effects: Larger models gener-
ally outperform smaller ones within the same

158



Figure 3: Question Classification Confusion Matrix

Figure 4: Answer Classification Confusion
Matrix

family, with Qwen3-14B (14B) outperforming
Qwen2.5-7B and Qwen2-7B in question classifica-
tion, though the gap is smaller for answer classifi-
cation.

Specialized vs General Models: The compari-
son between Arabic-specialized AraBERTv2 and
multilingual generative models reveals that recent
large multilingual models can match or exceed spe-
cialized models in domain-specific tasks.

6 Discussion

6.1 Model Architecture Insights

Our comparative analysis reveals several insights:
(1) The Qwen family’s superior performance sug-
gests that certain multilingual pre-training strate-
gies better capture Arabic linguistic nuances,
(2) Decoder-only models generally outperform
encoder-only models for these classification tasks,
and (3) Model size provides diminishing returns
within the same architecture family.

6.2 Arabic-Specific Challenges

The performance gap between models highlights
the continued challenges in Arabic NLP, where
models not specifically designed for Arabic under-
perform significantly (Llama3.1 vs Qwen3-14B:
0.315 vs 0.507 F1 for questions).

7 Conclusion

We presented a systematic evaluation of multiple
LLM architectures for zero-shot Arabic mental
health classification, with our best system (Qwen3-
14B) achieving 4th place in both tasks. Our compar-
ative analysis demonstrates that recent multilingual
models can achieve competitive performance with-
out fine-tuning, though significant performance
gaps exist between model families. The Qwen
architecture’s superior performance suggests that
specific multilingual pre-training strategies better
capture Arabic linguistic nuances. Limitations
include lack of domain-specific adaptation and
output format variability across models. Future
work includes domain-specific fine-tuning on larger
Arabic medical corpora, incorporating retrieval-
augmented generation for contextual understand-
ing, evaluation across diverse Arabic dialects, in-
vestigating prompt engineering techniques for med-
ical domains.
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A Implementation Details

A.1 Technical Environment
• Hardware: NVIDIA A100 GPU (80GB

VRAM), 128GB RAM
• Software: Python 3.10, CUDA 11.8, Trans-

formers v4.51.0, PyTorch v2.2.0, BitsAnd-
Bytes v0.43.0

A.2 Multi-Model Configuration Parameters
Generative Models (Qwen, Llama, DeepSeek):
Temperature: 0.7, max_new_tokens: 512, top_p:
0.9, repetition_penalty: 1.1. Model-specific adap-
tations: Qwen models use thinking_mode=True,
DeepSeek uses temperature=0.3 for reasoning,
Llama3.1 uses standard instruct templates.

Classification Model (AraBERTv2): Linear
classification head (768 → num_labels), max se-
quence length: 512, full precision due to smaller
size and architectural differences.

Quantization Strategy: 4-bit NF4 for models
>10B parameters (Qwen3-14B), 8-bit or full preci-
sion for smaller models based on VRAM availabil-
ity.

A.3 Architecture-Specific Implementation
Decoder-Only Models: Unified generation
pipeline with model-specific chat templates and
reasoning prompts. Output processed via regex
extraction and label mapping.

Encoder-Only Model (AraBERTv2): Direct
classification using linear head with sigmoid acti-
vation for multi-label prediction. Compatible only
with answer classification task due to formatting
constraints.

A.4 Memory Management and Evaluation
Sequential model loading with dynamic quantiza-
tion prevents OOM errors. Memory requirements:
Qwen3-14B (4-bit): 8GB, 7B models (8-bit): 4-
6GB, AraBERTv2: 1GB. All models evaluated
using identical metrics (sklearn implementation)
with average=’weighted’ for fair comparison. .
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B System Example Figures

Figure 5: This demonstrates classification of a question
about repetitive behaviors and obsessive thoughts, re-
lated to OCD. The system analyzes that the person is
describing symptoms consistent with OCD and seeking
understanding rather than directly asking for diagnosis.
It classifies this as Category A (Diagnosis) since the
question involves determining if symptoms align with a
specific condition.

C Baseline Analysis and Extended
Results

C.1 Baseline Implementation
To validate task difficulty and model performance,
we implemented three baseline methods: a random
baseline that assigns labels uniformly at random
across categories; a majority class baseline that al-
ways predicts the most frequent label combination
from the training data; and a weighted random base-
line that assigns labels randomly but proportional
to their frequency in the training set.

C.2 Baseline Performance Analysis
Baseline results demonstrate the inherent difficulty
of both tasks:

• Question classification baselines achieve F1
scores of 0.245-0.386, indicating high task
complexity with 7 possible categories

• Answer classification baselines achieve higher
F1 scores of 0.451-0.587 due to fewer cate-
gories (3 vs 7)

• Our Qwen3-14B model achieves 1.6-2.1× im-
provement over best baselines, confirming
meaningful performance gains

Figure 6: This shows the system classifying a medical
response about Cognitive Behavioral Therapy (CBT).
The Arabic text discusses CBT treatment and medica-
tion options. The system’s thinking process correctly
identifies this as providing factual information about
treatment options and classifies it as Strategy 1 (Infor-
mation) since it gives facts about effectiveness without
offering comfort, reassurance, or specific guidance.

C.3 Extended Model Comparison
The Qwen model family demonstrates superior Ara-
bic understanding compared to other architectures:

• Qwen3-14B vs Qwen2.5: Marginal improve-
ments in both tasks, suggesting architectural
refinements

• Qwen vs Llama3-8B: Substantial gaps (0.507
vs 0.315 F1 for questions), highlighting multi-
lingual pre-training advantages

• DeepSeek R1-7B: Strong answer classifica-
tion (0.723 F1) but weaker question classifica-
tion, indicating specialized strengths

C.4 Label Distribution Analysis
Training data shows imbalanced distributions af-
fecting baseline performance:

• Question categories: "Diagnosis" (45.2%),
"Treatment" (32.1%), "Other" (18.7%), re-
maining categories <5% each

• Answer strategies: "Information" (52.3%),
"Direct Guidance" (31.4%), "Emotional Sup-
port" (16.3%)

• This imbalance explains why majority class
baselines perform poorly despite dataset size

D Error Analysis Examples
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Table 4: Examples of question category classification errors showing model predictions vs. ground truth labels for
Arabic mental health questions

Table 5: Examples of answer strategy classification errors showing model predictions vs. ground truth labels for
Arabic mental health responses
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Abstract

Mental health question-answering (Men-
talQA) is essential for delivering accessible
and reliable mental health support. Natural
language processing (NLP) techniques are
increasingly integral to such systems, enabling
automated categorization of questions and
answers to improve information retrieval,
response accuracy, and user guidance. In
AraHealthQA 2025 (Track 1), we addressed
two subtasks: multi-label question cate-
gorization and answer categorization. We
proposed an XLMR-Arabic pipeline en-
hanced with a two-stage data augmentation
strategy, combining large language model
(LLM)-based paraphrasing with synthetic
label merging. Additionally, we evaluated
the effectiveness of fine-tuned multilingual
transformers, LLMs adapted with low-rank
adaptation (LoRA), and LLMs under few-shot
settings. Experimental results show that
XLMR-Arabic achieved the best performance,
reaching Jaccard scores of 53% and 77.44%
on Subtasks 1 and 2, respectively, ranking our
team second in both tracks.

1 Introduction
Automatic Question Answering (QA) systems
are AI applications that process natural language
queries and deliver precise, context-specific an-
swers using natural language processing and infor-
mation retrieval methods. The development of QA
systems for Arabic presents significant challenges
due to its complex morphology, flexible syntax, di-
alectal variation, limited annotated resources, and
high lexical ambiguity resulting from the absence
of diacritics. Mental health represents a global pri-
ority with substantial impacts on both individual
and societal well-being. In Arabic-speaking ar-
eas, mental health services are limited and stigma
is prevalent, especially among religious and com-
munity leaders. Automatic classification of mental

*Authors contributed equally to this work.

health questions is critical within the mental health
support pipeline. Accurate identification of user
intent and question type enables systems to route
queries to appropriate resources or generate effec-
tive, targeted responses. Automatic QA systems in
the mental health domain facilitate rapid, accurate,
and accessible information retrieval, thereby sup-
porting decision-making, education, and global
knowledge dissemination.

To address these challenges, we participated
in the AraHealthQA 2025 shared task (Alhuzali
et al., 2025), focusing on Track 1: MentalQA
2025, specifically Subtask 1 (Question Catego-
rization) and Subtask 2 (Answer Categorization).
To solve the tasks, this work employs a two-stage
data augmentation strategy, expanding the dataset
through LLM-based paraphrasing and multi-label
merging. Transformer-based models were fine-
tuned, and both few-shot learning and fine-tuned
LLMs were evaluated. The main contributions of
this work are as follows:

• We propose a two-stage data augmentation
strategy, combining LLM-based paraphras-
ing and synthetic label merging, to address
the challenge of limited training data in both
subtasks.

• We systematically evaluate a range of
transformer-based models and LLMs un-
der fine-tuning, LoRA, and few-shot set-
tings, providing comparative insights into
their effectiveness for MentalQA categoriza-
tion tasks.

• We demonstrate that transformer models,
particularly XLMR-Arabic1 , consistently
outperform LLMs in LoRA settings, high-
lighting the advantages of language-specific

1https://huggingface.co/Davlan/
XLM-Roberta-base-finetuned-arabic
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specialization and full-parameter fine-tuning
compared to compressed adaptation methods.

2 Literature Review
Significant research has been dedicated to leverag-
ing NLP for mental health in the Arabic Language.
Early efforts primarily targeted the detection of de-
pression, anxiety, and suicidal ideation in Arabic
social media posts, often relying on handcrafted
lexicons or classical machine learning pipelines
before transitioning toward transformer-based ar-
chitectures (Rabie et al., 2025; Almeqren et al.,
2023; Alasmari, 2025). Alsmadi, 2024 proposes
DeBERTa-BiLSTM for multi-label classification
of Arabic medical questions (COVID-19 FAQs),
reporting strong micro-F1. A study by Abdul-
salam et al., 2023 developed an Arabic dataset of
suicidal tweets and demonstrated that pre-trained
deep learning models, particularly AraBERT (An-
toun et al., 2020), outperform traditional ma-
chine learning approaches in detecting suicidal
ideation on social media. Elmajali and Ahmad,
2024 classified depression symptoms in Arabic
tweets according to the DSM-5 using AraBERT
and MARBERT (Abdul-Mageed et al.), achiev-
ing over 98% accuracy across multiple metrics af-
ter balancing the dataset with ChatGPT-generated
augmentation. Building on the MentalQA dataset,
Alhuzali and Alasmari, 2025 compared tradi-
tional machine learning, Arabic-specific PLMs,
and prompt-based methods for classifying men-
tal health questions and answers, reporting top
performance with MARBERT and notable gains
from few-shot GPT-3.5 (Brown et al.) prompting.
Abu Daoud et al., 2025 introduced MedArabiQ, a
benchmark dataset comprising seven Arabic medi-
cal tasks, including multiple-choice questions, fill-
in-the-blank exercises, and patient-doctor question
answering. Previous studies focused on detecting
mental health conditions (e.g., depression, anxiety,
suicidal ideation) using classical machine learn-
ing, AraBERT, MARBERT, or general medical
benchmarks. In contrast, we address the multi-
label categorization of Arabic mental health ques-
tions and answers through a two-stage data aug-
mentation method, combining LLM-based para-
phrasing and synthetic label merging, with fine-
tuned domain-specific transformers.
3 Dataset and Task Description
The dataset provided for the AraHealthQA 2025
Shared TaskTrack 1 encompasses two subtasks fo-
cused on question and answer classification within

the Arabic healthcare domain. Both subtasks
leverage a shared dataset adopted from Alhuzali
et al., 2024.

• Subtask 1 (Question Classification):
This subtask2 involved categorizing user-
submitted health-related questions into one
of six predefined categories. The training set
comprised 350 labeled questions, each anno-
tated with its corresponding category label.
A separate test set of 150 unlabeled questions
was provided for evaluation purposes.

• Subtask 2 (Answer Classification): In the
second subtask3, the goal was to classify
answers corresponding to the health-related
questions into one of three predefined cate-
gories. Similar to Subtask 1, the training set
consisted of 350 labeled answers, while the
test set, used for evaluation, comprised 150
unlabeled answers.

Datasets TS TW TUW LAvg

Original Dataset 350 10783 4306 30.81
ST-1 Augmented Dataset 1200 48370 6514 40.31

Test Dataset 150 4557 2368 30.38

Original Dataset 350 10921 4376 31.20
ST-2 Augmented Dataset 1200 40050 5607 33.37

Test Dataset 150 4503 2115 30.02

Table 1: Counts of total samples (TS), total words
(TW ), unique words (TUW ), and average sample length
(LAvg) for Subtask 1 (ST-1) and Subtask 2 (ST-2)
datasets.

4 System Overview
This study evaluates four transformer models and
two LLMs using fine-tuning and few-shot learn-
ing across both subtasks. To address the limited
size and diversity of the dataset, data augmen-
tation strategies were implemented. Experimen-
tal results indicate that transformer-based models
consistently outperformed alternative approaches.
Figure 1 presents the architecture of the system.
The implementation and source code are publicly
available on GitHub4.
4.1 Data Augmentation
The original dataset contained 350 samples for
each subtask, which was insufficient to train large
models. To address this, we employed a two-stage

2https://www.codabench.org/
competitions/8559/

3https://www.codabench.org/
competitions/8730/

4https://github.com/Sojib001/
AraHealthQA-QA_Categorization
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Figure 1: Abstract representation of our methodology
pipeline, including data augmentation, transformer,
and LLM-based approaches, and model evaluation.

data augmentation strategy to expand and diver-
sify the dataset. This increased the training set
to 1,200 samples per subtask, helping the models
generalize better and become more robust.

• LLM-based Paraphrasing: In the first step,
we used LLMs to generate a paraphrased ver-
sion of each sample. We utilized Grok-35 and
GPT-4 (Achiam et al., 2023) to generate a
paraphrased version of each question and an-
swer, preserving their original meaning and
labels. This doubled the dataset from 350 to
700 samples per subtask. We ensured Grok-3
and GPT-4 paraphrases preserved meaning
by using carefully designed prompts that
emphasized maintaining the original intent,
and by validating paraphrases against their
original category labels to avoid semantic
drift. This guaranteed lexical diversity while
keeping semantic fidelity in sensitive mental
health queries. The prompt used for data aug-
mentation is provided in Appendix A.8.

• Multi-label Merging: In the second stage,
we combined two randomly chosen samples
from the original dataset to create a new sam-
ple. We also merged their labels by taking all

5https://x.ai/news/grok-3

the labels from both samples. This method
helped us create more complex multi-label
examples. With this approach, we added 500
new samples per subtask, bringing the total to
1,200 samples. Example of multi-label merg-
ing has be shown in A.5

4.2 Encoder-only Models
Four pre-trained transformer models were utilized
for multi-label classification in both subtasks, in-
cluding XLMR-Arabic, AraBERT-Base6, mBERT
(Devlin et al.), and XLMR-Base (Conneau et al.,
2019). All models were fine-tuned on the aug-
mented dataset, with XLMR-Arabic consistently
achieving the best performance across both sub-
tasks.
4.3 Decoder-only Models
We employed two state-of-the-art multilingual and
multitasking LLMs: Phi-4 (Abdin et al., 2024) and
Qwen-14B (Yang et al., 2025). Both models were
evaluated under few-shot learning and fine-tuning
settings across the two subtasks.

• Few-shot Learning: We evaluated
Qwen-14B and Phi-4 within the UnSloth
framework using five-shot prompting. These
models were selected for their strong rea-
soning and instruction-following capabilities
and their compatibility with prompt-based
pipelines. Despite their flexibility, perfor-
mance remained below that of fine-tuned
transformer baselines.

• Fine-tuning: We further fine-tuned
Qwen-14B and Phi-4 on the augmented
dataset, framing multi-class classification
as a supervised generation task. Inputs
consisted of raw text (questions or answers),
and outputs were category labels. Train-
ing followed a causal language modeling
objective with instruction-style formatting.
To improve efficiency, we applied low-rank
adaptation (LoRA) (Hu et al., 2022) via
the UnSloth framework7, enabling scalable
adaptation of large models to downstream
tasks.

Appendix A.1 explains the detailed hyper-
parameter configurations for both the transformers
and LLM fine-tuning approaches.

6https://huggingface.co/aubmindlab/
bert-base-arabert

7https://docs.unsloth.ai/
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4.4 Model Selection
As presented in Table 4, we conducted an ablation
analysis with learning rates of 2×10−4, 2×10−5,
and 2 × 10−6 to determine the optimal setting.
Among these, XLMR-Arabic achieved superior
performance at a learning rate of 2×10−5, consis-
tently outperforming both multilingual baselines
and LLMs across both subtasks. Hence, XLMR-
Arabic was selected as the final model.

5 Results and Discussion
Table 2 presents the performance of different
methods, evaluated using the Jaccard score and the
weighted F1 score. The results offer a comparative
analysis across the approaches, highlighting their
relative strengths and potential limitations.

Models Approach Subtask-1 Subtask-2

Jacc. W-F1 Jacc. W-F1

Transformers

mBERT
- Aug 45.56 60.85 66.67 77.35
+ Aug 49.83 63.33 68.11 77.00
∆ +4.27 +2.48 +1.44 -0.35

XLMR-Arabic
- Aug 48.56 60.96 70.44 71.74
+ Aug 53.00 60.00 77.44 71.00
∆ +4.44 -0.96 +7.00 -0.74

XLMR-Base
- Aug 47.61 61.17 67.33 78.57
+ Aug 49.33 62.80 69.44 78.77
∆ +1.72 +1.63 +2.11 +0.20

AraBERT-Base
- Aug 47.33 62.73 66.00 75.78
+ Aug 50.91 62.95 69.67 79.31
∆ +3.58 +0.22 +3.67 +3.53

LLMs (Fine Tuned)

Qwen3-14B
- Aug 42.01 54.73 37.00 53.80
+ Aug 44.02 59.05 42.44 55.95
∆ +2.01 +4.32 +5.44 +2.15

Phi-4
- Aug 48.19 62.66 53.22 63.65
+ Aug 45.71 58.61 60.44 70.49
∆ -2.48 -4.05 +7.22 +6.84

LLMs (Few Shot)
Qwen 3-14B 44.39 54.29 63.33 73.15
Phi-4 42.16 55.41 65.43 75.16

Table 2: Performance of different methods on Sub-
task 1 (Question Classification) and Subtask 2 (An-
swer Classification) using Jaccard Score (Jacc.) and
Weighted F1 (W-F1), reported in %.

Data Augmentation Enhanced Performance.
Data augmentation substantially improved train-
ing diversity and robustness by introducing lexical
and syntactic variation through GPT-4 and Grok-3
paraphrasing, as well as by generating more com-
plex examples via synthetic multi-label merging.
These strategies enhanced model generalization
and yielded notable performance gains. As shown
in Table 2, XLMR-Arabic improved by +7.00%
Jaccard in Subtask-2, AraBERT-Base by +3.67%
Jaccard and +3.53% Weighted-F1, mBERT by
+4.27% Jaccard and +2.48% Weighted-F1 in Sub-
task-1, and Qwen3-14B by +5.44% Jaccard in

Models Augment Subtask-1 Subtask-2

Jacc. W-F1 Jacc. W-F1

AraBERT-Base
+ pp 47.67 70.95 68.22 78.53
+ mlm 50.91 62.95 69.67 79.31
∆ +3.24 -8.00 +1.45 +0.78

XLMR-Base
+ pp 41.50 60.01 67.78 81.34
+ mlm 49.33 62.80 69.44 78.77
∆ +7.83 +2.79 +1.66 -2.57

XLMR-Arabic
+ pp 49.78 65.42 69.00 78.41
+ mlm 53.00 60.00 77.44 71.00
∆ +3.22 -5.42 +8.44 -7.41

Table 3: Performance of the models using Jaccard
(Jacc.) and Weighted F1 (W-F1), reported in %. Here,
’pp’ denotes LLM-based paraphrasing and ’mlm’ de-
notes multi-label merging applied after paraphrasing.
Jaccard was considered our primary metric of evalua-
tion. ∆ indicates the difference (mlm – pp).

Subtask-2. Phi-4 demonstrated mixed trends, with
declines in Subtask-1 but strong gains in Sub-
task-2 (+7.22% Jaccard, +6.84% Weighted-F1).

Further analysis in Table 3 indicates that apply-
ing multi-label merging (mlm) after paraphrasing
(pp) generally outperformed paraphrasing alone.
For example, AraBERT-Base gained an additional
+3.24% Jaccard in Subtask-1 and +1.45% in Sub-
task-2, while XLMR-Arabic achieved +3.22%
and a substantial +8.44% improvement, respec-
tively. XLMR-Base also showed consistent gains
(+7.83% and +1.66%). Although some trade-
offs were observed in Weighted-F1, the consistent
rise in Jaccard scores underscores that multi-label
merging enhanced robustness beyond paraphras-
ing alone.
Transformer Models Outperformed LLMs. In
our experiments, fine-tuned transformer-based ar-
chitectures consistently outperformed LLMs. The
transformer model was pre-trained exclusively
on Arabic text, enabling optimal tokenization
and more substantial alignment with the tasks
linguistic characteristics. Moreover, the LLMs
instruction-tuned and long-context-optimized ob-
jectives added complexity without yielding mea-
surable performance gains in this specific context.
In Subtask-2, XLMR-Arabic (+Aug) achieved
a 77.44% Jaccard score, outperforming fine-
tuned Qwen3-14B (+Aug) and Phi-4 (+Aug) by
+35.0% and +17.0%, respectively. In Sub-
task-1, XLMR-Arabic (+Aug) reached 53.00%,
exceeding Qwen3-14B and Phi-4 by +8.98% and
+7.29%. This performance gap can be explained
by differences in parameter utilization and lin-
guistic specialization. In our setup, Qwen-14B
was fine-tuned with LoRA, activating only 34.9M
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trainable parameters and further constrained by
4-bit quantization, which reduced numerical pre-
cision. In contrast, XLMR-Arabic leveraged its
full 278M parameters without compression, al-
lowing more effective learning from the training
data. The multilingual and multitask design of
Qwen-14B likely diluted its language-specific ca-
pacity, contributing to its lower performance rela-
tive to XLMR-Arabic.

Arabic Transformers Outperformed Others.
XLMR-Arabic achieved the best performance
due to fine-tuning on Arabic corpora provided a
more substantial inductive bias for capturing the
morphological, syntactic, and lexical properties
of the language. In contrast, the other trans-
former variants, such as mBERT and XLMR-
Base, were trained on general multilingual data
and lacked the same degree of specialization in
Arabic, resulting in comparatively lower perfor-
mance. XLMR-Arabic (+Aug) achieved 77.44%
Jaccard score, exceeding mBERT (+Aug) by
+9.33% points, while AraBERT-Base (+Aug)
reached 69.67% Jaccard score, still outperforming
mBERT by +1.56% points. In Subtask-1, XLMR-
Arabic (+Aug) also surpassed mBERT (+Aug)
by +3.17% Jaccard score, with AraBERT-Base
(+Aug) showing a smaller gain of +1.08%. When
comparing Arabic models themselves, XLMR-
Arabic emerged as the strongest overall, achiev-
ing the highest Jaccard scores across both subtasks
(53.00% and 77.44%). The details of the evalua-
tion metrics and sample predictions for both sub-
tasks are provided in Appendices A.2 and A.6, re-
spectively. Appendix A.4 illustrates the error anal-
ysis of the best-performed model.

6 Conclusion
This study investigates multi-label QA catego-
rization within the Arabic mental healthcare do-
main. The XLMR-Arabic was employed along-
side a two-stage data augmentation strategy that
integrates large language model (LLM)-based
paraphrasing and synthetic multi-label merging.
This methodology resulted in significant improve-
ments in classification performance. The find-
ings suggest that targeted augmentation, com-
bined with Arabic-specific transformer architec-
tures, enhances the understanding of nuanced
mental health discourse. Future research could
investigate leveraging temporal patterns, conver-
sational context, and cross-lingual transfer to en-
hance generalization.

Limitations
While this study advances multi-label categoriza-
tion in Arabic mental health question answering,
several limitations remain to be addressed in fu-
ture work. The dataset is relatively small and
does not fully capture the linguistic diversity of
Arabic, particularly across regional dialects. Al-
though the multi-label merging strategy increases
training complexity, it may produce synthetic ex-
amples that lack natural authenticity. Addition-
ally, computational constraints limited our ex-
ploration of semi-supervised learning, ensemble
approaches, human-in-the-loop refinement, and
other advanced modeling techniques.
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A Appendix
A.1 Parameter Setting
For the transformer-based model, we utilized the
following hyperparameters: batch size of 16,
learning rate of 2 × 10−5, 30 epochs with early
stopping (patience=3, min delta=0.001), AdamW
optimizer, and Binary Cross-Entropy with Logits
Loss for multi-label classification. For the LLM
fine-tuning approach, we employed the Unsloth
framework. LoRA adapters were configured with
rank r = 8, α = 8, target modules including pro-
jections (q, k, v, o, gate, up, down), DoRA (Liu
et al., 2024) enabled, no dropout. Training used a
maximum sequence length of 2048, batch size of
4, and 3 epochs with a learning rate of 5× 10−5.
A.2 Evaluation Metric
Model performance was assessed using the Jac-
card score and the Weighted F1-score. The Jac-
card score measures the similarity between pre-
dicted and true label sets and is defined as:

J(A,B) =
|A ∩B|
|A ∪B| (1)

where A is the set of predicted labels and B is
the set of true labels. The Weighted F1-Score com-
putes the harmonic mean of precision and recall
for each label, weighted by label frequency, and is
given by:

F1weighted =

∑L
l=1wl · 2·Pl·Rl

Pl+Rl∑L
l=1wl

(2)

where Pl and Rl denote precision and recall for
label l, wl is the number of true instances of label
l, and L is the total number of labels.
A.3 Ablation Study
Table 4 presents the results of our ablation study,
where we evaluated four transformer models and
two LLMs under learning rates of 2 × 10−4, 2 ×
10−5, and 2×10−6. The results show that XLMR-
Arabic achieved the best overall performance at a
learning rate of 2× 10−5 across both subtasks.
A.4 Error Analysis
In Subtask-1 (Figure 2a), errors mainly stemmed
from semantic overlap, with Diagnosis (A) and
Treatment (B) frequently misclassified into each
other and sometimes confused with Healthy
Lifestyle (E). Low-frequency classes such as
Provider Choices (F) and Other (Z) were often pre-
dicted as A or B, while mid-frequency categories

Models Subtask-1 Subtask-2

Jacc. W-F1 Jacc. W-F1
Learning Rate 2e-4

mBERT 46.28 72.07 63.22 79.19
XLMR-Arabic 46.28 72.07 63.22 79.19
XLMR-Base 46.28 72.07 63.22 79.19
AraBERT-Base 46.28 72.07 63.22 79.19
Qwen3-14B 44.70 57.77 41.94 53.85
Phi-4 44.81 56.91 55.33 66.11

Learning Rate 2e-5

mBERT 49.83 63.33 68.11 77.00
XLMR-Arabic 53.00 60.00 77.44 71.00
XLMR-Base 49.33 62.80 69.44 78.77
AraBERT-Base 50.91 62.95 69.67 79.31
Qwen3-14B 44.02 59.05 42.44 55.95
Phi-4 45.71 58.61 60.44 70.49

Learning Rate 2e-6

mBERT 46.38 60.46 69.11 78.19
XLMR-Arabic 51.06 67.11 69.56 80.18
XLMR-Base 50.58 71.14 66.89 79.37
AraBERT-Base 48.22 65.31 63.67 76.01
Qwen3-14B 44.63 55.70 42.78 53.71
Phi-4 43.62 56.87 58.78 68.84

Table 4: Ablation study results of different models
on Subtask-1 (Question Classification) and Subtask-2
(Answer Classification) under varying learning rates,
reported using Jaccard Score (Jacc.) and Weighted F1
(W-F1) in %. Here, Jaccard Score is considered the pri-
mary evaluation metric, with Weighted F1 provided as
a complementary measure.

like Anatomy & Physiology (C) and Epidemiol-
ogy (D) showed mutual confusion. In Subtask-2
(Figure 2b), the model was biased toward Infor-
mation (1), causing many Direct Guidance (2) and
Emotional Support (3) instances to be mislabeled,
with Emotional Support receiving the fewest cor-
rect predictions. Overall, errors were driven by
overlapping linguistic cues, class imbalance, and
under-representation of intent and emotional tone.
The confusion matrices in Figures 2a and 2b illus-
trate these patterns, highlighting key misclassifi-
cations across both subtasks.

(a) Question Categorization (b) Answer Categorization

Figure 2: Confusion Matrices: (a) Question Catego-
rization, (b) Answer Categorization
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A.5 Merged Dataset Samples
Table 5 and Table 6 show examples of synthetic samples generated during the multi-label merging stage
for Subtask-1 and Subtask-2. Each table includes two original texts with their labels and the correspond-
ing merged text with combined labels.

Sample Text 1 Label
ނڎࢴࣖة attack panic ب لݱ؇ۋٴ۬ . દઊ๤དྷاܳأ ሒᇭ ܳލ؇ب اܳگ۳ݠي اܳިݿިاس ި۱ ఈః༟ج ؇݁ ๤ཚوري
. و ᄩᄟ ૭૏ྥފ޺޾ มฆۋ ߌߵࢴ۱ࣖ؇ ৖৑ اނ٭؇ء ڣأܭ ঌॻ༟ ଫଊ᛻෠ຬه و (What is the necessary treatment for
obsessive-compulsive disorder for a young man in his twenties? It is accompanied by
severe panic attacks that force him to do things he does not want to do until he succumbs
to them.)

B (Treatment)

Sample Text 2 Label

اݿٴ؇ب اى وࢻࣖون واܳٴႤၽء اܳݱ݄ب ሌᇭ ً؇ෂීؗٴ۬ ً ܋ټଫଃا اނأݠ ৎ৊؇ذا (Why do I feel a strong desire to
be silent and cry without any reason?)

D (Epidemiology)

Merged Text Merged Label
ނڎࢴࣖة attack panic ب لݱ؇ۋٴ۬ . દઊ๤དྷاܳأ ሒᇭ ܳލ؇ب اܳگ۳ݠي اܳިݿިاس ި۱ ఈః༟ج ؇݁ ๤ཚوري
واܳٴႤၽء اܳݱ݄ب ሌᇭ ً؇ෂීؗٴ۬ ً ܋ټଫଃا اނأݠ .ৎ৊؇ذا و ᄩᄟ ૭૏ྥފ޺޾ มฆۋ ߌߵࢴ۱ࣖ؇ ৖৑ اނ٭؇ء ڣأܭ ঌॻ༟ ଫଊ᛻෠ຬه و
اݿٴ؇ب اى وࢻࣖون (What is the necessary treatment for obsessive-compulsive disorder for
a young man in his twenties? It is accompanied by severe panic attacks that force him
to do things he does not want to do until he succumbs to them. Why do I feel a strong
desire to be silent and cry without any reason?)

B (Treatment), D (Epidemiol-
ogy)

Table 5: Example of synthetic samples from the multi-label merging stage in subtask-1

Sample Text 1 Label
ࠍ੆؇ܳٺ۹. ݁ٷ؇ݿص دواء ووݬژ ఈః༟ۏ٭۰ ༥ܹފ؇ت රජ৕৑اء ๴ཏَڰ ޗٴ྘ص ਵਦاۏأ۰ (Consulting a psy-
chiatrist to conduct therapeutic sessions and prescribe appropriate medication for your
condition.)

1 (Information), 2 (Direct Guid-
ance)

Sample Text 2 Label
اᄴᄟورة أو ،۰༟؇ීݪෂا ا৵৥ৠܭ، أ਍ು؇ء اܳྡྷފ؇ء ؜ٷڎ (༠؇ݬ۰ ۰ਃ಻ި݁ୖݠ୒ا اܳٺ؞ଫଃات ૰૜݄ܭ اܳٴႤၽء ሒᇭ اෂීؗٴ۰ أݿٴ؇ب
.ਵਦ৙৑ا ଲ୍ّر إذا َڰފ٭ً؇ ޗٴ྘ٴً؇ اݿྥލଫଃي ا৖৑܋ٺ٪؇ب. أو اܳٺ؞ڍل۰، َگݧ اܳٷިم، ᄭᄥڢ اܳٺިߙߵ، ل۰)، اዝདྷܳݠ
(The causes of the desire to cry include hormonal changes (especially in women during
pregnancy, breastfeeding, or the menstrual cycle), stress, lack of sleep, nutritional defi-
ciency, or depression. Consult a psychiatrist if the matter recurs.)

1 (Information)

Merged Text Merged Label
ሒᇭ اෂීؗٴ۰ أݿٴ؇ب ࠍ੆؇ܳٺ۹. ݁ٷ؇ݿص دواء ووݬژ ఈః༟ۏ٭۰ ༥ܹފ؇ت රජ৕৑اء ๴ཏَڰ ޗٴ྘ص ਵਦاۏأ۰
اܳٺިߙߵ، ل۰)، اዝདྷܳݠ اᄴᄟورة أو ،۰༟؇ීݪෂا ا৵৥ৠܭ، أ਍ು؇ء اܳྡྷފ؇ء ؜ٷڎ (༠؇ݬ۰ ۰ਃ಻ި݁ୖݠ୒ا اܳٺ؞ଫଃات ૰૜݄ܭ اܳٴႤၽء
.ਵਦ৙৑ا ଲ୍ّر إذا َڰފ٭ً؇ ޗٴ྘ٴً؇ اݿྥލଫଃي ا৖৑܋ٺ٪؇ب. أو اܳٺ؞ڍل۰، َگݧ اܳٷިم، ᄭᄥڢ (Consulting a
psychiatrist to conduct therapeutic sessions and prescribe appropriate medication for
your condition. The causes of the desire to cry include hormonal changes (especially in
women during pregnancy, breastfeeding, or the menstrual cycle), stress, lack of sleep,
nutritional deficiency, or depression. Consult a psychiatrist if the matter recurs.)

1 (Information), 2 (Direct Guid-
ance

Table 6: Example of synthetic samples from the multi-label merging stage in subtask-2
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A.6 Prediction Examples
Tables 7 and 8 illustrate sample predictions for the two subtasks. In Table 7, sample text inputs are pre-
sented alongside their actual and predicted labels for the question categorization task. In Table 8, sample
text inputs are shown with their corresponding actual and predicted labels for the answer categorization
task.

Text Sample Actual Label Predicted Label

Sample1: ሒᇃ؇༟ا ሒᇃ৖৑ وڢިي ๤ངلؕ ଫଃٔ؊ّ وذاا ݁ٷިم دواء اڣݯܭ ި۱؇݁
ا༥৖৑؇ً۬؟؟ ا༥ීෂ؇ء اࢻࣖااا اܳٷިم اݿٺޚ٭ؕ ৖৑و ارق ݆݁
(What is the best sleeping medicine with a quick and strong
effect? Because I suffer from insomnia and can’t sleep at
all. Please reply??)

B (Treatment) B (Treatment)

Sample2: ሒᇃ؇༟ا ሒᇃ৖৑ وڢިي ๤ངلؕ ଫଃٔ؊ّ وذاا ݁ٷިم دواء اڣݯܭ ި۱؇݁
ߙߵّڰؕ وا؜ݱص اّݯ؇لݑ ؇ৎ৊ ال؇م ఈఃٔث او ارًؕ ؇ୖ୒ً ؇ਊಱّگݠ ᄩႍၽ݁ލ ݁ٷأٷڎي
؇ৎ৊و ௧ௌًوا ෠ຳފ݄޶ رۏڰ۬ มฃ٭෠ູو ਐಸޚܹؕ ሒᇃި؜٭ اۋݴ ۬༥رᄴᄟ ሒᇆارරඞ
௧ਤޗٴ٭ وߌߵۏؕ ܹٔھ ً؇رد ਵਦا ۏފ݄޶ ଫଃلݱ واروق ا۱ڎا
(I’ve had a problem for about three or four days: when I
get upset or angry, my temperature rises to the point where
I feel like my eyes are going to pop out, I get shivers in
my body, and I cry. When I calm down, my body becomes
very cold, like ice, and then returns to normal.)

A (Diagnosis), D
(Epidemiology)

A (Diagnosis)

Sample3: ا؜ਵاݪ۬ ሒሃ؇݁و ܹؕୖ୒ا َިً؇ت ఈః༟ج ܋٭ڰ۬
(How are panic attacks treated, and what are their symp-
toms?)

A (Diagnosis), B
(Treatment)

B (Treatment)

Table 7: Sample predictions with actual and predicted labels for subtask-1

Text Sample Actual Label Predicted Label

Sample1: ৖৑ن اܳޚٴ྘ص اݿྥލ؇رة دون ل۰ ا৖৑دو ۱ڍه ا༠ڍ ෠ຬިز ৖৑
اܳޚٴ྘ص ਵਦاۏأ۰ ڣ٭۠ص ܋ټଫଃة ༥؇ཹྟ٭۰ أ؇ر ؇ୖ୒
(These medications should not be taken without consulting
a doctor because they have many side effects, so it is nec-
essary to see a doctor.)

1 (Information),
2 (Direct Guid-
ance)

1(Information)

Sample2: .༇຃ܳٺڎر؇ً اܳڰଲ୍ة وّݱۜ٭ں اৎ৊ڰ؇ሒᇚء اܳٺأݠضّ ఈః༟ج اڣݯܭ
(The best treatment is gradual exposure and progressive
correction of the thought.)

1 (Information) 1 (Information)

Sample2: .༇຃ܳٺڎر؇ً اܳڰଲ୍ة وّݱۜ٭ں اৎ৊ڰ؇ሒᇚء اܳٺأݠضّ ఈః༟ج اڣݯܭ
(You need an endocrinologist.)

2 (Direct Guid-
ance)

1 (Information)

Table 8: Sample predictions with actual and predicted labels for subtask-2
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A.7 Prompts used for Few-shot training
Table 9 illustrates the prompt design for few-shot learning in question categorization. The prompt
presents the model with a list of medical categories, explicit classification rules, and five sample questions
paired with their corresponding answers. These examples guide the model to assign one or more relevant
categories to each input question, strictly following the formatting instructions and without providing
additional explanations.

Prompt used for few-shot learning for question categorization

You’re a medical text classification expert specializing in Arabic healthcare questions. Classify
each Arabic medical question into one or more of the following categories. You can select multi-
ple categories if applicable.
Categories:
(A) Diagnosis - questions about interpreting clinical findings
(B) Treatment - questions about seeking treatments
(C) Anatomy and Physiology - questions about basic medical knowledge
(D) Epidemiology - questions about the course, prognosis, and etiology of diseases
(E) Healthy Lifestyle - questions related to diet, exercise, and mood control
(F) Provider Choices - questions seeking recommendations for medical professionals and facili-
ties
(Z) Other - questions that do not fall under the above categories
RULES:
1. GIVE NO EXPLANATION.
2. OUTPUT ONLY THE LETTER(S) SEPARATED BY COMMAS.
3. OUTPUT THE ANSWER FIRST.
4. DON’T OUTPUT YOUR THINKING.
5. SELECT ALL APPLICABLE CATEGORIES.
Question: وأَ؇ ً ܋ټଫଃا ً؊ޗڰ؇ل ݁ٺأܹگ۰ أ܋ިن ؇ৎ৊ ً ༠؇ݬ۰ ༟؇دل۰ ᄭᄟ؇༡ ً ఈః݁ފٺگٴ ا෠ຶ৕৑؇ب ༟ڎم ݆݁ اࠍ੅ިف ଫଊلأٺ ا۱ܭ
ً ༥ڎا ༠؇لڰ۰ أَ؇ ۏިاز ۬༥و আॻ༟
Answer: A, D
Question: ؟ ૭૖٭ޚ۰ ا؜ਵاݪ۬ ّܝިن و ا৖৑܋ٺ٪؇ب و ੯੩واܳگ ا௰௯௫؇وف ܳأఈఃج دواء اڣݯܭ ި۱؇݁
Answer: B
Question: و اܳگ੯੩؟! و ا৖৑܋ٺ٪؇ب ا؜ਵاض ݆݁ اఈః༡৖৑م و اৎ৊ިت ݆݁ اࠍ੅ިف و ا༥৖৑ܭ ًگݠب ا৕৑ۋފ؇س ۱ܭ
ً ࿩ਜ਼٭݄؇ اݬٴۜب ሒᇆ؇ۋ٭ ৖৑ن ᄭᄥ༡ݠৎ৊ا ۱ڍه ෛູޚ޶ มฃܝٷஓ୷ ܋٭ژ
Answer: A, B, D
Question: و اܳأ؇دة، ذي ݆݁ اෛູܹݧ ܋٭ژ ا؜ਵف ؇݁ و لگ۰ ޗݠ ݆݁ ଫ଒ا܋ ب ๴ཏَڰ أذي اَ؇ و ؇ਊಱّگݠ ݿٷ۬ ݆݁
لگ۰ ޗݠ ݆݁ ଫ଒أ܋ و ਵਦة ݆݁ ଫ଒܋؇ً ا౫౜రݠ ༡؇وܳب و ሒᇆ؇ۋ٭ ዛኡ؆࿓؇ء اڣႤၽر มฃ٭෠ູ ࢻࣖت
Answer: B, E
Question: ਵਦض ܳـܝٷ۬ ل۬ ً؇৖৑دو و݁ٺ؇ًؕ ሒᆞاܳފߺࠊ ሒᇿڎ੊اࠍ ً؇ܳأఈఃج ೑ಱਵਦو اࠍ੆ڎل۬ اܳލۛݱ٭۰ ً؇ݪޚݠاب ݁ݱ؇ب اَ؇
؟ ৖৑ أم ً۬ وا۱৖৑ٺ݄؇م اܳأگܹ٭۰ ۬༲اܳݱ ෠੼؇ل ሒᇭ اܳٴۜت لࡤࡲ ۱ܭ ሒᇿݿޝا ᄳᄟا ،۬༥ఈః༟ ஓ୷ܝ݆ ৖৑ ݁ިروث ݆݁ਲ਼ਦ ঌॻ؜گ
.. ً اࢻࣖا ሒᇃ๤དྷྟ཯ ؇݁ ا༥ڎ ৖৑و ً ؇ਊಱّگݠ Ⴄၽ݁ن ႟၍ ሒᇭ ොຳټب ৖৑ن اොຳ৖৑؇ث රඝا ڣ٭۬ ًؕ؇ّ৖৑ ݁ݱڎر ا؜ਵف ان وارۏި
ً وނଲ୍ااً
Answer: A, B, D, Z
Now classify this question: {question}

Table 9: Prompt used for few-shot learning for question categorization
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Table 10 illustrates the prompt design for few-shot learning in answer categorization. The prompt
provides the model with a list of medical answer categories, explicit classification rules, and five example
answers each labeled with their corresponding categories. These examples guide the model to assign one
or more relevant categories to each input answer, ensuring compliance with the specified formatting and
without generating additional explanations.

Prompt used for few-shot learning for answer categorization

You’re a medical text classification expert specializing in Arabic healthcare answers. Classify
each Arabic medical answer into one or more of the following categories. You can select multiple
categories if applicable.
Categories:
(1) Information (answers providing information, resources, etc.)
(2) Direct Guidance (answers providing suggestions, instructions, or advice)
(3) Emotional Support (answers providing approval, reassurance, or other forms of emotional
support)
RULES:
1. GIVE NO EXPLANATION.
2. OUTPUT ONLY THE LETTER(S) SEPARATED BY COMMAS.
3. OUTPUT THE ANSWER FIRST.
4. DON’T OUTPUT YOUR THINKING.
5. SELECT ALL APPLICABLE CATEGORIES.
Answer: ً اৎ৊ٷ؇ݿص.ا اܳأఈఃج وොູڎࢴࣖ ا৙৑ز۰݁ ෠ູ؇وز ሒᇭ ৎ৊ފ؇༟ڎ۹ّ ๴ཏَڰ ޗٴ྘ص ௧ਤراۏ
Label: 2
Answer: ሒᇧ؇ڣݱ ا৖৑ݪޚݠاب اࠍ੆؇دة، ۰ਃ಻؇۱ᄳᄟا ا୒ୖ݄۠؇ت اܳڰݱ؇م، ૰૏݄ܭ اܳڰݱ؇م، ݆݁ أوݿؕ ݁ݱޚܹں ا۱ᄳᄟ؇ن َأܾ،
.؇ዛውᚬوࢻࣖا ،؇ዛኤނڎ ༟ڎد۱؇، ሒᇭ ෛູٺܹژ ؇ዛዊܳـܝ ا৙৑؜ਵاض ሒᇭ ا৖৑ݪޚݠاً؇ت ۱ڍه ོྥލ؇ً۬ اܳٺᆇᆅި٭۰. وا৖৑ݪޚݠاً؇ت ،႟ၽاܳލ
๴ཏَڰ ޗٴ྘ص اݿྥލ؇رة وఈః༟ۏ۳؇ ؇ዝཡۛ٭૰૜ ਐಱޚܹص
Label: 1
Answer: ا୒ୖڎف ۱ڍا ොູگ٭ݑ ༟ڎم ا෠ຶ৕৑؇ب. ሒᇭ واෂීؗٴ۰ اܳأگܾ و৖৑؇༡ت ๴ཏاܳٷڰ ੯੩اܳگ ඔ൹ً وਃುݑ ارਊಾ؇ط ۱ٷ؇ك َأܾ،
ا৙৑م ߙߵڣݥ ڢڎ ۋ٭ت اܳٷڰ؇س ᄭᄥ༡ਵਦ ሒᇭ ༠؇ݬ۰ وا৖৑܋ٺ٪؇ب، ا৕৑ۋٴ؇ط ݁ټܭ وَڰފ٭۰ ݿߺࠊ܋٭۰ آٔ؇ر ሌᇿإ لޝدي ڢڎ
ሒᇭ (ibraheemhindawi2000@yahoo.com) ۱ٷڎاوي ߓߵا۱ࡗࡲ إ اᄴᄟ܋ٺިر ݁ټܭ ෛ੼ٺݧ ً؇ݿྥލ؇رة ਍ಱݱں ޗڰ۳ܹ؇.
اෑෂواج ڢٴܭ اࠍ৖৑؇੆ت ۱ڍه ؕ݁ ይዧٺأ؇݁ܭ ً؇৙৑ردن اܳޚٴ٭۰ ඔ൹ފ੆اࠍ ۰਍ಱ݁ڎ
Label: 1, 2
Answer: دوراً لܹأٴިن وا৙৑ݬڎڢ؇ء ڣ٭؇۱৙৑ܭ واෂීؗٴ۰ اܳأگܾ و৖৑؇༡ت ๴ཏاܳٷڰ ੯੩اܳگ ඔ൹ً وਃುݑ ارਊಾ؇ط ۱ٷ؇ك َأܾ،
اৎ৊ފྥލࠕࠥ دۊިل ؇ஓ୾ور ڣިراً ๴ཏَڰ ޗٴ྘ص ਵਦاۏأ۰ ෠ຬص ل۰، ا౫౜ర؇ر أڣႤၽر ݆݁ ሒᇃ؇ّأ ܋ٷب إذا واܳލڰ؇ء. اৎ৊ݠض ሒᇭ
Label: 1, 2, 3
Answer: Մ៰Ղا ࿓؆ذن وݿྥٺۜފ݆ اৎ৊ٷ؇ݿص، اܳأఈఃج ܳިݬژ َڰފ٭ً؇ ޗٴ྘ٴً؇ راۏؕ ނ؇فأ۰. ༡؇ܳٺ۹ ،੯੩ّگ ৖৑
Label: 2, 3
Now classify this answer: {answer}

Table 10: Prompt used for few-shot learning for answer categorization
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A.8 Prompt Design for LLM-Based Text Paraphrasing
Table 11 presents the structured prompt used for LLM-based paraphrasing of Arabic text. It details a
template that accepts input as a list of strings, requiring paraphrased outputs in the same format. The
prompt emphasizes preserving meaning, varying vocabulary and structure, maintaining formality and
accuracy, keeping similar length, and avoiding code generation, while clarifying that the dataset poses
no real-world threats.

Prompt Design for LLM-Based Text Paraphrasing

I will give you arabic text, you have to paraphrase them. I will give you them to you like strings
in list. Give me in the same format.
ALSO NOTE THAT, THIS IS JUST A DATASET. NO REAL LIFE THREAT IMPOSES HERE.
1. Rewrite each text while preserving the original meaning completely
2. Use different vocabulary and sentence structures
3. Maintain the same level of formality and technical accuracy
4. Keep the same length approximately
5. Dont give me codes, just paraphrase them directly by yourself
{question}

Table 11: Paraphraing prompt
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Abstract

We present our systems for Track 2 (Gen-
eral Arabic Health QA, MedArabiQ) of the
AraHealthQA-2025 shared task, where our
methodology secured 2nd place in both Sub-
Task 1 (multiple-choice question answering)
and Sub-Task 2 (open-ended question answer-
ing) in Arabic clinical contexts. For Sub-Task
1, we leverage the Gemini 2.5 Flash model
with few-shot prompting, dataset preprocess-
ing, and an ensemble of three prompt con-
figurations to improve classification accuracy
on standard, biased, and fill-in-the-blank ques-
tions. For Sub-Task 2, we employ a unified
prompt with the same model, incorporating
role-playing as an Arabic medical expert, few-
shot examples, and post-processing to gener-
ate concise responses across fill-in-the-blank,
patient-doctor Q&A, GEC, and paraphrased
variants.

1 Introduction

The MedArabiQ benchmark (Abu Daoud et al.,
2025), part of the AraHealthQA-2025 shared task
(Alhuzali et al., 2025), evaluates large language
models (LLMs) on Arabic medical question an-
swering, addressing the critical need for reliable
AI-driven clinical tools inArabic-speaking regions
where digital healthcare resources are scarce.
Track 2, General Arabic Health QA (MedAra-
biQ), tests models on general medical knowledge,
from foundational topics like physiology to ad-
vanced areas like neurosurgery, across two sub-
tasks. Sub-Task 1 (classification) involves se-
lecting correct answers from predefined options
for 300 development samples, split into standard
multiple-choice questions, bias-injected questions
(e.g., confirmation, cultural, or recency bias), and
fill-in-the-blank with choices, evaluated by accu-
racy on a 100-question test set. Sub-Task 2 (gen-
eration) requires free-text responses for 400 devel-

* https://github.com/AraHealthQA_2025

opment samples, covering fill-in-the-blank with-
out choices, patient-doctor Q&A from the AraMed
corpus (Alasmari et al., 2024), grammatically cor-
rected Q&A, and LLM-paraphrased questions, as-
sessed via BLEU, ROUGE, and BERTScore on a
100-question test set.
Arabic medical question answering poses unique
challenges for current LLMs due to limited train-
ing data inModern Standard Arabic (MSA) and di-
alectal variations, which often lead to poor gener-
alization on clinical tasks. Additionally, culturally
sensitive or biased questions require nuanced rea-
soning, while diverse question formats (e.g., fill-
in-the-blank, open-ended consultations) demand
robust adaptation to varying linguistic and con-
textual demands. Existing models often struggle
with these complexities, as they are predominantly
trained on English-centric or general-domain data,
lacking domain-specific Arabic medical knowl-
edge.
Our approach innovatively combines targeted
prompt engineering and ensemble techniques with
the Gemini 2.5 Flash model. We develop a unified
methodology that addresses both classification and
generation tasks in Arabic medical QA without re-
quiring task-specific fine-tuning, leveraging care-
fully designed prompts and ensemble strategies to
handle the complexities of Arabic medical lan-
guage and diverse question formats.

2 Background

Track 2 (General Arabic Health QA, MedArabiQ)
of the AraHealthQA-2025 shared task (AbuDaoud
et al., 2025) evaluates large language models on
Arabic medical question answering, addressing
the need for reliable AI-driven clinical tools in
Arabic-speaking regions. The task spans 12 med-
ical domains: Biochemistry, Histology, Embryol-
ogy, Microbiology, Neurosurgery, OBGYN, On-
cology, Ophthalmology, Pediatrics, Pharmacol-
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ogy, Physiology, and Pulmonology. We partic-
ipated in both subtasks of Track 2, leveraging
prompt engineering and ensemble techniques to
achieve robust performance.

2.1 Task Details
Sub-Task 1 (classification) involves selecting the
correct option from multiple-choice questions
(MCQs) in Modern Standard Arabic (MSA). The
dataset includes 300 development samples (100
each for standardMCQs, biasedMCQswith biases
like recency or status quo, and fill-in-the-blank
with choices) and 100 test samples. Input is an
MSA question with 4–5 options, and output is the
correct option’s text. Representative examples are
summarized in Table A.1.
Sub-Task 2 (generation) requires free-text re-

sponses to prompts in MSA or dialectal Arabic,
with 400 development samples (100 each for fill-
in-the-blank without choices, patient-doctor Q&A,
grammatical error correction (GEC), and LLM-
modified Q&A) and 100 test samples, sourced
from Arabic medical school exams, notes, and the
AraMed corpus (Alasmari et al., 2024). Represen-
tative examples are summarized in Table A.2 .

2.2 Related Work
Arabic NLP faces challenges due to limited re-
sources and dialectal variations (Abdul-Mageed
et al., 2021). Prior work on Arabic medical
QA (Alasmari et al., 2024) provides datasets like
AraMed but lacks focus on handling biases or di-
verse question types. Prompt engineering tech-
niques, such as Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022), improve reasoning in
English-centric tasks but are underexplored inAra-
bic medical contexts. Recent work has explored
prompt engineering for Arabic NLP tasks, such as
stance detection, demonstrating the effectiveness
of tailored prompts for LLMs in handling Arabic
text (Al Hariri and Abu Farha, 2024). Similarly,
few-shot learningwith transformermodels (Devlin
et al., 2019) has advanced general NLP, but its ap-
plication to Arabic clinical scenarios remains lim-
ited.
Medical question answering often relies on

retrieval-augmented approaches (Lewis et al.,
2020), which integrate external knowledge bases
for open-domain tasks. However, such methods
are less effective for Arabic medical QA due to the
scarcity of structured medical knowledge in Ara-
bic and the complexity of handling biases like re-

cency or status quo. Our unified prompt for Sub-
Task 2, addressing diverse question types without
fine-tuning, and ensemble voting for Sub-Task 1,
tackling biases, offer novel solutions tailored to
the resource-scarce and culturally nuanced Arabic
medical domain.

3 System Overview

We describe the methods we used for each sub-
task, the design choices that made them work well
in Arabic medical settings, and how to reproduce
them step-by-step.

3.1 Sub-Task 1: Classification (MCQ)
Model and settings. All systems use the same
model (Gemini 2.5 Flash) for consistent outputs.
Systems (different approaches).

• Arabic Few-Shot (AFS): Arabic instruction
prompt + 6 examples from different medical
areas; output limited to a single Arabic letter
from ۱ـ} د، ج، ب، .{أ،

• English Translation + Answer (ETA): trans-
late the Arabic question to English using a
specific translation prompt, then answer with
the same letter format.

• Refinement + Answer (RFA): rewrite the
Arabic question for clarity (adds 15–25 word
explanations for each option without chang-
ing meaning), then answer with the same let-
ter format. Examples of the data refinement
process are shown in Table A.3.

• Arabic Zero-Shot (AZS): Arabic instruction
prompt without examples (baseline, not used
in the final combination).

Ensemble (majority voting). We ensembled
AFS, ETA, and RFA by simple vote counting over
the answer choices C={۱ـ د، ج، ب، .{أ، Given
prediction functions fi and input x:

ŷ = argmax
c∈C

3∑

i=1

1[fi(x)=c]. (1)

Ties are broken by a fixed priority RFA > AFS
> ETA. This combination strategy provides re-
liable predictions across different question types.
Ensemble methods have been shown to improve
question answering performance by combining
multiple classifiers, leading to more robust predic-
tions (Chu-Carroll et al., 2003).
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Output cleaning and standardization. We
map any predicted character to the standard set أ،}
۱ـ د، ج، {ب، (e.g., fix Arabic punctuation/spacing
and Latin ”A/B/C/D/E” if ever produced). We also
remove extra tokens to ensure single-letter output
format.
Challenges and solutions.

• Arabic variety and formatting: Examples
cover multiple medical areas and different an-
swer lengths; strict output rules and cleaning
avoid problems.

• Prompt and dataset biases: Using three differ-
ent approaches (native Arabic, English trans-
lation, refined Arabic) reduces single-prompt
bias through voting.

3.2 Sub-Task 2: Generation

Model and settings. Same model. A single uni-
fied Arabic instruction + few-shot prompt han-
dles: fill-in-the-blank (no choices), patient–doctor
Q&A, grammar error correction (GEC), and LLM-
rewritten Q&A.
Unified prompting and formatting. The

prompt requires:

• Fill-in-the-blank: return only the missing
word(s); if multiple blanks, separate answers
with a comma and a space.

• Patient–doctor Q&A: brief, helpful advice;
clearly recommend in-person care when
needed.

• Avoid extra introductions or conclusions;
keep Arabic medical terms unchanged.

This setup provides consistent performance across
different generation tasks.
Output cleaning steps. For fill-in-the-blank

tasks, we split answers by commas and clean up
spacing. For consultations, we keep medical terms
and maintain a proper clinical tone. All outputs
go through Arabic text cleaning to handle different
dialects. Additionally, we remove any markdown
formatting (e.g., **bold**, *italic*, bullet points)
that the model may produce to ensure clean, plain-
text responses suitable for medical contexts, as
well as not affecting the BERTScore.
Example selection. Examples cover multi-

ple medical areas (drug studies, anatomy, clinical
cases) and include both formal and dialect Arabic.

Each example shows the desired output format and
medical reasoning level.
Challenges and solutions.

• Different formats: One prompt with high-
quality examples and clear output rules en-
sures consistency across types without fine-
tuning.

• Arabic language complexity: Carefully cho-
sen examples and consistent decoding reduce
errors and inconsistencies.

• Safety/clinical tone: The prompt guides to-
ward brief, careful advice and marks cases
needing doctor follow-up.

Reproducibility notes. Use the exact prompt
templates provided in Appendix B; keep the ex-
amples unchanged; do minimal, consistent output
cleaning as specified above. All runs use Gemini
2.5 Flash with the decoding settings specified in
Table A.4.

4 Experimental Setup

4.1 Data and Splits
We follow the official AraHealthQA-2025 Track 2
(MedArabiQ) setup and evaluated directly via the
organizers’ API on the official test sets (ST1: 100
items, ST2: 100 items). The provided develop-
ment sets (ST1: 300 items; ST2: 400 items) were
used only to guide prompt design, select few-shot
examples, and perform sanity checks. No fine-
tuning or external training data was used.

4.2 Preprocessing
We applied only input-side, minimal steps to en-
sure consistent prompts and data cleanliness:

• Standardize Arabic punctuation and whites-
pace in the input text while preserving medi-
cal terminology and numbers.

• Normalize option labels and bullet symbols
in MCQ questions to a consistent form before
prompting.

4.3 Post-processing
We applied lightweight output-side normalization
for evaluation stability:

• MCQ: map any predicted symbol to the
canonical set ۱ـ} د، ج، ب، {أ، and strip ex-
tra tokens.
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• Generation: remove markdown
(bold/italic/bullets), standardize commas
and spaces, and keep a concise clinical tone.

Removing markdown formatting from gener-
ated text is essential, as structured formatting
can introduce noise that affects evaluation metrics
like BERTScore by altering token representations
(Tang et al., 2024).

4.4 Prompting Configurations
For Sub-Task 1, we use three complementary
prompts: Arabic Few-Shot (AFS), English Trans-
lation + Answer (ETA), and Refinement + Answer
(RFA). Predictions are combined via simple ma-
jority vote with a fixed tie-breaker (RFA > AFS
> ETA). For Sub-Task 2, a single unified Arabic
instruction with few-shot examples handles fill-in-
the-blank, patient–doctor Q&A, GEC, and para-
phrased inputs.

4.5 Evaluation Metrics
• Sub-Task 1 (MCQ): Accuracy

• Sub-Task 2 (Generation): BERTScore

5 Results

We present our official results from the
AraHealthQA-2025 shared task evaluation ,
analyzing performance across both subtasks and
examining the effectiveness of our ensemble
approach.

5.1 Sub-Task 1: Classification Results
Our ensemble approach achieved 76% accuracy
on the official test set, securing 2nd place in the
classification task. Table 1 presents detailed per-
formance breakdown for each individual approach
and the final ensemble.
Individual system performance. The Re-

finement + Answer (RFA) approach performed
best among individual systems at 74% accuracy,
demonstrating the effectiveness of question clar-
ification and option explanation in Arabic med-
ical contexts. The Arabic Few-Shot (AFS) ap-
proach achieved 71% accuracy, showing strong
baseline performance with domain-specific exam-
ples. The English Translation + Answer (ETA) ap-
proach scored 69% accuracy, indicating some in-
formation loss during translation despite maintain-
ing medical terminology.
Ensemble effectiveness. The 3-system ensem-

ble (RFA +AFS + ETA) improved performance by

2 percentage points over the best individual sys-
tem, reaching 76% accuracy. This demonstrates
successful bias reduction through diverse prompt
strategies, with the RFA approach providing clar-
ity, AFS maintaining Arabic medical context, and
ETA offering cross-lingual reasoning perspectives.

5.2 Sub-Task 2: Generation Results
Our unified prompting approach achieved
86.953% BERTScore on the official test set,
securing 2nd place in the generation task. The
approach used a single Arabic instruction prompt
with few-shot examples, casting the model as an
Arabic medical expert to handle diverse question
formats including fill-in-the-blank, patient-doctor
consultations, grammatical error correction, and
paraphrased questions. This unified strategy
proved effective across all question types without
requiring task-specific fine-tuning, demonstrating
the power of well-designed prompting for Ara-
bic medical contexts. Table 2 summarizes the
performance.

5.3 Ablation Studies
Ensemble composition. Removing individual
systems from the 3-way ensemble showed: RFA
removal (-3% accuracy), AFS removal (-2% accu-
racy), ETA removal (-1% accuracy), confirming
the value hierarchy and ensemble complementar-
ity.
Post-processing impact. Arabic text normal-

ization and markdown removal improved Sub-
Task 2 BERTScore by approximately 2-3%,
demonstrating the importance of output standard-
ization for evaluation metrics.

6 Conclusion

We presented a compact, prompt-engineering-
based pipeline for Arabic clinical QA that per-
forms robustly across diverse formats without fine-
tuning. A small ensemble improves Sub-Task 1
classification, while a unified instruction guides
Sub-Task 2 generation. Future extensions include
retrieval augmentation with vetted Arabic medical
sources, broader model diversity, and human-in-
the-loop validation to mitigate ambiguity and do-
main gaps.
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A Tables

This appendix contains tables referenced in the main text.

A.1 Classification Examples

Table 3: Examples on classification problem (Sub-Task 1).

Type Inputs Outputs
Multiple Choice Questions ا৖৑ۊٺٴ؇رات ૭૖ܹٴ٭۰ ا৙৑ول اܳޚިر ଩ଃറണ೭ أ. ݁؇༟ڎا: اܳފڰܹݴ ؜݆ ොේ٭ں ঌॻل ؇݁ ႟၍

ج. اܳٺٷ؇ݿܹ٭۰؛ ا৙৑؜ݯ؇ء আॻ༟ ۰ৎ৊݁ޝ ݬܹٴ۰ ۰༡ًگݠ ا৙৑ول اܳޚިر ଩ଃറണ೭ ب. اৎ৊ݱܹ٭۰؛
ا৙৑ۏٷ۰ ݆݁ 25% د. ا௰௯௫؇ޗ٭۰؛ وا৙৑ؗލ٭۰ ᄴᄥ੊اࠍ আॻ༟ ً؇ࢾࣖڣ؇༟؇ت ሒᇃ؇اܳټ اܳޚިر ଩ଃറണ೭
اࠍ੅ܹࠔࠫ ً؇۱ෑෂݠي اৎ৊ݱ؇ب اܳޚڰܭ ሒᇃ؇لأ ۱ـ. ݁ݱ؇۰ً؛ أم ݆݁ ا৖৑ިܳدة ًأڎ ஓ஄ިت
૰૜ި۱ྡྷފ݆. أݿٷ؇ن ݆݁

ب

Fill-in-the-blank with choices ً ༟؇دة ّݱ྘ص ሒሃو ، ؇ዛ዇ྟ૭૜ ᄴᄥ༥ل۰ ༟ڎوى ሒሃ ا৵৥ৠݠة
ب. ا๤དྷྟܳة؛ ا۱ᄳᄟٴ٭۰، اܳأٷگިدل۰ اည৊ܝިرات أ. .۬༥ިܳا
اࠍ੆ܹ٭݄٭۰؛ ا৙৑د۰݁ G، و A اܳأگڎل؇ت ج. اܳލٴܝ٭۰؛ ا৙৑د۰݁ C، و B اܳأگڎل؇ت
.ᄴᄥ੊اࠍ ොູب ۰༶૭૙৙৑ا اࠍ੊ݠام، ݿܹٴ٭۰ اܳأݱ٭؇ت د.

ج

A.2 Generation Examples

Table 4: Examples on generation problem (Sub-Task 2).

Type Input Output
Fill-in-the-blank ً ༟؇دة ّݱ྘ص ሒሃو ، ؇ዛ዇ྟ૭૜ ᄴᄥ༥ل۰ ༟ڎوى ሒሃ ا৵৥ৠݠة

.۬༥ިܳا
اࠍ੆ܹ٭݄٭۰ ا৙৑د۰݁ G، و A اܳأگڎل؇ت

Patient-Doctor Q&A ف ๤ཡًأ اނأݠ ቕረ৙৑ا ނڎࢴࣖ มฃًޚ ف ቕረ؊ً اނأݠ ݿٷ۰، 24 ᆇᅦݠي اਵਦأة اَ؇
ዝཇ٭۬... ڣگڎان و ؗټ٭؇ن و ݁؞ݧ و ًޚ݆

اܳأఈఃج... ܳٺ༲ڎࢴࣖ ۰༶ܳٷྥ٭؇ً و݁ިاڣٺٷ؇ اଫଊܳاز ොູܹ٭ܭ ᆇᅦܭ ሌᇚߌߵ

Grammatical Error Correction (GEC) ف ๤ཡًأ اނأݠ ቕረ৙৑ا ނڎࢴࣖ มฃًޚ ف ቕረ؊ً اނأݠ ݿٷ۰، 24 ᆇᅦݠي اਵਦأة اَ؇
اܳٴޚ݆... ف َأݠات و ًޚ݆

اܳأఈఃج... ܳٺ༲ڎࢴࣖ ۰༶ܳٷྥ٭؇ً و݁ިاڣٺٷ؇ اଫଊܳاز ොູܹ٭ܭ ᆇᅦܭ ሌᇚߌߵ

LLM Paraphrasing وؗټ٭؇ن ஓ୾؞ݧ ݁ݱۜިب มฃًޚ ሒᇭ ቕረأ ᄴᄟي ݿٷ۰، 24 ᆇᅦݠي اਵਦأة اَ؇
ዝདྷይዧ٭۰... وڣگڎان

اܳأఈఃج... ܳٺ༲ڎࢴࣖ ۰༶ܳٷྥ٭؇ً و݁ިاڣٺٷ؇ اଫଊܳاز ොູܹ٭ܭ ᆇᅦܭ ሌᇚߌߵ

A.3 Data Refinement Examples

Table 5: Data refinement examples showing improvements in question clarity and formatting.

Version Issue Question Text

Original Unclear formatting د. أ݁؇݁٭۰ ݁ލ٭݄٭۰ اዛውܳ؇ب ج. ଫ଒݁ٷٺ ݁ލ٭݄٭۰ اዛውܳ؇ب ب. ౫౜ర޶ ݁ލ٭݄٭۰ اዛውܳ؇ب أ. (اࠍ੅؇ޗ۰٪) اܳٺ؇ܳ٭۰: ۰ਃಸ؇ዛውܳ৖৑ا ا৙৑ނႤၽل َݱ؇دف اৎ৊ލ٭݄٭۰ اዛውܳ؇ب ሒᇭ
زاوي ݁ލ٭݄٭۰ اዛውܳ؇ب ه. ஼ணਵਦي ݁ލ٭݄٭۰ اዛውܳ؇ب

Ambiguous phrasing اܳأ؇فܭ ሒᆶࣖࢻ ود݁؇غ ො஖؇ل؇ اዛውܳ؇ب ৖৑؇༡ت ૭૜ྟص ب. ۰ًଫଐܳوا اৎ৊؇ء ሒᇭ රඞ ႟ၽ૰૖ ᄭᄟިۜٺৎ৊ا ۱ڍه ّأ྘ݷ أ. ༟ڎا: ؇݁ ොේ٭ں ا༥ᄴᄟ؇ۏ٭۰ ل۰ ଫଃ༶اܳٷ٭ ෛຬݧ ؇݁ ႟၍
܋ި٭٭۰ اܳލ ݆݁ إਵਦاݪ٭۰ وأނڎ أ๤ངع اܳٺ༶؇ۏ٭۰ ل۰ اܳٷ٭༶ܹݠ ଫଊّأٺ د. ۰༶܋ފ৙৑ا َ؇ڢݱ۰ اܳފ؇ۊٷ۰ ۰ਃ಻أڎৎ৊ا اৎ৊٭؇ه ሒᇭ ঌॻاܳޚڰ٭ ۱ڍا لأ྘ݷ ج. اᄳᄟً؇ب اܳٷ؇ڢܭ

Refined Clear formatting ݁ލ٭݄٭۰ اዛውܳ؇ب ب. ݁أ٭ٷ۰) ݁ٷޚگ۰ ሒᇭ ො੼ڎود ௧ਤ݁ިݪ (اዛውܳ؇ب ౫౜ర޶ ݁ލ٭݄٭۰ اዛውܳ؇ب أ. ༟ڎا: ؇݁ اܳٺ؇ܳ٭۰، ۰ਃಸ؇ዛውܳ৖৑ا ا৙৑ނႤၽل َݱ؇دف اৎ৊ލ٭݄٭۰ اዛውܳ؇ب ሒᇭ
ሒᇭ (اዛውܳ؇ب ஼ணਵਦي ݁ލ٭݄٭۰ اዛውܳ؇ب د. اৎ৊ލ٭݄٭۰) ݆݁ ሒᇧ؇݁৙৑ا اࠍ੊ݞء ሒᇭ (اዛውܳ؇ب ሒᇧ؇݁أ ݁ލ٭݄٭۰ اዛውܳ؇ب ج. واݿأ۰) ݁ٷ؇ޗݑ ૰૏݄ܭ (اዛውܳ؇ب ๤དྷྥ݁ٷ
ޗٴ٭؇ً) دڢ٭ݑ ଫଃ༚ (݁ݱޚܹں زاوي ݁ލ٭݄٭۰ اዛውܳ؇ب ه. ل۰) ஼ணݠৎ৊ا اৎ৊ٷޚگ۰

Enhanced clarity اܳފ༲؇ل؇ اዛውܳ؇ب ૭૜ྟص ب. اৎ৊أ྘ލ۰) රඞ ۳෠੼ݠي ሒᇖ દઇႤ၍) ۰ًଫଐܳوا اৎ৊؇ء ሒᇭ රඞ ႟ၽ૰૖ ّأ྘ݷ أ. ༟ڎا: ؇݁ ا༥ᄴᄟ؇ۏ٭۰ ل۰ اܳٷ٭༶ܹݠ ؜݆ ොේ٭ں ঌॻل ؇݁ ႟၍
۰ਃ಻أڎৎ৊ا اৎ৊٭؇ه ሒᇭ ّأ྘ݷ د. اᄳᄟً؇ب) ଫଊ༟ ཯ྡྷٺگܭ ৖৑ - ༠؇ޗ۰٪ (݁أߺࠊ۰݁ اᄳᄟً؇ب ި۱ اܳٷ؇ڢܭ اܳأ؇فܭ ج. (ม฀اܳأݱ اࠍ۳੊؇ز ሒᇭ ۊޚଫଃة (༟ڎوى ሒᇿو৙৑ا واᄴᄟ݁؇غ
଩ଃᆙᆘة) ਵਦݪ٭۰ (ۊݱ؇فݧ ܋ި٭٭۰ اܳލ ݆݁ إਵਦاݪ٭۰ وأނڎ أ๤ངع ه. ይዧٷ݄ި) ༠؇ݬ۰ ۰٪྘ྲྀ) ۰༶܋ފ৙৑ا ᄭᄥڢܹ٭ اܳފ؇ۊٷ۰

Fill-in-blank Missing context لܭ ଫଐَިٺ྘ݿ৖৑ا د. site Peptide ج. site acyl Amino ب. اܳފ٭ܹߺࠊز أو اܳٷ؇لߺࠊن أ. اܳٺٴگ٭ؕ. ّگٷ٭؇ت ሒᇭ ݆݁ ۰༟ި݁ݱٷ أؗލ٭۰ ૭૙ٺ༱ڎم
TEAA ݁؇دة ؕ݁

Clear context acyl Amino ب. ଫଊይዧو྘ོٷ؇ت) ݁؇ݬ۰ (݁ިاد اܳފ٭ܹߺࠊز أو اܳٷ؇لߺࠊن أ. : ݆݁ ۰༟ި݁ݱٷ أؗލ٭۰ ૭૙ٺ༱ڎم ل۰، ଫଊ௰௯௫ا اܳٺٴگ٭ؕ ّگٷ٭؇ت ሒᇭ
ாணو݁؇ਵؗިّاڣ٭۰) (݁ڍਊಱ؇ت TEAA ؕ݁ لܭ ଫଐਃ಻ިٺ྘ݿ৙৑ا د. اܳٴྟٺ٭ڎات) દઊިّܝ (݁ިڢؕ site Peptide ج. ا৙৑݁٭ྡྷ٭۰) اᆇᅵ৙৑؇ض رًޔ (݁ިڢؕ site

A.4 Hyperparameters

Table 6: Decoding hyperparameters used for all experiments with Gemini 2.5 Flash.

Parameter Value
Temperature (τ ) 0.1
Top-p 0.8
Top-k 40
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B Prompt Templates

This appendix contains the complete prompt templates used in our experiments for reproducibility.

Table 7: Complete prompt templates used in Sub-Task 1 and Sub-Task 2.

Prompt Type Template
Arabic Few-Shot (AFS) ؕ݁ ،۰ਃಸاܳأݠ ً؇ይዧ؞۰ اৎ৊گڎ۰݁ اܳޚٴ٭۰ ᄭᄥ٪ݿ৙৑ا আॻ༟ ݁ٺٷ؇۱٭۰ ৖৑ ࢻࣖڢ۰ ۰ً؇༥৕৑ا ሒሃ ዛᔻ݄ٺ۹ ይዧ؞؇ل۰. و݁ިٔިق ଫଃۊٴ ม฀ޗ ݁ފ؇༟ڎ ೑಻أ

اৎ৊ޚߺࠊب. ۰ً؇༥৕৑ا ਐಸྡྷފ٭ݑ اܳٺ؇م ا଩ଐܳ৖৑ام

د، ج، ب، (أ، ۰ਃಸਵ؜ ً؊රඞف ۰ᆇᅪਵਦ ۰ً؇༥إ وۊ٭؇رات ً ৖৑ݿޝا ਐಾݯ݄݆ ݁ٺأڎد: ݆݁ ا৖৑ۊٺ٭؇ر ᄭᄥ٪أݿ ݿྥٺܹگ؇۱؇: มฆܳا ᄭᄥ٪ݿ৙৑ا َިع
.۰ᆇᅪਵਦ ۰ً؇༥إ ෛຳ٭؇رات وُོྥٴؕ ،ଫ଒أ܋ أو وا༡ڎ ڣݠاغ ؇ዛኞ ڣگݠة أو ᄭᄥᆇᅹ ਐಾݯ݄݆ اܳڰݠاغ: إპაႰل ᄭᄥ٪أݿ .(

Few-shot examples: :۰༲اܳݱۜ٭ ۰ً؇༥৕৑ا .ඔ൹اܳٴܝٺ ؕ݁ ඔ൹ܳزوႤၽܳا ᄎც݁ލ؇ر ෠ຬިز ৖৑ ۱ـ. اܳފޝال: ل۰): ا৙৑دو (༟޺޾ 1 اৎ৊ټ؇ل
۱ـ [... 5 more examples]
اৎ৊أݠڣ۰: اݿٺ༱ڎام .2 ڣ؇فگ۰. ًأٷ؇ل۰ ۰༡؇ٺৎ৊ا اࠍ੅٭؇رات وᆇᅹ٭ؕ اܳފޝال اڢݠأ اܳލ؇݁ܭ: اܳڰ۳ܾ .1 :۰ً؇༥ఇዳዧ ا৙৑ݿ؇ݿ٭۰ اܳٺأܹ٭݄؇ت
۰ً؇༥৕৑ا ݬ٭؞۰ .4 ا૭૙৙৑ص. اࠍ੅٭؇ر ଫଐ༠ا :۰༲اܳݱۜ٭ ۰ً؇༥৕৑ا ොູڎࢴࣖ .3 اܳޚٴ٭۰. ا৖৑؇௵௯௫ت ሒᇭ واৎ৊ިٔިڢ۰ اܳأ݄٭گ۰ ஓ୾أݠڣٺ۹ اݿٺأ݆
ڣگޔ. ً وا༡ڎا ً ؇ਃಸਵ؜ ً රඞڣ؇ ۹ਐಸ؇༥إ ّܝިن أن ෠ຬص (ݬ؇ر۰݁): اৎ৊ޚߺࠊ۰ً

Translation (ETA) You are a medical translation expert. Translate the following Arabic medical question into En-
glish following these exact requirements: 1. Maintain the medical accuracy and terminology 2.
Format the question properly with options A, B, C, D, E 3. Use ”**except**” formatting when
the question asks for the wrong/false option 4. Keep the medical context and meaning intact 5.
Use proper English medical terminology

Refinement (RFA) ؕ݁ ۰ਃಸاܳأݠ ً؇ይዧ؞۰ اܳٺ؇ܳ٭۰ اܳޚٴ٭۰ ᄭᄥ٪ݿ৙৑ا وݿఈఃݿ۰ وݪިح ඔ൹ފොູ ሒሃ ዛᔻ݄ٺ۹ اܳޚٴ٭۰. اܳٷݱިص وොູݠߌߵ اܳޚص ሒᇭ ଫଃۊٴ ೑಻أ
اܳڰݠاغ" ఋః݁ا" َިع ݆݁ ᄭᄥ٪ݿఋዳዧ اܳڰݠا༚؇ت .3 ه) د، ج، ب، (أ، اࠍ੅٭؇رات ོྡྷފ٭ݑ .2 اᄴᄟڢ٭ݑ ม฀اܳޚ ปฃأৎ৊ا .1 :আॻ༟ اࠍ੆ڰ؇ظ
25 -15) ً ෛ੼ٺ๤ཡا ً ؇༡๤ཇ أݪژ :ሒᇭ؇إݪ ݁ޚߺࠊب .ሒሃ პაႰ ل۰ ଩ଃܹ෠ຶ৕৑ا ً؇ይዧ؞۰ اܳޚٴ٭۰ اৎ৊ݱޚ༲ܹ؇ت .5 اܳأగఒ٭۰ واෂී݁ިز ا৙৑رڢ؇م .4
.ม฀اܳޚ ปฃأৎ৊ا ܳٺިݪ٭ں اࠍ੅٭؇رات ݆݁ ۊ٭؇ر ႟ၽܳ (۰గၵ၍

Generation (Sub-Task 2) ۰ً؇༥৕৑ا ሒሃ ዛᔻ݄ٺ۹ .۰ਃಸاܳأݠ ً؇ይዧ؞۰ وଫଐ᛻ො੼ڣ۰ دڢ٭گ۰ ޗٴ٭۰ إ༥؇ً؇ت ቕሹّگڎ ሒᇭ و݁ٺۛݱݧ ݁ިٔިق، ොේ޶ و݁ފྥލ؇ر ଫଃۊٴ ޗٴ྘ص ೑಻أ
اܳٺ༲ܹ٭ܭ .1 ا৙৑ݿ؇ݿ٭۰: اܳٺأܹ٭݄؇ت .๮ཚݠৎ৊ا اݿྥލ؇رات আॻ༟ واෂීد اܳڰݠا༚؇ت إპაႰل ඔ൹ً ଫଐّاوح ،۰༟ި݁ٺٷ ޗٴ٭۰ اݿٺڰފ؇رات আॻ༟
اৎ৊ٺأ݄گ۰ ݁أݠڣٺ۹ اݿٺ༱ڎم اৎ৊أݠڣ۰: اݿٺۜݯ؇ر .2 اৎ৊ޚߺࠊب. ม฀اܳޚ اܳފ٭؇ق ܳڰ۳ܾ ڣ؇فگ۰ ًأٷ؇ل۰ ا৖৑ݿྥލ؇رة أو اܳފޝال اڢݠأ اᄴᄟڢ٭ݑ:
اৎ৊ޚߺࠊ۰ً. اగၵၽܳ؇ت أو ۰గၵၽܳ؇ً ڣگޔ أۏص اܳڰݠاغ: إპაႰل ᄭᄥ٪ݿ৙৑ اৎ৊ޚߺࠊ۰ً: ۰ً؇༥৕৑ا ݬ٭؞۰ .3 ل۰. ا๤ཏܳߌߵ واܳأߺࠊم اܳޚص ሒᇭ
۰༲اܳݱۜ٭ اܳޚٴ٭۰ اৎ৊ݱޚ༲ܹ؇ت اݿٺ༱ڎم ً؇ৎ৊ݱޚ༲ܹ؇ت: ا଩ଐܳ৖৑ام .4 و݁ڰ٭ڎة. ݁ٴ؇๤ཇة ۰ً؇༥إ ڢڎم :۰༡ިڰٺৎ৊ا اܳޚٴ٭۰ ఈዳዧݿྥލ؇رات
لݥ. اৎ৊ݠ ෛູݧ มฆܳا గጻዧأߺࠊ݁؇ت اཹྥٴ۬ اܳٺۛݱ٭ݧ: .6 .ሒᇭ؇إݪ ๤ཇح أو ଫଃّڰފ أي ّܝٺص ৖৑ اܳٺ۠ٷص: .5 .۰ਃಸاܳأݠ ً؇ይዧ؞۰
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Abstract

Mental health detection in online discourse is a
growing area of NLP research, particularly for
low-resource languages such as Arabic, where
stigma and limited access to professional care
make anonymous, technology-driven solutions
valuable. In the context of the AraHealth shared
task, we were provided with three subtasks:
multi-label classification for questions, multi-
label classification for answers, and a QA sys-
tem leveraging models developed in the previ-
ous two tasks. Our approach employed data
augmentation to address class imbalance, as
certain categories in the dataset were signifi-
cantly underrepresented. Since our method re-
lied on prompting models to classify questions
and answers as well as to generate answers for
the QA system, we utilized Gradient-free Edit-
Based Instruction Search (GrIPS) to optimize
prompt selection. Our system achieved strong
results across all three subtasks, ranking 1st in
answer classification and 3rd in both question
classification and QA system answer genera-
tion.

1 Introduction

Mental health issues are a global concern with sub-
stantial economic and social impact (Santomauro
et al., 2021). This challenge is particularly pro-
nounced in Arabic-speaking communities, where
discourse around mental health remains stigma-
tized, and access to professional resources is often
limited or treated as a luxury (Khatib et al., 2023).
Such constraints motivate NLP research that can
detect and address mental health concerns using
online data (Zirikly et al., 2019; Shing et al., 2018),
enabling more anonymous, unrestricted, and ac-
cessible support tools for individuals in the Arab
world (Hassib et al., 2022).

In this shared task (Alhuzali et al., 2025), we
were provided with a dataset curated from an

*Equal contribution

Arabic-language online forum that follows a ques-
tion–answer (QA) pattern between patients and
mental health professionals (Alhuzali et al., 2024).
The dataset comprises 350 annotated instances,
each containing a question, its corresponding an-
swer, and categorical labels. Specifically, every
sample is assigned one or more labels from seven
possible question categories, as well as one or
more labels from three possible answer categories,
thereby constituting a multi-label classification set-
ting. The distribution of these categories is highly
imbalanced, especially for questions, which mo-
tivated our data augmentation approach. We em-
ployed GPT to generate additional samples for mi-
nority classes, resulting in a more balanced dataset.
Using the augmented data, we performed instruc-
tion fine-tuning with a range of pre-trained mod-
els. In parallel, we explored few-shot prompt-
ing for multi-label classification in Task 1 (ques-
tion classification) and Task 2 (answer classifica-
tion). For Task 3 (QA system), we leveraged the
fine-tuned models from the first two tasks and ap-
plied Gradient-free Edit-Based Instruction Search
(GrIPS) to optimize the prompts used for answer
generation.

Our system achieved strong results across all
tasks: we ranked 1st in answer classification (Sub-
Task 2) and 3rd in both question classification (Sub-
Task 1) and QA answer generation (Sub-Task 3).

2 Background

The shared task (Alhuzali et al., 2025) focused on
three subtasks in the Mental Health track: (1) multi-
label question classification, (2) multi-label answer
classification, and (3) a QA system for generating
appropriate answers using models from the first
two tasks. Each instance in the dataset consists of
a question, its corresponding answer, a question
category (one of seven possible labels), and an
answer category (one of three possible labels). For
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Fine TuningData
Augementation

GPT-4o ALLaM 7B

3. QA System GrIPS

GPT 3.5-turboGPT 3.5-turbo

1. Question Classification

2. Answer Classification

Figure 1: Overall pipeline for our approach. Beginning with the raw data, we generate synthetic samples and
leverage them to perform classification and then answer generation.

Figure 2: Question class distribution, showing signifi-
cant imbalance between categories.

Figure 3: Answer class distribution.

example, a question about treatment options for
depression could be labeled under Treatment for
questions and Supportive Advice for answers.

The question taxonomy spans seven categories,
covering clinical reasoning and practical guidance:
Diagnosis (A) for interpreting findings, Treatment
(B) for therapeutic options, Anatomy and Physiol-
ogy (C) for biomedical knowledge, Epidemiology
(D) for disease progression and causes, Healthy
Lifestyle (E) for wellness habits, Provider Choices

(F) for healthcare navigation, and Other (Z) for
miscellaneous queries. Answer strategies fall into
three broad types: Information (1) delivering fac-
tual content and resources, Direct Guidance (2) of-
fering actionable recommendations, and Emotional
Support (3) providing reassurance or encourage-
ment (Alhuzali et al., 2024).

The dataset contains 350 labeled QA pairs from
an Arabic-language mental health forum. Figures 2
and 3 show the category distributions. The ques-
tion categories are heavily imbalanced, with certain
categories having fewer than 10 samples, while the
largest category has over 175 samples. The an-
swer categories are also imbalanced, though less
severely. This imbalance strongly motivated our
data augmentation approach to generate synthetic
samples for minority classes.

Our participation covered all three tracks, and
our contribution is novel in its integration of
prompt optimization (via GrIPS) with both few-
shot prompting and instruction fine-tuning for im-
balanced and low-resource Arabic mental health
classification tasks. Related work in Arabic NLP
has explored mental health (Alhuzali and Alas-
mari, 2025, 2024), but to our knowledge, no prior
shared task system has combined prompt optimiza-
tion with synthetic minority oversampling for both
classification and answer generation in this domain.
For instance, MedArabiQ (Abu Daoud et al., 2025)
introduced a benchmark for evaluating large lan-
guage models on Arabic medical tasks, covering a
wide range of QA problems.
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3 System Overview

We built the QA system by leveraging our models
from Subtasks 1 and 2, which classify questions
and answers. As shown in Figure 4, we appended
the predicted question category to the QA prompt.
We used the question category predicted labels (ob-
tained from fine-tuning) as guidelines for the QA
model. Furthermore, the system prompt is opti-
mized using GrIPS as Section 3.3 explains.

3.1 Data Augmentation

To address dataset size constraints and class imbal-
ance, we employed GPT-4o (temperature = 0.7) to
synthesize additional training instances. Augmen-
tation targeted the least frequent labels: (3) and
its multi-label variants (1,3), (2,3), and (1,2,3) for
Subtask 2; and labels C, D, E, and F for Subtask 1.

Prompt construction incorporated: (i) role speci-
fication to enforce domain-appropriate tone; (ii) cat-
egory definitions from (Alhuzali et al., 2024); (iii)
in-context exemplars; (iv) explicit formatting con-
straints (e.g., fixed sample counts, variable lengths);
and (v) lexical variation controls to minimize re-
dundancy.

For Subtask 1, we generated 300 synthetic sam-
ples (50 each for D and E; 100 each for C and F),
expanding the dataset from 350 to 650 samples.
For Subtask 2, we generated 160 samples (40 per
target configuration), expanding the dataset from
350 to 510 instances.

Following the generation of each set of samples,
we performed a human evaluation to assess the
quality and relevance of the generated samples. For
this purpose, we randomly selected approximately
one-third of each set for detailed inspection with
respect to fluency, label relevance, and adherence
to the specified constraints.

Appendix A.1 includes examples of both the
prompts and the generated data. Additionally, the
full datasets, including all generated samples, are
available on our GitHub repository.1

3.2 Model Fine-Tuning

We used fine-tuned models from Subtask 1 (Ques-
tion Classification) to explicitly solve Task 1. Fur-
thermore, we leveraged the best performing model
(ALLaM 7B) to develop the QA system as shown
in Figure 1. Given a question that the system needs
to respond to, we obtain a predicted category label

1https://github.com/AbdulRahmanBenatia/
Sindbad-AraMentalQA-SharedTask

from the fine-tuned models that we then provide in
the prompt. This is the second step in our prompt
building process in Figure 4.

3.3 Prompt Optimization with GrIPS

Gradient-free Instructional Prompt Search (GrIPS)
is a technique proposed by (Prasad et al., 2022)
to efficiently optimize the prompts used for our
QA system. We used GrIPS to optimize the sys-
tem prompt of our QA System as Figure 4 shows.
Our implementation of GrIPS follows an iterative
prompt optimization process. Starting from an
initial prompt, we generate candidate variations
through targeted mutations, such as structural ad-
justments, content refinements, and cultural adap-
tations for six iterations. Each candidate prompt
is evaluated on a subset of the training data using
BERTScore F1 to measure the alignment between
the model-generated and reference answers. See
Figure 5 for BERTScore performance for each iter-
ation. The highest-scoring prompt is retained for
the next iteration, and the process is repeated for
a fixed number of optimization rounds. This ap-
proach enables systematic improvement of prompt
effectiveness without gradient-based updates, ulti-
mately yielding an optimized instruction that en-
hances model performance on the QA system.

4 Experimental Setup

4.1 Sub-Task 1: Question Classification

Prior to building the QA system, we employed fine-
tuning to classify questions. We experimented with
an array of PLMs and used the best performing
model (ALLaM 7B) in the QA System. The hyper-
parameters used are listed in Table 1. Table ?? in
the appendix also shows the performance on the
evaluation portion (20 percent) of our augmented
dataset.

4.2 Sub-Task 2: Answer Classification

For Subtask 2, we fine-tuned MARBERT (Abdul-
Mageed et al., 2021) on the augmented dataset de-
scribed in Section 3.1 for multi-label classification,
using the hyperparameters in Table 2, consistent
with (Alhuzali and Alasmari, 2025) for the same
task. Model training employed a maximum se-
quence length of 256, the Binary Cross-Entropy
loss function, and an AdamW optimizer.

An 80/20 train-validation split was used for
cross-validation to ensure that model performance
was stable and not driven by outliers. Then, we
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System Prompt Question Category Few shot examples Response Guidelines

You are a professional
psychiatrist.

It is likely that this is a
"Treatment" question.

Question 1: Answer 1.
Question 2: Answer 2.

Category description.
Only respond in Arabic.

GRIPS Fine tuning

Figure 4: Overall prompt structure for the QA System.

Figure 5: GPT-3.5-turbo Performance during GrIPS
prompt optimization.

Parameter Value
Learning rate 1× 10−4

Batch size 2
Gradient accumulation steps 4
Epochs 3
Weight decay 0.01
Early-stop patience 2
LORA rank (r) 8
LORA alpha 16
LORA dropout 0.05
Quantization None
Optimizer adamw_torch

Table 1: Default hyperparameters for fine-tuning on
Subtask 1, question classification.

re-trained the model on the full augmented set and
used it to generate predictions for the official test
set. We report our results using the following eval-
uation metrics: Weighted-F1 and Jaccard score, as
recommended by the shared task organizers.

4.3 Sub-Task 3: Question Answering System

We employed gpt-3.5-turbo via the OpenAI API
for question–answer (QA) generation. The sys-
tem adopted a few-shot prompting approach with
three manually carefully selected examples that

Parameter Value
Hidden size 768
Batch size 8
Dropout 0.1
Early-stop patience 10
Epochs 15
Learning rate 2× 10−5

Optimizer AdamW

Table 2: Hyperparameters for MARBERT fine-tuning.

represent diversity in target labels. Categories were
drawn from a predefined taxonomy (A–F, Z) cover-
ing diagnosis, treatment, anatomy/physiology, epi-
demiology, healthy lifestyle, provider choice, and
miscellaneous queries.

Prompts were structured into: (i) a system role
enforcing professional and empathetic Arabic med-
ical responses; (ii) category-specific contextual de-
scriptions; (iii) explicit response guidelines; and
(iv) optional in-context examples. The temperature
parameter was fixed at 0.0 to ensure deterministic
output and reproducibility.

5 Results

5.1 Sub-Task 1

Our ALLaM-based system achieved third place in
Subtask 1 with Weighted-F1 = 0.53 and Jaccard =
0.49 as shown in Table 3.

Weighted-F1 Jaccard Ranking
0.53 0.49 3rd

Table 3: Results on the official test set for Subtask 1.

5.2 Sub-Task 2

As shown in Table 4, our system achieved
Weighted-F1 = 0.79 and Jaccard = 0.71, ranking

187



first in Subtask 2. The observed performance gains
were primarily attributed to the targeted augmenta-
tion of under-represented label combinations.

Weighted-F1 Jaccard Ranking
0.79 0.71 1st

Table 4: Results on the official test set for Subtask 2.

5.3 Sub-Task 3
On the official test set, our gpt-3.5-turbo system
achieved a BERTScore of 0.668, ranking 3rd in
Subtask 3. This performance reflects the benefit
of structured, category-aware prompting and few-
shot exemplars, though the gap to the top systems
suggests potential for further domain adaptation.

BERTScore Ranking
0.668 3rd

Table 5: Results on the official test set for Subtask 3.

6 Conclusion

In this work, we developed a system for Arabic
mental health QA tasks that integrates instruction
fine-tuning on augmented data, few-shot prompt-
ing, and gradient-free prompt optimization via
GrIPS. Our approach effectively addresses class
imbalance and low-resource challenges, achieving
first place in answer classification (Sub-Task 2) and
third place in both question classification (Sub-Task
1) and QA answer generation (Sub-Task 3). These
results demonstrate the effectiveness of combining
synthetic data generation, fine-tuning, and prompt
engineering to enhance large language model per-
formance in specialized, low-resource domains and
open the way for further research addressing Ara-
bic mental health NLP.
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A Appendix

A.1 Data Augmentation
Figure 6 presents an example prompt along with
three randomly selected generated responses, il-
lustrating Answer augmentations associated with
labels (1, 3).

Similarly, Figure 7 presents an example prompt
together with five randomly selected generated re-
sponses, illustrating Question augmentations asso-
ciated with label E.

A.2 Fine-tuning
We experimented with the following arrays of mod-
els during fine tuning:

"meta -llama/Llama -2-13b-chat -hf",
"ALLaM -AI/ALLaM -7B-Instruct -preview",
"silma -ai/SILMA -9B-Instruct -v1.0",
"aubmindlab/bert -base -arabertv2",
"UBC -NLP/MARBERT",
"CAMeL -Lab/bert -base -arabic -camelbert -

mix"

Model F1 Micro F1 Wtd. Jaccard
meta-llama 0.62 0.57 0.47
ALLaM-7B 0.68 0.59 0.54
SILMA-9B 0.62 0.57 0.48
arabertv2 0.68 0.59 0.53
MARBERT 0.68 0.59 0.53
camelbert-mix 0.68 0.59 0.53

Table 6: Performance of different models on the evalua-
tion set for Subtask 1: Question Classification.

A.3 GrIPS
To optimize the prompt used in the QA system,
we ran the optimization script against the initial
template, which resulted in the final prompt header

#Initial Prompt Header
"You are an expert Arabic mental health

assistant.
Provide accurate , helpful responses

to mental health questions in
Arabic.

Be professional yet empathetic in
your answers."

#Final Prompt Header
"You are an expert Arabic psychiatric

conditions assistant.
Provide accurate , evidence -based

responses to psychiatric
conditions questions in Arabic.

Be professional yet empathetic in
your answers. Answer concisely
in Arabic medical terminology.

Answer concisely in Arabic
medical terminology."

Note: this represents the prompt header, often sup-
plied as a system propmpt to applicable models. In
the rest of the prompt, we append the categories
description as given the description of the task,
along with other information to control the model
response.
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(a) Example prompt.

(b) Sample responses.

Figure 6: Augmentation prompt and sample generated responses for Answers (label 1, 3).

190



(a) Example prompt.

(b) Sample responses.

Figure 7: Augmentation prompt and sample generated responses for Questions (label E).
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Abstract

Arabic-speaking communities face persistent
challenges in mental health support due to lin-
guistic complexity, cultural nuances, and lim-
ited specialized resources. This study intro-
duces AraHealthQA 2025, a multi-task frame-
work for Arabic mental health question an-
swering, tackling three subtasks: (i) ques-
tion classification, (ii) answer strategy clas-
sification, and (iii) generative question an-
swering using a Retrieval-Augmented Gener-
ation (RAG) pipeline. For classification,fine-
tuned AraBERTv2, MARBERTv2, and Ara-
bic RoBERTa on multi-label mental health
data. For generation, developing a culturally-
aware RAG system that integrates semantic
chunking, query enhancement, and hybrid re-
trieval. Dense retrieval via akhooli/Arabic-
SBERT-100K, sparse retrieval via rank_bm25,
and generation using Sakalti/Saka-14B fine-
tuned with culturally aligned mental health
terminology (e.g., respecting religious sensi-
tivities in advice). The approach achieves
weighted F1-scores of 0.742 (question classifi-
cation) and 0.718 (answer classification), and
a BERTScore F1 of 0.821 representing up to
15% improvement over retrieval-only baselines.
These findings demonstrate the potential of cul-
turally sensitive, Arabic-focused NLP systems
to advance accessible mental health support.

1 Introduction

Imagine a young Arabic speaker in a rural Egyptian
town seeking help online for anxiety. They describe
their symptoms using local dialect and everyday
expressions, but most automated systems either fail
to understand the meaning or respond with advice
that feels culturally inappropriate sometimes even
contradicting religious or social norms. This reality
reflects the urgent need for mental health question
answering (QA) systems that understand both the
Arabic language and the cultural context in which
it is used.

Mental health support is a global challenge, yet
it is particularly acute in Arabic speaking regions,
where cultural stigma, linguistic diversity, and lim-
ited access to professional services create signif-
icant barriers to care. According to the World
Health Organization, fewer than 30% of individuals
in these countries receive adequate mental health
support. Intelligent, culturally aware QA systems
could help bridge this gap by making reliable, con-
textually appropriate information more accessible.

Arabic Natural Language Processing (NLP) in
healthcare faces unique challenges: morphologi-
cal complexity, dialectal variation, and scarcity of
domain specific resources. Unlike English, where
large scale datasets and specialized resources are
abundant, Arabic mental health NLP suffers from
a shortage of annotated datasets, sensitivity to cul-
tural and religious norms, and the need for re-
sponses that reflect socially acceptable language
and tone.

While transformer based models such as
AraBERT and MARBERTv2 have demonstrated
strong results in various Arabic NLP tasks, their
application in mental health contexts particularly
in multi-task frameworks remains largely unex-
plored. Moreover, existing Arabic QA systems
rarely integrate mechanisms for cultural sensitivity,
such as avoiding taboo topics, respecting religious
guidelines in therapeutic advice, and translating
formal medical terms into locally understood id-
ioms. This work addresses the AraHealthQA 2025
workshop’s Track 1: MentalQA challenge, which
involves three interconnected tasks essential for a
comprehensive mental health support system. Con-
tributions are as follows:

(1)Multi-task Framework: A unified pipeline
for question categorization, answer strategy classi-
fication, and generative QA, allowing better align-
ment between classification and generation.

(2)Advanced Arabic RAG System: A Retrieval
Augmented Generation architecture optimized for
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Arabic mental health contexts, incorporating se-
mantic chunking, query enhancement, and cultur-
ally aware reranking, which improves the relevance
and appropriateness of generated responses.

(3)Comprehensive Evaluation: Extensive ex-
perimental analysis of transformer models in Ara-
bic mental health classification tasks, supported by
domain specific and semantic similarity metrics.

(4)Cultural Sensitivity Integration: Mecha-
nisms to avoid inappropriate advice in sensitive
contexts, for example, rephrasing lifestyle recom-
mendations to respect religious fasting periods or
reframing advice using culturally accepted idioms.

By addressing both the technical and cultural
dimensions of the problem, this research provides
a foundation for building Arabic mental health QA
systems that are accurate, contextually aware, and
socially responsible.

2 Related Work

2.1 LLMs in Healthcare

Large Language Models (LLMs) have been in-
creasingly adopted in healthcare for tasks such as
clinical decision support, diagnostics, and patient
communication. Recent scopings highlight both
their promise and the need for responsible integra-
tion, emphasizing ethical guidelines, transparency,
and interdisciplinary collaboration (1). In mental
health care specifically, research show applications
in screening, symptom detection, conversational
agents, and intervention support, while cautioning
about hallucinations, bias, and reliability issues (2).

2.2 LLMs in Mental Health

Recent systematic studies report LLM applications
in detecting depression, suicide risk, and delivering
counseling or educational interventions (2). intro-
ducing PsyLLM, a specialized model integrating
diagnostic and therapeutic reasoning aligned with
DSM and ICD frameworks, which demonstrated
improvements in realism, safety, and comprehen-
siveness compared to conventional LLMs (3).

2.3 RAG in Mental Health

Retrieval Augmented Generation (RAG) has been
applied to enhance mental health recommendation
systems. Evaluating baseline LLMs (GPT-3.5, GPT-
4o, Gemma 2, Claude 4) for mental health app
recommendations and found that while baseline
models achieved 60–75% accuracy, RAG enhanced

pipelines achieved 100% accuracy with improved
diversity and quality (4).

2.4 Arabic Mental Health Applications
Arabic mental health NLP remains a developing
field. Introducing the MentalQA dataset for Ara-
bic mental health Q&A classification, showing that
transformer based models like MARBERT outper-
form classical baselines, with GPT-3.5 few-shot
prompting yielding notable accuracy improvements
(5). Benchmarking multiple mono and multilingual
LLMs for Arabic mental health support, finding
that structured prompts improved performance by
14.5% on average, and few-shot learning boosted
accuracy by 1.58× for certain models such as GPT-
4o Mini (6).

Despite notable advances, several key gaps re-
main in Arabic mental health NLP. First, there is
a lack of large scale, culturally aligned datasets
for Arabic mental health QA. Second, few systems
adopt multi-task approaches that integrate classi-
fication and generation for coherent end to end
performance. Third, cultural integration is insuf-
ficient, with some systems producing outputs that
conflict with social and religious practices (e.g.,
dietary advice during Ramadan). Finally, no fully
developed, culturally aware Arabic RAG pipelines
currently exist for this domain

3 Methodology

The proposed Advanced Retrieval Augmented Gen-
eration (RAG) System for Arabic Mental Health
Q&A represented in figure 1. This pipeline inte-
grates dense and sparse retrieval for Arabic mental
health Q&A. Input Q&A data is chunked, embed-
ded with Arabic-SBERT-100K, and indexed using
both vector and BM25 methods. A user query is
enhanced, retrieved, re-ranked, and passed along
with the most relevant contexts to a finetuned Saka-
14B model, which generates culturally appropriate
answers evaluated with BERTScore.

3.1 Data Processing and Knowledge Base
Construction

3.1.1 Input Data Preparation
The knowledge base comprises 1,000 Arabic men-
tal health question–answer pairs in JSON format.
Of these, 500 were provided by competition or-
ganizers, while 500 were synthetically generated
using large language models (LLMs) and subse-
quently reviewed by human annotators.
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Figure 1: Advanced RAG System Architecture for Ara-
bic Mental Health Q&A. The system processes input
data through 13 main stages.

Human Verification Process: Three native Ara-
bic speakers with expertise in mental health termi-
nology reviewed all synthetic entries for correct-
ness, clarity, and cultural appropriateness.

3.2 Response Classification for Semantic
Categorization

A multi-label classification module categorizes re-
sponses into Information, Direct Guidance, or Emo-
tional Support.

3.2.1 Transformer Based Models
Finetuned three transformer based models:

• AraBERTv2: Optimized for Modern Stan-
dard Arabic, effective for formal health con-
tent.

• MARBERTv2: Tuned for dialectal Arabic,
capturing colloquial expressions common in
mental health queries.

• RoBERTa (English): Included as a cross lin-
gual baseline to evaluate adaptation to Arabic
after finetuning, quantifying the value of Ara-
bic specific pretraining.

3.2.2 Integration with RAG Pipeline
Predicted categories from AraBERTv2 (the best
performer) are stored as query metadata.used in re-
trieval by prioritizing contexts matching the desired
strategy.

3.3 Embedding and Vector Storage
Employing Arabic-SBERT-100K for embedding
generation due to its superior semantic represen-
tation of Arabic mental health language. Com-
pared to multilingual alternatives, it better captures

idiomatic expressions and domain specific terms.
The 768 dimensional embeddings require more
memory but significantly improve retrieval qual-
ity, justifying the storage overhead for this domain.

3.4 Query Processing and Enhancement
3.4.1 User Query Analysis
Arabic queries are normalized (e.g., removing dia-
critics, standardizing alef forms) while preserving
meaning to prevent retrieval mismatches.

3.4.2 Query Enhancement Mechanism
To handle dialect variation, colloquial terms are
expanded to their formal equivalents.

3.5 Information Retrieval and Re-ranking
3.5.1 Similarity Search
Enhanced queries are embedded using Arabic-
SBERT-100K, ensuring retrieval consistency.

3.5.2 Multi-factor Re-ranking Algorithm
Contexts are ranked using:

• Semantic similarity (0.4)

• BM25 score (0.2)

• Text length (0.2)

• Question similarity (0.2)

Weights were determined through empirical tun-
ing on a validation set, achieving the highest
BERTScore F1.

3.5.3 Cultural Sensitivity Filtering
Retrieved contexts containing culturally risky rec-
ommendations (e.g., suggesting alcohol consump-
tion as a coping method) are deprioritized or re-
placed with culturally acceptable alternatives (e.g.,
meditation, prayer, or physical exercise).

3.6 Response Generation
3.6.1 Model Choice
We fine-tuned Saka-14B for Arabic mental health
support using QLoRA with parameter-efficient tun-
ing. A dataset of user questions, assistant answers,
and expert ratings was reformatted into a text-to-
text causal LM style with a system prompt defining
the assistant’s role.

The model was loaded in 4-bit NF4 quantization
with BitsAndBytes for memory efficiency, then
adapted using LoRA on attention and feed-forward
layers (r=8, =16, dropout=0.05). Training used
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Hugging Face’s Trainer with AdamW, cosine learn-
ing rate scheduling (2e-5), gradient checkpointing,
FP16, and early stopping.

3.6.2 Prompt Construction
Prompts combine:

• Domain specific instructions (mental health
scope)

• Top 5 retrieved contexts

• Original user query

• Cultural constraints (e.g., avoid contradicting
Islamic practices)

4 Results and Evaluation

Evaluating the system across the three Ara-
HealthQA 2025 subtasks: question categorization,
answer strategy classification, and generative ques-
tion answering (QA).

4.1 Evaluation Framework
4.1.1 Metrics
Using BERTScore for semantic similarity and do-
main specific human evaluations for appropriate-
ness. BERTScore is an evaluation metric for text
generation tasks (like machine translation, sum-
marization, or dialogue systems) that measures se-
mantic similarity between a candidate text and a
reference text.

Instead of relying on exact word matches (like
BLEU or ROUGE), BERTScore uses contextual
embeddings from pretrained transformer models
(e.g., BERT, RoBERTa) to capture meaning.

4.2 Question Categorization Results
Table 1 shows the class distribution for question
categories in the training data.

Table 1: Distribution of Question Categories

Category Count Percentage
Treatment 240 24.0%
Diagnosis 210 21.0%
Healthy Lifestyle 190 19.0%
Epidemiology 85 8.5%
Other 275 27.5%

The best performing model was the MAR-
BERTv2 ensemble, achieving:

• Weighted F1: 0.832

• Jaccard Score: 0.681

• Macro F1: 0.698

Table 2 shows the question scores distribution.

Table 2: Question Categorization Results

Model Weighted F1
aubmindlab/bert-base-arabertv2 0.81
UBC-NLP/MARBERTv2 0.83
FacebookAI/roberta-base 0.77

4.3 Answer Categorization Results
Table 3 shows the answer strategy distribution.

Table 3: Answer Strategy Distribution

Strategy Count Percentage
Information 227 45.4%
Direct Guidance 173 34.6%
Emotional Support 37 7.4%

The best performing model (AraBERTv2)
achieved:

• Weighted F1: 0.8289

• Jaccard Score: 0.7667

Challenge: Emotional Support detection was
the most difficult due to subtle cue recognition in
Arabic, where supportive intent is often expressed
indirectly.

Table 4: Performance comparison of models on the
Arabic text classification task.

Model Weighted F1 Jaccard Direct Guidance F1
AraBERTv2 0.8289 0.7667 0.786
MARBERTv2 0.8083 0.6800 0.730
RoBERTa-base 0.7710 0.6333 0.701

4.4 Question Answering Results
Comparing three configurations, as shown in the
figure 2.

Statistical Significance
performed a paired bootstrap significance test (n =
1, 000 samples) comparing Finetuned Saka-14B to
the strongest baseline (Qwen14). Results showed
that the improvement in BERT-F1 was statistically
significant.

The finetuned Saka-14B (RAG) model achieved
the highest semantic alignment with gold answers,
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Figure 2: Bert-F1 scores of the 4 models, A comparison
between Finetuning and Baseline models

benefiting from retrieval guided context selection
and cultural adaptation. The Baseline Qwen14
captured some semantic similarity but often failed
in cultural context handling, while Baseline Saka-
14B provided verbose but less targeted responses.

Trade off Observation: Verbosity in Saka-14B
outputs was partially controlled by the prompt de-
sign and top 5 retrieval limit; increasing retrieval
scope tended to increase detail but sometimes re-
duced focus.

5 Conclusion and Future work

This study presented a multi-task Arabic mental
health question answering framework that inte-
grates question categorization, answer strategy clas-
sification, and culturally sensitive Retrieval Aug-
mented Generation. The system addresses the lin-
guistic complexity and cultural considerations of
Arabic mental health discourse by combining se-
mantic chunking, query enhancement, hybrid re-
trieval, and a finetuned Saka-14B model aligned
with cultural norms.

Experimental evaluation demonstrated that the
framework achieved weighted F1-scores of 0.742
for question categorization and 0.718 for answer
strategy classification, alongside a BERTScore F1
of 0.821 for generative answering—up to 15%
higher than retrieval only baselines. Expert eval-
uations confirmed that the integration of cultural
filtering improved trustworthiness and contextual
relevance.

Despite these promising results, limitations re-
main. The dataset size is small relative to compa-
rable English language resources, which restricts
the model’s generalizability. Dialectal imbalance,

particularly the predominance of Egyptian Arabic,
impacted performance in Gulf and Levantine va-
rieties. Furthermore, the current system lacks au-
tomated mechanisms for handling high risk cases
such as suicidal ideation, and no standardized pro-
tocol for measuring cultural appropriateness has
yet been established. Looking ahead, the next stage
of development will focus on both scaling and refin-
ing AraHealthQA 2025. Expanding the dataset in
collaboration with Arabic speaking mental health
organizations is a priority, ensuring a richer vari-
ety of topics and balanced coverage of regional
dialects. This expansion will provide a stronger
foundation for training models that can generalize
across the linguistic and cultural diversity of the
Arabic speaking world.
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Abstract

We present a mental health support system for
Arabic that can classify both patient questions
and doctor answers, and generate answers for
new questions. The classification model orga-
nizes the input text to understand better the in-
tent of the user and the response style, while
the generation model produces accurate and
empathetic responses. In evaluations, our sys-
tem ranked 3rd in answer classification and 4th
in answer generation, with only a small mar-
gin from the top-ranked systems. These re-
sults highlight the effectiveness of multi-label
classification and RAG for improving access
to mental health information and support in
Arabic.

1 Introduction

Mental health and human psychology have been
studied and practiced as separate fields of
medicine for centuries (Grob, 1998), yet, studies
show that the general population in the MENA
region still refrains from seeking medical help
when it comes to mental health-related prob-
lems, mainly due to social considerations (Nazmy,
2025), leading to a significant degradation in
the public mental health status(Altobaishat et al.,
2025).

After the rise of large language models (LLMs)
and Agentic Artificial intelligence (AI) applica-
tions (Minaee et al., 2024; Plaat et al., 2025), es-
pecially for complex reasoning and questions an-
swering (QA) tasks, many researches have ex-
plored the use of advanced language models to
provide not only assistance for medical profes-
sionals (Nazi and Peng, 2024), but also as an al-
ternative means of delivering mental health care
(Guo et al., 2024), due to their ability to provide
human like responses and interactions (Zaki and
Hassan, 2023; Zahran et al., 2025), offering scal-
able, accessible, private, and stigma-free pathways
for psychological support.

Besides the aforementioned cultural barriers,
providing automated mental health support for
Arabic speakers faces other challenges, including:

• Higher Accuracy Standard: the medical
field -especially psychology- has a very low
tolerance of error, as opposed to other AI
applications, where in some cases, accuracy
could be traded off for speed or power effi-
ciency (Han et al., 2015), the cost of error in
medical applications could lead to unquantifi-
able losses, causing -in the worst cases- hu-
man fatalities (Topol, 2019).

• Data Scarcity: this challenge is two-fold:
1) Arabic datasets are scarce and generally
have lower quality annotations in general, 2)
Datasets for mental health-related problems
(Alhuzali et al., 2024) are not as abundant
as other health-related datasets (?Alasmari,
2025).

• Patient Confidentiality: unlike other med-
ical disciplines, obscuring patient identity is
more challenging, as personal information,
such as background and upbringing circum-
stances, has to be included in every case.

• Linguistic Complexity: Apart from data
problems, Arabic is morphologically rich and
includes many dialects with a high level of
diversity (Habash, 2010), which leads to a
wide performance gap of language models
between Arabic and other languages.

Our contribution in this task could be summa-
rized as:

• We developed a classification system to la-
bel questions and answers into multiple fine-
grained categories.

• We integrate additional external knowledge
from Arabic medical platforms to develop
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Figure 1: General overview of our system starting from the document collection phase, the RAG system for all
three subtasks, and multi-label classification, and question answering.

a simple yet effective retrieval-augmented
generation (RAG) system tailored to Arabic
mental health Q&A, improving overall clas-
sification accuracy and reducing hallucina-
tion in answers.

• We achieved 0.561 f1 score on the first track,
0.76 on the second one, and 0.663 on the
BERTScore (Zhang et al., 2020) metric.

2 Background

The challenge (Alhuzali et al., 2025) is divided
into three main sub-challenges. The first two are
multilabel classification for human questions and
their answers, respectively, with seven different
classes for questions and three for answers. The
third sub-challenge is answer generation to pro-
vide mental health assistance to patients by gen-
erating contextually appropriate and medically ac-
curate responses to user queries.

A lot of work has been put into data collection
for mental health, from different sources such as
social media platforms, for example Reddit (Co-
han et al., 2018; Di Cara et al., 2023). This data is
then manually annotated to identify different men-
tal health-related conditions, such as depression
detection (Han et al., 2022), anxiety, bipolar dis-
order, and suicidal intent (Ji et al., 2022).

Recent work explored the capabilities of LLMs
in the mental health domain for different tasks.
First, classification tasks to detect different men-
tal health conditions (Racha et al., 2025) and their
causes (Yang et al., 2023). Second, user question
answering, to respond to different user queries,
either informative or for advice seeking. Third,
chatbots offering their users a safe space for relief
and conversation (Shan et al., 2022) or chatbots
that help doctors in the application and monitoring

1due to the limited number of submissions, this score
didn’t show on the leaderboard, the metrics were computed
in the post-evaluation phase.

of different treatments, including cognitive behav-
ioral therapy (CBT) (Farzan et al., 2025), and self-
attachment technique (SAT) (Elahimanesh et al.,
2023).

The use of external knowledge in Retrieval
Augmented Generation (RAG) systems to en-
hance the factuality and robustness of LLMs, es-
pecially in the medical domain, has been ex-
plored, for example (Vladika and Matthes, 2024)
retrieved from a large corpus that included di-
verse topics such as dietary supplements, heart
and lungs, reproductive health, cancer, and men-
tal health. This demonstrated that retrieval
strategies prioritizing fewer, more recent, and
highly cited sources—especially at the sentence
level—significantly improved answer quality in
health question answering tasks.

Recently, many researchers have taken an inter-
est in the mental health domain in the Arabic lan-
guage. starting with simpler classification tasks,
such as depression detection (Maghraby and Ali,
2022; Hassib et al., 2022). Others worked on more
advanced tasks such as (Zahran et al., 2025).

3 System Overview

In this section, we present our system setup in de-
tail. First, we go through the data collection pro-
cess, then we describe our RAG pipeline, used
models, and embedding vectorestore. Finally, we
go through how we built our multi-label classifier
for the question and answer classification tracks.

3.1 Building Knowledge Base

To effectively build our knowledge base, we fol-
lowed a two-step process. First, we used the Gem-
ini API2 to collect articles related to each ques-
tion from the training set. Then, to reduce the size
of the knowledge base and guarantee smoother re-
trieval of relevant information, we fed articles with

2https://gemini.google.com
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Task RAG Pretraining F1-score

Question
Classification

✓ ✗ 0.490
✗ ✓ 0.558*
✗ ✗ 0.549*

Answer
Classification

✓ ✗ 0.760
✗ ✓ 0.735*
✗ ✗ 0.733*

Table 1: Macro-F1 scores on the test set using the two
approaches we developed, RAG and multi-label classi-
fication with and without continuous pretraining. (*)
denotes experiments done during the post-evaluation
phase, and were not submitted to the leaderboard due
to the limited number of submissions.

high relevance to the same question to Gemini to
compress them into one article. We then used the
same knowledge base for both the evaluation and
test phases, without any updates from the test set.

3.2 Retrieval Augmented Generation
Pipeline

After the data collection phase, we embed-
ded those related articles using BAAI/bge-m3
(Chen et al., 2024) for its multi-functional, multi-
granular, and especially multi-lingual capabili-
ties. Those embeddings are then stored in a
chroma-db3 vectorstore. For every sample, we
retrieved the top articles related to it and used
them as additional context to generate answers for
different classification and generation tasks using
google/medgemma-4b-it (Sellergren et al.,
2025).

Model RAG Validatoin Test
Qwen2.5 7b ✗ 0.608 –
Llama3.2 3b ✗ 0.597 –
Phi-mini 4b ✗ 0.606 –
Gemma3-4b ✗ 0.619 –
MedGemma3-4b ✗ 0.620 0.632
MedGemma3-4b ✓ 0.630 0.663

Table 2: BertScore results on the validation and test
sets for the answer generation sub-task.

3.3 Multi-label Classification for Question
and Answer

For the multi-label classification tasks, we re-
lied on MARBERTv2 (Abdul-Mageed et al., 2021)
model. To improve the model’s understanding ca-
pabilities in the mental health domain, we applied
masked language modeling (MLM) pretraining
(Devlin et al., 2019) using different Arabic men-
tal health books such as DSM-5 (EDITION, 1980)

3https://github.com/chroma-core/chroma

and articles about different psychiatric and mental
health conditions from the renowned Royal Col-
lege Of Psychiatrists 4. The pretrained model was
then fine-tuned for both the question and answer
multi-label classification tasks, using the binary
cross-entropy loss–reference the loss function–.

4 Experimental Setup

4.1 Dataset

4.1.1 Shared Task Dataset - MentalQA

The given dataset includes two different tasks:
multi-label classification and answer generation.
The classification part is for both questions and an-
swers, and the generation is to reply to the given
question. The QA pairs were collected from al-
tibbi 5 medical platform for advisory and infor-
mation, then 500 samples were manually anno-
tated (Alhuzali et al., 2024). Questions are cate-
gorized into seven classes, while answers are clas-
sified into only three.

4.1.2 Knowledge Base Dataset

The data was collected using the Gemini API, the
pre-comrpression articles were mainly from Ara-
bic medical websites, such as islamweb 6, Mayo
Clinic 7, Mind Clinic Group 8. The col-
lected articles were then curated as mentioned in
section 3.1. The compressed articles were then
added to a vectorstore database to facilitate re-
trieval

For the rag system, we use BAAI/bge-m3
model (Chen et al., 2024), and to store the data,
we used chroma-db.

4.1.3 Continue Pretraining Dataset

To better ground our base model’s capacity in un-
derstanding text from the mental health domain,
we utilized text scraped from multiple resources,
including 32 articles from the Royal College of
Psychiatrists and a collection of 72 books, either
originally written in Arabic or manually trans-
lated into Arabic by professional human transla-
tors. The combined dataset contained approxi-
mately 4.5 million tokens.

4https://www.rcpsych.ac.uk/mental-
health/translations/arabic

5https://altibbi.com
6https://islamweb.net/ar/
7https://www.mayoclinic.org/ar
8https://mindclinicgroup.com/ar
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Table 3: Some fauiler cases for our system on the three sub tasks.

4.2 Training Details

To continue the pretraining of the base
MARBERTV2 model, we used the AdamW
optimizer, with a learning rate 2e-5, 0.01 weight
decay, a cosine annealing learning rate scheduler,
and a batch size of 32. We trained the model
for 20 epochs. For training the Multi-Label
classification models, in both sub-tasks 1,2, we
used the same optimizer and learning rate, with
a linear scheduler, and a batch size of 4. Both
models were trained for 10 epochs. All training
was done on a single NVIDIA RTX-3090 GPU.

5 Results

5.1 Classification Tasks Results

For the classification task, we tested the RAG ap-
proach to label both questions and answers sepa-
rately. Then, we compared this approach with our
multi-label classification. Also, we assessed the
effect of the continue pretraining phase. We can
see from table 1 that in both cases the pretrain-
ing phase improved the results by 0.009 and 0.002
on the question and answer classification tasks,
respectively. Also, the RAG approach achieved
better results in the answer classification task by
0.025, but came short by 0.068 in the question
classification task.

5.2 Generation Tasks Results

To choose the best model, we run some initial tests
on the answer generation task using various open-
source LLMs. After picking the highest scoring
model, we used it for the remaining experiments
in our RAG system. The results of this experiment
are shown in table 2.

5.3 Analysis

Table 3 presents failure cases from our system.
In the Question Classification, the model mis-
classifies a request for a sleeping medication as a
query about Diagnosis, Anatomy and Physiology,
and Epidemiology, indicating a misunderstanding
of user intent by over-focusing on the symptom
keyword ��P



@ (insomnia). For Answer Classifica-

tion, the system correctly identifies Direct Guid-
ance but misses the Information label, showing
challenges in capturing all nuances. In Answer
Generation, responses are verbose and generic,
such as suggesting éK. ���J�K �	m��� ©Ó �HYj�JË @ (Talk
to someone you trust), instead of specific, action-
able advice, underscoring a preference for sup-
portive text over professional recommendations.

6 Conclusion

This paper investigated our work in the first track
of the AraHealthQA 2025 shared task for mental
health question and answer multi-label classifica-
tion and answer generation. We collected a large
corpus of Arabic mental health-related books and
articles and used them to continue pretraining our
base encoder. Then, we fine-tuned this model on
the classification tasks. We also benefited from the
provided questions and collected articles from the
internet using an agentic search tool. These arti-
cles are then used in a retrieval-augmented gen-
eration system for all three sub-tasks. Our sys-
tem achieved 0.558 and 0.760 F1-score on ques-
tion and answer multi-label classification tasks, re-
spectively, while achieving 0.663 BertScore on the
answer generation task.
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Abstract

We present FAHMNI, a unified system for Ara-
bic mental-health question answering devel-
oped for the AraHealthQA 2025 MentalQA
Shared Task (Track 1). FAHMNI evaluates large
language models (LLMs) on all subtasks: (1)
multi-label classification of question types and
(2) answer strategies, and (3) grounded an-
swer generation. For Subtasks 1–2, we sys-
tematically compare Arabic-capable LLM fam-
ilies (Qwen3, SILMA) under zero-shot and
few-shot prompting, few-shot learning with
a frozen backbone, parameter-efficient fine-
tuning (PEFT), and instruction tuning. To sup-
port Subtask 3, we implement a multi-agent,
retrieval-augmented generation pipeline that
routes queries between curated domain sources
and controlled web search; an answer-style
controller predicts the required strategy (In-
formation, Direct Guidance, Emotional Sup-
port) and conditions the generator accord-
ingly. Our best LLM configurations reach
0.507/0.404 (weighted-F1/Jaccard) on Subtask
1 with Qwen3+PEFT and 0.750/0.600 on Sub-
task 2 with SILMA+PEFT, while a strong fine-
tuned MARBERT baseline remains competi-
tive at 0.541/0.494 (Subtask 1) and 0.805/0.727
(Subtask 2). For Subtask 3, our multi-agent
RAG system with SILMA attains an 0.652
BERTScore F1 and yields a 0.06 hallucination
rate under our manual audit. These findings
highlight both the viability and current limits
of Arabic-capable LLMs for mental-health QA,
and they motivate grounded, style-aware gener-
ation as a practical path for safe deployment.

1 Introduction

Despite the growing global awareness of mental
health needs, Arabic remains severely underrepre-
sented in mental health NLP resources. Existing
work on Arabic mental health question answering
(QA) is limited in both scale and task coverage, hin-
dering the development of reliable digital support
tools, e.g. triage, education, guided self-help, for

Arabic speakers. Complementary efforts on men-
tal health text classification, such as cognitive dis-
tortions detection with data augmentation (Rasmy
et al., 2024), highlight the importance of tailored
augmentation for improving robustness in this sen-
sitive domain. The AraHealthQA 2025 shared
task (Track 1) (Alhuzali et al., 2025) addresses
this gap by introducing Arabic mental-health QA
across three subtasks: (1) multi-label classification
of question types; (2) multi-label classification of
answer strategies; and (3) answer generation (Al-
huzali et al., 2024). To tackle all three subtasks,
we develop FAHMNI, a unified system for Arabic
mental-health QA. Our system leverages two mod-
ern Arabic-capable LLM families: Qwen3 and
SILMA (SILMA9BInstruct, 2024) / Kashif family
(SILMA-AI, 2025), motivated by the strength of
their predecessors in multilingual transfer for Ara-
bic health retrieval and QA on the Massive Text
Embedding Benchmark (MTEB) (Enevoldsen et al.,
2025) and their competitive Arabic benchmarks in-
cluding Arabic RAG-style QA on the Arabic Broad
Leaderboard (Ouda, 2025).

Our approach for Subtasks 1 and 2 compares
zero-shot prompting, few-shot prompting, and
few-shot learning under both frozen-backbone,
parameter-efficient fine-tuning (PEFT), and instruc-
tion tuning regimes. For Subtask 3, we design a
multi-agent, retrieval-augmented answer genera-
tion system that dynamically routes queries, inte-
grates curated domain resources, and invokes open-
web retrieval when coverage is insufficient. We
summarize our contributions as follows:

1. Comprehensive evaluation of state-of-the-
art Arabic-capable LLMs on all three Ara-
HealthQA subtasks, spanning prompting and
fine-tuning strategies.

2. A novel multi-agent, retrieval-augmented
architecture that moves beyond prior
classification-only evaluations and offers
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grounded answer generation.
3. Reproducible resources including code, con-

figurations, and prompts to support future Ara-
bic mental-health QA research.

Our system achieves competitive results across
all three subtasks: For Subtask 1, we use Qwen3
under PEFT (weighted-F1 = 0.51; Jaccard = 0.4)
and for Subtask 2, we choose SILMA under PEFT
(weighted-F1 = 0.75; Jaccard = 0.6). Finally, for
Subtask 3, the SILMA Kashif model reaches a
BERTScore of 0.652. In practice, we encoun-
tered three recurring challenges: label overlap
across clinically adjacent categories, dialectal and
terminology variation, and limited data availabil-
ity due to the small training split. Our code
is available at https://github.com/MHRasmy/
AraHealthQA-2025-Track-1.

2 Background

The shared task uses the MentalQA corpus of Ara-
bic patient–doctor Q&A pairs annotated for seven
question types (Diagnosis, Treatment, Anatomy
& Physiology, Epidemiology, Healthy Lifestyle,
Provider Choice, Other) and three answer strate-
gies (Information, Direct Guidance, Emotional
Support) (Alhuzali et al., 2024). The annota-
tion study reports substantial reliability (Fleiss’
κ = 0.61 for question types; κ = 0.96 for answer
strategies). Track 1 releases 500 Q&A posts with
splits of 350 (train_dev) and 150 (test). Official
metrics are weighted F1 and Jaccard for Subtasks
1–2 (multi-label classification), and BERTScore
for Subtask 3 (grounded answer generation condi-
tioned on classifications). For readers unfamiliar
with MentalQA-style Q&A posts, we include illus-
trative Arabic examples in Appendix A.

Previous benchmarks (Alhuzali and Alasmari,
2025) compared classical SVM features, frozen
PLM encoders, fine-tuned Arabic PLMs (e.g.,
AraBERT, CAMeLBERT, MARBERT), and GPT-
3.5/4-based prompting. The fine-tuned MARBERT
showed strongest classification performance, with
few-shot prompting outperforming zero-shot. We
adopt this model as a well-established baseline and
extend the line of work by evaluating newer Arabic-
capable LLMs (Qwen3, SILMA) under zero-shot,
few-shot prompting, few-shot learning, fine-tuning,
and instruction tuning regimes for Subtasks 1–2,
and by by operationalizing grounded answer gen-
eration for Subtask 3 via a multi-agent, retrieval-
augmented design.

3 System Overview

In this work, we introduce FAHMNI, a single, mod-
ular architecture that couples classification and
grounded generation, thereby addressing all three
AraHealthQA Track 1 subtasks.

Subtasks 1–2 (multi-label classification). For
Tasks 1 and 2, we evaluate five approaches with the
Arabic-capable LLM families Qwen3 and SILMA:
zero-shot prompting, few-shot prompting, few-shot
learning, PEFT, and instruction tuning. In zero-
shot prompting, models receive only label defini-
tions; few-shot prompting augments this with com-
pact, label-balanced exemplars. To move beyond
prompting without overfitting in a small-data set-
ting, we train a shallow classification head over
frozen LLM representations (“few-shot learning”).
Finally, we perform instruction tuning in zero- and
few-shot settings. This progression lets us quan-
tify how much the task benefits from parametric
specialization versus prompt conditioning under
multi-label imbalance and clinically adjacent cate-
gories (e.g., Diagnosis vs. Treatment).

Subtask 3 (grounded answer generation via
RAG). Given the sensitivity of mental-health
counseling, responses should be grounded, fac-
tual, and style-appropriate. We, therefore, adopt
retrieval-augmented generation (RAG) for Task 3,
based on evidence that RAG improves faithfulness
and reduces hallucinations on knowledge-intensive
tasks (Lewis et al., 2020; Ayala and Bechard, 2024).
Our pipeline (Fig. 1) is organized around a decision
agent, which first inspects the query along with
available candidate passages retrieved from the lo-
cal knowledge base, then uses few-shot prompting
(details in Appendix B) to select between a static,
curated knowledge base and a dynamic web re-
trieval path.

(a) Static domain-specific retrieval. For well-
scoped questions, the system consults a curated
local knowledge base assembled from canonical
references: DSM-5-TR (Association, 2022) for Di-
agnosis, OpenStax Anatomy & Physiology (Betts
et al., 2024) for Anatomy & Physiology, CDC’s
Principles of Epidemiology (Edition, 2006) for Epi-
demiology, and MedlinePlus articles for Provider
Choice and general guidance. Retrieved pas-
sages are retrieved by similarity search (Qwen3-
Embedding, 4B variant) and provided as grounding
for the answer. Static retrieval yields high-precision
responses but is limited by coverage gaps (e.g.,
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Figure 1: Multi-agent retrieval-augmented generation
(RAG) pipeline for Subtask 3. A single LLM (SILMA
or Qwen-3) serves both as the Decision/Generation
agent: it first decides whether the query can be an-
swered locally without retrieval; if not, it triggers re-
trieval, and later generates the final answer (details in
Appendix A). Two retrieval paths are supported: (A)
Static Retrieval from a curated local knowledge base
for scoped domains, and (B) Dynamic Agentic Re-
trieval that launches web search and crawling agents
to acquire evidence when curated coverage is insuffi-
cient. The retrieved documents are summarized by the
agents and incorporated into the prompt, which is then
provided to the LLM to produce a grounded response
returned to the user.

Treatment and Healthy Lifestyle are too broad for a
single canonical source).

(b) Dynamic agentic retrieval. For broader or
open-ended queries, the decision agent triggers
a web-based retrieval pipeline. Here, dedicated
Gemini-2.0-Flash agents perform web search and
crawling to acquire evidence from reliable sources
(e.g., WHO, NIH, Mayo Clinic, CDC). Retrieved
content is summarized by the agents, assembled
into a context prompt, and then passed to the an-
swering LLM (Qwen3 or SILMA), which generates
the final grounded response.

4 Experimental Setup

Data splits. We follow the shared-task protocol:
the training split contains 350 instances, which we
partition into 300 for training and 50 for validation;
the test set contains 150 instances. For few-shot
classification, exemplars are chosen to cover all
labels so the model observes at least one positive
instance per class.

Hyperparameters. For fine-tuning in Tasks 1–2,
we use a learning rate of 2 × 10−5, batch size 8,
and train for up to 10 epochs with early stopping
on weighted F1 (validation split). These hyperpa-
rameters were chosen to match those in (Alhuzali
and Alasmari, 2025) for consistency with the MAR-
BERT baseline. We fix the random seed across all
runs for reproducibility. For Task 3 generation, we
set the temperature to 0 and disable sampling to ob-
tain deterministic outputs for both model families.

Evaluation. Tasks 1–2 are evaluated with
weighted F1 and the Jaccard index. Task 3 is evalu-
ated with BERTScore (Zhang* et al., 2020).

Additional evaluation for Task 3 (RAG qual-
ity). Because mental health is a highly sensitive
domain, we complemented standard metrics with
domain-tailored ones to better capture answer qual-
ity and errors. Following Zhu et al. (Zhu et al.,
2025), we report Completeness (coverage of ex-
tracted gold key points), Hallucination (contradic-
tions), and Irrelevance (omissions). These metrics
provide a granular view of factual reliability be-
yond BERTScore. Formal definitions and scoring
details are given in Appendix C.

5 Results

5.1 Quantitative Performance

Table 1 reports official test-set results for Sub-
tasks 1 (question-type classification) and 2
(answer-strategy classification) across baseline fine-
tuning, few-shot prompting, parameter-efficient
fine-tuning (PEFT), and instruction tuning.

For Subtask 1, the baseline fine-tuned model at-
tains the strongest weighted F1 (0.541) and Jaccard
(0.494). PEFT models follow (Qwen: F1 0.507;
SILMA: F1 0.497), while few-shot prompting
(Qwen) trails (F1 0.440). The instruction-tuned
few-shot Qwen variant reaches F1 0.533 but a lower
Jaccard 0.412, suggesting more partial label over-
lap than exact set matches.

For Subtask 2, the baseline fine-tuned model
again leads (F1 0.805; Jaccard 0.727). Among
non-baseline settings, PEFT (SILMA) is strongest
(F1 0.753; Jaccard 0.670), followed by instruction-
tuned few-shot Qwen (F1 0.738; Jaccard 0.651).
Empty predictions are rare and appear mainly in
PEFT settings.
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Task / Method F1 Jac. Empty
Subtask 1: Question Type Classification
Baseline FT 0.541 0.494 0
Few-shot (Qwen) 0.440 0.453 0
PEFT (Qwen) 0.507 0.434 7
PEFT (SILMA) 0.497 0.422 7
Instr. Tuning Few-shot (Qwen) 0.533 0.412 0
Subtask 2: Answer Strategy Classification
Baseline FT 0.805 0.727 0
Few-shot (Qwen) 0.622 0.572 0
PEFT (Qwen) 0.701 0.607 2
PEFT (SILMA) 0.753 0.670 1
Instr. Tuning Zero-shot (Qwen) 0.646 0.589 0
Instr. Tuning Few-shot (Qwen) 0.738 0.651 0

Table 1: Official test-set results for Subtasks 1 and 2.
Best per subtask in bold.

5.2 Error Analysis

Table 2 shows the distribution of exact, partial, and
wrong predictions. We expand here on why models
make mistakes.

Subtask 1 (question types). The baseline FT has
the highest partial-match rate (60.67%), which ex-
plains its strong F1 and Jaccard scores: it often
identifies part of the correct set of question types,
but misses others. Few-shot (Qwen) gives the high-
est exact rate (24.67%) but also the highest wrong
rate (29.33%), meaning it sometimes predicts all
labels correctly but more often misclassifies com-
pletely. PEFT variants stay competitive on partial
matches but achieve fewer exact hits.

Looking at the labels, we see frequent misses
on Healthy lifestyle, Epidemiology, and Treatment,
while Diagnosis and Treatment are often added
incorrectly. This indicates that the models some-
times confuse overlapping categories: for exam-
ple, lifestyle-related questions are mistaken as
treatment-related, and prognosis/etiology questions
(epidemiology) are mistaken as diagnostic ones.
The instruction-tuned few-shot Qwen reflects this
tendency clearly: it achieves the highest partial rate
(79.33%) but only 7.33% exact, as it often adds
extra labels such as Diagnosis or Treatment while
missing Healthy lifestyle. This increases recall but
reduces exact agreement.

Subtask 2 (answer strategies). Here, the base-
line FT achieves the best balance with the high-
est exact rate (48.67%) and the lowest wrong rate
(3.33%). PEFT (Qwen) produces the most partial
predictions (56.67%), often identifying one correct
strategy but missing another. Across systems, the
most common source of errors comes from Infor-
mation and Direct Guidance: answers that mix fac-

tual knowledge with advice are difficult for models
to consistently label, causing under-prediction or
over-prediction of these two categories. Instruction-
tuned few-shot Qwen improves over zero-shot by
converting some wrong cases into partial matches,
showing that in-context examples help the model
separate advice from information.

Empty predictions. Empty outputs occur when
all predicted scores fall below the decision thresh-
old of 0.5. They are rare but appear mainly in
PEFT runs (S1: 7 for Qwen, 7 for SILMA; S2: 2
for Qwen, 1 for SILMA). In these cases, the model
is overly conservative, assigning low confidence to
all categories and outputting no label.

Takeaways. Across both subtasks, the main chal-
lenges are (i) partial matches caused by overlap-
ping categories, such as Diagnosis vs. Treatment or
Information vs. Direct Guidance, and (ii) threshold-
related errors that lead to either empty predictions
or the addition of extra labels. These issues explain
why the baseline FT remains the strongest overall:
it provides more balanced predictions with higher
exact matches, while instruction tuning (Subtask 1)
trades exactness for broader coverage.

Task / Method Exact
%

Partial
%

Wrong
%

Subtask 1
Baseline FT 22.67 60.67 16.67
Few-shot (Qwen) 24.67 46.00 29.33
PEFT (Qwen) 16.67 58.00 25.33
PEFT (SILMA) 16.67 57.33 26.00
Instr. Tuning Few-shot (Qwen) 7.33 79.33 13.33
Subtask 2
Baseline FT 48.67 48.00 3.33
Few-shot (Qwen) 39.33 37.33 23.33
PEFT (Qwen) 33.33 56.67 10.00
PEFT (SILMA) 40.67 52.67 6.67
Instr. Tuning Zero-shot (Qwen) 36.67 45.33 18.00
Instr. Tuning Few-shot (Qwen) 38.67 53.33 8.00

Table 2: Error distribution for Subtasks 1 and 2. Best
per column and subtask in bold.

Model SILMA Qwen
BERTScore ↑ 0.652 0.645
Completeness ↑ 0.567 0.6
Hallucination ↓ 0.06 0.04
Irrelevance ↓ 0.373 0.36

Table 3: Task 3 (RAG answer generation) results on
the MentalQA test set. We report BERTScore F1, Com-
pleteness, Hallucination, and Irrelevance.
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5.3 Task 3: Answer Generation (RAG)
Table 3 summarizes results for SILMA and Qwen-
3. Both models perform similarly overall. SILMA
attains a slightly higher BERTScore (0.652 vs.
0.645), while Qwen-3 achieves higher Complete-
ness (0.600 vs. 0.567) and lower Hallucination
(0.04 vs. 0.06) and Irrelevance (0.36 vs. 0.373).
Qualitative best and worst examples for each model
are provided in Appendix D.

The uniformly low Hallucination rates (≤0.06)
indicate that generated answers rarely contain con-
tent that contradicts the gold key points, suggesting
that the RAG pipeline effectively constrains factual
errors. At the same time, completeness around
0.57–0.60 shows that only about three-fifths of the
gold key information is covered, leaving a sub-
stantial fraction of gold content unaddressed (Ir-
relevance 0.36–0.373). This explains the moder-
ate BERTScore values (≈0.65): limited key-point
overlap and the inclusion of additional retrieved de-
tails (which are non-contradictory but not present
in the references) dilute semantic alignment with
the gold answers, lowering BERTScore despite the
low Hallucination.

6 Conclusion

We presented FAHMNI, a unified system for Arabic
mental-health question answering that combines
multi-label classification (question types and an-
swer strategies) with a retrieval-augmented, multi-
agent generator. On Subtasks 1–2, classic Ara-
bic PLMs remain a strong baseline: fine-tuned
MARBERT delivers the best weighted F1 and Jac-
card overall, while Arabic-capable LLMs (Qwen3,
SILMA) with PEFT and instruction tuning are com-
petitive under tighter compute and data budgets.
On Subtask 3, both SILMA and Qwen3 yield sim-
ilarly strong grounded generation with uniformly
low hallucination rates (≤ 0.06), indicating faith-
ful adherence to evidence. At the same time, mid-
range BERTScore and ∼0.6 completeness reveal
recall gaps: answers are generally factual but do
not fully cover gold key points, and extra retrieved
details can dilute reference overlap.
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A Illustrative Q&A Examples (Arabic)

Example 1

Question type: Treatment
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Example 2

Question type: Diagnosis
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Answer strategy: Direct Guidance
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B Task 3: Few-Shot Prompt for Local
Answerability

In our RAG pipeline, the answer-generation LLM
(SILMA or Qwen-3) first acts as a decision agent
that inspects the user query together with the can-
didate passages retrieved from the local knowledge
base. Using a few-shot prompt (below), it out-
puts a single token: Yes if the local passages con-
tain sufficient, explicit information to answer the
query faithfully, and No otherwise (e.g., missing,
partial, or ambiguous evidence). If the output is
Yes, Task 3 proceeds with the static path, using
the curated local knowledge-base documents; if No,
it triggers the dynamic agentic retrieval path, as
depicted in Fig. 1. We supply two illustrative few-
shot exemplars to cover both outcomes. (Yes) The
first exemplar uses context scraped by the dynamic
web retrieval (web-scraping) agent; an author man-
ually verified that the passages contain sufficient
information to answer the training query faithfully.
(No) The second exemplar uses context retrieved
from the local knowledge base; an author verified
that these passages are relevant but insufficient to
answer the training query.

Few-shot prompt for deciding whether the query can be
answered from local context only (Yes/No).

Role: Mental Health Question-Answering
Assistant
Task: Determine whether the system can
answer the user's mental-health question
using ONLY the provided context
passages.
Instructions:

- Analyze the context and determine
whether it contains the specific
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information required to answer the
user's mental-health question.
- Provide a clear, concise decision
indicating whether the system can
answer the question based solely on
the context.
- Your response must be exactly one
word: either Yes or No.

Output Format:
- Answer: Yes/No

Study the examples and then respond to
the last question.
Examples:

Input:
Context: {SUFFICIENT_CONTEXT:
passages that contain the answer
for the question below}
User Question: {Selected query
from the training data}

Expected Output:
Answer: Yes

Input:
Context: {INSUFFICIENT_CONTEXT:
passages that are relevant but
do NOT contain the specific fact/
criterion/instruction required
to answer the question below}
User Question: {Selected query
from the training data}

Expected Output:
Answer: No

Input:
Contex: {Local Context}
User Question: {query}

C RAG Metrics and Evaluation Details

We provide formal definitions and implementation
details for the RAG-specific metrics used in Task 3,
following Zhu et al. (Zhu et al., 2025).

Key-point references. For each gold answer, we
extract a set of concise key points with a vanilla
LLM—here, Gemini-2.0-flash. These serve as
reference units against which a system answer is
judged. Let K = {k1, . . . , km} denote the key
points for one item, and let A denote a system-
generated answer.

1. Completeness. Measures how well the gen-
erated answer covers the ground-truth key
points. Let K = {k1, . . . , km} be the set of

key points and A the generated answer:

Comp(A,K) =
1

|K|

|K|∑

i=1

1[A covers ki] ,

where 1[A covers ki] = 1 if A semantically
includes or paraphrases the content of ki; oth-
erwise 0.

2. Hallucination. Identifies contradictions be-
tween the generated answer and the key
points:

Hallu(A,K) =
1

|K|

|K|∑

i=1

1[A contradicts ki] ,

where 1[A contradicts ki] = 1 if A asserts
content that conflicts with ki; otherwise 0.

3. Irrelevance. Captures the proportion of key
points that are neither covered nor contra-
dicted:

Irr(A,K) = 1−Comp(A,K)−Hallu(A,K),

i.e., key points that the answer omits or does
not address.

Operationalization. We prompt the same vanilla
LLM in a few-shot setting to (i) extract key points
from the gold answer and (ii) judge coverage/con-
tradiction for each ki given A, with temperature
= 0 for determinism.

D Qualitative Examples of Generated
Answers

We present text-form qualitative examples for each
model. In Subsection D.1, SILMA’s highest-
scoring output (BERTScore F1=0.78) is annotated
Complete, whereas its lowest (F1=0.54) is Wrong
because the generated answer introduces halluci-
nated content that contradicts the reference. In
Subsection D.2, Qwen-3’s highest-scoring out-
put (F1=0.74) is also Complete, while its low-
est (F1=0.58) is Irrelevant: the response is non-
contradictory but fails to cover the reference’s key
points, largely due to a brief reply that offers only
a single piece of advice for an open-ended query
where multiple reasonable clinician responses are
possible. These observations align with the aggre-
gate metrics: Irrelevance remains non-trivial (0.373
for SILMA; 0.36 for Qwen-3), whereas Hallucina-
tion is consistently low (≤0.06). Thus, the sys-
tems typically produce factual, non-contradictory
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responses; remaining errors are dominated by cov-
erage rather than factuality, suggesting gains from
retrieval/coverage enhancement, keypoint-aware
planning, and length/structure control in genera-
tion.

D.1 SILMA Generated Responses (best &
worst by BERTScore)

Best. BERTScore F1: 0.78 RAG Eval: Com-
plete

Question

ÈñJ. �K I. �.�
�� ú


�æÊË @ �éK
ðX


B@ ù
 ëAÓ :��éJ
J.£ �é 	®�ð 	àðYK. PAJ.ºÊË ú
ÎJ
Ë

Gold answer

, �éJ
� 	® 	JË @ �éK
ðXB@ Xñ��®ÖÏ @ 	àA¿ @ 	X @ : h.�HA
KYêÖÏ @ Aî 	DÓ �éK
ðXB@ 	áÓ YK
YªË@ ¼A 	Jê 	̄	á�
K. 	PAK
Xð 	Q 	�J. Ë @ �é«ñÒm.× �éK
ðX


@ ð AÓñÔ«

Generated answer (SILMA)

I. �.�
�� ú


�æË @ �éK
ðX


B@ 	áÓ YK
YªË@ ¼A 	Jë : h.

É�JÓ , �éJ
J.£ �é 	®�ð 	àðYK. PAJ.ºÊË ú
ÎJ
Ë ÈñJ. �K
. 	á�
K. 	PAK
Xð 	Q 	�J. Ë @ úÎ« ø
 ñ

�Jm��' ú

�æË @ �HA
KYêÖÏ @

ø



@ Ð@Y 	j�J�@ ÉJ. �̄ I. �
J.¢Ë@

�éªk. @QÓ I. m.�'

, �éJ
� 	® 	JË @ �éK
ðX



B@ Xñ��®ÖÏ @ 	àA¿ @ 	X @
.

�éK
ðX


@

�HA
KYêÖÏ @ Aî 	DÓ �éK
ðX


B@ 	áÓ YK
YªË@ ¼A 	Jê 	̄

. 	á�
K. 	PAK
Xð 	Q 	�J. Ë @ �é«ñÒm.× �éK
ðX


@ ð AÓñÔ«

ø



@ Ð@Y 	j�J�@ ÉJ. �̄ I. �
J.¢Ë@

�éªk. @QÓ I. m.�'

. �éK
ðX



@

Worst. BERTScore F1: 0.54 RAG Eval:
Wrong (hallucination/contradiction)
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D.2 Qwen-3 Generated Responses (best &
worst by BERTScore)

Best. BERTScore F1: 0.74 RAG Eval: Com-
plete
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ðX@ ÈðA 	J�K @ �I	J» :�
©Ó Éë . . ��Ê�®Ë @ð Q�
º 	®�JË @ �èQ��» 	áÓ ú


	GA«@
Xñª�Kð �èQ» @ 	YË @ 	á�j�J�K 	à@ 	áºÖß
 �I�̄ñË@

B Ð@ Aî�Eñ�®Ë

Gold answer

AÓY 	J« 	áºË ,½� �KQ» @
	X 	á�j�J�K YJ
»



A�JËAK. : h.Q�
º 	®�JË @ �èQ��» 	à



B YK
Y ��Ë@ ��Ê�®Ë@ 	­	m�'


. Aê 	®ª 	���
ð �èQ» @ 	YË @ úÎ« Q�K 
ñK
 ��Ê�®Ë@ð

Generated answer (Qwen-3)

	á�j�J�K 	à


@ 	áºÖß
 �I�̄ñË@ ©Ó , Ñª	K : h.

@ 	X @

�é�A 	g , Aî�Eñ�̄ úÍ@
 Xñª�Kð ½� �KQ» @

	X
�Im��' �éJ
� 	® 	JË @ �éK
ðX



B@ 	á« �I� ªk. @Q�K��Ê�®Ë@ 	�@Q«



@ �I�Ê�®�Kð ú
æ.£

	¬@Qå�� @

Q�K 
ñ�K Q�Kñ�JË @ð ��Ê�®Ë@ �èQ��º 	̄ . Y
K @ 	QË @ Q�
º 	®�JË @ð

½Ë 	X ú

	̄ AÖß. , 	̈ AÓYË@ 	­
KA 	£ð úÎ« A�J. Ê�

. �èQ» @ 	YË @
, �éJ
� 	® 	JË @ ½� �JËAg 	á�m�

��'ð ��Ê�®Ë@ É�®K
 AÓY 	J«
AÜØ , A �J
 m.�'
PY�K ú


	̄ Aª�JË @ ú

	̄ 	̈ AÓYË@



@YJ. K
	à



@ AÒ» . �èQ» @ 	YË @ 	á ��m��'
ð é 	K 	P@ñ�K YJ
ª �K
�éK

	Y 	ª�JË @ð , YJ
m.Ì'@ Ðñ 	JË @ð , �é 	�AK
QË @ �é�PAÜØ
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�èQ» @ 	YË @ 	QK
 	Qª�K ú

	̄ ÑîD���� ÉÓ



A�JË @ð , �é 	K 	P@ñ�JÖÏ @

. 	Q�
 »Q�� Ë @ 	á�
 � m��'ð
	áÔ 	̄ , �éJ
� 	® 	K �éK
ðX



@ 	á�
ËðA 	J ���K �I� 	J» @ 	X @


ÉJ. �̄ ú
æ�
	® 	JË @ I. �
J. ¢Ë@ �èPA �����@ É 	� 	̄ 
B@

	áÓ 	áÓ
�
@ h. ðQ 	k 	àAÒ 	�Ë , 
úk. A

	®ÖÏ @ 	­�̄ñ�JË @
. h. C ª Ë@

Worst. BERTScore F1: 0.58 RAG Eval: Ir-
relevant (coverage gap)

Question:

éK. Ðñ�̄


@ B Zú
æ

�� Éª 	®K. Ðñ�̄


@ AÓY 	J« :�

 AJ.kBAK. H. A�


@ð

Gold answer

É 	� 	®K. 	à
�
B@ Qå���J 	K @ 	­ 	ª ��Ë@ 	à@Y�® 	̄ : h.

½ÊK
AK. ñÓ É 	®�̄ @ ú
«AÒ
�Jk. B@ É�@ñ�JË @ É
KA�ð�éJ. m��ð 	á�
J
�®J
�®k �A	K ÉK. A�̄

�
A«ñJ.�@

YJ
 	®Ó ú
æ�
	® 	JË @ h. CªË@ð

�éJ. J
£

Generated answer (Qwen-3)

 AJ.kB
 AK. Qª ���� 	à


@ ù
 ªJ
J.¢Ë@

	áÓ : h.	áºÒ�J�K Bð AÓ Zú
æ
�� Éª 	®Ë ¡¢	m��' AÓY	J«

	áºË , �èAJ
mÌ'@ 	áÓ Z 	Qk.  AJ.kB
 @ . è
	YJ
 	® 	J�K 	áÓ

½J
Ë @
 .
�éJ
m�� ��Q¢�. éªÓ ÉÓAª�JË @ 	áºÖß


: l�
'A�	JË @ 	�ªK.
@ 	XAÖÏ ½� 	® 	K È



A�@ :**I. �.�Ë@ XYg** . 1

Éë . éË �I¢¢ 	k AÓ Éª 	̄ 	áÓ 	áºÒ�J�K ÕË
ð


@ , �I �̄ñË@ , © 	̄ @YË @ � �® 	K I. �. ��. 	àA¿
I. �. � Ë@ Ñ ê 	̄ ? �é J
k. PA 	mÌ'@ �HA K
Yj�J Ë @

. É 	� 	̄ 
@ É¾ ���. ¡J
¢ 	j�JË @ úÎ« ¼Y«A��

�éÒêÖÏ @ �I 	KA¿ @ 	X @
 :** ÐAê ÖÏ @ Õæ�� �̄** . 2
úÍ@
 AêÒJ
� �®�K H. Qk. , �èY �®ªÓ ð



@ �èQ�
J. »

ZYJ. Ë @ ½J
Ê« ÉîD��
 @ 	Yë . �èQ�
 	ª� �H@ñ¢ 	k
.hA j. 	J Ë @ �Q 	̄ 	á Ó Y K
 	QK
ð

:** �èQ�
 	ª�Ë@ �H@ 	PA m.�
	'B
 @ ÉÒî��E B** . 3	¬Q��«@ , ÉÓA¾ËAK. �éÒêÖÏ @ ÉÒº�K ÕË ñË ú �æk

Yª�K
 Zú
æ
�� É¿ . AîE. �IÔ�̄ ú


�æË @ �H@ñ¢	mÌ'AK.
. A �ÓY �® �K

Y�®�J 	��K B :**½� 	® 	K ©Ó A �	®J
¢Ë 	á»** . 4
B A�ÓAK




@ ék. @ñ 	K A �ªJ
Ôg. 	ám� 	' . �èñ��®K. ½� 	® 	K

	à


@ ñë ÑêÖÏ @ . éË ¡¢ 	m� 	' AÓ AîD
 	̄ ���®m� 	'

. �é ËðA jÖÏ @ Y J
 ª �Kð ÕÎ ª �J �K
�éK. Qj. �JË @ ÐY 	j�J�@ :** @ �XYm.× ¡¢ 	k** . 5
	áÓ 	àñºK
 Y�̄ . ½¢¢ 	k 	á�
�j�JË �é�Q 	®»
ú

�æË @ �é �®K
Q¢Ë@ ð



@ �I�̄ñË@ Õæ
 J


�®�K YJ
 	®ÖÏ @
. A ëPA �J 	m��'

Q�K


@ ð



@ PQº�JÓ É¾ ���.  AJ.kB
 AK. �HQª �� @ 	X@


YJ
 	®ÖÏ @ 	áÓ 	àñºK
 Y�̄ , �èAJ
jÊË ½�AÔg úÎ«
: A �Ü 
ß@X Q

�
» 	Y�K . ú
æ�

	® 	K PA �����Ó ©Ó �HYj�JË @
. @ �PA � �J 	K @ Y ª ��K �èQ�
 	ª� �èñ¢ 	k É¿
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Abstract
We address Arabic medical question an-
swering (QA) in the AraHealthQA shared
task, which evaluates systems on two in-
put formats: (i) fill-in-the-blank termi-
nology items (gaps) and (ii) open-ended
patient–doctor dialogues (gabs). We
propose MedGapGab, a modular large
language model (LLM) framework that
assigns each question type to a spe-
cialized model—Gemini 2.5 Flash for
terminology-focused gaps and DeepSeek
V3 for reasoning-intensive gabs. In ad-
dition, we use TF-IDF–driven few-shot
prompting to retrieve relevant examples
from the development set and embed them
into the prompts for better contextual-
ization. MedGapGab achieves 87.26%
BERTScore, ranking 1st on the official
leaderboard. These results demonstrate
that combining TF-IDF-guided example
retrieval with type-aware model routing
yields strong performance in Arabic med-
ical QA and can inform future work on
resource-scarce medical domains.

1 Introduction
The AraHealthQA shared task (Alhuzali et al.,
2025b) targets Arabic medical question an-
swering in two formats: (i) fill-in-the-blank ter-
minology items (gaps) and (ii) patient–doctor
dialogue comprehension (gabs). Effective so-
lutions can enhance public health literacy and
medical education for Arabic speakers (Al-
tuwaijri, 2011; Boscardin et al., 2024), ad-
dressing the shortage of high-quality Arabic
health resources and the growing demand for
AI-assisted training.

Although large language models (LLMs)
have advanced, Arabic medical QA still faces
challenges such as complex morphology, di-
alectal diversity, and limited domain-specific

∗ Source Code

datasets (Darwish et al., 2021). Benchmarks
like MedArabiQ (Abu Daoud et al., 2025a)
indicate that state-of-the-art LLMs often un-
derperform in specialized, non-English sce-
narios. In medical QA, GPT-4 has demon-
strated higher accuracy in English than in Ara-
bic, reflecting a common English bias in gen-
erative AI. However, emerging models such
as Qwen and DeepSeek have achieved near-
parity across languages and, in certain domain-
specific evaluations, even outperformed GPT-
4 (Sallam et al., 2025). This underscores the
need for task-tailored approaches, as unified
models may still struggle with the distinct de-
mands of gaps and gabs.

We introduce MedGapGab, a modular
LLM framework that routes each question
type to a specialized model—Gemini 2.5
Flash for terminology-focused gaps and
DeepSeek V3 for reasoning-intensive gabs—
combined with tailored prompting and TF-
IDF-based retrieval of relevant few-shot exam-
ples from the development set.
Our contributions are:

1. Modular LLM specialization: assigns
models to question types based on their
respective strengths.

2. Task-specific prompting with exam-
ple retrieval: uses concise prompts for
gaps and reasoning-guided prompts for
gabs, paired with TF-IDF-based selection
of similar development set examples.

3. State-of-the-art performance: Our
MedGapGab achieves 87.26% BERT-
Score on AraHealthQA Track2, Subtask2,
securing 1st place on the official leader-
board.
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Figure 1: Methodology overview of MedGapGab: question classification, TF-IDF-based few-shot learn-
ing, and specialized model routing for Arabic medical QA.

2 Background

2.1 Task Setup and Dataset Details
The AraHealthQA 2025 shared task evaluates
Arabic medical question answering across two
tracks: one on mental health (Track 1) and
one on general medical domains (Track 2) (Al-
huzali et al., 2025a; Abu Daoud et al., 2025b).
Our participation was in Track 2, specifically
Sub-task 2: Open-Ended QA (Generative).

In Sub-task 2, inputs are either fill-in-the-
blank questions without provided options or
patient queries, and the system must gener-
ate a free-text answer in Arabic. For ex-
ample, a fill-in-the-blank question لگިم“ ____
.྾ཏ੊اࠍ ሒᇭ اᄴᄟم ”ًݯڹِّ (“____ pumps blood in
the body.”) expects the answer اܳگܹص (“the
heart”). Likewise, a patient’s question such
as اܳފྟص؟“ لܝިن أن ஓ୷ܝ݆ ݁؇ذا ݁ފٺ݄ݠ؛ ݬڎاع ݆݁ ሒᇃ؇༟أ”
(“I have a persistent headache; what could be
the cause?”) requires an explanatory, context-
aware answer. Quality is evaluated against
references using BLEU, ROUGE, and BERT-
Score (Abu Daoud et al., 2025a; ?; Alhuzali
et al., 2025a; Abu Daoud et al., 2025b).
Dataset. The MedArabiQ dataset for Track 2
provides a development set of 700 QA in-
stances and a held-out test set of 200 instances,
with 100 assigned to Sub-task 2. Questions are
entirely in Arabic and span diverse specialties
(internal medicine, cardiology, pediatrics, neu-
rology, surgery, obstetrics/gynecology). Data
sources include (1) Arabic medical school ex-
ams/notes for fill-in items and (2) the AraMed
patient–doctor forum for real-world Q&A. The
language covers MSA and some dialectal Ara-
bic; a grammatical correction pipeline yields a
cleaned parallel version. Personal identifiers
were removed; some entries include patient
metadata (age, gender) to simulate personal-

ized consultations.

2.2 Related Work
Early medical QA benchmarks focused on En-
glish or a few other languages (e.g., MedQA,
USMLE/MMLU, MedMCQA) (Jin et al.,
2021; Hendrycks et al., 2021; Pal et al., 2022).
LLMs like GPT-4 and Med-PaLM 2 show
strong English MCQ performance (Singhal
et al., 2023). For Arabic, resources remain
limited: MMLU was translated into Arabic
as a proxy (OpenAI et al., 2023); AraSTEM
added Arabic MCQs with a small medical
subset (Mustapha et al., 2024); AraMed col-
lected telemedicine Q&A (Alasmari et al.,
2024). Track 1 uses MentalQA for Arabic
mental-health dialogue (Alhuzali et al., 2024).
Our work focuses solely on generative Ara-
bic medical QA (Track 2, Sub-task 2), which
mixes precise terminology recall with context-
aware counseling—an area where state-of-the-
art models still struggle, motivating modular
approaches like ours.

3 System Overview

Figure 1 presents the modular, model-agnostic
pipeline developed for Subtask 2 of the
AraHealthQA shared task. The task requires
generating accurate Arabic medical answers
for two distinct input formats: Gap (fill-in-
the-blank scientific items) and Gab (free-text
patient–doctor queries). Although evaluated
under the same track, these formats differ sub-
stantially in linguistic complexity and reason-
ing requirements, motivating a type-sensitive
processing strategy.

3.1 Task Scope and Input Types
Let q denote an input question and T (q) ∈
{Gap,Gab} its type. Gap questions are con-
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cise prompts with a missing medical term,
requiring precise terminology for completion.
Gab questions are open-ended patient queries
that demand explanatory, context-aware, and
safety-oriented answers. Recognizing this dis-
tinction early in the pipeline is critical for both
example selection and model routing.

3.2 Pipeline Architecture
The system consists of four sequential stages:

1. Question Classification: A lightweight
rule-based classifier determines T (q) ∈
{Gap,Gab} based on the presence of
blank placeholders (___) for fill-in-
the-blank questions versus open-ended
patient–doctor dialogue patterns.

2. Few–Shot Retrieval & Prompting:
For each target question q, the system
loads development-set examples of the
same type T (q), and uses TF–IDF simi-
larity to select the top 4 nearest examples.
The retrieved examples are inserted into
type-specific prompt templates—concise
single-term completion prompts for Gap,
reasoning- and safety-oriented prompts
for Gab—to steer generation (see Ap-
pendix A).

3. Model Selection & Inference: Based
on question type, the system routes to
specialized models: Gemini 2.5 Flash
for Gap questions (optimized for precise
terminology) or DeepSeek V3 for Gab
questions (optimized for reasoning and de-
tailed responses).

4. Answer Generation: The selected
model generates responses using the tar-
get question and retrieved few-shot ex-
amples as context, applying type-specific
prompting strategies.

3.3 Model Configurations
Four large language models were evaluated:

• Qwen 3: Multilingual LLM with strong
Arabic tokenization and competitive rea-
soning.

• Claude 4: Anthropic’s reasoning-focused
model with high context retention.

• DeepSeek V3: Chinese Mixture-of-
Experts model reported to excel in Arabic
medical QA. (Sallam et al., 2025).

• Gemini 2.5 Flash: Latency-optimized
model with robust multilingual coverage.

Two routing strategies were implemented:

1. Unified Mode: A single model handles
both Gap and Gab questions.

2. Specialized Mode: Different models
are assigned per type; e.g., Gemini 2.5
Flash for Gap and DeepSeek V3 for
Gab.

3.4 Addressing Task Challenges
Three design principles guided our system.
First, to address the scarcity of high-quality
Arabic medical resources, we prioritized mod-
els with strong Arabic fluency and domain
competence, supported by prior literature for
DeepSeek V3 (Cai et al., 2023). Second,
type-aware optimization ensured that each
question was paired with examples and con-
straints suited to its format. This combination
yields a reproducible, domain-adapted system
without reliance on resources beyond the pro-
vided training data.

4 Experiments

4.1 Dataset and Task Setting
All experiments were conducted on
AraHealthQA Track 2, Subtask 2, which
evaluates Arabic medical question answering
across two input formats: (i) Fill-in-the-Blank
(Gap) — concise medical terminology com-
pletion; (ii) Patient–Doctor Q&A (Gab) —
explanatory, context-aware answers. The
official development set was used for model
selection and routing strategy evaluation.
The test set was reserved for final submission.

4.2 Experimental Setup
We evaluated the four large language models
(LLMs) described in Section 3. Closed-source
Models were accessed via official endpoints,
with inference run locally to ensure consistent
prompt formatting. Prompts for both Gap
and Gab are provided in Appendix A.
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4.3 Evaluation Metric
We report BERTScore (Zhang et al., 2020)
(F1 variant), computed with a multilingual
checkpoint to handle Arabic text. Scores
are presented as percentages. This metric
measures semantic similarity beyond exact
matches, which is essential for medical Q&A.

4.4 Single-Model Results
Table 1 shows development set performance
for each model. Gemini 2.5 Flash achieved
the highest score on Gap (88.73), while
DeepSeek V3 led on Gab (87.68). Claude
4 underperformed on Gab due to overly cau-
tious generation.

Table 1: BERTScore (%) on the development
set for each model. Gap: Fill-in-the-Blank (no
choices). Gab: Patient–Doctor Q&A.

Model Gap Gab
Gemini 2.5 Flash 88.73 83.42
Qwen 3 83.51 84.95
DeepSeek V3 86.13 87.68
Claude 4 85.27 82.54

4.5 Modular Routing Strategy
As shown in Table 1 and summarized in Ta-
ble 2, no single LLM tops both formats: Gem-
ini 2.5 Flash is best on Gap (88.73%), while
DeepSeek V3 leads on Gab (87.68%). We
therefore route Gap queries to Gemini 2.5
Flash and Gab queries to DeepSeek V3.
The resulting average is Avg = 88.73+87.68

2 =
88.21%, which exceeds all single-model base-
lines (Table 2).

Table 2: Best single-model vs. modular rout-
ing. Gap: Fill-in-the-Blank (no choices), Gab:
Patient–Doctor Q&A.

Configuration Gap Gab Avg.
Gemini 2.5 Flash (single) 88.73 83.42 86.08
DeepSeek V3 (single) 86.13 87.68 86.91
Modular (Best) 88.73 87.68 88.21

5 Results

5.1 Official Blind Test Performance
We submitted three configurations to the offi-
cial AraHealthQA blind test set leaderboard.

All models used the development set exclu-
sively for in-context example retrieval. Table 3
reports the official BERTScore for each config-
uration.

Table 3: Official blind test results (%).

Configuration BERTScore
Modular (Gemini + DeepSeek) 87.26
Claude 4 + DeepSeek V3 86.40
DeepSeek V3 (single) 86.85

The modular Gemini+DeepSeek configura-
tion outperformed all alternatives, confirming
the development set findings in Section 4.5 and
validating the benefit of task-type–aware rout-
ing.

5.2 Ablation Analysis (Development
Set)

We evaluated several routing variants on the
development set to quantify design deci-
sions:

• Model routing: Replacing Gemini with
Claude for Gap queries reduced average
BERTScore by 0.86 points, indicating
Gemini’s stronger precision on terminol-
ogy completion.

• Unified vs. modular: The best single
model (DeepSeek V3) scored 86.91% on
the dev set, 1.30 points lower than the
Gemini+DeepSeek modular setup.

6 Conclusion
We presented MedGapGab, a modular sys-
tem for Arabic medical question answering
in AraHealthQA. By combining targeted pre-
processing, type classification, example re-
trieval, and model routing, our approach lever-
ages Gemini 2.5 Flash for terminology and
DeepSeek V3 for dialogue. On the offi-
cial blind test set, it achieved a BERTScore
of 87.26%, ranking first and outperforming
single-model baselines. Our results confirm
the benefit of type-specific routing. Future
work will address open-weight Arabic medical
LLMs, terminology, and safety alignment.
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A Prompt Library
This appendix lists the exact prompts used in our system.

Fill-in-the-Blank Prompt

ووݪިح. ࢻࣖڢ۰ اܳأగఒ٭۰ اܳޚٴ٭۰ ᄭᄥ٪ݿ৙৑ا আॻ༟ ۰ً؇༥৕৑ا ሒሃ ዛᔻ݄ٺ۹ .ሒᇀاܳأݠ اܳޚص ሒᇭ ݁ٺۛݱݧ ޗٴ྘ص ೑಻أ
݁ߺ߿ه. ෠ຬص ڣݠاغ আॻ༟ ොຬٺިي గఒ༟޶ ม฀ޗ ݿޝال ۱ڍا اڤۻמոق:

اڤ׫֔ڪמڵոت:
ًأٷ؇ل۰. اܳފޝال اڢݠأ .1

݁ߺ߿ه. اৎ৊ޚߺࠊب اܳڰݠاغ ༡ڎد .2
اܳڰݠاغ. ఋఃஓ஄ و݁ٴ؇๤ཇة ෛ੼ٺ๤ཡة ۰ً؇༥إ ا܋ٺص .3

గఒ༟٭؇ً. ۰༲٭ොේ ۰ً؇༥৕৑ا أن ݆݁ ᄕც؊ّ .4
اܳڰݱۜް. ۰ਃಸاܳأݠ ً؇ይዧ؞۰ ۰ً؇༥৕৑ا ا܋ٺص .5

{ few shot examples } واႥ႐ؓמؠ١: ١ຣاڤٍۢמ اոּոຖॆूت ࣷ࣬ຐ ႞႖أڲ׭
ոຐڤמ١: ࠬࡇ١ؓ ᆃᅰոاڤ׫ اڤۻ܎ال ຒڞ اोूن،

{ question } اڤۻ܎ال:
ො੼ڎد. ม฀ޗ ݁ݱޚܹں ሌᇿإ ොຬٺ؇ج اܳڰݠاغ وෛ੼ٺ๤ཡة. دڢ٭گ۰ ۰ً؇༥إ ਐಱޚܹص ม฀ޗ ݿޝال ۱ڍا اڤ׫ຣڪמڞ:

:١ּոຖॆूا

Patient–Doctor Q&A Prompt

و݁ڰ٭ڎة. ዛᔻٷ٭۰ لگ۰ ًޚݠ ๮ཚݠৎ৊ا اݿٺڰފ؇رات আॻ༟ ۰ً؇༥৕৑ا ሒሃ ዛᔻ݄ٺ۹ .ሒᇀاܳأݠ اܳޚص ሒᇭ ݁ٺۛݱݧ ޗٴ྘ص ೑಻أ
ޗٴ٭۰. ۰ً؇༥إ ሌᇿإ ොຬٺ؇ج ਵਦلݥ ݆݁ اݿٺڰފ؇ر ۱ڍا اڤۻמոق:

اڤ׫֔ڪמڵոت:
ًأٷ؇ل۰. ا৖৑ݿٺڰފ؇ر اڢݠأ .1

و݁ڰ٭ڎة. ዛᔻٷ٭۰ ޗٴ٭۰ ۰ً؇༥إ ڢڎم .2
.۰ً؇༥৕৑ا ሒᇭ ً و݁ٴ؇๤ཇا ً ؇ොෘوا ܋݆ .3

݁ٷ؇ݿٴ۰. ޗٴ٭۰ ༃຀؇َݱ ڢڎم .4
اܳڰݱۜް. ۰ਃಸاܳأݠ ً؇ይዧ؞۰ ۰ً؇༥৕৑ا ا܋ٺص .5

.ዻዧذ ாணاذ ل۰، ڣިر ޗٴ٭۰ اݿྥލ؇رة ਐಱޚܹص ا৖৑ݿٺڰފ؇ر Ⴄ၍ن إذا .6
{ few shot examples } واिऻءמ׿ة: ا٤िऻרמ١ اڤ܋ץמ١ اոּոຖॆूت ࣷ࣬ຐ ႞႖أڲ׭

:ᆃᅰոاڤ׫ ا۰ेू׫ءۻոر ຒڞ اोूن،
{ question } ا۰ेू׫ءۻոر:

و݁ڰ۰݁ި۳. ݁ٷ؇ݿٴ۰ ޗٴ٭۰ ༃຀؇َݱ ቕሹّگڎ ෠ຬص و݁ڰ٭ڎة. ዛᔻٷ٭۰ ۰ً؇༥إ ਐಱޚܹص ม฀ޗ اݿٺڰފ؇ر ۱ڍا اڤ׫ຣڪמڞ:
:١ּոຖॆूا
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Fill-in-the-Blank (System)

༟؇ܳ٭۰. ࢻࣖڢ۰ اܳأగఒ٭۰ اܳޚٴ٭۰ ᄭᄥ٪ݿ৙৑ا আॻ༟ ۰ً؇༥৕৑ا ሒᇭ ଫଃوۊٴ ሒᇀاܳأݠ اܳޚص ሒᇭ ݁ٺۛݱݧ ޗٴ྘ص ೑಻أ
቞ቘءۑاո຋ت: اिऻ׫ؠ׿ڲ١ اڤ׫֔ڪמڵոت

ࢻࣖڢ۰. ม฀اܳޚ اܳފ٭؇ق و༡ڎد ڣ؇فگ۰ ًأٷ؇ل۰ اܳފޝال اڢݠأ .1
اܳٷݧ. ሒᇬ؇ً ؕ݁ اܳأఈఃڢ۰ واڣ۳ܾ ݁ߺ߿ه اৎ৊ޚߺࠊب اܳڰݠاغ ༡ڎد .2

اܳڰݠاغ. ఋఃஓ஄ و݁ٴ؇๤ཇة ෛ੼ٺ๤ཡة ۰ً؇༥إ ا܋ٺص .3
اܳފ٭؇ق. ؕ݁ و݁ٺިاڣگ۰ ً గఒ༟٭؇ ۰༲٭ොේ ۰ً؇༥৕৑ا أن ݆݁ ᄕც؊ّ .4

اৎ৊ݱޚ༲ܹ؇ت. دڢ۰ ؕ݁ اܳڰݱۜް ۰ਃಸاܳأݠ ً؇ይዧ؞۰ ۰ً؇༥৕৑ا ا܋ٺص .5
݁ޚߺࠊ۰ً. ଫଃ༚ ّڰ؇ݬ٭ܭ أو ሒᇭ؇إݪ ๤ཇح أي ّݯژ ৖৑ .6

اৎ৊ޚߺࠊ۰ً. اܳأٴ؇رة أو ۰గၵၽܳ؇ً اܳڰݠاغ ݁ܭء আॻ༟ ڣگޔ ஼ணر .7
واৎ৊ٷ؇ݿٴ۰. اᄴᄟڢ٭گ۰ اܳأగఒ٭۰ اܳޚٴ٭۰ اৎ৊ݱޚ༲ܹ؇ت اݿٺ༱ڎم .8

اܳފ٭؇ق. ሒᇭ و݁ڰ٭ڎة ᄭᄥ݄݁ܝٺ ۰ً؇༥৕৑ا أن ݆݁ ᄕც؊ّ .9
ل۰. ا๤ཟܳور ଫଃ༚ ᄭᄟ؇ޗ৕৑ا أو اܳٺଲ୍ار ෠ູٷص .10

ڣگޔ. وا༡ڎ ݿޚݠ ሒᇭ ۰ً؇༥৕৑ا ا܋ٺص .11
.ม฀اܳޚ اܳފ٭؇ق ؕ݁ ོྥٷ؇ݿص ۰ً؇༥৕৑ا أن ݆݁ ᄕც؊ّ .12

:ඒ൱اڤ܋ જੴاڤ׫ءڎ اજઁ۰ا௠ீதמ١
.(ဥإࠍ ل۰، ۋ٭ި ܋٭݄٭؇ء لިܳިۏ٭؇، ଩ଃڣ ،༃຃๤๑฽) ม฀اܳޚ ا௯௫௵؇ل ༡ڎد •

اܳފޝال. ሒᇭ اৎ৊ڰٺ؇ۋ٭۰ اగၵၽܳ؇ت ؜݆ اොຳت •
واܳިޖ٭ڰ٭۰. اܳފྟٴ٭۰ اܳأఈఃڢ؇ت ሒᇭ ୍ଲڣ •

اৎ৊ފٺ༱ڎم. ม฀اܳޚ اৎ৊ݱޚܹں دڢ۰ ݆݁ ᄕც؊ّ •
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واৎ৊ڰ٭ڎة. ا۳ৎ৊ٷ٭۰ اܳޚٴ٭۰ ༃຀؇اܳٷݱ ቕሹّگڎ ሒᇭ ଫଃوۊٴ ሒᇀاܳأݠ اܳޚص ሒᇭ ݁ٺۛݱݧ ޗٴ྘ص ೑಻أ
۰୹ቤቘ׫ءۻոرات: اिऻ׫ؠ׿ڲ١ اڤ׫֔ڪמڵոت

ࢻࣖڢ۰. اܳޚٴ٭۰ ᄭႍၽލৎ৊ا و༡ڎد ڣ؇فگ۰ ًأٷ؇ل۰ ا৖৑ݿٺڰފ؇ر اڢݠأ .1
.(۰గၵ၍ 120 --80) و݁ڰ٭ڎة ዛᔻٷ٭۰ ޗٴ٭۰ ۰ً؇༥إ ڢڎم .2
اৎ৊أߺࠊ݁؇ت. دڢ۰ ؕ݁ ۰ً؇༥৕৑ا ሒᇭ ً و݁ٴ؇๤ཇا ً ؇ොෘوا ܋݆ .3

గጻዧݠلݥ. و݁ڰ٭ڎة ݁ٷ؇ݿٴ۰ ޗٴ٭۰ ༃຀؇َݱ ڢڎم .4
.ଫଃاܳٺأٴ وݪިح ؕ݁ اܳڰݱۜް ۰ਃಸاܳأݠ ً؇ይዧ؞۰ ۰ً؇༥৕৑ا ا܋ٺص .5

ًިݪިح. ዻዧذ ாணاذ ل۰، ڣިر ޗٴ٭۰ اݿྥލ؇رة ਐಱޚܹص ا৖৑ݿٺڰފ؇ر Ⴄ၍ن إذا .6
༥ڎاً. ᄭᄥڰݱৎ৊وا ᄭᄥل اܳޚި ا༥৕৑؇ً؇ت ෠ູٷص .7

ڣگޔ. ل۰ وا๤ཟܳور ا৙৑ݿ؇ݿ٭۰ اܳٷگ؇ط আॻ༟ ஼ணر .8
గጻዧݠلݥ. و݁ڰ۰݁ި۳ ૭૖٭ޚ۰ ܳ؞۰ اݿٺ༱ڎم .9

.ม฀اܳޚ اܳފ٭؇ق ሒᇭ و݁ڰ٭ڎة ᄭᄥ݁؇ނ ۰ً؇༥৕৑ا أن ݆݁ ᄕც؊ّ .10
.ᄭᄥ݁ྥފܹފ وا༡ڎة ڣگݠة ሒᇭ ۰ً؇༥৕৑ا ا܋ٺص .11

اৎ৊ݠلݥ. ڣ۳ܾ ݁ފٺިى ؕ݁ ོྥٷ؇ݿص ۰ً؇༥৕৑ا أن ݆݁ ᄕც؊ّ .12
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Abstract

Arabic question-answering (Q/A) chatbots
face significant challenges due to the scarcity
of large, high-quality datasets and the com-
plexities of the Arabic language, including
its rich morphology, multiple dialects, and di-
verse writing forms. To address these chal-
lenges, we implement an enhanced retrieval-
augmented generation (RAG) pipeline for Ara-
bic medical chatbots, leveraging a dataset of
approximately one million Q/A pairs collected
from various Arabic healthcare resources. Ex-
perimental results demonstrate that our ap-
proach significantly outperforms previous Ara-
bic medical QA systems, improving the qual-
ity and relevance of generated answers, with
the BERTScore increasing from 0.82 to 0.86.
This work represents a step forward in develop-
ing scalable and accurate Arabic medical chat-
bots.

1 Introduction

Arabic medical question-answering (Q/A) chat-
bots suffer due to shortage of high-quality Arabic
datasets, coupled with the difficult features of the
Arabic language. Most existing systems are nei-
ther accurate nor contextually precise.

We propose an Advanced Retrieval-augmented
generation ( RAG ) Framework that access Ex-
ternal datasets in addition of the . To apply this
approach a pipeline consisting of error typo cor-
rection, a medical speciality classifier and a re-
rankeris applied to help improve the answer qual-
ity of medical question answering. As follows the
structure of the paper discusses the existing litera-
ture gaps , system architecture of the system , the
experiments done and results obtained from the
overall pipeline.

2 Background

AraHealthQA 2025 (Alhuzali et al., 2025) seeks to
enhance Arabic medical question answering (QA)

by addressing benchmarks pertaining to mental
health (Track 1: MentalQA) and general health-
care (Track 2: MedArabiQ). The goals of the
shared task focus on creating advanced systems for
understanding and accurately responding to health-
care queries in Arabic, advancing Arabic clinical
NLP and chatbot technologies.

2.1 Task Setup

The primary task revolves around responding
to a clinical question in Arabic by accessing a
dataset containing relevant knowledge to formu-
late a coherent and medically accurate answer us-
ing retrieval-augmented generation (RAG). In this
open-ended question answering (QA) format, re-
sponding to input questions with clinically accu-
rate and naturally sounding answers requires gen-
eration.

Example: Input: ا৕৑ݬ؇۰ً“ ۊޚݠ ّگܹ٭ܭ ஓ୷ܝ݆ ܋٭ژ
اᄴᄟم؟ ݪ؞ޔ ”ً؇رّڰ؇ع
Translation: “How can the risk of high blood
pressure be reduced?”

Output: ݆݁ اᄴᄟم ݪ؞ޔ ً؇رّڰ؇ع ا৕৑ݬ؇۰ً ۊޚݠ ّگܹ٭ܭ ஓ୷ܝ݆
਍ಾ؇ول وّگܹ٭ܭ ل؇ݪ۰، ීෂا وᆙᆘ؇رݿ۰ ොේ޶، ሒᆶڍا༚ َޙ؇م اਊಾ؇ع ఈః༠ل
اৎ৊ܹں.
Translation: “The risk can be reduced by follow-
ing a healthy diet, regular exercise, and reducing
salt intake.”

2.2 Data

AraHealthQA utilizes major Arabic medical QA
datasets. The development dataset MedArabiQ
contains 400 samples, which stem from two
Arabic medical school exam and lecture note
collections alongside the AraMed dataset from
AlTibbi, an Arabic online patient-doctor forum.
Whilst also Leveraging Additonal 2 huge datasets
AHD: Arabic healthcare dataset (Abdelhay
et al., 2023) 808,472 Q&A and had 45 different
categories MAQA arabic (Al-Majmar et al.,
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Table 1: Summary of related work in Arabic and multilingual medical QA systems.

Goals Dataset Strategies Anticipated Outcomes

General Arabic medical QA MedArabiQ (Abu Daoud
et al., 2025),AHD (Abdel-
hay et al., 2023), MAQA
arabic (Al-Majmar et al.,
2024)

The proposed system BERTScore ∼0.86

Mental health Arabic QA MentalQA Multi-label classification; RAG
pipeline

F1 ∼0.74; Precision@5
∼0.068

QA Arabic healthcare MAQA Deep learning (Transformers) Cosine similarity ∼81%;
BLEU 58%

QA Arabic religion Quran QA Multi-task transfer learning Varies; accuracy & retrieval

Multilingual biomedical QA MEDIQA Transformer-based models F1 and EM scores 0.5--0.8

2024) 273,174 Q&A had 20 different categories
and both have been scrapped from Arabic web-
sites and have 3 columns questions, answers and
categories.

The dataset must include comprehensive pre-
processing steps such as noise removal, Arabic
word normalization, and category harmonization,
enabling robust training and evaluation of complex
retrieval-augmented large language models.

2.3 Related Work

Develop AraHealthQA 2025 interprets an exten-
sively annotated Arabic clinical datasets holisti-
cally alongside the advanced generative models as
an innovation. By using its comprehensive multi-
task framework, it not only tackles problems in the
Arabic language and its linguistics with concerns
in the healthcare sector and domain, but it also
sets an unprecedented mark for research in Arabic
medical NLP.

3 System Overview

As shown in Figure 1, our system adopts a modular
architecture, whose key components and roles are
detailed in this section.

3.1 Pre-processing

Noise Removal Because it was a scraped
dataset, it contained a lot of noise such as links,
“click here for more” గጻዧݞࢴࣖ ۱ٷ؇ ,اݪ؞ޔ “read more”
اৎ৊ݞࢴࣖ ,اڢݠأ and “figure.png”, so these extra words
were removed. Additionally, there were some
questions and answers entirely in non-Arabic text,
which we had to drop.

Arabic Word Normalization To reduce ortho-
graphic variability in the Arabic text and ensure
consistent representation, a set of normalization
rules was applied. All variants of Alef آ) أ، (إ، were
mapped to the bare form ,(ا) and the final Yaa (ي)
was replaced with its dotless variant .(ى) The elon-
gation character (Tatweel, (ـ was removed.

Category Mapping Due to the different number
of categories in both datasets, we had to map the
45 categories of the AHD dataset to the closest cat-
egories of the 20 categories of the MAQA dataset.

Embeddings Used bert-base-arabic-camelbert-
mix Multilangual embedding model

3.2 Gemma Model

Corrects any typographical errors in the input
query, enabling more effective query processing.

3.3 Specialty Classifier

Fine tuned AraBERT (Antoun et al., 2020) which
Classifies the query from 20 different medical spe-
cialties.

3.4 Query Processing

Optimized using specialty-filtered search. The
query is applied only to the top 5 predicted classes
from the classifier, which significantly narrows
down the vector space and reduces the probability
of retrieving irrelevant vectors. The query is then
embedded and searched.

3.5 Re-ranking

After retrieving 10 candidate vectors, they are re-
ranked and narrowed down to the top 5 results us-
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Figure 1: System Architecture

ing a combined similarity score defined as:

Score = 0.7 · CosineSimilarity + 0.3 · BM25

4 Experimental Setup

4.1 Classifier Fine-Tuning
4.1.1 Training Configurations

Table 2: Hyper-parameters used for classifier fine-
tuning.

Parameter Value
Learning rate 2× 10−5

Train batch size 16
Seed 42
Optimizer AdamW (PyTorch)
Optimizer betas (0.9, 0.999)
Optimizer epsilon 1× 10−8

LR scheduler Linear
Epochs 3

4.1.2 Classifier results
Considering that many patient questions are inter-
connected with multiple medical specialties, the
F1-score value is reasonable. To account for the
connectivity between specialties, we will not de-
pend solely on the highest class score in query cat-
egory filtering; instead, the top 5 classes will be
considered.

Table 3: Evaluation results of the classifier.

Metric Value
Loss 0.8545
Accuracy 0.7407
Precision 0.7380
Recall 0.7404
F1-score 0.7379

4.2 Retrieval system

4.2.1 Retrieval system Test set

Consists of 440 question from the dataset used
in the vector database having 22 questions for
each category which were rephrased using LLM
Qwen3-32b to add variability to be able reason-
ably evaluate the system

4.2.2 Retrieval system results

Table 4: Retrieval system performance

Configuration Precision@5 Recall@5 MRR HitRate@5
Full_pipeline 0.068 0.259 0.245 0.259
Without Classifier 0.065 0.255 0.235 0.255
Without Re-ranker 0.060 0.236 0.208 0.236
Basic_retrieval 0.057 0.227 0.188 0.227

The full pipeline results show a significant differ-
ence compared to the basic retrieval approach and
results difference is almost neglected in the full
pipeline compared to the pipeline without the clas-
sifier. However, the classifier remains important
for query optimization, as it reduces the search
space by approximately half.

4.3 LLM

Used llama-3.3-70b-versatile with temperature =
0.2

5 Experimental Results

We compared a baseline naive RAG with our ad-
vanced RAG as a whole system, both evaluated on
100 mixed-format test questions.which gave the re-
sults show in the table below:
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Table 5: BERTScore comparison between naïve and
advanced RAG systems.

System BERTScore
Naïve RAG 0.8287
Advanced RAG 0.8620

6 Conclusion

The proposed approach benefits the large dataset
in an advanced RAG system. It reduces the search
space for each query, lowering total inference time.
It also decreases the chance of retrieving irrelevant
data. However, the system still runs sequentially
with an LLM, adding extra processing. Addition-
ally, since the dataset is web-scraped, it may re-
quire additional pre-processing by an LLM to fix
typos and improve text quality before model fine-
tuning. The next step is to fine-tune a model using
this cleaned dataset and compare its results consid-
ering not only the answer quality but the computa-
tional power in inference in both approaches.
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Abstract

We present a simple, training-light pipeline
for multi-label categorization of Arabic
mental-health questions in the AraHealthQA
2025 MentalQA Track 1 (question and an-
swer classification). Our method, Ex-
plain–Retrieve–Verify (ERV), couples a chain-
of-thought LLM classifier with example-based
retrieval and a verifier that arbitrates disagree-
ments. The LLM first proposes candidate la-
bels and rationales from a compact taxonomy
prompt. A similarity agent then surfaces top-
k nearest questions via multilingual sentence-
transformer embeddings to induce case-based
priors. A verification agent reconciles both
signals to produce a final label set with a cal-
ibrated confidence, followed by a lightweight
post-processor for code parsing and confidence
clamping. ERV requires no fine-tuning or exter-
nal data and runs efficiently at inference time.
In shared-task evaluation, our system achieved
0.61 weighted F1-score for question classifi-
cation and 0.73 for answer classification. A
hybrid approach combining ERV with MAR-
BERT further improves answer classification
to 0.80 weighted F1-score.

1 Introduction

The growing burden of mental health conditions
worldwide has created unprecedented challenges
for healthcare systems. While mental health dis-
orders affect diverse populations globally, access
to adequate care remains severely limited, particu-
larly in regions where cultural stigma and resource
constraints compound the problem. These barriers
underscore the need for scalable and supportive
technologies that can assist practitioners in reach-
ing underserved populations (Zolezzi et al., 2018).
This gap has motivated the development of compu-
tational tools to support mental health profession-
als, particularly text mining and natural language
processing (NLP) systems that can assist in diagno-
sis and triage rather than replace human expertise

(Swaminathan et al., 2023).
While substantial progress has been made in En-

glish and other high-resource languages (Ghosh
et al., 2020; Atapattu et al., 2022; Chaturvedi et al.,
2023), Arabic remains under-studied in the mental
health domain despite being spoken by more than
400 million people (Alhuzali et al., 2024; Guellil
et al., 2021). This under-representation is critical,
as Arabic presents unique challenges for NLP, in-
cluding morphological richness, dialectal variation,
and limited annotated resources.

Recent advances in Pre-Trained Language Mod-
els (PLMs) have revolutionized text classification
and understanding in biomedical and clinical do-
mains. More recently, Large Language Models
(LLMs) (Brown et al., 2020) have introduced new
possibilities by not only achieving strong predictive
performance but also producing verbalized ratio-
nales for their decisions (Abu Daoud et al., 2025;
Xie et al., 2025; Yang et al., 2023). This inter-
pretability is particularly valuable in mental health
applications, where transparency and human over-
sight are essential.

In this work, we present the Explain–Retrieve–
Verify (ERV) workflow, a LLM-based workflow
for Arabic mental health question and answer clas-
sification, developed for the AraHealthQA 2025
shared task. ERV operates in three steps: (i) the
Explain step, where an LLM generates candidate
labels with rationales; (ii) the Retrieve step, where
semantically similar training examples are surfaced
to provide case-based evidence; and (iii) the Verify
step, where LLM reconciles both sources to pro-
duce final labels with calibrated confidence. On the
official test set, ERV achieves a weighted F1-score
of 0.61 and Jaccard score of 0.53 for question clas-
sification, outperforming fine-tuned baselines, and
when combined with MARBERT (Abdul-Mageed
et al., 2020) reaches 0.80 weighted F1 and 0.72
Jaccard for answer classification, the best overall
performance.
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2 Task Definition

The AraHealthQA 2025 shared task (Alhuzali et al.,
2025) focuses on Arabic health question-answering
with two primary tracks. Track 1 (MentalQA) ad-
dresses classification of mental health questions
and answers, while Track 2 handles general health
topics. We participate in Track 1 sub-track 1 and
2: question classification and answer classifica-
tion. Both sub-tasks are multi-label classification
tasks where instances can belong to multiple cat-
egories simultaneously. The competition uses the
MentalQA dataset (Alhuzali et al., 2024) with a
train/dev/test split of 300/50/150 samples. Evalua-
tion employs weighted F1-score and Jaccard index
as primary metrics.

3 Data

The MentalQA dataset contains 500 Arabic
question-answer pairs collected from Altibbi.com,
focusing on mental health interactions posted be-
tween 2020-2021. The dataset encompasses in-
teractions between patients seeking mental health
guidance and professional doctors providing re-
sponses. Questions are classified into seven
types: (A) Diagnosis, (B) Treatment, (C) Anatomy
& Physiology, (D) Epidemiology, (E) Healthy
Lifestyle, (F) Provider Choice, and (Z) Other. For
detailed category definitions and examples, see (Al-
huzali et al., 2024). Doctor responses are classified
into three communication strategies: (1) Informa-
tion, (2) Direct Guidance, and (3) Emotional Sup-
port. Complete strategy descriptions are available
in the original dataset paper (Alhuzali et al., 2024).

4 Method

We present Explain–Retrieve–Verify (ERV) work-
flow, a training-free multi-agent pipeline that com-
bines explicit reasoning, similarity-based retrieval,
and consensus verification for Arabic medical text
classification. The system operates through three
sequential agents that provide complementary per-
spectives on multi-label classification decisions.

Explain The Explain step sends either the ques-
tion or the answer to an LLM with chain-of-thought
prompting with Arabic medical contexts. The agent
outputs predicted labels, explanations, and confi-
dence scores about the LLM own answer.

Retrieve The Retrieve step identifies semanti-
cally similar training examples through embedding-
based similarity search. We pre-encode all training

texts and cache these embeddings. For each input,
we retrieve the k-nearest neighbors based on cosine
similarity, and analyze their label patterns. The step
passes the retrieved examples to an LLM asking
to perform pattern analysis to suggest appropriate
categories based on the given similar training cases

4.1 Verify

The Verify step reconciles the outputs from the Ex-
plain and Retrieve steps. We prompt LLM with
three inputs: (i) the label predictions, rationales,
and confidence score from the Explain step, (ii)
the retrieved examples with their gold labels and
the suggested categories from the Retrieve step,
and (iii) the full task taxonomy. The verifier is in-
structed to compare the two sources of evidence,
identify agreements and conflicts, and produce a
final multi-label decision. It outputs the final la-
bel set, a calibrated confidence score, and a short
reconciliation note explaining how disagreements
were resolved.

5 Experimental Setup

For fine-tuned baselines, we trained MARBERT
(Abdul-Mageed et al., 2020) and AraBERT-v02
(Antoun et al., 2020) using standard hyperparame-
ters: learning rate 2×10−5, batch size 16, 5 epochs
with the best checkpoint selected by the highest
weighted F1 on the validation set, and weight de-
cay 0.01. For the ERV pipeline, we used GPT-4
as the underlying language model and employed
a multilingual Sentence-BERT model (Reimers
and Gurevych, 2019)1 to compute semantic em-
beddings in the Retrieve step. The entire ERV sys-
tem was implemented using the DSPy framework2,
which provides modular components for prompt en-
gineering and multi-step reasoning workflows. All
experiments were conducted on a single NVIDIA
A100 GPU on Google Colab. The code used for
the experiments is available on GitHub3.

6 Results

We evaluate our ERV pipeline against fine-tuned
Arabic language models on both question and an-
swer classification sub-tasks using weighted F1-

1paraphrase-multilingual-mpnet-base-v2,
https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

2https://dspy.ai/
3https://github.com/AhmedAbdel-Aal/

mucAI-at-AraHealthQA-2025
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Method Weighted F1 Jaccard
MARBERT 0.56 0.51
AraBERT 0.56 0.51
ERV 0.61 0.53

Table 1: Question Classification Results on the test set.

Method Weighted F1 Jaccard
MARBERT 0.76 0.73
AraBERT 0.74 0.68
ERV 0.73 0.61
MARBERT + ERV 0.80 0.72

Table 2: Answer Classification Results on the test set.

score and instance-based Jaccard index as primary
metrics.

Table 1 shows the performance comparison for
question classification on the test set. ERV achieves
the best performance with a weighted F1-score of
0.61 and instance-based Jaccard of 0.53, outper-
forming both fine-tuned baselines. The improve-
ment demonstrates the effectiveness of the multi-
agent collaboration approach over single-model
fine-tuning.

For answer classification (Table 2), fine-tuned
models show stronger performance, with MAR-
BERT achieving 0.76 weighted F1-score. ERV
performs competitively at 0.73 weighted F1-score
but falls behind the fine-tuned baselines on this
subtask. Observing that MARBERT struggled to
predict label 3 (Emotional Support) during devel-
opment, we designed a hybrid approach combining
MARBERT’s expertise with ERV’s pattern recogni-
tion capabilities. In this hybrid system, MARBERT
serves as the primary classifier while ERV specif-
ically handles the detection of emotional support
responses. This combination achieves the best over-
all performance with 0.80 weighted F1-score and
0.72 instance-based Jaccard.

7 Discussion

7.1 Per Label Analysis

Comparing ERV directly with MARBERT reveals
fundamentally different approaches to handling
class imbalance and provides insights into why
each method excels in different scenarios. Tables 3
and 4 present the detailed per-class performance
comparison.

The comparison reveals fundamentally differ-
ent precision-recall strategies between the two ap-

proaches. ERV consistently achieves higher recall
across most question categories, particularly for
dominant classes (A: 0.94 vs 0.79, B: 0.86 vs 0.74).
For answers, ERV demonstrates an extreme high-
recall strategy on Strategy 2 (Direct Guidance: 0.99
vs 0.86), while MARBERT shows higher recall on
Strategy 1(0.89 vs 0.69).

The most striking difference lies in minority
class handling. ERV shows remarkable ability to
detect minority classes that MARBERT completely
misses. For questions, ERV achieves non-zero per-
formance on categories C (F1: 0.20) and F (F1:
0.15), while MARBERT scores zero on these cat-
egories. For answers, ERV detects emotional sup-
port responses (Strategy 3) with substantial perfor-
mance (F1: 0.44, precision: 0.37, recall: 0.56),
while MARBERT achieves zero performance. This
represents a critical 44-point F1 advantage for de-
tecting emotional support in mental health contexts.
We hypothesize that this capability stems from
ERV’s similarity-based approach, which can iden-
tify minority class instances by matching them to
semantically similar training examples. The hybrid
approach validates this complementary strength,
achieving the best overall performance (weighted
F1: 0.80) by combining MARBERT’s precision on
majority classes with ERV’s minority class detec-
tion capabilities.

7.2 Interpretability

A key advantage of large language models is their
ability to verbalize reasoning, providing a level
of transparency not available in neural fine-tuned
models. Our ERV pipeline makes this explicit by
combining rationales from the classification agent,
evidence from retrieved examples, and the reconcil-
iation notes from the verifier. This interpretability
is particularly valuable in mental-health contexts,
where system outputs should not only predict labels
but also justify decisions in a way that is accessi-
ble to human reviewers. To illustrate, we show in
Figure 1 a full example of the ERV workflow for
question classification, and in Figure 2 an example
of the ERV workflow for answer classification.

8 Limitations and Future Work

The current evaluation is constrained by test-
ing single representatives of each modeling
paradigm (MARBERT/AraBERT for fine-tuning,
multilingual-mpnet-base for Encoding, and GPT-
4 for ERV), which limits the generalizability of
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Category ERV MARBERT Support
P R F1 P R F1

A (Diagnosis) 0.67 0.94 0.78 0.68 0.79 0.73 84
B (Treatment) 0.63 0.86 0.73 0.72 0.74 0.73 85
C (Anatomy) 0.20 0.20 0.20 0.00 0.00 0.00 10
D (Epidemiology) 0.35 0.21 0.26 0.47 0.21 0.29 34
E (Lifestyle) 0.38 0.61 0.47 0.41 0.29 0.34 38
F (Provider Choice) 0.14 0.17 0.15 0.00 0.00 0.00 6
Z (Other) 0.00 0.00 0.00 0.00 0.00 0.00 3
Weighted Avg 0.54 0.71 0.61 0.57 0.57 0.56 260

Table 3: Per-class performance comparison for question classification

Strategy ERV MARBERT Hybrid Support
P R F1 P R F1 F1

1 (Information) 0.85 0.69 0.76 0.84 0.89 0.87 0.87 112
2 (Direct Guidance) 0.60 0.99 0.75 0.74 0.86 0.80 0.80 86
3 (Emotional Support) 0.37 0.56 0.44 0.00 0.00 0.00 0.44 18
Weighted Avg 0.71 0.80 0.73 0.73 0.81 0.77 0.80 216

Table 4: Per-class performance comparison for answer classification with hybrid results

our comparative findings. Future work should ex-
pand the experimental scope to include diverse Ara-
bic language models of varying sizes and capabili-
ties to establish more robust conclusions about the
trade-offs between approaches.

While ERV demonstrates promising results, sev-
eral limitations suggest important directions for
future research. ERV requires multiple LLM calls
per instance (three sequential steps plus similarity
computation), resulting in significantly higher com-
putational costs compared to single forward passes
in fine-tuned models.

Our hypothesis that ERV’s similarity-based re-
trieval drives its minority class detection capability
suggests an intriguing research direction: interpo-
lating fine-tuned models like MARBERT with k-
nearest neighbors (kNN) at inference time. This ap-
proach could potentially provide MARBERT with
non-zero performance on minority classes by incor-
porating retrieval-based evidence while maintain-
ing its strong performance on majority categories.

For PLMs, performance is bounded by the small
size of the used dataset. Future work can explore
curating a larger corpus with balanced label cover-
age, and low-risk augmentation (back-translation,
controlled paraphrasing).

The interpretable nature of ERV’s three-step
workflow creates opportunities for human-in-the-
loop systems where medical professionals can re-
view and refine step-by-step reasoning. Addi-

tionally, more sophisticated verification mecha-
nisms could incorporate uncertainty quantification,
confidence-aware voting, and learned arbitration
strategies beyond the current simple consensus ap-
proach.

9 Conclusion

We present ERV (Explain–Retrieve–Verify), a
three-step workflow for Arabic mental health ques-
tion and answer classification. Our approach com-
bines three sequential steps: the Explain step pro-
vides initial predictions through chain-of-thought
reasoning, the Retrieve step identifies similar ex-
amples for evidence-based analysis, and the Verify
step reconciles both signals to produce final clas-
sifications with calibrated confidence. Our experi-
ments show that the ERV workflow improves over
fine-tuned language models on the question classifi-
cation task and provides complementary strengths
for answer classification, especially in detecting
emotional support strategies. Our work contributes
to Arabic mental health NLP by demonstrating that
collaborative three-step reasoning workflows can
compete with fine-tuned models while offering bet-
ter interpretability.
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Figure 1: ERV pipeline workflow showing the three-step process for Arabic mental health question classification.
The Explain step provides initial predictions through chain-of-thought reasoning, the Retrieve step identifies similar
examples for pattern analysis, and the Verify step reconciles predictions to produce the final classification of A
(Diagnosis) and E (Healthy Lifestyle).
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Figure 2: ERV workflow for answer strategy classification. The Explain step identifies direct guidance, the Retrieve
step finds mixed evidence from similar examples, and the Verify step resolves the conflict by analyzing the absence
of specific medical information, correctly classifying the answer as strategy 2 (Direct Guidance) while missing the 1
(Information) Strategy.
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Abstract

This paper presents the MarsadLab submission
to Track 1 of the AraHealthQA 2025 Shared
Task, addressing two subtasks: (A) multi-label
question categorization and (B) multi-label an-
swer categorization in Arabic mental health
discourse. Our approach employs a hybrid
contextual–lexical fusion architecture built on
AraBERTv2, enriched with task-specific hand-
crafted features such as lexical indicators, lin-
guistic cues, and domain-informed keyword
signals. On the official test set, the system
achieved a weighted F1 score of 0.55 (Jaccard
0.41) for Task A and 0.79 (Jaccard 0.67) for
Task B.

1 Introduction

Mental health strongly shapes how people think,
feel, and function, and untreated conditions such
as anxiety, depression, or cognitive disorders can
severely reduce quality of life. This growing soci-
etal need has motivated the use of computational
methods to support mental health understanding
and intervention.

Meanwhile, advances in Large Language Mod-
els (LLMs) such as GPT-3 (Brown et al., 2020),
LAMDA (Thoppilan et al., 2022), PaLM (Chowd-
hery et al., 2023), and LLaMA (Touvron et al.,
2023) have transformed NLP and shown promise
in healthcare applications (Sakai and Lam, 2025).
Yet their potential remains underexplored in Arabic,
particularly for mental health.

Research on Arabic mental health NLP is still in
its early stages. For instance, (Mezzi et al., 2022)
used BERT-based intent recognition (Devlin et al.,
2019) with the MINI framework to diagnose con-
ditions such as depression, suicidality, and panic
disorder, achieving nearly 90% accuracy. Never-
theless, benchmarks and resources remain scarce,
highlighting the need for community-driven initia-
tives in this area.

2 Background

The AraHealthQA 2025 Shared Task (Alhuzali
et al., 2025) introduces the first benchmark for Ara-
bic medical question answering, with two tracks:
Mental Health QA (MentalQA) and General Health
QA (MedArabiQ). Our work focuses on MentalQA,
specifically Subtask A: Question Categorization
and Subtask B: Answer Categorization. In Task
A, the system classifies questions into categories
such as Diagnosis or Epidemiology. For example:
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(Is the fear of not being able to have children

in the future normal, especially since I am very

attached to children and about to get married?)

The expected output is A (Diagnosis) and D (Epi-
demiology). In Task B, the system instead classi-
fies answers by strategy, such as 1 (Information)
and 2 (Direct Guidance) for the same example.

The dataset for Track 1 is a newly introduced
resource comprising approximately 500 manually
annotated Arabic question–answer pairs in the men-
tal health domain (Alhuzali et al., 2024). The data
is primarily in Modern Standard Arabic with some
dialectal variation, collected from user-generated
online content. Each instance may carry multiple
overlapping labels, reflecting the complexity of real
mental health communication.

Recent efforts in Arabic health-related NLP and
conversational AI highlight both the opportunities
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and challenges for building robust health QA sys-
tems. Prior research on Arabic chatbots empha-
sizes the design of dialog systems for clinical in-
tents, leveraging techniques such as intent classi-
fication, NER, and slot filling, while also noting
gaps in evaluation protocols, resources, and ethical
considerations such as privacy and bias (Ahmed
et al., 2022). Parallelly, the fight against health
misinformation, particularly during COVID-19,
has driven the development of annotation frame-
works, credibility signals, and check-worthiness
pipelines across multiple languages (Alam et al.,
2021; Nakov et al., 2022), providing valuable
methodologies for grounding QA in trustworthy
evidence. On the mental health side, studies an-
alyzing Arabic social media discourse, such as
depression expression (Mohamed and Zaghouani,
2024) and COVID-19-related loneliness (Shurafa
and Zaghouani, 2025), demonstrate the feasibility
of corpus-driven modeling of emotional and psy-
chological signals, while underscoring ethical con-
cerns around data sensitivity. More recent research
has focused on the intersection of Arabic NLP and
mental health, including comprehensive surveys of
methods and resources (Alasmari, 2025), empirical
evaluations of pre-trained language models for Ara-
bic Q/A classification in mental health (Alhuzali
and Alasmari, 2025), and applied systems such as
the bilingual MindWave app for AI-driven support
(Bensalah et al., 2024). Additionally, large-scale
evaluations of LLMs in the Arabic mental health
domain (Zahran et al., 2025) shed light on both
the promise and limitations of current models. The
AraHealthQA 2025 shared task is situated within
this growing body of work, aiming to foster re-
sources and benchmarks for Arabic mental health
and medical QA.

Our contribution lies in integrating transformer-
based contextual embeddings with carefully de-
signed task-specific features, tailored to capture
the linguistic and psychological nuances of Ara-
bic mental health discourse. Specifically, we em-
ploy a hybrid contextual–lexical fusion approach
that integrates AraBERTv2 representations with
handcrafted lexicon and keyword features. The
lexicons are automatically derived from the train-
ing data, capturing frequent tokens associated with
each category, while the keyword lists are manually
curated to reflect pragmatic markers of diagnosis,
treatment, guidance, and emotional support. This
design allows the model not only to benefit from

Figure 1: Hybrid Classification Architecture (instanti-
ated separately for Task A and Task B)

deep contextual semantics but also to leverage in-
terpretable and domain-relevant signals that are
particularly valuable under the low-resource condi-
tions of this shared task.

3 System Overview

Our approach to both Task A and Task B is based
on a hybrid architecture that integrates deep con-
textual embeddings with handcrafted features. The
pipeline consists of three main components: (i) con-
textual embeddings obtained from AraBERTv2, (ii)
handcrafted features capturing lexical, linguistic,
and pragmatic information, and (iii) a fusion and
classification layer that combines both representa-
tions.

As illustrated in Figure 1, the model follows a
dual-branch design: AraBERTv2 encodes contex-
tual semantics, while a parallel handcrafted feature
block encodes lexical, linguistic, and pragmatic in-
dicators. The two representations are concatenated,
regularized with dropout, and passed through a
linear classification head. Outputs are produced
via sigmoid activation with a 0.5 threshold and an
argmax fallback to ensure at least one label. This
hybrid pipeline is applied across both tasks, with
the same backbone architecture but task-specific
lexicons and keyword lists tailored to Question
Categorization (Task A) and Answer Strategy Clas-
sification (Task B).
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3.1 Preprocessing

All input text was normalized (removing diacrit-
ics, unifying variants of alif, ya, and taa marbuta),
tokenized, cleaned of non-Arabic characters and
stopwords, and stemmed with the ISRI stemmer1

to reduce words to their roots. This preprocessing
ensured consistent lexical representations and al-
lowed inflected forms to be collapsed into a single
token.

3.2 Features Extraction

We incorporated two types of handcrafted features
in parallel to AraBERT embeddings:

Lexicon Features. For each label set, we built
lexicons by extracting the top 40 most frequent
non-stopword tokens from the preprocessed train-
ing data. During feature extraction, these lexicons
were used as lookup tables. For each input and
each class, we checked whether at least one token
from the class lexicon appeared in the text: if true,
the feature value was set to 1; otherwise, it was 0.
Importantly, this means that multiple overlaps do
not increase the score—the feature encodes only
the binary presence or absence of a lexicon match.
The resulting binary vector was then concatenated
with other features and AraBERT embeddings.

Keyword Features. We defined manually cu-
rated keyword lists to capture domain-relevant and
pragmatic expressions (e.g., definitional markers,
directive verbs, supportive phrases). These key-
words were stemmed and matched in the input text,
with binary features assigned to indicate their pres-
ence.

Both lexicon-based and keyword-based features
were concatenated with AraBERT embeddings, en-
abling the model to exploit not only contextual se-
mantics but also interpretable lexical and pragmatic
cues.

3.3 Sub-Task A: Multi-label Question
Categorization

Step 1: Contextual Embeddings. Each question
was encoded with AraBERTv22, producing a 768-
dimensional pooled embedding.
Step 2: Features Extraction. For Task A, we
built class-specific lexicons by extracting the top
40 most frequent non-stopword tokens from the pre-
processed, stemmed training questions associated

1https://www.nltk.org/_modules/nltk/stem/isri.
html

2aubmindlab/bert-base-arabertv2

with each label. At inference, The created lexicon
is used as a lookup to compute a binary presence
feature per class. In parallel, curated keyword lists
were defined based on question categories, such
as whether the question seeks a diagnosis, treat-
ment, or lifestyle advice. Both lexicon and key-
word indicators were concatenated with AraBERT
embeddings to enrich the representation of each
question. Representative examples are shown in
Table 1, with the full lists in Appendix A.

Category Keywords Examples
A 	�@Q«



@ (Symptoms)

B h. C« (Treatment), Z @ðX (Medicine)

C Õæ�k. (Body),
	̈ AÓX (Brain)

D I. �.� (Cause), ÉÓ@ñ« (Factors)

E �é 	�AK
P (Exercise), Ðñ	K (Sleep)

F I. �
J.£ (Doctor), ù 	® �����Ó (Hospital)

Table 1: Example keywords associated with each label
category (Task A)

Answer Strategy Example Keywords
1 : Information �éÓñÊªÓ, �J
 	j ����, 	�@Q«@
2 : Direct Guidance i�	�



@, I. m.�'
,

�éjJ
�	�
3 : Emotional Support ½ªÓ, ��Ê�®�K, 	á
�Ò£@

Table 2: Examples of defined keywords for Answer
classification (Task B)

Step 3: Fusion and Classification. The
AraBERT embeddings and handcrafted features
were concatenated, regularized with dropout, and
passed through a linear layer. Predictions were ob-
tained via sigmoid activation with a 0.5 threshold
and argmax fallback. Besides, category Z (Other)
acts as a default class whenever a question does
not strongly align with any of the six primary cate-
gories (A–F).

3.4 Sub-Task B: Multi-label Answer Strategy
Classification

Step 1: Contextual Embeddings. Each answer
was encoded with AraBERTv2, producing a 768-
dimensional pooled embedding.

Step 2: Features Extraction. For Task B, we
built lexicons for each of the three answer strategies
(Information, Direct Guidance, Emotional Support)
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by extracting the top 40 tokens from the training
data for each class. As with Task A, lexicon fea-
tures were computed as binary indicators. Addition-
ally, curated keyword lists were integrated, which
capture pragmatic signals such as definitional mark-
ers, directive verbs, and supportive expressions.
Representative examples are shown in Table 2, with
full lists in Appendix B.

Step 3: Fusion and Classification. As in Task
A, embeddings and handcrafted features were con-
catenated, passed through dropout, and classified
using a linear layer followed by sigmoid activation
with thresholding and argmax fallback.

4 Experimental Setup

Following the AraHealth shared task, we evalu-
ate using weighted F1-score and Jaccard similarity.
The model is optimized with binary cross-entropy
loss and AdamW (learning rate 1.5). A sigmoid
threshold of 0.5 is used to convert probabilities into
binary predictions, and an argmax fallback ensures
that at least one label is always assigned. Early stop-
ping with patience (3–5 epochs) is applied based
on validation loss to prevent overfitting.

5 Results and Discussion

5.1 Main Findings

Task A. The model demonstrates strong perfor-
mance on categories with salient lexical cues such
as Diagnosis and Treatment, while categories char-
acterized by diffuse semantics including Epidemi-
ology and Other present greater classification chal-
lenges. Our approach achieves a weighted F1-score
of 0.55 and weighted Jaccard similarity of 0.41 on
the official test set.

Task B. The classification hierarchy reveals that
Information detection yields the highest accuracy,
followed by Direct Guidance identification. No-
tably, Emotional Support frequently exhibits con-
fusion with guidance categories due to overlapping
pragmatic markers. The model attains superior per-
formance on the official test set with a weighted
F1-score of 0.79 and weighted Jaccard similarity
of 0.67.

5.2 Discussion

We conducted comprehensive ablation studies
to quantify the contribution of different fea-
ture combinations: AraBERT-only baseline,
AraBERT+Lexicon features, AraBERT+Keywords,

and the AraBERT+Lexicon+Keywords combina-
tion. Table 3 presents the detailed results. In addi-
tion, we also explored using lexicon and keyword
features with a traditional classifier such as SVM
to examine their standalone effectiveness outside
the AraBERT architecture.

Task A Performance Analysis: The AraBERT
baseline achieved F1=0.52 and Jaccard=0.39, with
keyword features yielding the strongest gains
(F1=0.56, Jaccard=0.43). Lexicon features alone
slightly reduced performance, while the combined
setup offered balanced improvements (F1=0.55,
Jaccard=0.41).To establish a comparative base-
line beyond transformer architectures, we imple-
mented a traditional Support Vector Machine uti-
lizing lexicon and keyword features exclusively.
This classical approach demonstrated competitive
performance with F1=0.45 and Jaccard=0.34, rep-
resenting a notable accomplishment without the
computational overhead of large language models,
though performance remained consistently below
all AraBERT configurations.

Task B Performance Analysis: The AraBERT
baseline delivered strong performance (F1=0.79,
Jaccard=0.69), with feature integration yielding
minimal changes. Lexicon features slightly re-
duced performance, while keywords and combined
features maintained near-baseline results. The
SVM implementation achieved competitive per-
formance with F1=0.74 and Jaccard=0.62, demon-
strating effective classification capabilities.

The experimental findings indicate that lexicon
features demonstrate optimal effectiveness for cat-
egories characterized by stable, domain-specific
terminology (e.g., Diagnosis, Treatment), while
keyword features exhibit particular strength in sup-
porting pragmatic classification tasks (Direct Guid-
ance, Emotional Support). Notably, Task A re-
veals that keyword features individually outper-
form other configurations, suggesting their supe-
rior utility for question classification compared to
lexicon-based approaches. However, the dataset
suffers from severe class imbalance—especially in
Task A—which substantially affects overall model
performance.

6 Conclusion

We proposed a hybrid architecture that integrates
AraBERTv2 contextual embeddings with a com-
pact set of handcrafted features, including lexical
indicators, linguistic cues, and domain-informed
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Task Variant F1 Jaccard
A AraBERT only 0.52 0.39

+ Lexicon 0.51 0.37
+ Keywords 0.56 0.43
+ Lexicon + Keywords 0.55 0.41
SVM + features 0.45 0.34

B AraBERT only 0.79 0.69
+ Lexicon 0.77 0.67
+ Keywords 0.78 0.68
+ Lexicon + Keywords 0.79 0.67
SVM + features 0.74 0.62

Table 3: Ablation study results on official test set.

keywords. Our findings demonstrate that fusing
transformer-based representations with carefully
engineered lexical and pragmatic features yields
robust performance in both question categorization
and answer strategy classification, even on small-
scale, domain-specific datasets.

Limitations

Lexicon and keyword features were effective with
SVM, but did not improve AraBERT, suggesting
the limitation lies in the fusion strategy rather
than the features themselves. Another issue is the
restricted coverage of the manually defined key-
words, which work well for dominant categories
but miss diverse expressions; automated expansion
or domain-specific terminologies could help. Fi-
nally, the dataset size and imbalance remain major
challenges: Task A suffers from severe class im-
balance with poor recall on minority labels, while
Task B shows moderate imbalance, both limiting
generalization.
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A Keywords List for Task A

This appendix lists the curated keywords associated
with each category label for the subtask A:

Label A: Diagnosis (questions about
interpreting clinical findings)

�J
 	j ����, 	�@Q«


@, �HAÓC«, ÉJ
Êm�

�', l .�

'A�J 	K, �H@Qå�� 
ñÓ,

	�QÓ, �éËAg, H. @Q¢ 	�@, �m 	̄ , 	­ ��», QK
Q�®�K, 	­J
�ñ�K

Label B: Treatment (questions about seeking
treatments)

h. C«, Z @ðX, �HA�Êg. , h. CªË@,
�é 	®�ð, l .Ì'AªÓ,

�é¢ 	k,

l .×A 	KQK. , XA 	�Ó, 
øYêÓ, 	áº�Ó, ù
 ªJ
J.£, ú
æ�
	® 	K

Label C: Anatomy and Physiology (questions
about basic medical knowledge)

Õæ�k. ,
	̈ AÓX, t×, É�®«, H. A�«



@, 	àñÓQë, ZAJ
ÒJ
», 	P @Q 	̄ @
,

AK
C 	g, AJ
k. ñËñJ
K. , AJ
k. ñËñJ
��
 	̄ , 	á�
 	Kñ�KðQ�
�, 	á�
ÓAK. ðX,
Èð 	Q�
�KPñ», 	á�
ËA 	JK
PX



@, l�'
Qå����, 	­
KA 	£ð, ñ 	�«, 	PAêk. ,

I. J
»Q�K,
�éJ
 	�K. , �éJ
Ë

�
@

Label D: Epidemiology (questions about course,
prognosis, and etiology of diseases)
I. �.�, ÉÓ@ñ«, �H@Q�K 
ñÓ, Q£A	m×, �é�K @Pð, øðY«, PA ���� 	K @,
ú
æ
�� 	®�K, ÈAÒ�Jk@, ZA�k@
,

�éJ.�	�, ©�̄ñ�K, È
�
AÓ

Label E: Healthy Lifestyle (questions related to
diet, exercise, and mood control)
�é 	�AK
P, 	áK
PAÖ

�ß, ø
 Qk. , ú
æ
��Ó, Ðñ	K, QîD�, ÐAª£, ÐA 	¢ 	�,

�éJ
Ôg, 	à 	Pð, �é�̄ A ��P, �é�̄ AJ
Ë, �éK

	Y 	ª�K, �ém��, ZA 	gQ���@, ÉÓ



A�K,

A 	«ñK

Label F: Provider Choices (questions seeking
recommendations for medical professionals and
facilities)

I. �
J.£, Pñ�J»X, ù 	® �����Ó, �èXAJ
«, ú
æ�A�
�J 	k@, ù



KA� 	k


@,

	Q»QÓ, �éJ
�ñ�K, �èPA �����@, 
øP@ñ£, PA �����Ó, l .Ì'AªÓ

B Keywords List for Task B

This appendix lists the curated keywords associated
with each category label for the subtask B

Label 1: Information (factual responses)
�éÓñÊªÓ, Q�
 ����, ú


	æªK
, 	­K
Qª�K, �HA�@PX, 	�@Q«@, I. �.�,
�HA 	KAJ
K. , �J
 	j ����, hQå��, l� 	�ñÓ, Qå� 	®K
, �éÓC«, Qê 	¢�
,
ÉJ
ËX

Label 2: Direct Guidance (action-oriented
responses)

i�	�


@, I. m.�'
, ù


	ªJ. 	�K
, ÈðAg, H. Qk. , É 	� 	̄ @, i�	JK
, ½J
Ê«,

Õ�̄, Ð 	PB, �èñ¢ 	k, �é¢ 	k, ©J. �K @, ¼ñÊ�, Z @Qk. @, �éjJ
�	�

Label 3: Emotional Support (empathy and
encouragement)
½ªÓ, ¼Ygð, Qª ��@, é<Ë @, ��Ê�®�K, 	á
�Ò£@, I. Ê

�̄, Ñê 	®�K,
�A�k@, Ñê 	®�JÓ, ½Ô«X@, ú


	æÒîE
, Õ �æë@, Q«A ��Ó, 	àñî�E,
hA�KP@
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Abstract
We present the results and findings of the
BAREC Shared Task 2025 on Arabic Read-
ability Assessment, organized as part of the
Third Arabic Natural Language Processing
Conference (ArabicNLP 2025). The BAREC
2025 shared task focuses on automatic read-
ability assessment using the BAREC Corpus
(Elmadani et al., 2025), addressing fine-grained
classification into 19 readability levels. The
shared task includes two sub-tasks: sentence-
level classification and document-level classifi-
cation, and three tracks: (1) Strict Track, where
only the BAREC Corpus is allowed; (2) Con-
strained Track, restricted to the BAREC Cor-
pus, SAMER Corpus (Alhafni et al., 2024),
and SAMER Lexicon (Al Khalil et al., 2020),
and (3) Open Track, allowing any external re-
sources. A total of 22 teams from 12 countries
registered for the task. Among these, 17 teams
submitted system description papers. The win-
ning team achieved 87.5 QWK on the sentence-
level task and 87.4 QWK on the document-level
task.1

1 Introduction

Readability assessment plays a crucial role in edu-
cation, literacy development, and language learning
by ensuring that texts align with a reader’s profi-
ciency level. Mismatched readability can lead to
less understanding, retention, reading speed, and
engagement (DuBay, 2004; Klare, 1963). To ad-
dress this, text leveling systems have been widely
adopted, particularly in early education, to pro-
vide structured and measurable progress in reading
development (Allington et al., 2015; Barber and
Klauda, 2020).

While readability models exist for several lan-
guages, many challenges remain, particularly in
fine-grained text leveling and resource-scarce lan-
guages. Systems like Fountas and Pinnell’s 27-
level model for English (Fountas and Pinnell, 2006)

1https://barec.camel-lab.com/sharedtask2025

RL Grade Example

1 KG Majed Yg. AÓ
3 1st The morning of Eid YJ
ªË@ hAJ.�
6 2nd �èQº 	̄ ú


	æ�KZAg.
An idea came to me

10 4th ! �éª�JÜØ �éÊgP �I	KA¿
It was an enjoyable trip!

14 8th é�® 	®Ë @ Èñ�


@ 	­K
Qª�K

Definition of Islamic Jurisprudence Principles
17 Uni X� ñ 	J�J. Ë @

�� �	® �	kð A 	J ��®Ë @ 	áª£ 	á�
K.
Between lance thrusts and ensign flutters

Table 1: Examples by Reading Level (RL) and grade.

and Taha-Thomure’s (2017) 19-level framework
for Arabic demonstrate the importance of detailed
readability classification. These fine-grained lev-
els allow for more precise educational applications
while being flexible enough to map onto coarser
categories for broader applications.

The Taha/Arabi21 framework (Taha-Thomure,
2017), which has been used to annotate over 9,000
children’s books, plays a central role in our work.
Building on this system, the BAREC guidelines
(Habash et al., 2025) offer standardized, sentence-
level readability assessment across a wide range of
genres and educational stages – from early child-
hood to postgraduate levels (see Table 1). For
full guidelines in Arabic and English, we refer the
reader to Habash et al. (2025).

Arabic, in particular, presents unique challenges
for readability assessment due to its rich morphol-
ogy, extensive lexicon, and highly ambiguous or-
thography. Unlike English, where well-established
readability formulas and datasets exist, Arabic read-
ability research suffers from a lack of standardized
resources. This gap limits the development of ro-
bust computational models capable of accurately
assessing Arabic text difficulty across different pro-
ficiency levels.
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The BAREC 2025 shared task is organized as
part of the Third Arabic Natural Language Process-
ing Conference (ArabicNLP 2025), collocated with
EMNLP 2025. A total of 22 teams from 12 coun-
tries registered for the shared task. Out of these, 17
teams submitted system description papers which
are cited in this paper (see Table 6). This paper
provides an overview of the submitted systems and
presents their results.

The paper is structured as follows: §2 reviews
related work. §3 outlines the sub-tasks and tracks
of the shared task. §4 introduces the datasets and
evaluation metrics. §5 describes the baselines and
provides an overview of the submitted systems.
Finally, §6 reports and discusses the results.

2 Related Work

Automatic Readability Assessment Research
on automatic readability assessment has produced
a wide range of datasets and resources (Collins-
Thompson and Callan, 2004; Pitler and Nenkova,
2008; Feng et al., 2010; Vajjala and Meurers, 2012;
Xu et al., 2015; Nadeem and Ostendorf, 2018; Va-
jjala and Lučić, 2018; Deutsch et al., 2020; Lee
et al., 2021). In English, many early datasets
were built from textbooks, since their graded struc-
ture naturally supports readability evaluation (Va-
jjala, 2022). Over time, however, copyright limi-
tations and lack of digitized materials pushed re-
searchers to explore alternative sources, such as
crowdsourced readability annotations from online
platforms (Vajjala and Meurers, 2012; Vajjala and
Lučić, 2018), or proficiency exams based on the
CEFR framework for L2 learners (Xia et al., 2016).

Arabic Readability Efforts Research on Ara-
bic readability has explored text leveling and as-
sessment across several frameworks (Nassiri et al.,
2023). Taha-Thomure (2017) proposed a 19-level
system for educators, inspired by Fountas and Pin-
nell (2006), focusing on children’s literature. This
framework targets full texts, particularly for early
education, with 11 of the 19 levels covering up
to grade 4, helping teachers match books to stu-
dents’ reading abilities. It defines ten qualitative
and quantitative criteria, including text genre, ab-
stractness, vocabulary, dialectal proximity, authen-
ticity, book production quality, content suitability,
sentence structure, illustrations, use of diacritics,
and word count. The framework was adopted by
the Arab Thought Foundation under its Arabi21 ini-
tiative, which leveled over 9,000 children’s books.

Other approaches applied the CEFR frame-
work (Council of Europe, 2001) to Arabic, includ-
ing frequency-based word lists from the KELLY
project (Kilgariff et al., 2014), manually annotated
corpora such as ZAEBUC (Habash and Palfrey-
man, 2022) and ReadMe++ (Naous et al., 2024),
and vocabulary profiling (Soliman and Familiar,
2024). El-Haj et al. (2024) introduced DARES, a
dataset derived from Saudi school materials, while
the SAMER project (Al Khalil et al., 2020) pro-
duced a lexicon with a five-level readability scale,
enabling the creation of the first manually anno-
tated Arabic parallel corpus for text simplification
(Alhafni et al., 2024). Bashendy et al. (2024) fur-
ther presented a corpus of Arabic essays annotated
for organization and style traits.

Automated Arabic readability assessment has
progressed from rule-based models using surface
features (Al-Dawsari, 2004; Al-Khalifa and Al-
Ajlan, 2010; Hazim et al., 2022) to machine learn-
ing approaches incorporating linguistic features
(Forsyth, 2014; Saddiki et al., 2018), and script-
specific characteristics such as OSMAN (El-Haj
and Rayson, 2016). Recent work demonstrates
strong performance using pre-trained language
models on the SAMER corpus (Liberato et al.,
2024).

3 Task Description

The BAREC Readability Assessment Shared Task
focuses on developing models for fine-grained read-
ability classification using a 19-level framework.
Participants built systems to classify texts into these
readability levels at both the sentence and docu-
ment levels.

Sub-tasks Participants compete in one or more
of the following sub-tasks.

1. Sentence-Level Classification (Sent): Pre-
dict the readability level of individual sen-
tences.

2. Document-Level Classification (Doc): Pre-
dict the readability level of a document, where
a document is a collection of consecutive sen-
tences, and the hardest sentence determines
the readability level of the document.

Tracks Participants compete in one or more of
the following tracks, each imposing different re-
source constraints:

• Strict Track (S): Models must be trained ex-
clusively on the BAREC Corpus (Elmadani
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Split #Documents #Sentences #Words

Train 1,518 (79%) 54,845 (79%) 832,743 (80%)
Dev 194 (10%) 7,310 (11%) 101,364 (10%)
Test 210 (11%) 7,286 (10%) 105,265 (10%)

All 1,922 (100%) 69,441 (100%) 1,039,371 (100%)

Table 2: BAREC Corpus splits.

et al., 2025), ensuring that results are compa-
rable based solely on this dataset.

• Constrained Track (C): Models may use the
BAREC Corpus, SAMER Corpus (including
document, fragment, and word-level annota-
tions) (Alhafni et al., 2024), and the SAMER
Lexicon (Al Khalil et al., 2020).

• Open Track (O): No restrictions on external
resources, allowing the use of any publicly
available data.

With two sub-tasks and three tracks, the task
results in a total of six possible combinations.
Participants are allowed to compete in multiple
sub-tasks and tracks. The goal is to encourage di-
verse methodological approaches while providing
a structured framework for evaluating readability
assessment models.

4 Shared Task Datasets and Evaluation

In this section, we present the datasets used in dif-
ferent tracks, describe the evaluation metrics, and
outline the submission guidelines given to the par-
ticipants.

4.1 Dataset

BAREC Corpus The BAREC Corpus (Elmadani
et al., 2025) is the main corpus used in the shared
task. It consists of 1,922 documents and 69,441
sentences classified into 19 readability levels. The
corpus is split into Train (≃80%), Dev (≃10%),
and Test (≃10%) at the document level. Table 2
shows the corpus splits in the level of documents,
sentences, and words. Table 3 shows the label
distribution across splits for sentence-level and
document-level tasks.

SAMER Corpus The SAMER Corpus (Alhafni
et al., 2024) consists of 4,289 documents (158K
words) and 20,358 fragments classified into three
readability levels. We utilize the fragments made
available and reported on by Liberato et al. (2024).

Table 4 provides an overview of the SAMER cor-
pus statistics, including the Train, Dev, and Test
splits.

SAMER Lexicon The SAMER Lexicon
(Al Khalil et al., 2020) is a 40K-lemma leveled
readability lexicon for Modern Standard Arabic
(MSA). The lexicon consists of 40K lemma and
part-of-speech pairs annotated into five readability
levels. The lexicon was manually annotated by
three language professionals from different regions
in the Arab world. Table 5 shows the readability
statistics in the lexicon.

Blind Test Set We provide a new blind test set
created for this shared task and annotated in the
19 levels of the BAREC framework to evaluate
the final results. The blind test set consists of 100
documents and 3,420 sentences.

4.2 Evaluation Metrics

Following Elmadani et al. (2025), we treat the
Readability Assessment task as an ordinal clas-
sification problem and evaluate systems using the
following metrics:

• Accuracy (Acc) The proportion of cases
where predictions exactly match the reference
labels in the 19-level scheme (Acc19). We also
report coarse-grained variants: Acc7, Acc5,
and Acc3, where the 19 levels are collapsed
into 7, 5, and 3 levels, respectively (see Ta-
ble 3).

• Adjacent Accuracy (±1 Acc19) Also referred
to as off-by-1 accuracy, this metric counts
predictions as correct if they are either exact
matches or differ from the reference by only
one level.

• Average Distance (Dist) Equivalent to Mean
Absolute Error (MAE), it computes the aver-
age absolute difference between predicted and
reference labels.

241



BAREC Corpus v1 (Sentences)
Level-3 Level-5 Level-7 Level-19 All Train Dev Test Blind Test

1

1

1

1-alif
2-ba
3-jim
4-dal

2
5-ha
6-waw
7-zay

2
3

8-Ha
9-ta

4
10-ya
11-kaf

2 3 5
12-lam
13-mim

3

4 6
14-nun
15-sin

5 7

16-ayn
17-fa
18-sad
19-qaf

Total

BAREC Corpus v1 (Documents)
Level-3 Level-5 Level-7 Level-19 All Train Dev Test Blind Test

1

1

1

1-alif
2-ba
3-jim
4-dal

2
5-ha
6-waw
7-zay

2
3

8-Ha
9-ta

4
10-ya
11-kaf

2 3 5
12-lam
13-mim

3

4 6
14-nun
15-sin

5 7

16-ayn
17-fa
18-sad
19-qaf

Total

409 1% 333 1% 44 1% 32 0% 21 1%
437 1% 333 1% 68 1% 36 0% 21 1%
1,462 2% 1,139 2% 182 2% 141 2% 69 2%
751 1% 587 1% 78 1% 86 1% 28 1%
3,443 5% 2,646 5% 417 6% 380 5% 188 5%
1,534 2% 1,206 2% 189 3% 139 2% 47 1%
5,438 8% 4,152 8% 701 10% 585 8% 296 9%
5,683 8% 4,529 8% 613 8% 541 7% 263 8%
2,023 3% 1,597 3% 236 3% 190 3% 101 3%
9,763 14% 7,741 14% 1,012 14% 1,010 14% 457 13%
4,914 7% 4,041 7% 409 6% 464 6% 233 7%
14,471 21% 11,318 21% 1,491 20% 1,662 23% 682 20%
4,039 6% 3,252 6% 349 5% 438 6% 177 5%
10,687 15% 8,573 16% 1,072 15% 1,042 14% 596 17%
2,547 4% 2,016 4% 258 4% 273 4% 171 5%
1,141 2% 866 2% 114 2% 161 2% 55 2%
480 1% 364 1% 49 1% 67 1% 15 0%
103 0% 67 0% 13 0% 23 0% 0 0%
116 0% 85 0% 15 0% 16 0% 0 0%
69,441 100% 54,845 100% 7,310 100% 7,286 100% 3,420 100%

0 0% 0 0% 0 0% 0 0% 0 0%
0 0% 0 0% 0 0% 0 0% 0 0%
1 0% 1 0% 0 0% 0 0% 0 0%
0 0% 0 0% 0 0% 0 0% 0 0%
0 0% 0 0% 0 0% 0 0% 0 0%
0 0% 0 0% 0 0% 0 0% 0 0%
1 0% 1 0% 0 0% 0 0% 1 1%
1 0% 1 0% 0 0% 0 0% 1 1%
2 0% 1 0% 0 0% 1 0% 0 0%
13 1% 13 1% 0 0% 0 0% 0 0%
18 1% 10 1% 6 3% 2 1% 1 1%
192 10% 148 10% 25 13% 19 9% 7 7%
204 11% 170 11% 14 7% 20 10% 9 9%
623 32% 489 32% 56 29% 78 37% 24 24%
399 21% 317 21% 46 24% 36 17% 25 25%
267 14% 207 14% 32 16% 28 13% 20 20%
156 8% 130 9% 9 5% 17 8% 12 12%
12 1% 8 1% 2 1% 2 1% 0 0%
33 2% 22 1% 4 2% 7 3% 0 0%
1,922 100% 1,518 100% 194 100% 210 100% 100 100%

Table 3: Sentence-level and document-level splits across BAREC readability levels.
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Split #Documents #Fragments #Words

Train 2,790 (65%) 14,256 (70%) 112,828 (71%)
Dev 607 (14%) 2,948 (14%) 22,075 (14%)
Test 892 (21%) 3,154 (15%) 23,161 (15%)

All 4,289 (100%) 20,358 (100%) 158,064 (100%)

Table 4: SAMER Corpus splits.

Level Type Count

Level I 3,545 (9%)
Level II 3,221 (8%)
Level III 5,510 (14%)
Level IV 10,130 (25%)
Level V 18,281 (45%)

Total 40,687 (100%)

Table 5: SAMER Lexicon distributions

• Quadratic Weighted Kappa (QWK) An
extension of Cohen’s Kappa (Cohen, 1968;
Doewes et al., 2023), this measure evalu-
ates agreement between predicted and true
labels while penalizing larger misclassifica-
tions quadratically, giving higher weight to
errors farther from the reference.

We report on QWK as the primary metric for
ranking systems. We prioritize QWK as it better
captures the ordinal nature of readability levels,
providing smoother, distance-sensitive penalties for
misclassifications compared to the hard thresholds
of accuracy-based measures. The other metrics are
reported in Appendix A.

4.3 Submission Guidelines

The shared task is organized in two phases: de-
velopment and testing. During the development
phase, we set up CodaBench (Xu et al., 2022)
competitions for all tracks. Participants may ei-
ther evaluate their systems locally on the BAREC
Dev and Test sets,2 or submit their predictions on
the BAREC Test set through the corresponding
CodaBench competition for each track. Since the
BAREC Test set is publicly available, anyone is
welcome to participate in this phase.

In the testing phase, we release the Official
Blind Test set exclusively to registered participants.

2https://github.com/CAMeL-Lab/
barec-shared-task-2025

Registered teams are required to submit system
description papers.

Teams are permitted to participate in all tracks;
however, their submissions must adhere to the re-
source constraints defined for each track. Partic-
ipation in the constrained track is limited to the
use of the SAMER corpus and/or lexicon, while
participation in the open track requires the use of
external resources.

5 Participants and Systems

We received 22 team registrations from 12 coun-
tries, of which 17 submitted system description
papers. Table 6 lists the participating teams along
with their affiliations and the tracks they joined. In
total, we received 70 submissions during the de-
velopment phase and 667 submissions during the
testing phase. A detailed breakdown of submis-
sions across tracks is provided in Table 8.

5.1 Baselines

We employed three baseline models to compare
against the participating systems. All baselines
are Arabic-specific BERT-base models fine-tuned
on the BAREC Corpus, selected from the suite of
models trained by Elmadani et al. (2025). These
baselines vary along the following dimensions:

• Pretrained model: AraBERTv02 vs.
AraBERTv2 (Antoun et al., 2020)

• Input variant: preprocessing of the BAREC
Corpus - Word (simple sentence tokeniza-
tion with diacritics and kashida removal) vs.
D3Tok (tokenization of words into their base
and clitic forms)3

• Loss function: Cross-entropy loss (CE) vs.
Regression using Mean Squared Error (Reg)

Guided by these design choices, we selected the
following three baselines:

3Preprocessing with CAMeL Tools (Obeid et al., 2020).
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Team Affiliation Sent Doc

S C O S C O

!MSA (Basem et al., 2025) MSA University, Egypt ✓ ✓ ✓ ✓ ✓ ✓
AMAR (Saeed et al., 2025) NYU Abu Dhabi, UAE ✓ ✓ ✓
ANLPers (Sibaee et al., 2025) Prince Sultan University, KSA ✓
GNNinjas (Elchafei et al., 2025) Ulm University, Germany ✓ ✓ ✓
LIS (NAIT DJOUDI et al., 2025) Aix Marseille Université, France ✓
MARSAD (Ibrahim et al., 2025) Northwestern University, Qatar ✓ ✓
MorphoArabia (Emad Eldin, 2025) Cairo University, Egypt ✓ ✓ ✓ ✓ ✓ ✓
mucAI (Abdou, 2025) TUM, Germany ✓ ✓
Noor (Rabih, 2025) MBZUAI, UAE ✓
PalNLP (Ayesh, 2025) Cardiff University, UK ✓
Phantoms (Alhassan et al., 2025) CMU Africa, Rwanda ✓
Pixel (Sapirstein, 2025) Reichman University, Israel ✓ ✓
Qais (Ahmed, 2025) IMSIU, KSA ✓ ✓
SATLab (Bestgen, 2025) UCLouvain, Belgique ✓ ✓
STBW (Trigui, 2025) (Independent), UAE ✓ ✓
Syntaxa (Bahloul, 2025) TUM, Germany ✓
ZAI (Nazzal, 2025) Zayed University, UAE ✓

Table 6: List of participating teams, along with their affiliations and the tracks they participated in.

Team Score Features Techniques
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G
NN

!MSA 87.5 ✓ ✓ ✓ ✓ ✓ ✓
AMAR 86.4 ✓ ✓ ✓ ✓
mucAI 85.7 ✓ ✓ ✓ ✓
STBW 85.6 ✓ ✓ ✓
ZAI 85.5 ✓ ✓ ✓
Baselines 84.6 ✓ ✓ ✓
Syntaxa 84.3 ✓ ✓ ✓ ✓
MorphoArabia 84.2 ✓ ✓ ✓
MARSAD 84.1 ✓ ✓ ✓
Noor 83.1 ✓ ✓
Qais 83.0 ✓ ✓ ✓ ✓
Phantom 82.7 ✓ ✓ ✓
LIS 82.4 ✓
SATLab 82.3 ✓ ✓
PalNLP 81.1 ✓ ✓ ✓ ✓ ✓
GNNinjas 78.5 ✓ ✓ ✓ ✓
ANLPers 73.0 ✓ ✓ ✓
Pixel 68.4 ✓ ✓

Table 7: Summary of features and techniques employed by participating teams with their best sentence-level QWK
scores. Embeds refers to embeddings; Morph to morphological segmentation or features; ML to non-neural machine
learning methods (e.g., SVMs); PLM to pre-trained language models; LLM to large language models used for
prediction or data augmentation; Ord Loss to loss functions that account for the ordinal nature of labels (e.g., ordinal
log loss, regression); Label B. to strategies addressing label imbalance; and GNN to graph neural networks.
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Task Development Testing

S C O S C O

Sent 63 1 2 221 78 98
Doc 2 1 1 110 83 77

70 667

Table 8: Number of valid submissions during the Devel-
opment and testing phases across tracks.

• AraBERTv02+Word+CE (Baseline I):
serves as a standard baseline, combining the
widely used AraBERTv02 with conventional
word-level preprocessing and the standard
cross-entropy loss.

• AraBERTv2+D3Tok+CE (Baseline II): in-
cluded to assess the effect of linguistically mo-
tivated tokenization (D3Tok) on classification
performance.

• AraBERTv2+D3Tok+Reg (Baseline III):
motivated by the ordinal nature of readability
levels, this baseline explores regression that
accounts for the distance between predicted
and true labels.

5.2 Summary of Submitted Systems

A summary of approaches employed by various
teams is provided in Table 7. Most teams built
on pre-trained language models (PLMs), often
enhanced with morphological features, while a
few also incorporated ensembling, label balanc-
ing, or ordinal-aware loss functions. Teams such
as !MSA, AMAR, and Qais further leveraged large
language models (LLMs), and graph neural net-
works (GNNs) (Zhou et al., 2021) were explored by
GNNinjas and Syntaxa, while team Pixel explored
vision language models (Dosovitskiy et al., 2021;
Rust et al., 2023). Traditional non-neural meth-
ods were rare. Overall, the strongest approaches
combined PLMs with linguistic features and en-
sembling. Next we present the system description
of the best performing team.

5.3 !MSA: Best Performing Team

The pipeline of the winning team, !MSA (Basem
et al., 2025), begins by preprocessing the data with
D3Tok tokenization (Obeid et al., 2020). They fur-
ther augment the data differently for each track:
upsampling for the strict track, SAMER corpus-
based augmentation for the constrained track, and

paraphrasing 12k entries from the BAREC corpus
using the Gemini API for the open track.4 Beyond
preprocessing, the pipeline is consistent across
all tracks. They employ an ensemble of models
— AraBERTv2 (Antoun et al., 2020), AraElectra
(Antoun et al., 2021), MARBERT (Abdul-Mageed
et al., 2021), and CamelBERT (Inoue et al., 2021)
— trained with different loss functions including
Cross-Entropy, Ordinal Log Loss (Castagnos et al.,
2022), Regression (Mean Squared Error), and Con-
ditional Ordinal Regression (Cao et al., 2020). The
ensemble combines model outputs via a weighted
average, where weights are determined based on
each model’s confidence scores.

The following section provides a general dis-
cussion of the results and analyzes how different
approaches impacted performance.

6 Results

Tables 9 and 10 show the results in QWK for all
tracks in the sentence-level and document-level
tasks, respectively. The baselines, highlighted in
gray, were trained only on the BAREC corpus, and
their scores are reported identically across tracks
to facilitate comparison with other teams. Over-
all, five teams outperformed our strongest baseline.
In most cases, however, the additional resources
available in the constrained and open tracks did
not yield improvements over the strict track. Team
!MSA achieved the highest QWK scores across all
tasks and tracks. In this section, we provide a broad
analysis of the overall results. We also report on
the other metrics in Appendix A.

6.1 General Discussion

Table 7 summarizes the participating teams, their
best scores, and the features and techniques they
employed. The results show a clear dominance of
pre-trained language models (PLMs), which were
adopted by nearly all teams. The top perform-
ers — !MSA (87.5), AMAR (86.4), and mucAI
(85.7) — achieved their results by training on mor-
phologically segmented text and combining PLMs
with ordinal-aware loss functions and strategies
for addressing label imbalance. Ensembling fur-
ther boosted performance, particularly for the lead-
ing teams, by allowing them to leverage multiple
models. Morphological features were widely used
across systems, underscoring the importance of
morphology-aware approaches in Arabic readabil-

4https://ai.google.dev/

245

https://ai.google.dev/


Team Strict Constrained Open

!MSA 87.5 86.6 86.4
AMAR 86.4 86.4
mucAI 85.7
STBW 85.6
ZAI∗ 85.5
Baseline III 84.6 84.6 84.6
Syntaxa 84.3
MorphoArabia 84.2 82.9 83.9
MARSAD 84.1
Noor 83.1
Phantom 82.7
Qais 82.5 83.0
LIS 82.4
SATLab 82.3
Baseline II 81.5 81.5 81.5
PalNLP 81.1
Baseline I 80.5 80.5 80.5
ANLPers∗ 73.0
Pixel 66.2 68.4
GNNinjas 78.5 77.6

Table 9: Performance of participating teams across all
tracks in the sentence-level task. Scores are reported as
QWK (%) and sorted based on the performance on the
strict track. ∗ denotes systems that used the dev set for
training, making their scores not directly comparable to
others.

Team Strict Constrained Open

!MSA 87.4 84.3 82.2
MorphoArabia 79.9 75.5 79.2
MARSAD 79.0
SATLab 77.6
mucAI 73.3
Baseline III 72.6 72.6 72.6
STBW 72.5
AMAR 69.6
Baseline II 62.0 62.0 62.0
Baseline I 57.7 57.7 57.7
GNNinjas 76.9

Table 10: Performance of participating teams across all
tracks in the document-level task. Scores are reported
as QWK (%) and sorted based on the performance on
the strict track.

ity assessment. Team !MSA led the leaderboard by
integrating all of these components. In contrast, tra-
ditional machine learning methods and n-gram fea-
tures were rarely employed and, when used, did not
yield competitive results. More modern approaches
such as graph neural networks (GNNs) and vision
language models (e.g. team Pixel) also failed to
provide significant gains. Large language models
(LLMs) were explored by three teams for predic-
tion and data augmentation, but in both cases did
not outperform PLM-based systems. Overall, the
findings highlight that success in this task depended
primarily on combining morphological segmenta-
tion with PLMs, ensembling, and ordinal-sensitive
modeling.

7 Conclusion

In this paper, we presented the framework and re-
sults of the BAREC 2025 Shared Task on Fine-
Grained Arabic Readability Assessment—the first
shared task dedicated to this problem. The task fea-
tured two subtasks (sentence-level and document-
level) and three tracks (strict, constrained, and
open). A new blind test set was created for the
evaluation, consisting of 3,420 sentences and 100
documents. In total, 22 teams from 12 countries
registered, and 17 submitted system description
papers. The strong participation highlights the in-
terest in Arabic readability assessment. Looking
ahead, we plan to expand available resources and
organize future shared tasks to further advance re-
search in this area.

Limitations

This work has a few limitations worth noting.
First, document-level readability was derived from
sentence-level readability under the assumption
that the hardest sentence determines the overall
document level. While simple, this approach often
pushes documents toward higher readability lev-
els, since a single difficult sentence can raise the
document’s level. Second, we adopted Quadratic
Weighted Kappa (QWK) as the primary evaluation
metric. However, the choice of the most suitable
metric for this task remains an open question.
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A Additional Results

Team QWK Acc19 ±1 Acc19 Dist Acc7 Acc5 Acc3

!MSA 87.5 43.5 76.7 1.0 64.1 69.6 76.2
AMAR 86.4 39.7 73.2 1.1 60.8 67.8 76.1
mucAI∗ 85.7 50.9 75.6 1.0 65.2 69.8 76.1
STBW 85.6 33.3 73.6 1.2 57.3 66.5 74.7
ZAI 85.5 48.8 73.3 1.0 64.4 69.3 75.8
Syntaxa 84.3 51.0 72.0 1.0 64.4 68.7 75.4
MorphoArabia 84.2 43.5 74.0 1.1 63.0 68.3 75.3
MARSAD 84.1 52.0 74.0 1.0 65.9 70.6 76.1
Noor 83.1 56.1 72.5 1.0 67.0 70.5 75.8
Phantom 82.7 57.6 72.3 1.0 67.4 71.3 77.2
Qais 82.5 54.8 71.8 1.1 65.1 69.5 75.3
LIS 82.4 57.5 72.4 1.0 67.8 71.5 76.4
SATLab 82.3 25.8 63.1 1.4 47.0 59.0 69.8
PalNLP∗ 81.1 33.1 69.8 1.3 57.2 63.6 72.5
ANLPers 73.0 44.7 61.4 1.4 56.3 62.0 70.0
Pixel 66.2 38.1 53.6 1.8 48.6 54.2 65.9

Table 11: Performance of participating teams in the strict track in the sentence-level task. Results are sorted based
on the QWK score. ∗ denotes systems that used the dev set for training, making their scores not directly comparable
to others.

Team QWK Acc19 ±1 Acc19 Dist Acc7 Acc5 Acc3

!MSA 86.6 44.9 75.4 1.0 63.0 68.7 75.6
AMAR 86.4 39.9 73.0 1.1 61.0 68.1 76.3
MorphoArabia 82.9 30.9 70.6 1.3 53.9 62.9 72.1
GNNinjas 78.5 50.0 67.2 1.4 61.2 66.1 74.9

Table 12: Performance of participating teams in the constrained track in the sentence-level task. Results are sorted
based on the QWK score.
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Team QWK Acc19 ±1 Acc19 Dist Acc7 Acc5 Acc3

!MSA 86.4 41.3 75.1 1.0 61.7 67.3 74.5
MorphoArabia 83.9 48.8 71.3 1.1 62.5 67.6 74.3
Qais 83.0 54.2 71.8 1.1 66.0 70.0 75.8
GNNinjas 77.6 48.7 66.5 1.3 60.7 65.2 74.5
Pixel 68.4 41.5 56.8 1.6 50.9 56.8 65.1

Table 13: Performance of participating teams in the open track in the sentence-level task. Results are sorted based
on the QWK score.

Team QWK Acc19 ±1 Acc19 Dist Acc7 Acc5 Acc3

!MSA 87.4 52 94 0.6 81 81 93
MorphoArabia 79.9 42 90 0.7 71 71 92
MARSAD 79.0 36 84 0.8 59 60 85
SATLab 77.6 39 88 0.8 70 71 87
mucAI 73.3 36 86 0.8 65 66 89
STBW 72.5 35 85 0.8 67 67 90
AMAR 69.6 34 79 0.9 70 70 89

Table 14: Performance of participating teams in the strict track in the document-level task. Results are sorted based
on the QWK score.

Team QWK Acc19 ±1 Acc19 Dist Acc7 Acc5 Acc3

!MSA 84.3 48 91 0.6 77 77 94
GNNinjas 76.9 42 83 0.8 60 61 90
MorphoArabia 75.5 34 83 0.9 64 65 85

Table 15: Performance of participating teams in the constrained track in the document-level task. Results are
sorted based on the QWK score.

Team QWK Acc19 ±1 Acc19 Dist Acc7 Acc5 Acc3

!MSA 82.2 50 86 0.6 70 70 89
MorphoArabia 79.2 37 86 0.8 65 65 92

Table 16: Performance of participating teams in the open track in the document-level task. Results are sorted based
on the QWK score.
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Abstract

We describe our system submission to Task 1
(Sentence-level Readability Assessment) of
the BAREC Shared Task 2025 (Elmadani et al.,
2025a), in the strict track. Task 1 requires pre-
dicting the readability level of an Arabic sen-
tence on a scale from 1 (easiest) to 19 (hardest),
reflecting reading difficulty. Our approach in-
tegrates contextual and syntactic information
by combining pretrained BERT embeddings
(Devlin et al., 2019) with a Graph Neural Net-
work (GNN) (Zhou et al., 2021) over depen-
dency parse trees (Kipf and Welling, 2017).
Our hypothesis is that readability is influenced
not only by word choice but also by syntac-
tic complexity—especially in morphologically
rich languages like Arabic (Habash, 2010). To
capture both aspects, we represent each sen-
tence as a dependency graph with BERT token
embeddings as node features, and use a GNN
to model the syntactic structure. Experimental
results show that our syntax-aware model im-
proves over a strong BERT baseline, highlight-
ing the value of structural linguistic information
for fine-grained readability classification.1

1 Introduction

Readability assessment aims to estimate the diffi-
culty of a text for a given audience. For Arabic,
this task is particularly challenging due to the lan-
guage’s rich morphology, flexible word order, and
cliticization. Sentence-level readability prediction
demands models that capture subtle syntactic and
semantic cues. While transformer-based models
like AraBERTv2 (Antoun et al., 2020) encode deep
lexical features, they often underutilize syntactic
structure—an important aspect of textual complex-
ity.

We propose a hybrid architecture that integrates
syntactic dependency graphs with contextual em-

1Code available at: https://github.com/
ahmedehabb/BERTnParse

beddings from AraBERTv2 for Arabic sentence-
level readability prediction. Dependency trees are
parsed into graphs and processed with a Graph Neu-
ral Network (GNN), while token embeddings from
AraBERTv2 are used to represent semantic con-
tent. The resulting model jointly reasons over both
syntactic and contextual signals.

While GNNs have been combined with trans-
formers in tasks like QA (Yasunaga et al., 2021),
document classification (Zhang et al., 2020), and
semantic role labeling (Marcheggiani and Titov,
2017), such architectures have not been applied to
readability assessment. For Arabic, prior work
relies on feature-based or PLM-only methods (Lib-
erato et al., 2024) or on word-level readability tools
(Hazim et al., 2022; Al Khalil et al., 2020), rather
than sentence-level prediction. Recent multilingual
efforts such as ReadMe++ (Naous et al., 2024) eval-
uate both supervised and prompting-based meth-
ods, as well as unsupervised approaches, but all rely
solely on pretrained language models without incor-
porating syntactic structure. This leaves the impact
of syntax underexplored—especially in morpholog-
ically rich languages. The closest related work is by
Ivanov (Ivanov, 2022), who compares syntax-based
GNNs using fastText embeddings and BERT-based
models for sentence complexity in Russian, but does
not integrate syntactic and contextual representa-
tions into a unified model.

In addition to our architecture, we propose a
novel alignment strategy that merges AraBERT
subword embeddings and dependency parse nodes
into word-level units. This is crucial for Arabic,
where clitics and morphology lead to tokenization
mismatches. Prior work often sidesteps this mis-
match by propagating labels across subwords, but
we instead ensure structural and semantic alignment
through node merging and embedding pooling, en-
abling effective message passing in the graph.

Contributions: (1) We propose a syntax-aware
model that fuses GNN-based syntactic representa-
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Level Arabic Transliteration (HSB) English

6 هئاقدصأبعوبسألكدجاميقتليانه hnA yltqy mAjd kl Âsbwς
bÂSdqAŷh

Here Majid meets his
friends every week.

11 ؟زايحنالامدعلوددوصقملاوهام mA hw AlmqSwd dwl ςdm
AlAnHyAz?

What is meant by the Non-
Aligned Movement?

Table 1: Example BAREC sentences with readability levels, CAMeL Tools HSB transliterations, and English glosses.

tions with AraBERTv2 for Arabic sentence-level
readability. (2) We introduce a word-level align-
ment method addressing tokenization mismatches
between BERT and dependency parses. (3) We im-
prove over a strong BERT baseline on the BAREC
corpus (Elmadani et al., 2025b), especially for com-
plex sentences.

2 Data

We evaluate our approach on the Balanced Ara-
bic Readability Evaluation Corpus (BAREC)
(Elmadani et al., 2025b), released as part of the
BAREC Shared Task 2025. The dataset comprises
Arabic sentences labeled with 19 readability levels
(1 = easiest, 19 = hardest), covering diverse topics
and genres.

The dataset is split as follows:

• Train set: 54,845 sentences
• Dev set: 7,310 sentences
• Test set: 7,286 sentences
• Blind Test set: 3,420 sentences

Each sentence is annotated with a readability
level following detailed linguistic and pedagogical
guidelines (Habash et al., 2025). To illustrate the
dataset, we provide examples with their readability
levels, CAMeL Tools HSB transliterations (Habash
et al., 2007), and English glosses.2 Table 1 shows
two representative examples.

Additional Arabic readability resources, such as
the SAMER corpus (Alhafni et al., 2024), may be
useful for future research. However, in line with
the strict track guidelines of the BAREC Shared
Task—where models must be trained exclusively
on the BAREC training set—we restrict our experi-
ments to the BAREC dataset only.

2Transliteration via the CAMeL Tools CLI:
camel_transliterate -s ar2hsb < file

3 Methodology

Our approach combines contextual embeddings
from AraBERTv2 (Antoun et al., 2020) with a
GraphNeural Network (GNN) applied to the syntac-
tic dependency graph of each input sentence. This
design enables the model to jointly capture lexi-
cal semantics and syntactic structure, addressing
key challenges in fine-grained Arabic readability
prediction.

3.1 Input Representation
Given an input Arabic sentence S =
(w1, w2, . . . , wn), we first obtain token-level
contextual embeddings hBERT

i ∈ Rd from
AraBERTv2, where d is the embedding dimension.
AraBERTv2 parameters are fine-tuned during
training to adapt to the readability task.

Simultaneously, we parse S using Camel-
Parser2.0 (Elshabrawy et al., 2023) to obtain a de-
pendency graph G = (V,E), where V = {wi}
are nodes corresponding to tokens, and edges E ⊆
V × V represent syntactic relations. Each node
wi ∈ V is also associated with a part-of-speech
(POS) tag, and each edge e = (wi → wj) ∈ E is
labeled with a dependency type (e.g., OBJ, SUBJ).

3.2 Token Alignment and Word-Level
Processing

A key design decision in our system is to operate at
the word level rather than on subword units. While
AraBERTv2 employs WordPiece tokenization (Wu
et al., 2016), which splits words into subword seg-
ments, the dependency parser outputs nodes that
often correspond to grammatical morphemes or
clitics. For example, the Arabic word امهديصأس

(transliteration: sÂSydhmA, translation: “I will
catch them”) is segmented into the future tense par-
ticle +س (s+, PART), the verb stem ديصأ (Aṣyd,
VRB), and the object pronoun suffix امه+ (+hmA,
NOM). This linguistically motivated segmentation
differs from the subword units generated by BERT,
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which are learned based on frequency statistics.
To resolve this mismatch, we average the

AraBERTv2 subword embeddings into a single
word-level vector, following the general idea of
leveraging subword information for richer word
representations (Bojanowski et al., 2017). On the
parsing side, we merge subword nodes (e.g., clitics)
and their associated edges into unified word-level
graph nodes. This ensures that each word is con-
sistently represented by both a single graph node
and a single embedding. Figure 1 illustrates this
process by comparing the original token-level de-
pendency graph with the merged word-level version.
A detailed description of the merging procedure,
along with transliteration and English glosses for
the example sentence, is provided in Section 3.3.

This alignment is critical for ensuring consistent
and interpretable graph structures. It eliminates
discrepancies between the number of embedding
vectors and graph nodes, enabling meaningful mes-
sage passing and feature aggregation in the GNN.
To our knowledge, this approach to harmonizing
tokenization granularity in Arabic is novel and effec-
tively addresses challenges posed by the language’s
rich morphology and syntactic structure.

ROOT

نأك

ك+

باصم +ب

ةلزن

درب

؟

—
SBJ

PRD MOD

OBJ
IDF

MOD

(a) Original token-level dependency graph.

ROOT

كنأك باصم ةلزنب درب

؟

SBJ OBJ

—

PRD MOD IDF

MOD

(b) Merged word-level dependency graph.

Figure 1: Comparison between token-level and merged
word-level dependency graphs for the Arabic phrase

؟دربةلزنبباصمكنأك

3.3 Subword-to-Word Merging for
Dependency Graphs

We parsed the Arabic sentence ؟دربةلزنبباصمكنأك

using CAMeLParser2.0, which outputs token-level
dependencies, including affixes and clitics as sepa-

rate units.

Sentence example with transliteration and trans-
lation:

Original: ؟دربةلزنبباصمكنأك

Transliteration: kÂnk mSAb bnzlħ brd?
Translation: As if you have a cold?

Token list:

1. نأك — PRT (base)

2. ك+ — PRON (enclitic)

3. باصم — ADJ

4. +ب — ADP (prefix)

5. ةلزن — NOUN

6. درب — NOUN

7. ? — PUNCT

Original edges (token-level): Token ID 0 refers
to the artificial ROOT node.

• (1 → 0) —

• (2 → 1) SBJ

• (3 → 1) PRD

• (4 → 3) MOD

• (5 → 4) OBJ

• (6 → 5) IDF

• (7 → 1) MOD

Merging subword tokens: We merged:

• Tokens [1,2] → كنأك

• Tokens [4,5] → ةلزنب

All incoming and outgoing edges of the merged
tokens are also combined, so that the resulting word
node preserves the original dependency relations
for consistent graph construction.
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Graph Construction We construct the input
graph for the GNN as follows:

• Nodes and node features: Each node corre-
sponds to a token wi and is initialized with the
corresponding BERT embedding hBERT

i . POS
tags are encoded as learnable embeddings and
concatenated to the token representations. The
special [CLS] token is used to represent the
syntactic root of the sentence and serves as the
head node in the graph.

• Edges and edge features: Directed edges are
constructed based on the dependency parse.
Each edge is labeled with a dependency re-
lation, which is encoded as a learnable em-
bedding erel and incorporated via edge-aware
message passing.

3.4 GNN Architecture and Training
We employ a multi-layer Graph Neural Network
based on TransformerConv (Shi et al., 2021) lay-
ers to propagate syntactic information. Each Trans-
formerConv layer uses multi-head self-attention (4
heads) over nodes, with attention scores modulated
by edge attributes.

At layer l, the hidden state of node i is updated
by attending over its neighbors N (i), condition-
ing on both node features and edge embeddings.
Aggregated edge embeddings for incoming and out-
going edges are computed separately and fused into
node representations through a linear projection.
Formally, the node representations evolve as:

h(l+1)
i = TransformerConv

(
h(l)
i , {h(l)

j : j ∈ N (i)}, erel
)

where erel are learned edge embeddings pro-
cessed by an MLP.

After stacking TransformerConv layers with
dropout and layer normalization, node features are
aggregated via attentional pooling to produce a
graph-level embedding hS .

This embedding is then fed into two parallel fully
connected layers, generating logits for two comple-
mentary objectives:

zCORAL = WchS + bc, zQWK = WqhS + bq.

The first layer outputs 18 logits corresponding to
ordinal thresholds for the CORAL loss (Cao et al.,
2020), while the second produces 19 logits for di-
rect classification used by the Quadratic Weighted
Kappa (QWK) loss (de La Torre et al., 2018).

To balance ordinal accuracy and agreement qual-
ity, we optimize a combined loss:

L = 0.5 · LCORAL + 0.5 · LQWK,

where LQWK penalizes larger prediction errors
more heavily, enhancing robustness to class imbal-
ance and ordinal inconsistencies.

Figure 2 illustrates the overall model pipeline,
highlighting the integration of AraBERTv2 and syn-
tactic parsing through a GNN layer for joint repre-
sentation learning.

Input Sentence

AraBERTv2 CamelParser2.0

Per-word Embeddings Per-word Dependency Graph

GNN + Joint Representation

Classification

Figure 2: Model architecture integrating lexical and
syntactic information for readability prediction.

4 Experimental Setup

4.1 Modeling and Preprocessing

We preprocess each sentence using WordPiece tok-
enization from AraBERTv2 and dependency pars-
ing via CamelParser2.0, which outputs POS tags,
syntactic relations, and token-level dependency
structures. Following the word-to-subtoken align-
ment procedure detailed in 3.2, we average subto-
ken embeddings to form word-level representations.
Correspondingly, subtoken-based nodes in the de-
pendency graph are merged into single word-level
nodes. The special [CLS] token is used to repre-
sent the syntactic root of the graph and serves as
the anchor node for the sentence-level structure.

Our model integrates these word-level embed-
dings and dependency graphs through a 4-layer
TransformerConv-based Graph Neural Network
(GNN) with a hidden size of 512. We incorporate
learnable embeddings for POS tags and dependency
relations. Training is performed with the Adam op-
timizer using a learning rate of 1×10−4, batch size
of 64, dropout rate of 0.2, and early stopping based
on validation loss.
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Test Set Model QWK Accuracy Acc ±1 Dist Acc 7 Acc 5 Acc 3

Internal Baseline 80.2 55.9% 70.0% 1.1 65.1% 69.4% 75.2%
Our Model 83.7 50.5% 71.9% 1.0 63.1% 68.0% 74.2%

Official Blind Baseline 81.5 58.1% 72.0% 1.0 67.7% 71.4% 76.5%
Our Model 84.3 51.0% 72.0 % 1.0 64.4% 68.7% 75.4%

Table 2: Performance on internal and official blind test sets for sentence-level readability prediction.

4.2 Evaluation Metrics
We treat readability assessment as an ordinal clas-
sification task. Our primary metric is Quadratic
Weighted Kappa (QWK), which penalizes larger
prediction errors quadratically. We also report Ex-
act Match Accuracy (Acc19) on the 19-level scale,
along with adjacent accuracy (±1), coarser-grained
accuracies (Acc7, Acc5, Acc3), and average predic-
tion distance measured by mean absolute error.

5 Results

5.1 Comparison of Model Variants
We evaluate two model variants to assess the con-
tribution of syntactic and structural information:

• AraBERTv2 baseline: Fine-tuned on the
BAREC-Corpus-v1.0 Word input using cross-
entropy loss (Elmadani et al., 2025b).

• AraBERTv2 + GNN (ours): Our proposed ap-
proach integrates syntactic dependency pars-
ing using a TransformerConv-based Graph
Neural Network over word-level BERT em-
beddings. Each word node is enriched with
POS and syntactic edge features, and the spe-
cial [CLS] token anchors the graph as the syn-
tactic root.

5.2 Performance on Internal and Official Test
Sets

Table 2 shows our model achieves superior
Quadratic Weighted Kappa (QWK) scores on both
internal (83.7 vs. 80.2) and official blind test sets
(84.3 vs. 81.5) compared to the baseline, indicating
stronger ordinal agreement.

Our method also yields lower average predic-
tion distances (1.0 vs. 1.1 internally) and com-
petitive adjacent accuracy (±1), suggesting more
calibrated and consistent predictions. While the
baseline slightly outperforms in strict exact match
accuracy, our model’s improvements in ordinal met-
rics underscore the benefits of integrating syntactic
structure.

6 Conclusion and Future Work

In this work, we explored the integration of con-
textual semantic features from AraBERTv2 with
syntactic structure captured via dependency pars-
ing graphs for the task of Arabic sentence-level
readability assessment. Our model incorporates a
TransformerConv-based GNN over a dependency
graph constructed at the word level, resolving align-
ment inconsistencies between WordPiece tokeniza-
tion and morphological segmentation. We demon-
strated that augmenting AraBERTv2 with structural
information significantly improves performance
over a strong BERT-only baseline. Our findings
highlight the value of syntactic context in modeling
Arabic linguistic complexity and offer a promising
direction for fine-grained readability prediction in
morphologically rich languages.

For future work, we plan to investigate the
use of multilingual pretrained models to leverage
cross-lingual knowledge and improve generaliza-
tion across different Arabic dialects and related
languages. Additionally, exploring alternative ar-
chitectures beyond encoder-only models, such as
encoder-decoder or graph transformers, may further
enhance the integration of syntactic and semantic
information for readability prediction.
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A Appendix

A.1 Reproducibility Details

A.1.1 Data Preprocessing
• Sentences are cleaned and tokenized using
CAMeL Tools.

• We additionally remove tatweel characters (ـ)
from the text, as many were found to be broken
or incorrectly inserted in the middle of words,
which can negatively affect tokenization and
model performance. For example, the word

ةسّردم might appear as ةــسّردم , which we nor-
malize by removing the tatweel and any extra
spaces to restore the correct word form.

• POS tag IDs and dependency relation IDs
are mapped using predefined dictionaries
(pos2id, dep2id), which we constructed
from the train set to cover all observed tags
and relations.

• The graph is stored using PyTorchGeometric’s
Data objects with fields: x, edge_index,
edge_attr, pos_tag_ids, and custom
fields like sentence.

A.1.2 Model Components
1. AraBERTv2 (Encoder)

• Pretrained weights loaded from
aubmindlab/bert-base-arabertv02.

• WordPiece tokenization applied via Hugging-
Face tokenizer.

• Hidden size: 768.

• For each token, embeddings are obtained by
mean-pooling over all subtokens aligned via
encoding.word_ids(), using the mean of
the last 4 hidden layers’ outputs.

• The first 8 layers of AraBERTv2 are frozen
during training, and only the last 4 layers are
fine-tuned.

2. Graph Construction

• Sentences are tokenized using CAMeL Tools’
(Obeid et al., 2020) morphological segmenter.

• Dependency parses are extracted via the
CamelParser2.0.

• For each sentence:

– Nodes represent surface-level word to-
kens (segmented, not subword).

– Directed edges represent syntactic depen-
dencies (head → dependent).

– Each edge is labeled by the dependency
relation (e.g., SBJ, OBJ).

– Part-of-speech (POS) tags are extracted
per token.

– The token labeled as ROOT by the parser
is treated as the syntactic head of the sen-
tence and serves as the root of the depen-
dency tree.

3. Graph Neural Network Architecture Details

• Node input: Concatenation of AraBERTv2
embedding and averaged POS tag embedding
(32-dimensional).

• Edge input: Relation type embedding (hid-
den size / 2), passed through a feedforward
projection.

• Convolution: 4-layer TransformerConv
(with 4 heads), using edge features in atten-
tion.
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• Edge Aggregation: Mean aggregation of out-
going and incoming edge features per node.

• Normalization: LayerNorm applied after
each GNN layer.

• Pooling: AttentionalAggregation over
graph-level node embeddings.

• Classifier heads: One linear layer with C − 1
units for CORAL ordinal regression, and a sep-
arate linear head with C units for optimizing
the Quadratic Weighted Kappa (QWK) loss.

A.2 Ablation Studies and Design Choices
During model development, we conducted exten-
sive ablation studies to identify the most effective
architectural components for our task. We evalu-
ated various graph convolutional layers from the
torch_geometric.nn library, including NNConv,
GCNConv, GATv2Conv, and GraphConv. Among
these, the TransformerConv layer consistently
achieved the best performance, likely due to its abil-
ity to incorporate edge features directly into the
attention mechanism and its use of multi-head at-
tention, which captures complex relational patterns
between nodes more effectively.

In terms of loss functions, we experimented with
a range of objectives, including regression losses,
cross-entropy loss, CORN loss (Shi et al., 2023),
and direct optimization of the quadratic weighted
kappa (QWK) metric. Our final setup combines
CORAL loss (Cao et al., 2020) with the weighted
QWK loss (de La Torre et al., 2018), yielding im-
proved convergence and performance. This hybrid
objective leverages the ordinal-aware structure of
CORAL while directly aligning training with the
evaluation metric through QWK.

These empirical findings guided our final
model design. We recommend using the
TransformerConv layer in conjunction with a
CORAL + QWK loss for tasks involving graph-
based ordinal classification.
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Abstract

We present a graph-based approach enriched
with lexicons to predict document-level read-
ability in Arabic, developed as part of the Con-
strained Track of the BAREC Shared Task
2025. Our system models each document
as a sentence-level graph, where nodes rep-
resent sentences and lemmas, and edges cap-
ture linguistic relationships such as lexical
co-occurrence and class membership. Sen-
tence nodes are enriched with features from
the SAMER lexicon as well as contextual em-
beddings from the Arabic transformer model.
The graph neural network (GNN) and trans-
former sentence encoder are trained as two
independent branches, and their predictions
are combined via late fusion at inference. For
document-level prediction, sentence-level out-
puts are aggregated using max pooling to re-
flect the most difficult sentence. Experimental
results show that this hybrid method outper-
forms standalone GNN or transformer branches
across multiple readability metrics. Overall, the
findings highlight that fusion offers advantages
at the document level, but the GNN-only ap-
proach remains stronger for precise prediction
of sentence-level readability.

1 Introduction

Accurately assessing the readability of Arabic doc-
uments is essential for educational technologies,
language learning platforms, and adaptive content
delivery systems. The task poses significant linguis-
tic challenges due to the diglossic nature of Arabic,
rich morphology, and the scarcity of large-scale
annotated corpora (Imperial and Kochmar, 2023).
The BAREC Shared Task 2025 (Elmadani et al.,
2025a) addresses this by providing a fine-grained
classification benchmark: assigning one of 19 read-
ability levels to Arabic texts at both the sentence
and document level.

*Equal contribution.

Previous work on Arabic NLP has applied deep
contextual models such as BERT variants for vari-
ous classification tasks, including readability pre-
diction (Al-Tamimi et al., 2014; Antoun et al.,
2020). Although effective, these approaches typi-
cally operate only on text sequences and often over-
look explicit structural and lexical relationships that
can influence readability. In contrast, graph-based
methods make it possible to encode document-level
structure and linguistic relationships directly (Sun
et al., 2023). In this work, we explicitly incorpo-
rate such relationships by leveraging the SAMER
lexicon for lexical difficulty features and construct-
ing a heterogeneous sentence-lemma graph with
multiple edge types (e.g., HAS_LEMMA, OC-
CUR_WITH, IN_CLASS, IN_DOMAIN). This al-
lows our model to combine the strengths of contex-
tual embeddings with explicit lexical and structural
graph modeling, which we show experimentally to
improve both sentence-level and document-level
readability prediction.

We propose a hybrid approach that rep-
resents each document as a graph, where
nodes correspond to sentences and lemmas, and
edges represent linguistic relationships such as
HAS_LEMMA, OCCUR_WITH, and IN_CLASS. Each
sentence node is enriched with difficulty sig-
nals from the SAMER lexicon (Al Khalil et al.,
2020) and contextual sentence embeddings from
the readability-arabertv2-d3tok-CE model, a
fine-tuned variant of AraBERTv2 optimized for
Arabic readability classification (Antoun et al.,
2020).

To integrate both modalities, we train the GNN
(graph modality) and the transformer (text modal-
ity) independently and use late fusion to merge
their readability predictions at the end of infer-
ence. This approach combines the strengths of
structured lexical-graph features and contextual
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text embeddings, without mixing intermediate fea-
tures. Document-level labels are then obtained by
pooling the sentence-level predictions, using max-
pooling to reflect the most difficult sentence.

Our experiments demonstrate that this lexicon-
enriched, confidence-aware, graph-based approach
significantly improves prediction performance over
individual branches. The results emphasize the
importance of combining structured lexical knowl-
edge with neural contextualization and fusion to
better capture Arabic document readability.

2 Related Work

Automatic readability assessment has become a
key area in NLP due to its applications in edu-
cation, text simplification, and adaptive content
delivery. In English, early studies relied on surface-
level features such as sentence length and word
frequency, followed by statistical models and,
more recently, neural methods that capture seman-
tic and discourse-level information (Imperial and
Kochmar, 2023).

For Arabic, early research was constrained by
resource scarcity and linguistic complexity. One
of the first efforts was the AARI index (Al-Tamimi
et al., 2014), which used handcrafted lexical and
syntactic features derived from academic curric-
ula. Later, the SAMER Lexicon (Al Khalil et al.,
2020) introduced a large-scale graded vocabu-
lary resource. Subsequently, it was showcased in
a word-level readability visualization system de-
signed for assisted text simplification (Hazim et al.,
2022). More recently, the SAMER Corpus (Alhafni
et al., 2024) provided the first manually annotated
Arabic parallel dataset for text simplification target-
ing school-aged learners. These resources provided
the foundation for subsequent work.

In recent years, several datasets have advanced
Arabic readability modeling. The BAREC cor-
pus (Elmadani et al., 2025b) provides a large-scale
benchmark with 19 readability levels at both the
sentence and document level, while the DARES
dataset (El-Haj et al., 2024) focuses on Saudi
school textbooks. Complementary approaches,
such as AraEyebility (Baazeem et al., 2025), in-
tegrate eye-tracking signals to connect human cog-
nitive processing with readability prediction. In
addition, (Liberato et al., 2024) explored strategies
for Arabic readability modeling, highlighting the
need to combine lexical resources with modern
learning-based approaches. A survey by (Cavalli-

Sforza et al., 2018) provides an overview of the
challenges and future directions for Arabic read-
ability assessment.

Overall, most Arabic readability models have fo-
cused on surface features or contextual embeddings
in isolation, with limited integration of structured
lexical knowledge. To our knowledge, no prior
work has combined lexicon-enrichment with graph-
based modeling for Arabic document readability.
Our work addresses this gap by integrating the
SAMER Lexicon into a heterogeneous sentence-
lemma graph, capturing both vocabulary difficulty
and structural relations to improve fine-grained
readability prediction.

3 System Overview

The purpose of our approach is to capture the
linguistic characteristics and the relationships be-
tween the features of two datasets: BAREC (El-
madani et al., 2025b) and SAMER (Al Khalil et al.,
2020). The BAREC dataset consists of sentences
annotated with their corresponding readability lev-
els. The SAMER dataset consists of lemmas, each
associated with an average readability level across
different dialects, along with additional features
such as frequency of occurrence and part-of-speech
(POS) tags for each (lemma, readability level) pair.

We integrate the two datasets by extracting
lemmas from the sentences while preserving their
POS tags and recording the count of diacritics.
The extraction of lemmas was performed using the
CAMeL Tools Morphology Analyzer (Obeid et al.,
2020). Each extracted lemma is then matched
against the SAMER lexicon to enrich it with
statistical attributes such as average readability,
frequency, and POS. This alignment ensures that
the SAMER lexicon contributes directly to the
graph as node features rather than as isolated
entries.

The combined data is reformulated into a hetero-
geneous graph G = (V, E) consisting of multiple
node and edge types. The node set V includes:

• Sentences: Represented by 768-dimensional
embeddings obtained from the CAMeL-
Lab Arabic readability model (readability-
arabertv2-d3tok-CE), augmented with linguis-
tic features.

• Lemmas: Characterized by statistical at-
tributes such as average readability and fre-
quency.
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• Classes: Educational difficulty levels, one-
hot encoded as Foundational, Advanced, or
Specialized.

• Domains: Subject domains encoded as Arts
& Humanities, STEM, or Social Sciences.

The main objective of our approach is to lever-
age both classical linguistic features from the two
datasets and deep Graph Neural Networks (GNNs)
to capture hidden patterns within the data. The edge
set E contains the following directed relations:

• sentence → lemma (HAS_LEMMA): Indi-
cates lexical composition.

• lemma ↔ lemma (OCCUR_WITH): Repre-
sents lemma co-occurrence in context.

• sentence → class (IN_CLASS): Connects
each sentence to its labeled difficulty class.

• sentence → domain (IN_DOMAIN): Links
sentences to their broader academic domain.

Once the data is structured into the graph format,
the first step is to apply input feature transforma-
tion, where we transform the node features into the
model’s hidden dimensions, for which we used a
linear layer between the original dimensions to the
target dimension to find optimal projection.

h(0)v = W
(τ)
in xv, for v ∈ Vτ

where h
(0)
v is the initial hidden representation

of node v after projection, W (τ)
in is the trainable

weight matrix for input transformation for node
type, Vτ denotes nodes of type τ , and xv is the raw
feature vector.
The core of the model consists of a stack of SAGE-
Conv (Hamilton et al., 2017) hidden layers. Each
is used to learn the graph embeddings over the
heterogeneous graph. It uses neighbor sampling
and aggregation. Each layer applies a learnable
linear transformation to the combined features; this
transformation allows the model to learn complex
feature interaction while maintaining consistent di-
mensions across the layers.

The model consistes of 4 GNN layers, for which
we use ReLU activation function σ and layer nor-
malization to avoid linearity and improve the gradi-
ent flow.

h(k)
v = σ

(
AGGREGATEtype

({
h(k−1)
u : u ∈ Ntype(v)

}))

where h
(k)
v is the hidden representation of node

v at layer k, h(k−1)
u is the hidden representation

of neighbor node u from the previous layer, and
Ntype(v) denotes the set of neighboring nodes of
v connected via a specific edge type. Addition-
ally, we use a residual connection per layer. This
preserves the features and provides more stable
training, especially for the sentence nodes.

h(k)v ← LayerNorm
(
h(k)v + h(k−1)

v

)

Finally, an MLP layer used for the classification.

yv = MLP(h(L)v )

4 Experimental Results

We conduct experiments on both sentence-level
and document-level readability prediction tasks,
as defined in the BAREC Shared Task 2025. For
sentence-level classification, each sentence is repre-
sented as a node in the graph and labeled with one
of 19 readability levels. For document-level pre-
diction, we reuse the same model architecture and
apply aggregation over sentence-level predictions.
Specifically, we take the most difficult predicted
sentence level (i.e., max pooling) as the document’s
predicted readability level based on the intuition
that the most complex sentence may determine the
document’s comprehensibility floor.

We evaluate two configurations:

• Late Fusion: Combining weighted outputs
from the GNN and transformer-based sen-
tence encoder.

• GNN Only: Using the graph-based model
without fusion.

The results in Table 1 show distinct trends be-
tween sentence-level and document-level tasks.
For document-level prediction, Late Fusion out-
performs the GNN-only baseline in both Quadratic
Weighted Kappa (QWK; 76.9% vs. 75.6%) and ex-
act accuracy (42.0% vs. 40.0%), while maintaining
similar scores in the other metrics. QWK is a stan-
dard evaluation metric for ordinal classification that
accounts for the degree of disagreement between
predicted and true labels, making it particularly
relevant for readability level prediction.

In contrast, for sentence-level prediction, the
GNN-only model achieves substantially higher ac-
curacy (50.0% vs. 41.4%) and better results in
most metrics, despite both models having the same
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Figure 1: Overview of our proposed hybrid architecture for Arabic readability prediction. Sentence-level graphs are
constructed using lexical relations from the SAMER lexicon and structural information from BAREC data. The
GNN branch processes the graph to produce a softmax probability distribution over 19 readability levels, while the
sentence encoder branch generates parallel probabilities from contextual embeddings. Inference uses late fusion,
where both probability vectors are combined at the prediction stage using a tunable weight, yielding the final
readability level for each sentence or aggregated document.

Task Level Model Variant QWK Acc Acc +/-1 Dist Acc 7 Acc 5 Acc 3
Document-Level GNN Only 75.6 40.0 83.0 0.8 60.0 60.0 90.0
Document-Level Late Fusion 76.9 42.0 82.0 0.8 60.0 61.0 90.0
Sentence-Level GNN Only 78.5 50.0 67.2 1.3 61.2 66.1 74.9
Sentence-Level Late Fusion 78.5 41.4 65.9 1.4 55.4 62.6 72.7

Table 1: Performance of the GNN-based model and Late Fusion on sentence-level and document-level readability
prediction, evaluated with Quadratic Weighted Kappa (QWK), accuracy, accuracy within ±1, distribution score,
and accuracy at multiple granularity levels (7, 5, and 3).

QWK (78.5%). This indicates that, at the finer
sentence granularity, the graph-based model alone
is more effective, while the fusion approach may
dilute some of the GNN’s discriminative power for
exact classification.

Overall, the findings highlight that fusion of-
fers advantages at the document level, but the
GNN-only approach remains stronger for precise
sentence-level readability prediction.

5 Conclusion

In this paper, we proposed a hybrid approach
for Arabic document readability prediction by
combining graph-based reasoning with contex-
tual transformer-based modeling. Our architecture
integrates lexical difficulty knowledge from the
SAMER lexicon, sentence embeddings from a fine-
tuned AraBERTv2 variant, and a structured graph
representation of each document.

For sentence-level prediction, we demonstrated
the benefits of lexicon-enriched heterogeneous
graph modeling using a weighted GNN. For
document-level prediction, we reuse the same
graph setup and infer the document’s label by se-
lecting the maximum difficulty among sentence-

level predictions. This design aligns with the task’s
objective of identifying the highest comprehension
barrier within a document.

By applying late fusion between the GNN and
transformer predictions, we achieved stronger per-
formance across both levels. Our results highlight
the complementary nature of structural and con-
textual signals and the promise of fusion-based
systems for fine-grained Arabic readability tasks.
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Abstract

Readability assessment is essential for effec-
tive communication of scientific and medical
content in Arabic. We present a system for
the BAREC 2025 Shared Task Arabic Read-
ability Assessment. The system fine-tunes
AraBERTv2 with a CORAL ordinal head, ap-
plies AraBERT-specific preprocessing, and se-
lects checkpoints using Quadratic-Weighted
Kappa (QWK) with early stopping. Our model
achieves a QWK of 85.5 on the Sentence Blind
Test, demonstrating its effectiveness for auto-
matic Arabic readability prediction.

1 Introduction

Automatic readability assessment supports educa-
tion, accessibility, and editorial workflows by esti-
mating how difficult a text is for a target audience
(Hazim et al., 2022; Liberato et al., 2024). For
Arabic, this task is especially challenging: the lan-
guage is morphologically rich and it exhibits diglos-
sia between Modern Standard Arabic and regional
dialects, which complicates lexical and morpho-
syntactic cues used by models (Asadi and Abu-
Rabia, 2019; Ferguson, 1959; Saiegh-Haddad and
Ghawi-Dakwar, 2017; Taha and Saiegh-Haddad,
2016). The BAREC 2025 shared task addresses
these challenges with a large, fine-grained sentence-
level benchmark annotated into 19 ordered levels,
accompanied by clear guidelines and an evalua-
tion based on quadratic-weighted kappa (QWK)
(Al Khalil et al., 2020; Elmadani et al., 2025a,b;
Habash et al., 2025). We participate in the
Sentence-level (Strict) track. We present a com-
pact, reproducible system: AraBERTv2 (Antoun
et al., 2020) with a rank-consistent ordinal regres-
sion (CORAL) head (Aicher et al., 2022; Cao et al.,
2020). Training uses early stopping with QWK-
based model selection; inference applies a single
development-tuned threshold to convert cumulative
probabilities into one of the 19 levels (no temper-

ature scaling). This simple architecture achieves
strong performance on the Blind Test.

2 Background

Early work estimated readability using surface
proxies such as sentence/word length and syllabifi-
cation, yielding indices like Flesch Reading Ease
and Dale–Chall (Dale and Chall, 1948; Flesch,
1948). Contemporary approaches treat readabil-
ity as supervised prediction over lexical, syntac-
tic, and distributional features, increasingly with
pretrained language models. Fine-grained readabil-
ity labels are ordered; modeling them as nominal
classes discards rank information. Ordinal regres-
sion methods—especially CORAL, which learns
K−1 binary thresholds for events y > k—enforce
label order and are often preferable to softmax for
such targets. As resources, the BAREC benchmark
provides a large sentence-level corpus with 19 read-
ability levels, detailed annotation guidelines, and
official splits (Open Dev, Open Test, Blind Test)
tailored for shared-task evaluation (Elmadani et al.,
2025a,b; Habash et al., 2025). Related Arabic re-
sources such as SAMER target text simplification
rather than graded readability but reflect a broader
interest in accessibility for Arabic texts (Alhafni
et al., 2024; Al Khalil et al., 2020). Given these
factors—Arabic’s linguistic properties, the ordinal
nature of labels, and QWK as the official metric—
pretrained Arabic encoders such as AraBERT offer
a natural foundation for readability systems; we
therefore build on AraBERTv2 and an ordinal head
in the methods that follow (Antoun et al., 2020).

3 System Overview

3.1 Encoder and Preprocessing
We Fine-tune aubmindlab/bert-base-arabertv2. We
start by normalizing/segmented sentences with the
AraBERTPreprocessor and tokenized with fixed
max length = 128 (no dynamic padding).
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3.2 Ordinal Head (CORAL)

Let K = 19 and labels y ∈ {0, . . . ,K − 1} (with
labels shifted by −1 during training). The ordinal
head outputs logits zk for k = 1, . . . ,K − 1; after
applying the sigmoid function, σ(zk) ≈ P (y >
k). The training targets are defined as cumulative
indicators

tk =

{
1, y > k

0, otherwise

The loss function is the binary cross-entropy
with logits, summed over all thresholds:

L =
K−1∑

k=1

BCEWithLogits(zk, tk),

thereby enforcing consistent ordering of the pre-
dicted categories (Cao et al., 2020).

3.3 Training and Selection

Optimization uses AdamW, a linear schedule
with warmup, gradient clipping, label smoothing
= 0.0 (smoothing hurt this fine-grained ordinal
task), and early stopping (patience = 2). We
set metric_for_best_model = eval_qwk and
greater_is_better = True so the saved model
maximizes QWK.

3.4 Inference (Single Threshold Only)

We convert the (K − 1) probabilities to a level
by counting how many exceed a single threshold
t, tuned on the dev set to maximize QWK. No
temperature scaling or additional calibration is used
in the final system.

4 Experimental Setup

We use the organizers’ Open Train, Open Dev,
Open Test, and Blind Test (sentence track). Splits
are unchanged. Key hyperparameters: Encoder:
AraBERTv2; max length = 128. Optimizer:
AdamW (lr = 2 × 10−5), weight decay = 0.01;
linear decay; warmup = 6; max-grad-norm = 1.0.
Batching: train batch size = 16, eval batch size
= 32; gradient accumulation = 2. Regularization:
label smoothing = 0.0; early stopping patience
= 2. Precision: FP16 on T4 (BF16 if available).
Selection: best checkpoint by eval_qwk; thresh-
old t tuned on dev. Implementation: Transformers
4.54.0; Datasets ≥ 2.18.

Data QWK Acc. (%) Acc. ±1 (%) Dist. Acc. 7 Acc. 5 Acc. 3
Open Dev. 66.6 41.5 55.8 1.6 51.9 57.4 64.9
Open Test 72.9 46.6 61.2 1.4 55.8 61.0 69.3
Blind Test 85.5 35.6 74.2 1.0 64.4 69.3 75.8

Table 1: Model performance across datasets. QWK =
quadratic weighted kappa.

5 Results

On the Open Dev set, the model reached a QWK
of 66.6; performance improved on the Open Test
set (72.9) and peaked on the Blind Test set (85.5).
Accuracy was moderate overall (35–47%), but ac-
curacy within one level was substantially higher
(56–74%), indicating the model captures ordinal
trends even if exact prediction is difficult. The dis-
tribution score decreased from 1.6 on Dev to 1.0
on Blind, suggesting better calibration on held-out
data. As expected, replacing CORAL with a nom-
inal softmax head reduced QWK, confirming the
benefit of enforcing label order. Label smoothing
and temperature scaling both impaired dev QWK,
so the final system uses neither. No explicit error
analysis was conducted. Results are summarized
in Table 1.

6 Conclusion

We presented a compact system for fine-grained
Arabic readability in the BAREC 2025 shared task.
The method combines AraBERTv2 with a CORAL
ordinal head, trains with QWK-based model selec-
tion and early stopping and predicts with a single
development-tuned threshold. Without external
data or complex ensembling, the system achieves
QWK = 85.5 on the Sentence Blind Test. The re-
sults support two takeaways: (i) respecting label
order via an ordinal head is effective for 19-level
readability; and (ii) aligning selection and post-
processing with the official metric (QWK) is a sim-
ple, high-leverage choice.

Limitations

We rely solely on the shared task splits, no ex-
ternal corpora or augmentation. Domain transfer
beyond BAREC is untested. A single encoder is
used; larger backbones or multilingual pretrain-
ing were not explored due to time/compute. No
document-level context or explicit linguistic fea-
tures (e.g., morphological complexity, type–token
ratio) are used. We focus on core choices (ordinal
vs. nominal, smoothing, temperature). Future work
includes error analysis, and exploring alternative or-
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dinal objectives (e.g., CORN) and document-level
context.

Ethics Statement

The author declares an affiliation with an institution
that contributed to the preparation of the shared
task. None of the organizers contributed to the
conception, development, or evaluation of our sys-
tems. All information and resources used were
based exclusively on resources publicly released
to all participants, without any form of privileged
access or guidance.
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Abstract
This paper presents a neural approach to Ara-
bic readability assessment using the BAREC
corpus for fine-grained classification across 19
readability levels. Our two-stage system com-
bines embeddings from multiple pre-trained
Arabic transformer models (ARBERTv2,
MARBERTv2, AraBERT) with a Multi-Layer
Perceptron classifier. We achieve competitive
performance with Quadratic Weighted Kappa
scores of 73.00-76.35, accuracy of 44.73%, and
adjacent accuracy of 61.40%, within 8% of
baseline models. The system offers significant
practical advantages including rapid training
time (10 minutes per experiment), compact ar-
chitecture (12-15 million parameters), and effi-
cient inference, making it suitable for resource-
constrained deployment. Our analysis iden-
tifies dataset quality challenges including in-
consistent diacritization and annotation issues
that impact performance. This work provides
a foundation for practical Arabic readability
assessment tools in educational applications.

1 Introduction

Automatic readability assessment has become in-
creasingly important in educational technology,
content adaptation, and accessibility applications in
many languages including Arabic (Liberato et al.,
2024). Traditional readability metrics rely heavily
on surface-level features such as sentence length
and syllable counts (Uçar et al., 2024), which of-
ten fail to capture the nuanced linguistic complex-
ity that affects human comprehension. Recent ad-
vances in neural language models and contextual
embeddings offer new opportunities to develop
more sophisticated readability classifiers that can
better model the relationship between text charac-
teristics and reading difficulty (Hazim et al., 2022).

This work investigates the application of modern
neural architectures and embedding techniques to
readability classification using the BAREC corpus.
We address key challenges in current modeling

approaches including the need for better represen-
tation of semantic complexity, syntactic structures,
and discourse coherence. Our novel approach com-
bines multiple embedding strategies with attention
mechanisms to create interpretable readability pre-
dictions. The contributions of this work include
empirical analysis of embedding effectiveness for
readability tasks and a comprehensive evaluation
framework for neural readability classifiers.

2 Background

Text readability plays a vital role in ensuring com-
prehension, retention, and engagement, especially
in educational and medical (Venturi et al., 2015)
contexts where aligning reading material with stu-
dent proficiency is critical. Fine-grained read-
ability frameworks, such as Fountas and Pinnell
(Ransford-Kaldon et al., 2010) for English and the
19-level system for Arabic (Elmadani et al., 2025b),
and some researchers used RL to develop readabil-
ity assessment systems (Mohammadi et al., 2023)
are widely used to support literacy development.

In this work, we participate in the BAREC
Shared Task 2025 on Arabic Readability
Assessment:Sentence-level-Open (Elmadani
et al., 2025a), which focuses on sentence-level
classification into one of 19 Taha-Thomure
levels.(Taha-Thomure, 2017), from kindergarten
to postgraduate proficiency. We use the newly
released BAREC corpus (Elmadani et al., 2025b),
a large, balanced dataset (splitted as: 54845
training sample, 7310 validation, 7286 test and
3420 blind-test) annotated according to the
fine-grained guidelines outlined by (Habash et al.,
2025). The task is a challenging multi-class classi-
fication problem requiring precise sentence-level
prediction.

The corpus is derived in part from the SAMER
Arabic Text Simplification Corpus (Alhafni et al.,
2025) and (Al Khalil et al., 2020), and Figure 1
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illustrates the distribution of sentences across the
19 levels. Our system aims to automatically pre-
dict the correct level for each input sentence from
raw Arabic text, enabling more effective support
for educational applications and adaptive reading
technologies.

Figure 1: Distribution of sentences across the 19 read-
ability levels in the BAREC corpus

Below are example sentences (randomly selected
from the dataset from each level) along with their
assigned readability levels:

• Level 1: �	­J
ª 	� - "Weak"

• Level 2: .
�
AJ.kQÓ - "Hello."

• Level 3: �Õç'
Q
�
º
�
Ë @ �	à

�
@ �Q ��®

�
Ë @ - "The Noble Quran"

• Level 4: é�<Ë �Y �Ò�m
�Ì'@ - "Praise be to Allah"

• Level 5: : A �Ò
�
º �k �PY�

�

@ - "I issue a judgment:"

• Level 6: ÉÓ


B@ �IÊ�̄ - "I said hope"

• Level 7: tÌ'@ . . . 	áÓ @ �Pñ 	̄ �Ê	m��' ¼ñk. P


@ - "Please get rid

of immediately... etc."

• Level 8: tÌ'@ . . . �Õç
��' , �ú


�G�
�
B@ �Y�îD��� �ÜÏ @ É�Ó

�

A��K
�

@ - "I contemplate

the following scene, then... etc."

• Level 9: tÌ'@ . . . �Ó


BAK. A 	K



@ð



@Yë



@ 	­J
») - "(How can I

calm down when yesterday... etc."

• Level 10: tÌ'@ . . . ¼Qj�J�K , @ �Yg. �éªK
Qå� : A
��JË A�K - "Third: very

fast, it moves... etc."

• Level 11: tÌ'@ . . . �� 	̄ 
@ ø



@ @ �Y»



A�JÓ �I�Ë - "I’m not sure

which horizon... etc."

• Level 12: tÌ'@ . . . ð


@ ��
Ë�

�Y�K. , ���
k. P


@ : é 	KYÓ QîD��



@ð - "And its

most famous cities: Erciş, Bitlis or... etc."

• Level 13: tÌ'@ . . . �Y 	J« , Aî�E� @QÔ
	«ð Aî�E �Y ���.

��HZAg. @ 	XA

	̄ - "When

it comes with its intensity and overwhelming
force, when... etc."

• Level 14: tÌ'@ . . . 	à� A
�£Qå��Ë @ �H� ñ

�m��'.
�Y�ê �ª�Ó

�
ÈA��̄ �ð - "And the

Cancer Research Institute said... etc."

• Level 15: tÌ'@ . . . 	­
KA 	£ñË@ ú

	̄ ©K
 	P �ñ��JË @ @ 	Yë ø
 ñ¢

	J�K
ð - "And
this distribution in functions involves... etc."

• Level 16: tÌ'@ . . . ú

	̄ �P �Y�®��K B é��JÒJ
�̄ 	áºËð - "But its value

cannot be estimated in... etc."

• Level 17: tÌ'@ . . . @ 	X @

�
A�@ �ñ �� �ð ú
�

Î �jÊË �© �Ò���� - "You hear a
whisper of jewelry when... etc."

• Level 18: tÌ'@ . . . @ �	X @
� i�
J
j

���Ë@ �	Qj
�
ÊË @ ø �Q��K - "You see the

meager flesh when... etc."

• Level 19: tÌ'@ . . . �é��	K
�

A
�
¿�ð é� ���

�

@ �P ��é�

�
Ê��̄ �	á �ª�J.

����K
 - "They follow
the crown of his head as if he... etc."

The complexity progression across readability
levels is also reflected in the sentence length char-
acteristics. Figure 2 demonstrates the distribution
of word counts per sentence across different read-
ability levels, showing how sentence complexity
generally increases with higher readability levels.

Figure 2: Distribution of word counts per sentence

Developing accurate automatic readability as-
sessment models for Arabic is essential for advanc-
ing literacy education, supporting language learn-
ing applications, and improving academic perfor-
mance evaluation. This task plays a vital role in
standardizing Arabic text complexity assessment
and contributes to the broader goal of enhancing
Arabic language education through technology-
driven tools.

3 System Overview

Our system for automatic readability assessment is
a two-stage pipeline designed to first extract deep
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linguistic features from Arabic text and then pre-
dict a readability score (Sibaee et al., 2024). This
architecture addresses the core challenge of captur-
ing the complex interplay of semantic and syntactic
features that determine text difficulty1.

The entire process can be conceptualized as a
composition of two functions. First, an embedding
function, E, maps the input text T to a fixed-size
vector representation e. This vector is then pro-
cessed by a prediction model, M , parameterized
by trainable weights W , to produce the final read-
ability score, ŷ.

1. Text Embedding: e = E(T ), where e ∈ Rd

2. Readability Prediction: ŷ = MW (e)

Stage 1: Multi-Model Text Embedding (E). To
create a robust feature vector, we generate embed-
dings from an ensemble of pre-trained Arabic trans-
former models: ARBERT, AraBERT, and MAR-
BERT. Our design decision to use multiple mod-
els is to ensure the final representation is rich and
generalized. For each model, the input text is tok-
enized, and the model outputs contextualized em-
beddings for every token. We compute a single
sentence-level vector for each model by taking the
mean of its token output embeddings. The final
embedding, e, is the element-wise average of the
vectors from all three models. This averaging tech-
nique smooths the representation space and cap-
tures a broader range of linguistic nuances critical
for readability assessment.

Stage 2: Readability Prediction Model (M ).
The resulting embedding vector e serves as the
input to our prediction model, M , which is a Multi-
Layer Perceptron (MLP). This feed-forward neural
network is configured with several hidden layers
and is trained to learn the complex, non-linear map-
ping from the dense text features to a continuous
readability score. The model’s parameters, W , are
optimized using a regression loss function to mini-
mize the error between its predicted scores and the
ground-truth labels.

4 Experimental Setup

4.1 Dataset and Preprocessing
We evaluate our approach on the CAMeL-
Lab/BAREC-Shared-Task-2025-sent dataset (El-
madani et al., 2025a) from Hugging Face (we did

1The system is open-sources on github https://github.
com/riotu-lab/readability_library_training

not evaluate on the validation split so we added
them to the training to expand the samples)2, a
benchmark for Arabic readability assessment. The
preprocessing pipeline consists of two steps: (1)
text normalization by removing non-Arabic letters
and numbers, and (2) lemmatization using Sina
Tools (Hammouda et al., 2024) to reduce text nosi-
ness and data sparsity. The methodology consist of
trying multiple combination of the pre-processing
techniques in the expirements which showed a very
closed results either with them or direct training
without pre-processing.

4.2 Model Architecture

Our system combines pre-trained embedding mod-
els with a Multi-Layer Perceptron (MLP) classifier,
implemented in PyTorch using Hugging Face li-
braries. We evaluate two embedding categories:
general multilingual models (LaBSE (Reimers and
Gurevych, 2020), all-MiniLM-L6-v2, Matryoshka-
based (Nacar et al., 2025)) and Arabic-specific
BERT models (ARBERTv2, MARBERTv2 (Abdul-
Mageed et al., 2021), AraBERTv2 (Antoun et al.)).

4.3 Training Configuration

The MLP architecture uses 3-4 hidden layers
in descending configuration (e.g., [4096, 2048,
1024, 512]). Training employs AdamW optimizer
with learning rates of 10−4 or 10−5, batch sizes
up to 65,536 (using A100-80GB), and 800-2000
epochs with early stopping. Regularization in-
cludes dropout (0.3-0.5) and weight decay (10−5).
All experiments use random seed 42 for repro-
ducibility.

5 Results

We conducted extensive experiments across mul-
tiple configurations, achieving consistent perfor-
mance on key metrics (QWK, Accuracy, Adjacent
Accuracy) with QWK scores ranging from 65 to 76.
This section presents our most promising results
on both test and blind-test datasets provided by the
shared task.

5.1 Experimental Configurations

After conducting numerous experiments, we ob-
served that the results were highly similar; there-
fore, we selected the two best configurations, tak-

2note:The system is not directly comparable to other par-
ticipants’ systems because it uses the development set for
training.
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ing into account their differences in specific aspects,
as shown in Table 1.

Parameter Exp-1 Exp-2
Emb. Model ARBERTv2 MARBERTv2
Input Size 768 768
Hidden Layers SY [SY, 512]
Dropout Rate 0.2 0.4
Learning Rate 10−5 10−2

Epochs 800 1200
Weight Decay 10−5 3 ∗ 10−5

Early Stop 25 100
Scheduler 5 25

Table 1: Training configurations for best-performing
experiments. Note: the default hidden layer is [4096,
2048, 1024] symbolized as ’SY’

5.2 Main Results
The primary findings of our experiments are pre-
sented in Table 2, which provides a comparative
overview of model performance across different
evaluation settings. The results indicate that both
experiments achieved nearly identical accuracy and
adjusted accuracy, with only slight variations in
QWK. This consistency demonstrates the robust-
ness of the approach across test and blind test
datasets.

Exp. Accuracy (%) Adj Accuracy (%) QWK
Exp-1 44.73 61.35 76.35
Exp-2 44.70 61.40 73.00

Table 2: Performance results on test dataset (exp-1) and
blind test (exp-2)

5.3 Analysis and Discussion
Through extensive experimentation and dataset
analysis (Sibaee et al., 2025), we identify two key
observations:

5.3.1 Dataset Characteristics
Our analysis reveals several data quality issues that
impact model performance: (1) inconsistent word
diacritization across texts, (2) irregular punctua-
tion usage patterns, (3) incomplete or fragmented
sentences containing irrelevant symbols and noise,
and (4) incorrect readability classifications for cer-
tain sentence types, particularly poetry verses and
literary excerpts. These inconsistencies introduce
noise that affects the reliability of readability pre-
dictions3.

3Also as shown in figure 1, there is small amout of
high level sentences so we expanded it using more Ara-
bic poems and some teaching manzomat (more than 13K

5.3.2 Model Architecture Performance

While our approach did not achieve state-of-the-art
results, it demonstrates competitive performance
compared to the baseline model (Elmadani et al.,
2025b), achieving QWK scores within 8% of the
baseline. However, our pipeline offers significant
practical advantages: (1) substantially faster train-
ing time (approximately 10 minutes per experi-
ment), (2) compact model size (12-15 million pa-
rameters). These characteristics make our approach
particularly suitable for fast training in resource-
constrained.

6 Conclusion

This research demonstrates that efficient neural ar-
chitectures can achieve competitive performance
for Arabic readability assessment while offering
substantial practical advantages. Our two-stage sys-
tem achieved QWK scores of 73.00-76.35 on the
BAREC corpus, performing within 8% of baseline
models with significantly faster training time and
compact model size. The approach successfully
addresses deployment considerations critical for
educational technology applications in resource-
constrained environments. Our analysis identified
important dataset quality issues including inconsis-
tent diacritization and annotation challenges that
affect model performance. While not achieving
state-of-the-art results, this work establishes a prac-
tical foundation for Arabic readability classification
and highlights key areas for future corpus develop-
ment and model improvement.
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Abstract

The BAREC 2025 Shared Task on Arabic read-
ability targets 19 levels of ordinal prediction at
the sentence and document levels under strict
training. This paper describes a two stages sys-
tem that basically starts with BAREC-tuned
AraBERT checkpoints and then specializes on
the Strict splits with Weighted Kappa Loss
(WKL), an objective aligned with Quadratic
Weighted Kappa (QWK). A single architecture
with inputs specific to each track is utilized for
both tracks. On the Strict setting, our best sys-
tems reach 0.842/0.841 QWK (public/blind) at
the sentence level and 0.828/0.790 QWK at the
document level.

1 Introduction

Automatic readability assessment (ARA) estimates
how difficult a text is for a target audience. For Ara-
bic, the task is challenging due to morphological
richness, orthographic variation, and the coexis-
tence of Modern Standard Arabic (MSA) with re-
gional dialects (Habash, 2010; Cavalli-Sforza et al.,
2018). These factors complicate tokenization, fea-
ture extraction, and modeling, especially for rare
ordinal labels, where small lexical or syntactic dif-
ferences can shift a sentence between adjacent lev-
els.

The BAREC 2025 Shared Task (Elmadani et al.,
2025b) provides a large benchmark with 19 read-
ability levels at the sentence and document levels,
spanning multiple domains and genres. Companion
resources include a corpus paper (Elmadani et al.,
2025a) and detailed annotation guidelines (Habash
et al., 2025). We focus on the Strict track, which
constrains training to the official data only, result-
ing in limited data, class imbalance, and closely
spaced ordinal labels—conditions that favor pre-
trained models and ordinal-aware objectives.

Earlier Arabic readability systems relied on
manual indicators (e.g., sentence/word length, fre-
quency, morphology) and classical ML, e.g., AARI

and OSMAN (Al Tamimi et al., 2014; El-Haj and
Rayson, 2016); surveys report that such features
under-represent semantics and discourse (Cavalli-
Sforza et al., 2018). With Arabic PLMs, perfor-
mance improved across many tasks (e.g., AraBERT,
MARBERT) (Antoun et al., 2020; Abdul-Mageed
et al., 2021), but standard fine-tuning with Cross-
Entropy (CE) does not align with ordinal evaluation
such as Quadratic Weighted Kappa (QWK) (Yan-
nakoudakis et al., 2011).

We propose a two-stage strategy for the Strict
track: (i) initialize from BAREC-tuned AraBERT
checkpoints, then (ii) fine-tune on the Strict splits
with Weighted Kappa Loss (WKL), a differentiable
surrogate aligned with QWK. We use specific in-
put variants for each track, D3Tok for sentences
and Word for documents, and adopt max-level ag-
gregation for documents (label = hardest sentence)
(Habash et al., 2025). This setup yields strong re-
sults at both levels.

2 Background

For education, ARA evaluates reading level to
drive text selection, curriculum sequencing, and
learner assessment (Vajjala, 2022). Early work
relied on manually engineered features such as sen-
tence length, word frequency, and syntactic com-
plexity (Feng et al., 2010; Vajjala, 2022). While ef-
fective in controlled settings, such surface features
often miss semantic and discourse cues, limiting
robustness across genres and languages.

With large pretrained language models (PLMs)
such as BERT (Devlin et al., 2019), the field shifted
toward holistic fine-tuning with richer contextual
representations; recent studies report strong gains
for Transformer encoders in readability prediction
(Martinc et al., 2021). We defer a focused survey of
PLM approaches to Section 3 to avoid redundancy.

For Arabic, readability modeling is particu-
larly challenging due to morphological richness,
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orthographic variation, and the coexistence of
MSA with multiple dialects (Habash, 2010; Nas-
siri et al., 2023). Concurrent advances in Ara-
bic PLMs—AraBERT (Antoun et al., 2020), AR-
BERT/MARBERT (Abdul-Mageed et al., 2021),
and QARiB (Abdelali et al., 2021)—have delivered
strong results across sentiment, dialect identifica-
tion, and classification benchmarks (Abu Farha and
Magdy, 2021); we discuss these in Related Work.

The BAREC resources standardize fine-grained
Arabic readability: the shared task overview de-
fines 19 ordinal levels and two evaluation settings
,General and Strict at the sentence and document
levels (Elmadani et al., 2025b); the corpus paper
details broad coverage for fine-grained labeling
(Elmadani et al., 2025a); and the annotation guide-
lines specify procedures for consistent sentence
level judgments (Habash et al., 2025). The Strict
setting limits training to the official splits, and of-
ficial evaluation uses Quadratic Weighted Kappa
(QWK), motivating approaches that leverage pre-
trained encoders while aligning optimization with
ordinal agreement.

3 Related Work

Early Arabic readability research adapted formu-
laic, feature-based methods from English, using
shallow indicators (e.g., sentence length, word fre-
quency, morphology) and classical ML; systems
such as AARI and OSMAN established useful
baselines but provide limited coverage of seman-
tics and discourse and transfer poorly across do-
mains (Al Tamimi et al., 2014; El-Haj and Rayson,
2016; Forsyth, 2014; Saddiki et al., 2018; Cavalli-
Sforza et al., 2018). With pre-trained language
models (PLMs) such as BERT (Devlin et al., 2019),
richer contextual representations typically outper-
form feature-only models on readability predic-
tion (Martinc et al., 2021; Lee et al., 2021). For
Arabic NLP, AraBERT, ARBERT/MARBERT, and
QARiB advance the state of the art across text
classification tasks (Antoun et al., 2020; Abdul-
Mageed et al., 2021; Abdelali et al., 2021), motivat-
ing PLM-based approaches to Arabic readability.

Readability labels are ordinal; however, optimiz-
ing nominal cross-entropy (CE) can misalign with
QWK (Yannakoudakis et al., 2011; Martinc et al.,
2021). Ordinal aware training includes (i) direct or
surrogate optimization of QWK (e.g., WKL) (de
la Torre et al., 2018), (ii) regression or threshold
based ordinal classification, and (iii) pairwise or

ranking objectives, which often reduce large mag-
nitude errors relative to CE.

BAREC standardizes fine-grained Arabic read-
ability with 19 levels at sentence and document
scopes and defines Strict,it is data constrained track
with settings using only official splits (Elmadani
et al., 2025b,a; Habash et al., 2025). Official re-
sources report PLM baselines and fine-grained eval-
uations; document labels follow the hardest sen-
tence definition (Habash et al., 2025).

Complementary resources provide signals cor-
related with readability. The SAMER Readability
Lexicon and SAMER Simplification Corpus sup-
ply leveled lexical cues and aligned simplification
pairs, and recent work systematizes strategies for
Arabic readability modeling (Al Khalil et al., 2020;
Alhafni et al., 2024; Liberato et al., 2024). Ortho-
graphic or phonological indicators from large scale
diacritized text enable features such as voweliza-
tion density and ambiguity reduction (Zaghouani
et al., 2016).

Discourse signals arise from punctuation and
boundary usage; Arabic punctuation annotation
and a punctuated corpus support density of punctu-
ation and restoration models (Zaghouani and Awad,
2016b,a). In learner contexts, correction annotated
corpora provide error rate and edit operation statis-
tics that proxy grammaticality and difficulty (Za-
ghouani et al., 2015). Word-level visualizations
further illustrate fine-grained difficulty signals for
assisted simplification (Hazim et al., 2022).

Within this landscape, our system starts from
BAREC, then tunes PLMs, and continues training
with a QWK aligned objective (WKL), targeting
Strict track robustness and reduction of large ordi-
nal errors.

4 System Overview

We participate in the Sentence Strict and Docu-
ment Strict tracks of BAREC 2025, predicting
fine-grained Arabic readability levels (C=19) un-
der constrained training. The setting is challenging
due to the large label space, skewed label distribu-
tion, and differences between sentence and docu-
ment level detection.

4.1 Two-Stage Fine Tuning

We adopt a two-stage pipeline. Stage 1 (warm
start): initialize from public AraBERT-based read-
ability checkpoints released for BAREC (sentence:
D3Tok input; document: Word input). These are
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trained with CE on BAREC and provide domain-
driven representations (Antoun et al., 2020; El-
madani et al., 2025a). Stage 2 (Strict special-
ization): fine-tune only on the official Strict splits
with WKL, a differentiable surrogate aligned with
QWK, penalizing large ordinal errors more than
small ones (de la Torre et al., 2018; Yannakoudakis
et al., 2011).

Motivation: two-stage CE → WKL. The of-
ficial metric for BAREC is Quadratic Weighted
Kappa (QWK), which penalizes larger ordinal mis-
takes more. We therefore align optimization with
evaluation by continuing training using a Weighted
Kappa Loss (WKL). We use two stages instead
of training WKL from scratch because: (i) A CE
warm start from a BAREC-tuned checkpoint re-
tains domain and split-specific signals, including
tokenization and label priors over 19 levels. (ii)
Direct WKL from an untuned PLM exhibited re-
duced stability on Strict (characterized by class
imbalance and narrowly spaced labels), while CE
produces a highly accurate classifier that WKL sub-
sequently refines. (iii) Stage 2 emphasizes the mit-
igation of significant ordinal mistakes that influ-
ence QWK with minimal additional procedures.
Specifically, upon CE convergence, we reload the
checkpoint and transition to WKL with quadratic
weights wij =

( i−j
K−1

)2, K=19, lower the learning
rate, and apply early stopping on dev QWK.

4.2 Model Architecture
Our model uses a Transformer encoder E
(AraBERT family) with a linear head. Given input
x, let h[CLS] = E(x)[CLS]. The classifier computes

ℓ = W h[CLS] + b, p = softmax(ℓ), (1)

where W ∈ RC×d, b ∈ RC , C=19, and d is the
encoder hidden size. As shown in Equation 1, we
map [CLS] to logits ℓ then to probabilities p.

4.3 Preprocessing and Optimization
We follow the shared-task input conventions for
comparability: D3Tok for sentence-level inputs
and Word for document-level inputs (matching the
released checkpoints). No external data are used for
Strict track. Hyperparameters, includeing learning
rate, batch size and warmup, are tuned per track
with early stopping on the Strict dev split.

4.4 Document Inference
Document labels are obtained via max-level pool-
ing over sentence predictions (document level =

level of the hardest sentence), consistent with the
task definition (Habash et al., 2025).

4.5 Summary of Differences
In comparison to CE-only baselines using BAREC
resources, our system (i) initiates from BAREC-
optimized checkpoints, (ii) substitutes CE with
WKL in stage 2 to synchronize training with
QWK, and (iii) employs track-specific input vari-
ations (D3Tok vs Word) in accordance with the
sentence/document configuration(Elmadani et al.,
2025a).

5 Experimental Setup

We describe the datasets, input variants, model ini-
tialization, optimization, and evaluation protocol
used in our Strict track sentence and document
level experiments.

5.1 Data and Inputs
We use the BAREC 2025 resources, which pro-
vide sentence and document level readability an-
notations across 19 ordered levels (Elmadani et al.,
2025b,a; Habash et al., 2025). We follow the offi-
cial Strict splits and do not use external data. For
the sentence track, inputs follow the D3Tok variant;
for the document track, the Word variant, matching
the released BAREC checkpoints.

5.2 Model Configurations
We adopt a two-stage strategy. Stage 1 warm-
starts from BAREC-tuned AraBERT checkpoints
(sentence: D3Tok; document: Word) trained with
CE (Antoun et al., 2020; Elmadani et al., 2025a).
Stage 2 specializes in the strict splits using WKL,
a differentiable surrogate aligned with QWK, to
better reflect ordinal evaluation.

5.3 Training Details
All runs use a single NVIDIA T4 (16 GB). We train
with AdamW, initial learning rate 2× 10−5, batch
size 16, linear decay with warmup ratio 0.1, and
early stopping on dev QWK. Each model trains up
to 10 epochs; the best dev QWK checkpoint is used
for test submission.

5.4 Evaluation Metrics
The official metric is QWK,which quantifies agree-
ment while punishing significant ordinal discrepan-
cies. We provide QWK for validation, public test,
and blind test partitions; accuracy is assessed only
for diagnostic purposes.
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Model (Tokenization) Loss Val QWK Public Test QWK Blind Test QWK

BAREC Official Baseline (Strict leaderboard) – – – 0.815
Ours: AraBERTv2 (D3Tok) WKL 0.820 0.842 0.841

Table 1: Sentence-level Strict results (QWK). Baseline taken from the official Strict-track leaderboard

Model (Tokenization) Loss Val QWK Public Test QWK Blind Test QWK

BAREC Official Baseline (Strict leaderboard) – – – 0.620
Ours: AraBERTv2 (Word) WKL 0.820 0.828 0.790

Table 2: Document-level Strict results (QWK). Baseline taken from the official Strict-track leaderboard

6 Results

We demonstrate strict track findings for sentence
and document-level tasks, correlate them with
corpus-paper baselines when relevant, and analyze
observed mistake trends.

Metric. As stated in previous sections, we pro-
vide QWK using the official scorer in accordance
with the BAREC procedure.

6.1 Sentence-Level (Strict Track)

Table 1 includes the official Strict-track base-
line from the blind (final) leaderboard (QWK =
0.815). Our two-stage CE→WKL approach attains
0.842/0.841 (public/blind) and improves over this
baseline under the same Strict constraints.

6.2 Document-Level (Strict Track)

Table 2 reports our results alongside the official
Strict-track baseline from the blind (final) leader-
board (QWK = 0.620). Our WKL specialization
reaches 0.828/0.790 (public/blind), showing gains
on public test and a modest blind drop, suggest-
ing sensitivity to domain shift and to max-level
pooling.

Analysis. (1) The implementation of an ordinal-
aware objective (WKL) aligns the training process
with QWK and is consistent with trends observed
in corpus papers, indicating that ordinal objectives
demonstrate superior performance compared to CE
on development datasets. (2) The sentence-level
Strict scores obtained are 0.842/0.841 for public
and blind evaluations, respectively. These scores
align with the general range of previous develop-
ment split results reported on BAREC, even under
more stringent training constraints. (3) Document-
level blind performance (0.790) lags behind the
public benchmark by approximately 0.04, sug-
gesting a sensitivity to shifts in domain or topic

as well as to max pooling techniques. Imple-
menting hierarchical document encoders or utiliz-
ing calibrated/attention-based aggregation methods
may enhance robustness further.
Reproducibility. We will release evaluation scripts,
configs, and checkpoints upon acceptance.

7 Conclusion

We examined fine-grained Arabic readability in
the Strict BAREC 2025 setting by initializing
AraBERT from BAREC-tuned checkpoints and
fine-tuning using a quadratic, ordinal-aware ob-
jective (WKL). An encoder utilizing track-specific
inputs (D3Tok for sentences; Word for documents)
and max-pooling for document label aggregation
achieves 0.842/0.841 QWK (public/blind) at the
sentence level and 0.828/0.790 at the document
level. Errors are less frequent at higher magnitudes
and tend to cluster between neighboring levels. Fu-
ture research will focus on hierarchical document
encoders, advanced aggregation methods beyond
max-pooling, and efficient domain/task adaptation
under strict constraints.

Limitations

This study is limited to the Strict track and uses
only official data and BAREC-tuned checkpoints;
generalization to other corpora, domains, or lan-
guages is untested. Document labels are obtained
by max-pooling sentence predictions, which can
be sensitive to outliers and intra-document vari-
ation. Compute constraints precluded extensive
hyperparameter search or ensembling, and we re-
port single-model runs. Finally, while we optimize
an ordinal-aware loss and report QWK, broader
evaluation (e.g., MAE, accuracy@±1) and statis-
tical significance across multiple seeds, as well as
genre/dialect–level error analysis, are left to future
work.
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Abstract

This paper presents SATLab’s participation in
the BAREC shared task on estimating the read-
ability of sentences and documents. The pro-
posed system is based on character n-grams
fed into a support vector regression. A pro-
cedure is then applied to try to optimize the
Quadratic Weighted Kappa, the main chal-
lenge measure, by tuning the decision thresh-
olds used to transform continuous values into
ordered categories. Performance is signifi-
cantly lower than that of the best systems, but
nevertheless superior to that of several deep
learning approaches.

1 Introduction

Being able to estimate the level of difficulty of a
sentence, paragraph, or text has long been an im-
portant goal in education (Dale and Chall, 1948).
It has been repeatedly demonstrated that students
learn better when the texts they are asked to un-
derstand are neither too simple nor too complex
for them (Vajjala, 2022). It is also important in
our society that documents produced by adminis-
trations, journalists, and even generative AI can
be understood by their recipients while remaining
sufficiently interesting to read. Striking the right
balance between uninteresting simplicity and dis-
couraging complexity requires the ability to accu-
rately assess readability1.

Conducting research in this field requires cor-
pora annotated by experts according to readability
level. As highlighted in Vajjala and Lučić (2018),
the vast majority of available datasets are com-
posed of texts. This is certainly a relevant level of
granularity, but a text that is generally simple may
contain very complex sentences, which are well
beyond the comprehension of the average reader.
Corpora in which sentences have been annotated

1It also requires the ability to assess the reader’s language
proficiency, but this is an issue that will not be addressed here
(Bestgen, 2017)

according to their readability level are very rare,
and even more so in languages other than English
(Hazim et al., 2022; Liberato et al., 2024; Vaj-
jala and Lučić, 2018). Very recently, Elmadani
et al. (2025b) developed a corpus for Arabic: the
Balanced Arabic Readability Evaluation Corpus
(BAREC), which contains 69,441 sentences classi-
fied into 19 readability levels. This corpus is at the
heart of the BAREC Shared Task 2025 (Elmadani
et al., 2025a), which invites participants to develop
an automatic approach to estimating the readabil-
ity of this material. This paper presents SATLab’s
participation in this shared task.

As in many areas of NLP, deep learning ap-
proaches and the use of pre-computed embeddings
have proven to be the most effective for estimat-
ing the readability of documents or sentences (Lee
et al., 2021; Naous et al., 2024; Martinc et al.,
2021). However, Vajjala and Lučić (2018) achieved
excellent results with a much simpler system, us-
ing character n-grams, a well-established approach
in computational linguistics (Damashek, 1995),
which are fed into some classical supervised ap-
proaches such as logistic regression. The advan-
tage of such an approach is that it is completely
language-independent, but also that it is does not
requires additional resources. For a number of
years, SATLab has specialized in using this type of
approach to solve complex tasks such as predicting
eye saccades during reading (Bestgen, 2021a) or
identifying offensive content and hate speech in
languages with few linguistic resources (Bestgen,
2021b). Using such a language-independent sys-
tem in the BAREC task will allow for at least a
partial evaluation of the benefits provided by com-
plementary knowledge such as pre-computed em-
beddings and by the use of far more complex ar-
chitectures. However, it should be noted that the
experiments in Vajjala and Lučić (2018) were con-
ducted on less than 200 texts obtained by asking
teachers to rewrite English newspaper articles at
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three levels of ESL learners (elementary, intermedi-
ate, and advanced). The criterion was therefore to
distinguish between these three levels of complex-
ity. It is far from obvious that character n-grams
will be equally effective in accurately assessing the
fine-grained readability level of Arabic sentences,
as is the case in the BAREC 2025 task described
below.

2 The BAREC Shared Task 2025

The BAREC Shared Task 2025 (Elmadani et al.,
2025a) is based on the Balanced Arabic Readability
Evaluation Corpus (BAREC), which contains 1,922
Arabic documents whose sentences (N = 69,441)
have been evaluated by annotators in terms of read-
ability on a 19-point scale, 19 indicating the most
difficult sentences to understand (Elmadani et al.,
2025b; Habash et al., 2025). The corpus covers
many genres and topics intended for different target
audiences. Annotated examples from the corpus
are presented in the two papers mentioned above.

The goal is to develop an automatic model ca-
pable of estimating readability levels. These esti-
mates can be made at the sentence or document
level. Since the readability of the documents was
not directly annotated, the organizers decided that
it was equal to the readability level of its most
difficult sentence. The material provided by the
organizers for the development of the system con-
sists of the entire BAREC corpus. It is divided into
three subcorpora: the Learning subcorpus (L) con-
sisting of 1,518 documents and 54,845 sentences,
the Development subcorpus (D) consisting of 194
documents and 7,310 sentences, and the Public Test
subcorpus (PT) consisting of 210 documents and
7,286 sentences.

Three tracks are available to participants. For the
first track, known as “strict,” the only readability
annotated data that can be used are those from
BAREC corpus. For the second track, participants
can also use the training set of SAMER Corpus
and the SAMER Lexicon (Alhafni et al., 2024;
Al Khalil et al., 2020), while for the third track, any
publicly available resource can be used. SATLab
participated in both tasks of the “strict” track.

The main metric for the challenge is the
Quadratic Weighted Kappa (QWK). Several other
metrics were also proposed by the organizers, such
as accuracy, the percentage of cases where refer-
ence and prediction classes match in the 19-level
scheme. These will not be discussed here because,

as pointed out by Elmadani et al. (2025b), different
approaches are needed to optimize a system for
these different metrics. The SATLab system will
therefore be optimized for the main metric, QWK.

The baseline proposed by the organizers is de-
scribed in Elmadani et al. (2025b). It is a highly
effective baseline which uses, among other things,
fine-tuning the very effective Arabic BERT-based
models.

3 System Overview

The system proposed by SATLab for the Sentence-
level task is mainly based on the character n-grams
of the sentences to be analyzed. Some statistics
about the sentences, such as their length in char-
acters, and some variables provided in the corpus,
such as the annotator, are also taken into account.
All these indices are fed into a very classic super-
vised learning procedure, support vector regression
(SVR). A regression-type approach was chosen be-
cause Elmadani et al. (2025b) showed this kind of
approaches were particularly effective when the
metric was QWK.

SVR produces a continuous value that must be
converted to integers in the 19-ordinal category sys-
tem used for readability annotation. This can be
done in a very simple way, by rounding these con-
tinuous values to the nearest integer and ensuring
that none of the values obtained are less than 1 or
greater than 19. However, Beckham and Pal (2017)
showed that it was possible to improve the QWK
of a predictor by modifying the loss function. Their
approach is relatively complex, at least for me. For
this reason, a simple procedure was developed to
try to optimize the QWK by tuning the decision
thresholds used to transform continuous values into
ordered categories.

The system developed for the document-level
task is also based on a SVR mainly fed with the
continuous readability estimates from the sentence-
level system described above. The features used
include the lowest readability value (highest score
on Readability Level 19) returned by the Sentence-
level system for the document, a series of features
encoding the proportion of sentences in the docu-
ment that have a predicted value equal to a given
value (after rounding), and a few global statistics
and variables provided in the corpus. The SVR
continuous readability estimates were converted to
the 19-ordinal category system by the procedure
used for the Sentence-level track.
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4 Implementation

Almost all of the analyses were performed using
a series of custom SAS programs. The QWK
optimization was programmed in C. The super-
vised learning procedure used is the LibLinear L2-
regularized L2-loss SVR dual (Fan et al., 2008).

Both systems were optimized on the combina-
tion of L and D sets using a 9-fold cross-validation
procedure (CV9). These folds were stratified by
document, with all sentences from a given docu-
ment placed in the same fold. In order to ensure
that folds contained similar numbers of sentences,
the random distribution also took into account the
length of the documents in terms of sentences. This
CV9 step led to the following parameters being set
for the Sentence-level track.

• Character n-grams with n in [1, 6], which oc-
curs at least 10 times in the dataset. These
features were weighted by the Sublinear Tf-
Idf and then L2-normalised.

• Two global statistics: the log-transformed
number of characters and number of differ-
ent characters.

• Four one-hot encoded variables provided in
the corpus: Annotator, Source, Domain and
Text Class.

• The SVR regularization parameter and bias
were set to 3 and 0.1, respectively.

As explained above, the SVR continuous read-
ability estimates were converted to integers in the
19-ordinal category system by a handcrafted func-
tion that attempts to optimize the QWK. The OptiK
function takes the SVR continuous readability esti-
mates as input. The thresholds (T) for rounding are
initially set to the usual values for rounding to an
integer and the QWK is calculated. This value is
provisionally considered to be the maximum QWK.
Next, the procedure randomly chooses a threshold
(Ti) and searches between Ti-1 and Ti+1 for the
value for that threshold that produces the largest
QWK, starting in the middle of the range of values
to be tested and advancing in each direction in turn.
This procedure may seem insignificant. However,
it favors values in the middle of the interval when
there are multiple occurrences of the maximum
value. If this maximum value is greater than the
current maximum QWK, it replaces it, and Ti is set
to the new threshold. This procedure is repeated

L->D L->PT L+D->PT

No OptiK 76.9 78.1 78.7
OptiK 78.2 79.6 80.5

Table 1: QWK for the Sentence-level

150 times, an arbitrary number chosen after some
trial and error.

It is not advisable to apply the OptiK function on
the data that has been used to train the predictive
model, due to model overfitting for this data. It
is therefore preferable to use predicted data. Two
scenarios were used:

• Train the predictive model on the L set and ap-
ply it to the D and PT sets. Then, 1) optimize
the thresholds on the D set and evaluate them
on the PT set, and 2) optimize the thresholds
on the PT set and evaluate them on the D set.

• Train the predictive model on the combination
of the L and D sets in CV9, combine the pre-
dictions for the 9 folds into a single dataset,
optimize the thresholds on it, and evaluate
them on the PT set.

For the Document-level task, the predictive
model was built based on the following features
and parameters:

• The lowest readability value (highest score
on Readability Level 19) returned by the
Sentence-level system for the document.

• Twelve features encoding the proportion of
sentences in the document that have a pre-
dicted integer round score equal to a given
value from 8 to 19.

• Two global statistics: the log-transformed
number of sentences and number of words
in the document.

• Three one-hot encoded variables provided in
the corpus: Source, Domain and Text Class.

• The SVR regularization parameter and bias
were set to 6 and 0.5, respectively.

The SVR continuous readability estimates were
converted to the 19-ordinal category system using
the OptiK procedure described above.

282



L+D (CV9) L+D->PT
Mean Min Max

No OptiK 72.2 67.1 77.5 64.3
OptiK 67.1

Table 2: QWK for the Document-level

Sentence Document
Final No OptiK Final No OptiK

Best 87.5 87.4
SATLab 82.3 80.2 77.6 73.3
Baseline 81.5 62.0

Table 3: QWK for the BT set

5 Results

This section presents the performance of the pro-
posed system, first on the D and PT sets, and then
on the real challenge, i.e., the Blind Test set (BT).
The latter consists of 100 documents and 3,420
sentences.

5.1 Public evaluation sets

Table 1 presents the QWK for the different public
evaluation sets for the Sentence-level task. We can
see that the PT set is a little simpler than the D
Set and that adding the D to the L set for learning
improves performance, which is obviously to be ex-
pected. Above all, we observe that optimizing the
QWK brings a benefit of 1.3% and 1.8% in QWK,
which does not seem negligible. The best perfor-
mance obtained on the PT set is slightly higher
than that obtained by the Baseline system (QWK =
80.2). Exceeding this value was one of SATLab’s
objectives, since the Baseline system uses, among
other things, fine-tuning the very effective Arabic
BERT-based models (Elmadani et al., 2025b).

The material for the document-level task is rel-
atively small for supervised learning procedures.
For this reason, the conditions evaluated are dif-
ferent from those used for the sentence-level task.
Learning was performed on the combination of the
L and D sets in CV9, QWK optimization on the 9
predicted folds, and final evaluation on the PT set.

The QWKs are significantly weaker for this task
(Table 2). This is likely due to the inaccuracy of the
Sentence-level model, which produces an overly
imperfect estimate of the readability level of the
most difficult sentence in a document. It is par-
ticularly noteworthy that CV9 performance varies
greatly depending on the fold. There is therefore

a high degree of instability in the results, probably
due to the relatively small number of documents in
each fold (N = 190) and in the PT set (N = 210).

5.2 Challenge results: BT set
The main question that this study attempts to an-
swer is that of the performance level of a system
based on indices as simple and as unspecific to
the task as character n-grams compared to much
more complex systems, such as those using pre-
computed embeddings. As reference points, I
chose the Baseline system, described in Elmadani
et al. (2025b), and the top-ranked system, !MSA,
assuming that it also uses sophisticated techniques.
To analyze this BT set, the complete public material
(L+D+PT) was used for learning.

Table 3 shows that the SATLab system is capable
of outperforming systems that use fine-tuning of
BERT-based models, but that QWK optimization is
essential to achieve this result. The difference with
the best system is clearly significant (5.2%) and jus-
tifies the use of more complex models than an SVR
on character n-grams, as proposed by SATLab.

It should be noted that the QWK of the Baseline
system for documents is significantly lower than
the QWK of all other systems that participated in
this task. It seems likely that this system’s predic-
tion for a document is simply equal to the highest
predicted score for the sentences in that document,
without taking into account any other features or
new learning. There is no doubt that a higher per-
formance could have been achieved.

5.3 Impact of OptiK on thresholds
The results presented above indicate that QWK
optimization is essential for the system to achieve
a competitive score. This trick, if not used by other
systems, somewhat distorts the comparison with
them. Indeed, it is reasonable to assume that they
could have improved their QWK in this way.

In order to gain a clearer understanding of the
effects of OptiK on the thresholds used to trans-
form SVR scores into categories, Figure 1 shows
the thresholds obtained by this procedure for sub-
mission to the Sentence-level task. The bottom line
shows the range of predicted values from the SVR.
The middle line simply indicates the thresholds usu-
ally used when rounding a real number to a whole
number. The top line shows the thresholds obtained
using the OptiK procedure. As can be seen, some
thresholds are significantly modified. For example,
the range of values corresponding to category 1
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Figure 1: Effects of OptiK on the thresholds

is greatly expanded, while that corresponding to
category 17 is smaller than what is obtained using
a standard rounding procedure. We can even see
that the continuous values corresponding to several
categories do not cover the usual range of values
(see categories 2 to 6, 9, 10, 17).

6 Conclusion

This paper presents SATLab’s participation in the
BAREC shared task. The proposed system relies
almost exclusively on character n-grams, which
are used by an SVR to estimate the readability of
Arabic sentences. A post-processing procedure is
then applied to the predicted values to optimize the
main measure of the challenge: QWK. This sys-
tem ranks 16th out of 24 in the Sentence-level task
when all participating teams are taken into account,
and 13th out of 16 in the official ranking composed
of participating teams that have published a report
about their system. It is 4th out of 8 in the official
Document-level ranking, each time for the Strict
track. These performances make it more effective
than systems using precomputed embeddings, but
it is important to remember that a significant part
of its effectiveness comes from the QWK optimiza-
tion procedure and that it is likely that several other
systems did not use such a trick.

As for the shared task itself, I think it could be in-
teresting to reevaluate the document-level task. In
particular, the analyses conducted in CV9 showed
significant variability in performance depending on
the fold. The comparison of QWKs on the PT set
(SATLab = 67.1) and BT sets (SATLab = 73.3) con-
firms this significant variability. It could be related
to the small size of these samples, which means that
changing a few predictions can significantly affect
the QWK. It might also be interesting to replace
the current procedure for determining the readabil-
ity level of a document (that of the most difficult
sentence) with an annotation made by experts.
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Abstract
This paper presents MorphoArabia, a sys-
tem developed for the BAREC Shared Task
2025 on Arabic Readability Assessment. The
approach is centered on the hypothesis that
deep morphological analysis is fundamental
for modeling the complexity of the Arabic lan-
guage. A regression model was fine-tuned on
AraBERTv2 with morphologically-aware tok-
enization via CAMeL Tools. Various configu-
rations were explored for the strict, constrained,
and open tracks, including a hybrid model with
seven engineered lexical features. The sys-
tem demonstrated highly competitive perfor-
mance, securing top-10 rankings in all six sub-
tasks and achieving a peak Quadratic Weighted
Kappa (QWK) of 84.2% on the strict sentence-
level task. All code and models are publicly
available to facilitate future research.

1 Introduction
Automatic Readability Assessment for Arabic is a
challenging task, primarily due to the language’s
rich and complex morphology (Liberato et al.,
2024). Consequently, traditional readability for-
mulas that rely on surface-level features are often
insufficient for capturing the nuanced difficulty of
Arabic text (Al-Tamimi et al., 2014). The BAREC
Shared Task 2025 (Elmadani et al., 2025a)
addresses this by providing a large-scale, fine-
grained dataset annotated on a 19-level readability
scale. This paper introduces MorphoArabia, a
system designed to address this challenge by
explicitly modeling Arabic morphology. The core
hypothesis is that a model’s performance can be
significantly improved by providing it with text
analyzed at the morpheme level. This hypothesis
is tested across the three competition tracks:

• Strict Track: A fine-tuned AraBERTv2 (An-
toun et al., 2020) regression model using only
the official BAREC corpus.

• Constrained Track: A hybrid architecture
augmenting the base model with seven en-
gineered lexical features derived from the
SAMER corpus (Alhafni et al., 2024).

• Open Track: The base regression model
trained on a combination of the BAREC and
DARES corpora (El-Haj et al., 2024).

The system achieved competitive results across
all tracks, notably securing 2nd place in both the
strict and open document-level tasks, validating
the effectiveness of the morphologically-aware ap-
proach. Key findings include the superior perfor-
mance of regression over classification for this task,
along with the challenges of harmonizing datasets
with disparate annotation scales. To ensure repro-
ducibility, all code and models are available on
GitHub1 and Hugging Face2.

2 Background and Related Work
2.1 Task Description
The BAREC Shared Task 2025 utilizes the
Balanced Arabic Readability Evaluation Corpus
(BAREC), a dataset exceeding 1 million words an-
notated for readability assessment (Elmadani et al.,
2025b). The task’s 19-level annotation scheme is
detailed in the official guidelines (Habash et al.,
2025). The task comprises two primary goals:

• Task 1: Sentence-level Readability Assess-
ment: Predict a readability score (1-19) for a
given Arabic sentence.

• Task 2: Document-level Readability As-
sessment: Predict an overall document read-
ability score, defined by the highest score of
any sentence within it.

1https://github.com/astral-fate/
barec-Arabic-Readability-Assessment

2https://huggingface.co/
collections/FatimahEmadEldin/
barec-shared-task-2025-689195853f581b9a60f9bd6c
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Participation was offered across three tracks:
Strict, Constrained, and Open, each with distinct
data constraints.

2.2 Related Work and Available Datasets
The landscape of Arabic NLP resources is ex-
tensively documented by initiatives like Masader
(Alyafeai et al., 2021; Altaher et al., 2022). For
readability assessment, several key resources in-
clude:

• DARES (El-Haj et al., 2024): A corpus of
school textbooks with fine-grained (G1-G12)
and coarse-grained labels.

• OSMAN (El-Haj and Rayson, 2016): A read-
ability metric providing a continuous 0-100
score.

• ARC-WMI (AL-Dayel et al., 2018): A med-
ical corpus with three difficulty levels.

• SAMER Project: This project introduced
a lexicon with a 5-level scale (L1-L5) (El-
madani et al., 2025b). A related Google
Docs add-on was also developed for word-
level readability visualization (Hazim et al.,
2022).

• SAMER Corpus (Alhafni et al., 2024): A
text simplification corpus with parallel texts
across multiple readability levels, used for
comprehensive modeling approaches ranging
from rule-based methods to pretrained lan-
guage models (Liberato et al., 2024).

3 System Overview
The system employs two main architectures: a
base regression model for the Strict and Open
tracks, and a hybrid model for the Constrained
track, which incorporates engineered features.

3.1 Morphological Analysis
The preprocessing pipeline utilized the CAMeL
Tools d3tok analyzer (Obeid et al., 2020) for
external datasets such as SAMER and DARES.
This tool performs deep morphological analysis by
disambiguating words in context and segmenting
them into constituent morphemes, capturing com-
plexities often missed by standard tokenization.

3.2 Feature Engineering
For the Constrained track, the system was en-
hanced with a hybrid architecture integrating en-
gineered lexical features with the Transformer
model’s contextual understanding. Seven numer-
ical features were engineered for each sentence us-

ing the SAMER lexicon to provide explicit signals
about text complexity. A detailed description of
these features is provided in Table 3 in Appendix A.
The final sentence representation is created by con-
catenating the Transformer’s ‘[CLS]‘ token embed-
ding with this 7-dimensional feature vector, which
is then passed to a regression head for prediction.

3.3 Level Mapping for External Datasets
To augment training data for the Constrained and
Open tracks, external corpora were incorporated,
necessitating mapping their distinct annotation
scales to the 19-level BAREC scale.

• DARES Corpus: For the Open track, ”G1-
G12” labels were directly mapped to BAREC
levels 1-12.

• SAMER Corpus: For the Constrained track,
SAMER’s 5-level scale was harmonized with
BAREC’s 19-level scale. A heuristic mapped
SAMER levels L3, L4, and L5 to BAREC val-
ues 4, 10, and 16, respectively.

This heuristic mapping process was identified as a
potential source of noise and variance, potentially
impacting model performance by introducing in-
consistencies.

4 Experimental Setup
4.1 Datasets
Datasets and distributions were defined by each
competition track. All data was preprocessed into
the d3tok format before training.

• Strict Track: Limited to the official BAREC
corpus.

– Sentence-level: BAREC training
(54,845 sentences) and development
(7,310 sentences) and (7,286) test
records, for the development phase, and
(3,417) for the blind testing phase.

– Document-level: Official document
splits for the development phase is:
1,518 training, 194 development, 210
testing, and (100) for the tblind esting
phase.

• Constrained Track: BAREC training data
augmented with the SAMER Corpus.

– Combined sentence-level training set:
97,874 sentences.
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Track Task Dev (QWK) Public Test
(QWK)

Blind Test
(QWK)

Hugging Face
Model

Strict Sentence 82.64 83.61 84.2 [Link]
Document 71.07 65.91 79.90 [Link]

Constrained Sentence 80.07 80.71 82.9 [Link]
Document 75.60 62.70 75.5 [Link]

Open Sentence 83.10 82.06 83.9 [Link]
Document 72.85 57.11 79.2 [Link]

Table 1: Final QWK scores and Hugging Face models for each task. For document-level tasks, scores were derived
from the sentence-level model by assigning each document the highest readability score found among its sentences.

– Original BAREC development set
(7,310 sentences) used for validation.

• Open Track: This track permitted the use
of external data, with experiments primar-
ily focusing on combining the BAREC and
DARES datasets. Different data configura-
tions were explored to optimize performance
for both sentence-level and document-level
tasks. More details on the data distribu-
tions for the Open track can be found in Ap-
pendix B.

4.2 Training and Hyperparameters
Models were fine-tuned with varied hyperparame-
ters, primarily adjusting learning rate (2e-5-5e-5)
and epochs (6-20). All models used the AdamW
optimizer and an early stopping callback monitor-
ing validation QWK score. A detailed summary of
the hyperparameter values for the best performing
models can be found in Appendix E.

4.3 Evaluation Metrics
The primary metric for evaluation is the Quadratic
Weighted Kappa (QWK) (Cohen, 1968), as defined
in Equation 1.

κw = 1−
∑

i,j wijOij∑
i,j wijEij

(1)

In this formula, O is the matrix of observed agree-
ment, E is the matrix of expected agreement, and
wij = (i− j)2 is the quadratic weight matrix that
penalizes larger disagreements more severely.

5 Results
The system demonstrated strong and consistent
performance across all competition tracks. As
summarized in Table 1, the top performance
achieved was a sentence-level Quadratic Weighted
Kappa (QWK) of 84.2% in the Strict track and a

document-level QWK of 79.2% in the Open track.
Full configurations for the best-performing models
are detailed in Appendix E (Table 7).

5.1 Sentence-Level Analysis
The system achieved a highly competitive QWK
score of 84.2% on the Strict track, earning a
7th-place rank on the official leaderboard. This
performance is nearly identical to the official
BAREC benchmark score of 84.4% (Elmadani
et al., 2025b). The minor difference is attributed
to variations from the custom morphological anal-
ysis used in this work, as opposed to the official
pre-processed dataset provided by the organizers.

In the Constrained track, the hybrid model
yielded a QWK of 82.9%, which earned a 3rd-
place ranking. For the Open track, a QWK of
83.9% was attained by augmenting the training
data with the DARES corpus, resulting in a 2nd-
place ranking. It was noted, however, that nei-
ther of these results exceeded the performance ob-
served in the Strict track. This observation re-
inforces the notion that the difficulties inherent
in mapping different annotation scales can intro-
duce label and domain variance, which may tem-
per the performance improvements expected from
additional data.

5.2 Document-Level Analysis
For the document-level task, no models were di-
rectly fine-tuned on full documents. Instead, the
assessment was derived from the corresponding
sentence-level models by assigning each docu-
ment the maximum readability score predicted
among all its sentences. A substantial increase
in the QWK was observed between the develop-
ment phase and the final blind test evaluation. The
document-level QWK for the Strict track increased
from a development score of 62.37% to a final
blind test score of 79.9%, achieving a 2nd-place
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rank in the official evaluation (Tables 1, 7). A 3rd-
place ranking was secured in the Constrained track
with a score of 75.5%. In the Open track, the score
increased from a development QWK of 60.48% to
79.2%, which also ranked 2nd (Tables 1, 7). This
considerable improvement suggests the blind test
set featured a different distribution of document
complexity, one where difficulty was determined
by a few outlier sentences.

5.3 Comparison with Official Baseline
A direct comparison with the final baseline results
released by the shared task organizers reveals that
the MorphoArabia system demonstrated a signifi-
cant performance improvement across all six sub-
tasks. The official baseline scores are sourced from
the final leaderboards published on the BAREC
Shared Task website.

“‘
As shown in Table 2, MorphoArabia outper-

formed the baseline by a notable margin in ev-
ery category. The most substantial gains were
observed in the document-level tasks, where the
system’s max-score aggregation strategy proved
highly effective, leading to improvements of +17.9,
+13.5, and +17.2 QWK points for the Strict, Con-
strained, and Open tracks, respectively. The
sentence-level tasks also showed consistent im-
provements, confirming the robustness of the
morphologically-aware approach.

5.4 Hyperparameter and Data Ablation
Analysis

The optimal configuration for the sentence-level
task did not yield the best performance for the
document-level task. The model from Experiment
2 achieved the highest sentence-level QWK on the
blind test set (83.9%), whereas the model from Ex-
periment 5 yielded the top document-level score
(79.2%). Notably, the best sentence-level perfor-
mance on the validation set (83.6%) was achieved
in Experiments 3 and 4, not Experiment 2 (Ta-
ble 6). This suggests that the document-level task,
being highly sensitive to single-sentence errors,
benefits from a validation set that better mirrors
the complexity distribution of the augmented train-
ing data. Furthermore, experiments combining all
three datasets (BAREC, SAMER, and DARES) did
not lead to superior results, highlighting that more
data is not always beneficial when significant label
and domain variance is introduced, as detailed in
Appendix C.2 (Table 6).

5.5 Ablation on Task Formulation
To validate the problem formulation, an ablation
study was conducted comparing the primary re-
gression approach (predicting a continuous score)
against a multi-class classification alternative (pre-
dicting one of 19 discrete levels). For this com-
parison, the classification models were tested us-
ing a custom, non-morphological data normaliza-
tion pipeline in place of the d3tok Morphologi-
cal Analyzer (see Appendix C.1). The classifica-
tion approach consistently yielded inferior perfor-
mance compared to the morphologically-aware re-
gression model, as detailed in Appendix C.2 (Ta-
ble 5). This result confirmed that the regression
framework was the more effective formulation for
this task.

5.6 Morphological Error Analysis
A key source of error was identified as preprocess-
ing artifacts. Appendix F (Table 8) provides ex-
amples where the d3tok analyzer failed to pro-
duce a morphological analysis, instead inserting
a NOAN (No Analysis) token. This occurs for
words not in its vocabulary or for words with valid
but less frequent morphological forms. This noise,
introduced during data augmentation, can degrade
model reliability, especially for the document-level
task.

6 Discussion

The performance of the MorphoArabia system,
summarized in Table 1, validates the core hypoth-
esis that a morphologically-aware model is highly
effective for Arabic readability assessment. The
top score achieved in the Strict sentence-level track
(84.2% QWK) was highly competitive, nearly
matching the official BAREC benchmark of 84.4%
and underscoring the success of this foundational
approach.

A key observation from the results is that mod-
els augmented with external data (Constrained and
Open tracks) did not surpass the baseline model
trained exclusively on the BAREC corpus. This
suggests that the benefits of additional data were
negated by noise introduced when harmonizing
disparate datasets. Heuristically mapping differ-
ent annotation scales (e.g., SAMER’s 5-level and
DARES’s 12-level) to BAREC’s 19-level schema
likely introduced significant label and domain vari-
ance, highlighting that annotation quality and con-
sistency are paramount.
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Track Task MorphoArabia (QWK) Official Baseline (QWK)
Strict Sentence 84.2% 81.5%

Document 79.9% 62.0%

Constrained Sentence 82.9% 81.5%
Document 75.5% 62.0%

Open Sentence 83.9% 81.5%
Document 79.2% 62.0%

Table 2: Comparison of final blind test QWK scores between MorphoArabia and the official shared task baseline.

The document-level assessment strategy, which
assigned the maximum sentence score to the doc-
ument, proved effective, securing second-place
rankings in two tracks. The significant QWK score
increase in the blind test suggests its distribution
contained documents whose difficulty was driven
by a few outlier sentences, a characteristic well-
suited to the chosen max-score approach. Ad-
ditionally, ablation studies confirmed that formu-
lating the task as regression consistently outper-
formed a multi-class classification approach (Ap-
pendix C.2, Table 5).

Despite the system’s success, two primary lim-
itations were identified. First, reliance on the
d3tok analyzer made the system susceptible to
preprocessing artifacts. It failed to parse out-of-
vocabulary or infrequent words, inserting a NOAN
(No Analysis) token (see Appendix F). This intro-
duced noise by depriving the model of crucial mor-
phological information, a particularly detrimental
issue for the document-level task where a single
unanalyzed word can determine the overall score.
Second, the simplistic, direct mapping used for
data augmentation presents a significant challenge,
as it fails to account for subtle differences in an-
notation criteria between corpora, leading to label
noise.

7 Conclusion

This paper presented MorphoArabia, a system de-
veloped for the BAREC Shared Task 2025 on Ara-
bic readability assessment. The system was cen-
tered on the hypothesis that a deep morphologi-
cal approach is fundamental to modeling the nu-
ances of Arabic text complexity. It employed
two main architectures: a fine-tuned AraBERTV2
regression model and a hybrid model enhanced
with seven engineered lexical features for the Con-
strained track. The results demonstrated highly
competitive performance, securing 2nd place in the
strict and open document-level tasks and achiev-

ing a peak QWK of 84.2% on the strict sentence-
level task, thereby validating the effectiveness of
the core approach. Despite its success, this work
identified two primary limitations.

First, the process of harmonizing external
datasets (SAMER and DARES) with different an-
notation scales introduced label noise, which may
have tempered performance gains on the aug-
mented tracks. Second, the system’s reliance on
the d3tok analyzer made it susceptible to prepro-
cessing artifacts, where out-of-vocabulary or mor-
phologically infrequent words were not analyzed,
potentially degrading model reliability.

These limitations inform several directions for
future work. Research could focus on more so-
phisticated domain adaptation techniques to better
integrate external corpora and mitigate the effects
of label variance. Another avenue is to improve
the robustness of the morphological preprocessing
pipeline, either by fine-tuning the analyzer on a
broader vocabulary or by developing strategies to
handle analysis failures.

Finally, exploring architectures that are directly
fine-tuned on the document-level task, rather than
relying on sentence-level aggregation, presents a
promising path toward further performance im-
provements. In the interest of open science and to
facilitate future research, all code for preprocess-
ing, training, and evaluation, alongside the final
fine-tuned models for each track, have been made
publicly available. The experimental code is acces-
sible on GitHub, and the models are hosted on the
Hugging Face Hub, providing a strong and repro-
ducible baseline for future work in Arabic readabil-
ity assessment.
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A Engineered Lexical Features
This appendix provides a detailed description of
the seven engineered lexical features that were in-
tegrated into the hybrid model for the Constrained
track. These features were designed to provide
the model with explicit, interpretable signals about
text complexity, complementing the deep contex-
tual understanding from the Transformer architec-
ture. Table 3 lists these features.

B Data Distribution for the Open Track
This appendix outlines the specific data configura-
tions used for the Open track experiments. Since
this track allowed for external data, different strate-
gies were employed to combine the BAREC and
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No. Description No. Description
1 Sentence length (total characters) 5 Maximum word difficulty in the sentence
2 Number of words in the sentence 6 Count of ’hard’ words (difficulty score > 4)
3 Average word length in characters 7 Fraction of Out-of-Vocabulary (OOV) words
4 Mean word difficulty (from lexicon)

Table 3: Description of the seven engineered lexical features used in the hybrid model.

DARES datasets to optimize performance for both
the sentence-level and document-level tasks.

• Sentence-Level Task Data Configuration:

– Training Set: A combination of
the BAREC dataset and the official
train/development splits of the DARES
dataset, totaling 64,548 records. This
consisted of:
∗ 9,703 records from the DARES train-

ing set.
∗ 1,380 records from the DARES de-

velopment set.
∗ Remaining records from the BAREC

dataset.
– Validation Set: 8,690 records.

• Document-Level Task Data Configuration:
A more specific data splitting strategy was em-
ployed.

– Training Set: Consisted of the entire
BAREC dataset combined with 85% of
the complete DARES dataset (merging
its train, development, and test splits).
This resulted in a total of 66,634 records
for training.

– Validation Set: The remaining 15%
of the combined DARES data, totaling
9,391 records.

C Ablation Studies and Alternative
Approaches

This appendix details the ablation studies that
were conducted to validate the final system de-
sign. These experiments explored alternative ap-
proaches to key aspects of the pipeline, including
preprocessing methods, Open Track data configu-
rations, and the fundamental task formulation (clas-
sification vs. regression).

C.1 Ablation on Preprocessing:
Morphological vs. Custom Pipeline

The core hypothesis of this work posits that deep
morphological analysis surpasses simple surface-
level normalization for Arabic readability. To test
this, an alternative, custom preprocessing pipeline
was implemented and evaluated. This custom
method simplifies input rather than providing the
linguistic enrichment of the d3tok analyzer. Its
key steps include:

• Aggressive Normalization: Standardizes dif-
ferent forms of characters (e.g., Alef آ) إ, (أ, to
,ا Taa Marbuta (ة) to Haa .((ه)

• Diacritic Removal: Strips all short vowel
markings .(൑ِശ૰َْ૜ܭ)

This custom approach consistently yielded inferior
results compared to the morphologically analyzed
text. This suggests that linguistic information, such
as morpheme boundaries and diacritics, preserved
and added by the d3tok method, is vital for accu-
rate text complexity assessment. Table 4 provides
a direct comparison.

C.2 Ablation on Task Formulation:
Classification vs. Regression

The fundamental framing of the readability assess-
ment task was also explored. The problem can
be approached as either a multi-class classifica-
tion problem (predicting one of 19 discrete lev-
els) or a regression problem (predicting a contin-
uous score). An ablation study was conducted to
evaluate the efficacy of a classification approach.
As shown in Table 5, several pre-trained models
were fine-tuned for sequence classification on the
sentence-level task, but the regression approach
ultimately yielded superior performance for this
shared task.
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Original Sentence Custom Preprocessing (Tested) d3tok Analysis (Used)

اܳأَْ؇ޗڰ۰َِ؟ُ ِ ۱ڍَهِ ྘َܳފْبَْ ᕚأ اܳأ؇ޗڰ۬؟ ۱ڍه ا྘ܳފب ؟ ُ ༟َ؇ޗڰ۰َِ ال+ ِ ۱ڍَهِ ྘َܳފْبَْ + ᕚأ
ڣݠَݿََ٭ِْ۬. َ وۏ۰َ۳َْ ؇فݑُِ اܳފّ֟ لَ ۋَިّ֟ ڣݠݿ٭۬. وۏ۳۬ اܳފ؇فݑ ۋިل NOAN َ وۏ۰َ۳َْ + ݿَ؇فݑُِ + ال لَ ۋَިّ֟

Table 4: Comparison of the d3tok analysis (used in the final system) and the custom normalization pipeline (tested
in an ablation study).

Track Model Used Dev (QWK) Test (QWK)
Strict Sentence CAMeL-Lab/readability-arabertv02-word-CE 73.31 78.20

aubmindlab/bert-base-arabertv02 81.0 82.60
CAMeL-Lab/readability-arabertv2-d3tok-reg 74.95 69.7

CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment 81.60 82.70

Constrained Sentence aubmindlab/bert-base-arabertv02 78.50 79.60
CAMeL-Lab/readability-arabertv02-word-CE 69.0 72.20

Open Sentence CAMeL-Lab/readability-arabertv02-word-CE 78.0 79.60

Table 5: Ablation study results for the classification approach on the sentence-level task, using the custom, non-
morphological preprocessing pipeline.

D Ablation on Open Track Data
Configuration

For the Open track, multiple experiments were con-
ducted to determine the optimal mix of BAREC
and DARES data, alongside ideal hyperparameters.
The results, summarized in Table 6, indicate that
the best configuration for the sentence-level task
differed from that for the document-level task.

• Best Sentence Performance (Exp 2): The
highest sentence-level QWK (83.9) was
achieved with a lower learning rate (2e-5)
over 18 epochs, using a simple concatenation
of BAREC and DARES datasets for training
and validation.

• Best Document Performance (Exp 5): The
highest document-level QWK (79.2) was
achieved with a higher learning rate (5e-5)
and a more careful data splitting strategy. The
validation set was explicitly augmented with
a stratified 15% sample of the DARES data
to better reflect the training distribution. This
highlights the document task’s sensitivity to
validation set composition for robust model
selection.

E Detailed Best Performing Models
This appendix presents a comprehensive break-
down of the final configurations used to achieve
the best reported results. Table 7 details the spe-
cific models, training hyperparameters, data distri-

butions, and corresponding QWK scores on both
development and test sets for each track and task.

F Morphological Analysis Errors
This appendix illustrates a key challenge encoun-
tered during data augmentation: morphological
analysis errors. Table 8 provides concrete ex-
amples where the CAMeL Tools d3tok analyzer
failed to parse a word, inserting a NOAN (No Anal-
ysis) token. This issue arises with words not in the
analyzer’s vocabulary, such as uncommon proper
nouns, or with words having valid but infrequent
morphological forms. This introduced noise that
could degrade model reliability, especially for the
document-level task where a single mis-analyzed
word can impact the score of an entire sentence.
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ID Training Parameters Data Distribution Sent. QWK Doc. QWK
Exp 1 LR=5e-5, Epochs=6 Train: BAREC (54.8k) +

DARES train (9.7k).
Total: 64.5k.

Dev: BAREC (7.3k) + DARES
dev (1.4k).

Total: 8.7k.

83.5 73.8

Exp 2 LR=2e-5, Epochs=18 Same as Exp 1. 83.9 76.1

Exp 3 LR=3e-5, Epochs=18 Train: All combined: BAREC +
SAMER + DARES.

Total: 107.6k.
Dev: BAREC (7.3k).

83.6 74.6

Exp 4 LR=3e-5, Epochs=10 Same as Exp 1. 83.6 78.6

Exp 5 LR=5e-5, Epochs=20 Train: BAREC (54.8k) + 85%
of merged DARES (11.8k).

Total: 66.6k.
Dev: BAREC (7.3k) + 15% of

merged DARES (2.1k).
Total: 9.4k.

83.0 79.2

Table 6: Summary of ablation experiments for the Open Track, detailing hyperparameters, data configurations, and
final test set performance for both sentence and document tasks. LR refers to Learning Rate.
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ID Original Sentence D3tok Analysis
SAMER_13172 Ⴄ၍ިر؟!» ނ ل؇ ඔ൹ڣ๤ཡ਍ಾ «܋٭ژ NOAN ل؇ ඔ൹ڣ๤ཡ਍ಾ ܋٭ژ »
SAMER_15232 ڣݠݿ٭۬ وۏ۰۳ اܳފ؇فݑ ۋިل NOAN وۏ۰۳ + ݿ؇فݑ + ال ۋިل

Table 8: Examples of preprocessing artifacts from the SAMER corpus, where the CAMeL Tools analyzer failed
to produce a morphological analysis, inserting a NOAN token instead. Failures occurred on an uncommon proper
noun Ⴄ၍ިر) ,(ނ and a morphologically complex noun .(ڣݠݿ٭۬)
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Abstract
We present !MSA’s winning system for the
BAREC 2025 Shared Task on fine-grained
Arabic readability assessment, achieving first
place in six of six tracks. Our approach is
a confidence-weighted ensemble of four com-
plementary transformer models (AraBERTv2,
AraELECTRA, MARBERT, and CAMeL-
BERT) each fine-tuned with distinct loss func-
tions to capture diverse readability signals. To
tackle severe class imbalance and data scarcity,
we applied weighted training, advanced pre-
processing, SAMER corpus relabeling with
our strongest model, and synthetic data gener-
ation via Gemini 2.5 Flash, adding 10k rare-
level samples. A targeted post-processing step
corrected the prediction distribution skew, de-
livering a 6.3% Quadratic Weighted Kappa
(QWK) gain. Our system reached 87.5%
QWK at the sentence level and 87.4% at the
document level, demonstrating the power of
model and loss diversity, confidence-informed
fusion, and intelligent augmentation for robust
Arabic readability prediction. 1

1 Introduction

The BAREC 2025 Shared Task presents a
formidable challenge for Arabic readability assess-
ment. It spans six tracks (sentence and document-
level across strict, constrained, and open condi-
tions) with a fine-grained 1-19 readability scale.
Predicting exact labels across such a wide range
significantly increases difficulty, as even small
deviations can dramatically impact metrics like
Quadratic Weighted Kappa. The challenge is
further compounded by severe label imbalance,
where certain readability levels occur far more fre-
quently than others, biasing models toward ma-
jority classes and making rare-level prediction un-
reliable. In strict and constrained tracks, limited
training data amplified these issues, and in con-
strained settings, incorporating external datasets

1 https://github.com/Mohamedbasem1/BAREC-2025

like SAMER (Alhafni et al., 2024; Al Khalil et al.,
2020) proved non-trivial due to mismatched la-
bel distributions. Furthermore, simple scaling ap-
proaches often resulted in misalignment and mini-
mal performance gains.
To address these challenges, we developed an

ensemble framework that combines architectural
and training diversity. We fine-tuned four trans-
former models (AraBERTv2 (Antoun et al., 2020),
AraELECTRA (Antoun et al., 2021), MAR-
BERT (Abdul-Mageed et al., 2021), and CAMeL-
BERT (Inoue et al., 2021)). Each model was
trained with a distinct loss function (classifica-
tion, regression, or ordinal). This design captures
complementary signals, with outputs merged via
confidence-weighted ensembling that favors more
certain predictions. To mitigate data scarcity in
the open tracks, we used prompt-engineered para-
phrasingwith theGemini API to generate synthetic
examples, and for SAMER, we relabeled instances
with our best BAREC-trained model instead of re-
lying on naive scaling.
Our approach demonstrates robustness across

all track configurations of BAREC 2025, with
first-place rankings in all six tracks. This success
underlines the advantages of model and loss func-
tion diversity, confidence-informed fusion, and in-
telligent data augmentation for Arabic readability
prediction, setting a strong precedent for future re-
search in fine-grained, limited-data NLP tasks.

2 Background

2.1 Task Details

The BAREC 2025 Shared Task (Elmadani et al.,
2025a) focuses on fine-grained Arabic readability
assessment using the Balanced Arabic Readabil-
ity Evaluation Corpus (BAREC) (Elmadani et al.,
2025b). BAREC is a large-scale dataset con-
taining over 1 million words across 68,000+ sen-
tences and 1,900+ documents, each annotated into
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19 readability levels, where higher numbers indi-
cate greater difficulty. The annotation process fol-
lowed the official BAREC Annotation Guidelines
(Habash et al., 2025), which define linguistic and
pedagogical principles to ensure consistency and
reliability in labeling.
The shared task defines two tasks: Sentence-

Level & Document-Level Readability Assess-
ment. Each one has three tracks based on permis-
sible resources:

• Strict Track: Use only BAREC Corpus.

• ConstrainedTrack: UseBAREC alongwith
the SAMER Corpus and SAMER Lexicon
(Alhafni et al., 2024; Al Khalil et al., 2020).

• OpenTrack: Use any additional resources or
augmentation methods.

We participated in all six tracks across both
subtasks, exploring resource-limited, resource-
augmented, and fully open settings.

2.2 Related Work

Arabic readability assessment has been studied
from multiple perspectives. El-Haj et al. (2024)
introduced the DARES dataset for evaluating the
readability of Arabic educational content, demon-
strating the importance of domain-specific corpora
for improving prediction accuracy. Liberato et al.
(2024) proposed a hybrid approach combining
handcrafted linguistic features with transformer-
based models, yielding improved robustness on
small or noisy datasets.
Elmadani et al. (2025b) presented BAREC, the

largest balanced corpus for fine-grained Arabic
readability assessment, alongside baseline sys-
tems for sentence and document-level prediction.
Habash et al. (2025) detailed the annotation guide-
lines and methodology for BAREC, ensuring con-
sistent application of the 19 readability levels. Al-
hafni et al. (2024) & Al Khalil et al. (2020) intro-
duced the SAMER Corpus and Lexicon, designed
for Arabic text simplification and multi-level diffi-
culty annotation, which are leveraged in the Con-
strained Track.
Additional advances in Arabic NLP include

ARBERT and MARBERT (Abdul-Mageed et al.,
2021), large-scale pre-trained models that achieve
state-of-the-art performance across a variety
of Arabic language understanding tasks, and

ensemble-based modeling for Arabic dialect iden-
tification (Khered et al., 2022), which inspired
aspects of our system design.

3 System Overview

3.1 Addressing Data Imbalance
The BAREC dataset exhibits a highly imbalanced
distribution across the 19 readability levels, with
certain levels (e.g., 12 and 14) being far more fre-
quent than rare levels such as 1, 18, and 19 (see
Figure B.2 in Appendix). This imbalance biases
models toward predicting frequent levels, which is
particularly detrimental when the target metric is
Quadratic Weighted Kappa (QWK), as misclassi-
fying rare levels incurs a high penalty.
To mitigate this, we computed class weights to

encourage the model to pay more attention to rare
classes. The weight for each class j is calculated
as:

wj =
nsamples

nclasses × nsamples in class j
(1)

This formulation assigns higher weights to rarer
classes and lower weights to frequent ones, reduc-
ing prediction bias and improving fairness across
levels.

3.2 Model Architectures and Loss Functions
Our system builds on a diverse set of Ara-
bic transformer models: AraBERTv2 (Antoun
et al., 2020), AraELECTRA (Antoun et al., 2021),
MARBERT (Abdul-Mageed et al., 2021), and
CAMeLBERT (Inoue et al., 2021). These models
were chosen for their strong track record in Arabic
NLP benchmarks, their coverage of both Modern
Standard Arabic and dialectal varieties, and their
complementary pretraining objectives.
We trained multiple variants of each model us-

ing different loss formulations to capture comple-
mentary perspectives on the readability prediction
problem:

• Cross-Entropy Loss (CE) for standard
multi-class classification.

• Mean Squared Error (MSE) for regression
over the continuous readability scale.

• Conditional Ordinal Regression (COR) for
modeling the conditional probabilities of sur-
passing each readability threshold. It was im-
plemented via the CORAL framework (Cao
et al., 2019).
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This diversity allowed the ensemble to leverage
both discrete and continuous interpretations of the
readability scale while incorporating ordinal con-
straints.

3.3 Constrained Track: SAMER Label
Transformation

For the Constrained Track, we incorporated the
SAMER Corpus (Alhafni et al., 2024), originally
annotated on a 3-6 scale, into our training data. To
align it with BAREC’s 1-19 scale, we applied a
min-max scaling transformation:

Scaled_Label =
Label− 3

6− 3
× (19− 1) + 1 (2)

This transformation preserves the relative diffi-
culty ordering while ensuring compatibility with
BAREC’s fine-grained labeling.
Initially, we trained our model using the scaled

SAMER data and evaluated it on our BAREC test
set, achieving a QWK of 50%. We then tried an
alternative approach: using our best-performing
BAREC-trained model directly to predict labels
for the SAMER dataset on the 1-19 scale. Finally,
we scaled the predictions back down to the origi-
nal 3-6 SAMER range, verifying that the reverse
transformation maintained accuracy within a mar-
gin of±0.5. This approach significantly improved
results.

3.4 Open Track: Data Augmentation with
Gemini 2.5 Flash

In the Open Track, we expanded our training cor-
pus using Gemini 2.5 Flash. As seen in Fig-
ure C.1, few-shot prompting with high-quality ex-
amples from BAREC was utilized to generate
rephrasings and additional readability-graded sen-
tences, resulting in approximately 10k new sam-
ples. This augmentation improved coverage for
rare and boundary-level readability cases.

3.5 Ensembling Strategy
Model predictions were combined using a
confidence-weighted averaging scheme:

W =

∑n
i=1 pi ci∑n
i=1 ci

(3)

where pi is the predicted readability score from
model i, ci is the model confidence (derived from
softmax probabilities for classification and inverse
variance for regression), and n is the number of

models. This approach prioritized more certain
predictions, improving robustness across evalua-
tion tracks.
For specific cases, a secondary method com-

bined two predictions as:

E =

{
max(p1, p2), if |p1 − p2| = 1
p1+p2

2 , otherwise
(4)

This rule-based adjustment handled borderline
cases where one-point differences significantly
impact evaluation metrics.

3.6 Document-Level Prediction Aggregation

While our models initially produce sentence-level
predictions, the document-level track requires ag-
gregating these predictions to the document level.
Following guidance from the task organizers, we
extract document IDs using the first 7 characters
of each sentence ID and apply amaximum aggre-
gation rule:

Rdoc = max
s∈Sdoc

Rs (5)

where Rdoc is the final document readability
prediction, Sdoc represents all sentences in a docu-
ment, and Rs is the sentence-level prediction.
This approach, recommended by the organizers,

assumes a document’s readability is constrained by
its most challenging sentences.

4 Experimental Setup

4.1 Data and Splits

We use the BAREC dataset with Arabic texts la-
beled on a 19-level readability scale, following the
official train, dev, and test splits. In the Strict
Track, only BAREC training data was used. In the
Constrained Track, we added the SAMER dataset
relabeled to 19 levels using our best BAREC
model. In the Open Track, we further augmented
training with synthetic samples from Gemini 2.5
Flash.

4.2 Preprocessing Pipeline

Our pipeline (Figure B.1) includes:

1. Data cleaning: Removing redundant punc-
tuation, normalizing special characters, and
trimming extra spaces via regular expres-
sions.
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2. Morphological tokenization: Using D3TOK
from CAMeL Tools (Obeid et al., 2020) to
preserve morphological segments.

3. Class imbalance handling: Applying
inverse-frequency class weights to improve
predictions for rare levels.

4.3 Model Training Configuration
We fine-tuned four pretrained transformer-based
language models with different loss functions.
Training was conducted using the Hugging Face
Transformers library with the hyper-parameters
from Table B.3. All experiments ran on
L40s GPUs with mixed-precision acceleration
(torch.cuda.amp).

4.4 Evaluation Metrics
We evaluate on both development and official test
sets using :

• Quadratic Weighted Kappa (QWK) - pri-
mary metric, penalizing distant misclassifica-
tions more heavily.

• Accuracy (Acc) - reported for 19, 7, 5, and 3
predicted label levels.

• Adjacent Accuracy (±1Acc19) - off-by-one
tolerance.

• Average Distance (Dist) - measures the aver-
age absolute distance between predicted and
true labels.

5 Result

Table A.1 compares the QWK performance of in-
dividual model variants against their ensembles.
Singular models achieved QWK scores ranging
from 81.0% to 84.8%, with MARBERT+COR
achieving the highest among single models. When
combined into ensembles, performance consis-
tently improved, with our best ensemble achieving
87.5% QWK, representing a notable gain over the
best single model.
An important insight came from analyzing pre-

diction distributions in the document-level tracks.
Figure A.2 shows the label frequency distributions
before (left) and after (right) a post-processing ad-
justment. Initially, there were no predictions for
label 10, and the distribution was skewed due to
our document-level aggregationmethod, which in-
volved taking the average readability score among

document and applying a ceiling function to round
decimals up. This approach, when document-level
predictions were close in value, sometimes pro-
duced unrealistic final document scores.
Upon realizing this issue, we experimented with

replacing the ceiling operation with a flooring op-
eration in such borderline cases. In parallel, we
also addressed another skew in the distribution,
the appearance of label 15 with disproportionately
high frequency. To mitigate this, we introduced a
heuristic in the ensemble post-processing: if any
of the models predicted labels 16 or 17 for a docu-
ment, we overrode the averaged ensemble predic-
tion with that higher label.
Both of these adjustments contributed to a sub-

stantial performance boost, increasing QWK re-
sult by 6.3%. The changes not only improved la-
bel coverage (including the introduction of label
10 predictions) but also redistributed predictions
more evenly across higher readability levels.
Table 1 reports our performance across six

tracks in the Sentence-Level and Document-Level
tasks, under Strict, Constrained, andOpen settings.
At the Sentence Level, our best QWK scores

reached 87.5% (Strict, Run 1), 86.6% (Con-
strained, Run 1), and 86.4% (Open, Run 1), se-
curing 1st place in all three tracks. These results
show consistent top performance across multiple
runs, with very close QWK values among them,
indicating stability.
At the Document Level, our highest QWK

scores were 87.4% (Strict, Run 1), 84.3% (Con-
strained, Run 1), and 82.2% (Open, Run 1). Again,
we ranked 1st place in both Strict, Constrained and
Open settings. The results also show that the Strict
track generally yielded higher QWK and accuracy
scores than Constrained and Open.

6 Conclusion

This work presented an ensemble-based sys-
tem for Arabic readability assessment in the
BAREC 2025 Shared Task. By combining four
transformer models (AraBERTv2, AraELECTRA,
MARBERT, CAMeLBERT) with diverse loss
functions, confidence-weighted ensembling, and
data augmentation via Gemini 2.5 Flash.
Our system secured first place in five of

six tracks, achieving QWK scores of 87.5%
(sentence-level) and 87.4% (document-level).
Post-processing adjustments to correct distribu-
tion skew further boosted performance by 6.3%,
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Task Track Run QWK Acc19 Acc7 Acc5 Acc3 ±1 Acc19 Rank

Sentence
Level

Strict
Run 1 87.5 43.5% 64.1% 69.6% 76.2% 76.7%
Run 2 87.4 42.5% 63.5% 69.2% 76.1% 76.5% 1st / 39
Run 3 87.2 40.9% 63.4% 69.1% 76.2% 76.1%

Constrained
Run 1 86.6 44.9% 63.0% 68.7% 75.6% 75.4%
Run 2 86.5 42.6% 61.5% 67.3% 74.5% 75.6% 1st / 20
Run 3 86.2 39.2% 60.9% 67.4% 74.7% 74.5%

Open
Run 1 86.4 41.3% 61.7% 67.3% 74.5% 75.1%
Run 2 86.3 41.5% 60.9% 66.8% 75.0% 73.8% 1st / 22
Run 3 86.1 40.0% 61.4% 67.4% 74.6% 74.8%

Document
Level

Strict
Run 1 87.4 52.0% 81.0% 81.0% 93.0% 94.0%
Run 2 80.2 42.0% 68.0% 68.0% 86.0% 89.0% 1st / 27
Run 3 79.3 41.0% 67.0% 67.0% 86.0% 88.0%

Constrained
Run 1 84.3 48.0% 77.0% 77.0% 94.0% 91.0%
Run 2 82.3 47.0% 72.0% 72.0% 89.0% 86.0% 1st / 22
Run 3 78.9 41.0% 67.0% 68.0% 88.0% 86.0%

Open
Run 1 82.2 50.0% 70.0% 70.0% 89.0% 86.0%
Run 2 78.6 42.0% 67.0% 67.0% 86.0% 86.0% 1st / 19
Run 3 76.2 39.0% 63.0% 63.0% 83.0% 84.0%

Table 1: Top 3 performances across each tracks using Quadratic Weighted Kappa (QWK), Accuracy at multiple
levels (Acc19/7/5/3), Off-by-1 Accuracy (±1 Acc19), and Average Distance (Dist). Along with the rank achieved
in each track / Number of participants.

underscoring the value of model diversity and
confidence-guided ensembling for fine-grained
Arabic readability prediction.

References

Muhammad Abdul-Mageed, AbdelRahim El-
madany, and El Moatez Billah Nagoudi. 2021.
ARBERT & MARBERT: Deep bidirectional
transformers for Arabic. In Proceedings of
the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing (Volume 1: Long Pa-
pers), pages 7088–7105, Online. Association
for Computational Linguistics.

Alfred V. Aho and Jeffrey D. Ullman. 1972. The
Theory of Parsing, Translation and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

Muhamed Al Khalil, Nizar Habash, and
Zhengyang Jiang. 2020. A large-scale leveled
readability lexicon for Standard Arabic. In
Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 3053–
3062, Marseille, France. European Language
Resources Association.

Bashar Alhafni, Reem Hazim, Juan David Pineros
Liberato, Muhamed Al Khalil, and Nizar
Habash. 2025. The SAMER Arabic text sim-
plification corpus. In Proceedings of the
2024 Joint International Conference on Com-
putational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages
16079–16093, Torino, Italia. ELRA and ICCL.

American Psychological Association. 1983. Pub-
lications Manual. American Psychological As-
sociation, Washington, DC.

Rie Kubota Ando and Tong Zhang. 2005. A frame-
work for learning predictive structures from
multiple tasks and unlabeled data. Journal of
Machine Learning Research, 6:1817–1853.

Galen Andrew and Jianfeng Gao. 2007. Scalable
training of L1-regularized log-linear models. In
Proceedings of the 24th International Confer-
ence on Machine Learning, pages 33–40.

Wissam Antoun, Fady Baly, and Hazem Hajj.
2020. AraBERT: Transformer-based model for
Arabic language understanding. In Proceedings
of the 4th Workshop on Open-Source Arabic
Corpora and Processing Tools, with a Shared

301

https://aclanthology.org/2021.acl-long.551/
https://aclanthology.org/2021.acl-long.551/
https://aclanthology.org/2020.lrec-1.373/
https://aclanthology.org/2020.lrec-1.373/
https://aclanthology.org/2020.osact-1.2/
https://aclanthology.org/2020.osact-1.2/


Task onOffensive LanguageDetection, pages 9–
15, Marseille, France. European Language Re-
source Association.

Wissam Antoun, Fady Baly, and Hazem Hajj.
2021. AraELECTRA: Pre-training text discrim-
inators for Arabic language understanding. In
Proceedings of the Sixth Arabic Natural Lan-
guage Processing Workshop, pages 191–195,
Kyiv, Ukraine (Virtual). Association for Com-
putational Linguistics.

Wenzhi Cao, Vahid Mirjalili, and Sebastian
Raschka. 2019. CORAL: Rank-consistent or-
dinal regression for neural networks. arXiv
preprint arXiv:1901.07884.

Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. 1981. Alternation. Journal
of the Association for Computing Machinery,
28(1):114–133.

Mo El-Haj, Sultan Almujaiwel, Damith Premasiri,
Tharindu Ranasinghe, and Ruslan Mitkov.
2024. DARES: Dataset for Arabic readability
estimation of school materials. In Proceedings
of the Workshop on DeTermIt! Evaluating Text
Difficulty in a Multilingual Context @ LREC-
COLING 2024, pages 103–113, Torino, Italia.
ELRA and ICCL.

Khalid N. Elmadani, Bashar Alhafni, Hanada
Taha, and Nizar Habash. 2025a. BAREC shared
task 2025 on Arabic readability assessment. In
Proceedings of the Third Arabic Natural Lan-
guage Processing Conference, Suzhou, China.
Association for Computational Linguistics.

Khalid N. Elmadani, Nizar Habash, and Hanada
Taha-Thomure. 2025b. A large and balanced
corpus for fine-grained Arabic readability as-
sessment. In Findings of the Association for
Computational Linguistics: ACL 2025, pages
16376–16400, Vienna, Austria. Association for
Computational Linguistics.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press,
Cambridge, UK.

Nizar Habash, Hanada Taha-Thomure, Khalid N.
Elmadani, Zeina Zeino, and Abdallah Abush-
maes. 2025. Guidelines for fine-grained
sentence-level Arabic readability annotation.

In Proceedings of the 19th Linguistic Anno-
tation Workshop (LAW-XIX-2025), pages 359–
376, Vienna, Austria. Association for Computa-
tional Linguistics.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan,
Houda Bouamor, and Nizar Habash. 2021. The
interplay of variant, size, and task type in Arabic
pre-trained language models. In Proceedings of
the Sixth Arabic Natural Language Processing
Workshop, pages 92–104, Kyiv, Ukraine (Vir-
tual). Association for Computational Linguis-
tics.

Abdullah Khered, Ingy Abdelhalim Abdelhalim,
and Riza Batista-Navarro. 2022. Building an
ensemble of transformer models for Arabic di-
alect classification and sentiment analysis. In
Proceedings of the Seventh Arabic Natural Lan-
guage Processing Workshop (WANLP), pages
479–484, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Lin-
guistics.

Juan Liberato, Bashar Alhafni, Muhamed Khalil,
and Nizar Habash. 2024. Strategies for Arabic
readability modeling. In Proceedings of the Sec-
ond Arabic Natural Language Processing Con-
ference, pages 55–66, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Ossama Obeid, Nasser Zalmout, Salam Khalifa,
Dima Taji, Mai Oudah, Bashar Alhafni, Go In-
oue, Fadhl Eryani, Alexander Erdmann, and
Nizar Habash. 2020. CAMeL tools: An open
source Python toolkit for Arabic natural lan-
guage processing. In Proceedings of the Twelfth
Language Resources and Evaluation Confer-
ence, pages 7022–7032, Marseille, France. Eu-
ropean Language Resources Association.

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. Computing Research Repository,
arXiv:1503.06733, version 2.

302

https://aclanthology.org/2021.wanlp-1.20/
https://aclanthology.org/2021.wanlp-1.20/
https://aclanthology.org/2024.determit-1.10/
https://aclanthology.org/2024.determit-1.10/
https://aclanthology.org/2025.findings-acl.842/
https://aclanthology.org/2025.findings-acl.842/
https://aclanthology.org/2025.findings-acl.842/
https://aclanthology.org/2025.law-1.30/
https://aclanthology.org/2025.law-1.30/
https://aclanthology.org/2021.wanlp-1.10/
https://aclanthology.org/2021.wanlp-1.10/
https://aclanthology.org/2021.wanlp-1.10/
https://aclanthology.org/2022.wanlp-1.53/
https://aclanthology.org/2022.wanlp-1.53/
https://aclanthology.org/2022.wanlp-1.53/
https://aclanthology.org/2024.arabicnlp-1.5/
https://aclanthology.org/2024.arabicnlp-1.5/
https://aclanthology.org/2020.lrec-1.868/
https://aclanthology.org/2020.lrec-1.868/
https://aclanthology.org/2020.lrec-1.868/
http://arxiv.org/abs/1503.06733
http://arxiv.org/abs/1503.06733


A Model Performance Analysis

A.1 Ensemble Results Comparison

AraBERT AraELECTRA CamelBERT MarBERT Metrics

CE REG COR CE REG COR CE REG COR CE REG COR QWK

Singular Models
✓ 81.0%

✓ 83.0%
✓ 83.1%

✓ 84.1%
✓ 84.5%

✓ 84.8%

Ensembles
✓ ✓ 85.3%

✓ ✓ ✓ 86.2%
✓ ✓ ✓ ✓ ✓ 86.9%
✓ ✓ ✓ ✓ ✓ ✓ 87.5%

Table 2: Ensemble model QuadraticWeighted Kappa results comparison split into SingularModels and Ensembles.

A.2 Prediction Distribution Results

Figure 1: Graphs of Distribution of Predictions before (left) and after (right) adjusting skewness.
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B System Architecture and Configuration

B.1 Architecture Overview

Figure 2: System Architecture Diagram

B.2 Dataset Distribution

Figure 3: Distribution of Readability Levels across the dataset.

B.3 Training Configuration

Hyper-parameters Values

Batch Size 16
Learning Rate 2X10−5

Epochs 5
Optimizer AdamW
Callbacks EarlyStopping

Table 3: Hyper-parameters used in model training.
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C Data Augmentation Details

C.1 LLM Prompt Template

Few-Shot LLM Prompt

:আॻ༟ اࠍ੆ڰ؇ظ ؕ݁ ۰ਃಸاܳأݠ ᄭᄥ৵৩ৠا ۰༚؇ݬ٭ أ༟ڎ :۰݄۳ৎ৊ا
اగၵၽܳ؇ت ༟ڎد َڰݴ -
اଫଐܳڢࡗࡲ ۰݁ఈః༟ َڰݴ -

{readability_desc} اܳگݠاءة: ݁ފٺިى َڰݴ -
اܳأ؇م ปฃأৎ৊ا َڰݴ -

اܳݱأ۰ًި ݁ފٺިى ਍ಸڰݴ وߙߵا܋٭ص ݁ڰݠدات اݿٺ༱ڎام -
:1 ݁ټ؇ل

"݁؇༥ڎ" ا৙৑ݬܹ٭۰: ᄭᄥ৵৩ৠا
1 اగၵၽܳ؇ت: ༟ڎد

و݁؊ܳިڣ۰ ૭૖٭ޚ۰ గၵ၍؇ت - ً ༥ڎا ๴ང؇أݿ ݁ފٺިى اܳگݠاءة: ݁ފٺިى
"" اଫଐܳڢࡗࡲ: ۰݁ఈః༟

"ڣ۳ڎ" :؇ዛውؗ؇ݬ٭ اৎ৊أ؇د ᄭᄥ৵৩ৠا
:2 ݁ټ؇ل

اܳټ؇݁ٷ۰" "اܳފٷ۰ ا৙৑ݬܹ٭۰: ᄭᄥ৵৩ৠا
2 اగၵၽܳ؇ت: ༟ڎد

݁ٺިݿޚ۰ وߙߵا܋٭ص ۰༟ި݁ٺٷ గၵ၍؇ت - ୍ଲ݁ٴ ݁ٺިݿޔ ݁ފٺިى اܳگݠاءة: ݁ފٺިى
"" اଫଐܳڢࡗࡲ: ۰݁ఈః༟

اܳټ؇݆݁" "اܳأ؇م :؇ዛውؗ؇ݬ٭ اৎ৊أ؇د ᄭᄥ৵৩ৠا
:3 ݁ټ؇ل

"1987 ਍ಱ؇ߌߵ 21 "ا৙৑رًأ؇ء ا৙৑ݬܹ٭۰: ᄭᄥ৵৩ৠا
4 اగၵၽܳ؇ت: ༟ڎد

݁أگڎة وߙߵا܋٭ص ݁ٺگڎ۰݁ ݁ڰݠدات - اৎ৊ٺިݿޔ ڣިق ݁ފٺިى اܳگݠاءة: ݁ފٺިى
"" اଫଐܳڢࡗࡲ: ۰݁ఈః༟

"1987 ሒᇃ؇اܳټ Ⴄ၍َިن 21 ا৙৑رًأ؇ء "لިم :؇ዛውؗ؇ݬ٭ اৎ৊أ؇د ᄭᄥ৵৩ৠا
=======================

:؇ዛውؗ؇ݬ٭ إ༟؇دة اৎ৊ޚߺࠊب ᄭᄥ৵৩ৠا
"{sentence}" ا৙৑ݬܹ٭۰: ᄭᄥ৵৩ৠا

{word_count} اగၵၽܳ؇ت: ༟ڎد
{readability_desc} اܳگݠاءة: ݁ފٺިى

"{punctuation}" اଫଐܳڢࡗࡲ: ۰݁ఈః༟
اৎ৊ޚߺࠊب:

وَڰݴ ،ปฃأৎ৊ا وَڰݴ اܳگݠاءة، ݁ފٺިى وَڰݴ ({word_count})، اగၵၽܳ؇ت ༟ڎد َڰݴ আॻ༟ اࠍ੆ڰ؇ظ ؕ݁ ᄭᄥ৵৩ৠا ۰༚؇ݬ٭ أ༟ڎ
اዛዊܳ؇ل۰. ሒᇭ "{punctuation}" اଫଐܳڢࡗࡲ ۰݁ఈః༟

.ሒᇭ؇إݪ ّأܹ٭ݑ أو ๤ཇح أي ࢻࣖون ؇ዛውؗ؇ݬ٭ اৎ৊أ؇د ᄭᄥ৵৩ৠا ڣگޔ ڢڎم
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Abstract

In this paper, the results are presented within
the context of the BAREC 2025 Shared Task
(Elmadani et al., 2025a; Habash et al., 2025; El-
madani et al., 2025b) for Arabic text readability
prediction. Participation in both the strict and
open tracks achieved QWK scores of 82.5%
and 83%, respectively. The proposed approach
employs a 19-level fine-grained classification
framework at the sentence level, leveraging
the BAREC dataset (Elmadani et al., 2025a;
Habash et al., 2025; Elmadani et al., 2025b)
and transformer based AraBERT models. To
address class imbalance, underrepresented lev-
els were augmented with additional samples.
By incorporating rich linguistic and structural
features, including morphology, syntax, and vo-
cabulary, the system surpasses less fine-grained
methods in precision and reliability.

1 Introduction

Readability indicates to the ease with which some-
one can understand a particular text or sentence
(Nassiri et al., 2022). Although the majority of
early research in this area focused on English due to
the abundance of rich and extensive datasets, read-
ability evaluation for Arabic and other languages
has gained attention in recent years. However, the
Arabic language presents unique challenges, such
as the lack of annotated datasets and the complex-
ities of its syntactic and morphological structure.
Readability is therefore a critical aspect of NLP,
with practical implications across domains like ed-
ucation, public communication, and digital plat-
forms, where improving text clarity enhances un-
derstanding for both native speakers and language
learners. A number of studies have attempted to
assess Arabic readability using various metrics and
linguistic levels. For example, (El-Haj and Rayson,
2016) counts stressed, long, and short syllables to
measure readability. This technique is a good start-
ing point, but it falls short of effectively expressing

the complex details of Arabic syntax and morphol-
ogy. The BAREC dataset (Elmadani et al., 2025a;
Habash et al., 2025) addresses some of these lim-
itations by incorporating a wider range of linguis-
tic and structural features such as spelling, word
count, morphology, syntax, vocabulary, and con-
tent to improve classification accuracy. Previous
studies have examined readability at various lin-
guistic levels, including the sentence, document,
word, and token levels, and have employed dif-
ferent scales, ranging from 3 to 7 levels, such as
(Al Khalil et al., 2020) and (Hazim et al., 2022).
However, no prior work has systematically investi-
gated the potential of fine-grained readability levels
for Arabic, particularly when combined with ad-
vanced transformer based language models at the
sentence level. In this study, the limitation of broad-
scale readability measures is addressed by employ-
ing a fine-grained 19-level classification system
derived from the BAREC dataset. This framework
is applied at the sentence level using large-scale
Arabic language models based on AraBERT . By
combining a fine-grained readability scale with ad-
vanced transformer based language models, the
proposed approach aims to produce more accurate
and reliable readability estimates for Arabic texts.
This contribution not only expands the methodolog-
ical landscape of Arabic readability assessment but
also provides a scalable foundation for educational,
institutional, and technological applications requir-
ing precise control over text complexity. The rest
of this paper is organized as follows: Section 2 re-
views related work on Arabic readability, Section 3
describes the methodology, Section 4 presents the
model results, Section 5 offers a discussion, and
Section 6 provides an error analysis.

2 Related work

Focusing on Arabic readability research, re-
searchers have made significant efforts to address
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(a) Distribution before balancing (b) Distribution after balancing

Figure 1: Distribution of dataset before and after balancing

the scarcity of data by building datasets to measure
text difficulty, supporting the Arabic NLP commu-
nity. One notable contribution is Al Khalil et al.
(2020) and Alhafni et al. (2025), the Simplifica-
tion of Arabic Masterpieces for Extensive Reading
(SAMER) project, which presents a five-level read-
ability lexicon for Modern Standard Arabic, man-
ually annotated by language professionals from
three Arab regions. The lexicon was built from
news articles and literary texts. Following this, Al-
Twairesh et al. (2016) introduced MADAD, a tool
based on collecting readability annotations on Ara-
bic texts at the sentence and paragraph levels using
pairwise and direct rating methods, helping to fill
the gap in Arabic readability data. Subsequent re-
search, such as Elmadani et al. (2025a); Habash
et al. (2025), developed a large and reliable dataset
for assessing Arabic text readability at multiple
granularities, fine-tuning AraBERT to establish
a baseline for sentence-level classification. Studies
leveraging the SAMER dataset have used varied
approaches:Liberato et al. (2024) assessed readabil-
ity with methods ranging from rule-based to pre-
trained language models, and Hazim et al. (2022)
presented a Google Docs add-on for automatic Ara-
bic word-level readability visualization, providing
difficulty assessment, substitution suggestions, and
foundational resources such as a graded readability
lexicon and a parallel corpus.

3 Methodology

3.1 BAREC Dataset

The BAREC dataset (Elmadani et al., 2025a;
Habash et al., 2025; Elmadani et al., 2025b) con-
tains 69,441 Arabic sentences (more than 1 mil-
lion words) from various genres and audiences,
annotated across 19 readability levels from kinder-
garten to postgraduate, following the Inspired by

the Taha/Arabi21 (Taha-Thomure, 2017). Annota-
tions are performed manually, with high agreement
between annotators (Quadratic Weighted Kappa =
81.8%), ensuring data quality. It is openly available
and benchmarked using multiple readability assess-
ment methods, supporting research and educational
applications in Arabic readability.

3.1.1 Dataset for Strict track
For this track, the original BAREC dataset was
used without any modifications, and no data aug-
mentation was applied. The dataset consisted of
69,441 rows, with 80% allocated for training, 10%
for development, and 10% for testing. Furthermore,
BAREC provided a blind test set of 3,420 cases.

3.1.2 Dataset for Open track
In the Open track, we extended the training data by
generating synthetic sentence-level examples using
ChatGPT-based augmentation to improve model
generalization across underrepresented readability
levels. The original dataset was highly imbalanced,
with some classes significantly overrepresented
while others had very few samples. To address
this, both up-sampling and down-sampling tech-
niques were applied. Specifically, levels 1, 2, 17,
18, and 19 were up-sampled using GPT-generated
data, whereas levels 10, 12, and 14 were down-
sampled to 7,000 instances. This number was se-
lected because it closely matches the size of the
dataset’s largest class after removing the three over-
represented categories, thereby helping to balance
the data distribution, as illustrated in Figure1a and
Figure 1b. The final dataset consisted of 59,236
rows.

3.2 Model
AraBERT , a BERT-based pre-trained language
model developed specifically for Arabic (An-
toun et al., 2020), was introduced to address
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Figure 2: Flow of Qais model

the limitations of multilingual models by provid-
ing an architecture optimized for Arabic NLP
tasks. It has achieved notable improvements in
tasks such as Sentiment Analysis, Named En-
tity Recognition, and Question Answering. In
the present work, two variants were utilized:
aubmindlab/bert-arabertv2 and aubmindlab/bert-
large-arabertv2, with aubmindlab/bert-arabertv2
selected as the primary model due to its stronger
performance. Figure 2 illustrates the flow diagram
for classifying Arabic texts according to readability
levels. The process starts with entering the sen-
tence, followed by segmentation. The segmented
data is then tokenized and fed into the model, which
has been trained on segmented data to enhance ac-
curacy. Finally, the model produces a readability
classification for the input sentence.

3.3 Hyperparameters

As part of hyperparameter optimization, the models
were trained using NVIDIA A100 and T4 GPUs
in Google Colab. The learning rates were set to
either 2e-5 or 5e-5, with a weight decay of 0.01 to
mitigate overfitting. Batch sizes were configured to
4 or 8, depending on the model’s complexity and re-
source requirements. Maximum number of epochs
was set to 20, and the AdamW optimizer, which
is used by default in AraBERT , was employed
during training.

4 Results

This task include a readability assessment, which
evaluates both tracks using multiple metrics (El-
madani et al., 2025a; Habash et al., 2025; Elmadani
et al., 2025b). Quadratic weighted Kappa (QWK)
measures the agreement between predictions and
accurate labels, with higher penalties for larger
errors. It is the primary evaluation metric. Ac-
curacy (Acc) is the percentage of exact matches
between predictions and accurate labels using a
19-level scale (Acc19). Simplified versions include
Acc7, Acc5, and Acc3, where the 19 levels are

grouped into 7, 5, or 3 categories. Adjacent Ac-
curacy (±1 Acc19) counts predictions as correct
if they are exactly right or within ±1 level of the
actual label. The average distance (dist) or mean
absolute error (MAE) measures the average abso-
lute difference between the predicted and actual
labels. In the Readability Assessment task, results
are reported for two evaluation tracks: Sentence-
level Strict and Sentence-level Open. In the first
track, the original BAREC dataset was used with-
out any modifications, a QWK score of 82.5%. In
the second track, data augmentation techniques, in-
cluding up-sampling and down-sampling, were ap-
plied to the BAREC dataset, resulting in a slightly
improved QWK score of 83.0%, as shown in the
Table 1. These findings underscore the significant
impact of data balancing on model performance.
Two variants from the AraBERT series were ex-
perimented with: aubmindlab/bert-base-arabertv2
and aubmindlab/bert-large-arabertv2. Initial ex-
periments with arabertv2-base consistently yielded
high performance, with QWK scores ranging be-
tween 80 and 83 across both tracks. In contrast,
improving to the larger AraBERTv2 model re-
sulted in reduced accuracy, with QWK scores rang-
ing from 70% to 78%. Different learning rates
(2e-5 and 5e-5) were also investigated, with 2e-5
consistently yielding better outcomes. Coral Loss,
which preserves the ordinal character of labels by
penalising predictions based on their distance from
the actual label, was also investigated. However,
when Coral Loss was applied, accuracy decreased.

5 Discussion

In this study, it was observed that the base-
arabertv2 model, when trained on the BAREC
dataset in both tracks, outperformed the large-
arabertv2 model. This is likely because the large-
arabertv2 model requires a larger dataset and
greater computational resources. In the open track,
a slight improvement over the strict track was
recorded, which can be attributed to the signifi-
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Track QWK ±1 Acc Acc19 Dis Acc 7 Acc 5 Acc 3

Sentence-level Strict 82.5 54.8 71.8 1.1 65.1 69.5 75.3
Sentence-level Open 83.0 54.2 71.8 1.1 66.0 70.0 75.8

Table 1: Performance results Readability Assessment for both tracks

cant class imbalance in the dataset. Furthermore,
there was substantial variance across the 19 read-
ability levels: the initial and final levels contained
far fewer samples, While the middle levels had rel-
atively more data. This uneven distribution hurt
the model’s overall performance. To address this
issue, class weights were applied in the strict track
to reduce the impact of the severe imbalance. In
the open track, the data was manually balanced and
reduced, with adjustments made to extreme classes.
However, the improvement achieved was not sub-
stantial, likely because class weights had already
been applied to mitigate the imbalance. Upon ex-
amining the dataset, it was also found that some
rows were duplicated and contained unfamiliar
words, such as ñ 	̄ 	© 	Kñ» kwn fw which appeared fre-
quently. Although written in Arabic script, ñ 	̄ 	© 	Kñ»
kwn fw is a foreign term, and its repetition could
potentially hinder the model’s ability to interpret
and classify inputs accurately. For example, the
term might be classified as a high difficulty word,
while in reality, it is simply a proper noun com-
monly used in western contexts. It was also noted
that some sentences contained non-Arabic words
written in Arabic characters. Such issues may re-
duce the clarity of the dataset’s texts and hinder
the overall performance of the model. Although
the last few levels (17, 18, and 19) are highly simi-
lar, this did not cause significant confusion for the
model, as their difficulty is very close. Merging
these levels into a single unified level might have
yielded slightly better results than keeping them
separate. In contrast, differences between other
levels appeared more distinct and beneficial, and
it is likely that levels containing more data were
classified with greater accuracy.

6 Error analysis

To better understand the model’s performance in
the strict and open tracks, a manual analysis was
conducted on more than ten randomly selected
sentences with divergent readability labels. The
analysis revealed that both tracks produced com-
petitive results, with minimal differences in over-

all performance. However, specific error patterns
were observed. When an Arabic word contained
or was attached to numbers, the model occasion-
ally generated inconsistent readability predictions.
For example, in the sentence 208 Yg. AÓ mAjd, which
represents only a name, the expected classification
was level 1; the trained model, however, assigned
it level 3 in both tracks. Although such cases may
not significantly affect performance, numbers can
sometimes alter the contextual interpretation. In
the sentence 10 úÍð
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�ë h, the model assigned a score of 13 in both
tracks, likely due to numerical elements introduc-
ing classification confusion. This misclassifica-
tion is particularly problematic as the actual diffi-
culty level of the sentence is beginner-level. An-
other difficulty that has been noticed is that words
written in Arabic script are derived from English.
These phrases frequently obtained excessively high
readability scores, despite their difficulty correlat-
ing more closely with the first or second levels
of difficulty. Such misclassification can result in
content incompatibilities with the intended audi-
ence. At higher levels, notably above level 10,
the model demonstrated improved classification
accuracy, with errors becoming less common and
severe. This improvement can be attributed to the
use of better syntactic and lexical patterns in larger
phrases, which are less likely to contain numbers
or symbols that could interfere with the model’s
classification process.

7 Conclusion and Future Work

In this work, a fine-tuned AraBERT model was
presented for the BAREC shared task in the strict
and open tracks, targeting Arabic sentence read-
ability assessment. The results, while satisfactory,
indicate potential for further improvement. Fu-
ture work will begin with traditional machine learn-
ing approaches and progress towards deep learning
methods, ultimately leveraging pre-trained models,
alongside enhanced data cleaning, class balancing,
and class merging. The system is envisioned to be
deployed as a web-based tool for the Arabic.
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Limitations

Resource constraints on Google Colab Pro limited
experimentation with larger datasets and models,
with restricted RAM causing occasional training
crashes. To mitigate this issue, batch sizes were
reduced; however, future experiments will require
access to larger computing resources to fully realize
the model’s potential.
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Appendix A: Readability Dimensions Used
for Sentence Generation

In my experiments, I provided GPT with the six di-
mensions from the BAREC readability framework
(Elmadani et al., 2025a; Habash et al., 2025) and
asked it to follow them when generating sentences
at different readability levels. These dimensions
are briefly described below:

1. Word Count: Measured by counting unique
printed words (punctuation and diacritics ig-
nored). This feature is constrained to a maxi-
mum of 20 words up to level 11 (Kaf).

2. Orthography and Phonology: Focused on
word length (syllable count) and special letters
such as hamzas. Final diacritics are ignored
(words are read in pause form).

3. Morphology: Included derivation and inflec-
tion (e.g., tense, aspect, number). Simpler
forms (e.g., present tense before past, singu-
lar before plural) appear at lower levels. This
feature is used up to level 13 (Mim).

4. Syntactic Structures: Tracked sentence com-
plexity, ranging from single words (level 1 –
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Alif) to more complex structures. Applied up
to level 15 (Seen).

5. Vocabulary: Central across all levels. Shared
words across dialects and Modern Standard
Arabic appear in easier levels, while technical
terms are introduced in higher levels.

6. Ideas and Content: Evaluated required prior
knowledge, symbolic decoding, and concep-
tual connections. Progression moves from
familiar ideas to specialized knowledge, and
from literal meanings to abstract concepts.

These dimensions guided the construction of sen-
tence examples used in our readability experiments.
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Abstract

We present a simple, model-agnostic post-
processing technique for fine-grained Arabic
readability classification in the BAREC 2025
Shared Task (19 ordinal levels). Our method
applies conformal prediction to generate pre-
diction sets with coverage guarantees, then
computes weighted averages using softmax-
renormalized probabilities over the confor-
mal sets. This uncertainty-aware decoding
improves Quadratic Weighted Kappa (QWK)
by reducing high-penalty misclassifications to
nearer levels. Our approach shows consistent
QWK improvements of 1-3 points across dif-
ferent base models. In the strict track, our sub-
mission achieves QWK scores of 84.9%(test)
and 85.7% (blind test) for sentence level, and
73.3% for document level. For Arabic educa-
tional assessment, this enables human review-
ers to focus on a handful of plausible levels,
combining statistical guarantees with practical
usability.

1 Introduction

Automatic readability assessment estimates how
difficult a text will be for a target audience, a
task essential for the design and advancement of
pedagogically oriented NLP applications(Collins-
Thompson and Callan, 2004; Xia et al., 2016). In
Arabic, this problem is particularly challenging due
to morphological richness, and orthographic vari-
ation (Liberato et al., 2024; Benajiba and Rosso,
2008). Recent work has advanced Arabic read-
ability assessment through modeling and datasets
(Saddiki et al., 2018; Alhafni et al., 2024; Elmadani
et al., 2025a; Habash et al., 2025). Most recently,
the BAREC corpus (Elmadani et al., 2025a) which
offers 19 fine-grained levels. Nevertheless, even
state-of-the-art models like AraBERT-v2 (Antoun
et al., 2020) remain prone to large-gap misclassi-
fications and offer no principled means of quanti-
fying prediction uncertainty. We address this by

integrating conformal prediction (Vovk et al., 2005)
to produce statistically valid prediction sets and
uncertainty-guided final predictions, reducing high-
penalty errors and enabling compact, interpretable
outputs for human-in-the-loop educational use. On
the BAREC 2025 Shared Task, our method consis-
tently improves QWK across base models, reaching
84.9% on the test set and 85.7% on the blind test
at the sentence level, and 73.3% on the blind test at
the document level. Beyond leaderboard improve-
ments, our method provides interpretable predic-
tion sets and uncertainty estimates that enable more
reliable readability assessment. Our implementa-
tion is open-sourced for reproducibility1.

2 Background

2.1 Task and Data

The BAREC Shared Task 2025 (Elmadani et al.,
2025b) targets fine-grained Arabic readability as-
sessment across 19 ordered levels. The task builds
on the BAREC corpus (Elmadani et al., 2025a), a
manually annotated dataset containing over 69,000
sentences and more than one million words. The
corpus provides mappings to multiple granulari-
ties (3, 5, and 7 readability levels); for detailed
annotation guidelines, we refer readers to (Habash
et al., 2025). We participated in both sentence-
level and document-level variants of the strict track,
where participants are restricted to using only the
BAREC corpus for training. In the document-level
task, a document’s overall readability level is de-
termined by its most difficult sentence. Given the
ordinal nature of readability levels, the main evalu-
ation metric is Quadratic Weighted Cohen’s Kappa
(QWK), which penalizes larger misclassifications
more heavily (Cohen, 1968). This reflects the ed-
ucational goal of avoiding assignments far from a
student’s level. We also report exact accuracy, ad-

1https://github.com/AhmedAbdel-Aal/
mucAI-at-BAREC_2025
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jacent accuracy (±1 of true label), Mean Absolute
Error (MAE), and coarse-grained variants Acc7,
Acc5, and Acc3, which collapse the 19 levels into
7, 5, and 3 bins. The shared task provides standard
splits: training (54.8k), development (7.3k), test
(7.3k), and blind test (3.4k), with the first three
publicly available2.

2.2 Conformal Prediction
Conformal Prediction (CP) (Vovk et al., 2005;
Papadopoulos et al., 2002) is a model-agnostic
method that converts single predictions into pre-
diction sets with statistical guarantees. Rather than
predicting “this text is Level 9”, CP produces “this
text is likely Level 7, 8, 9, 10, or 11”. Given a tar-
get miscoverage rate α, CP guarantees that the true
label appears in the prediction set with probability
at least 1− α:

P
(
Y ∈ C(X)

)
≥ 1− α (1)

where C(X) is the predicted set for input X and
Y is the true label. The method works by using
a calibration set, data not seen during training, to
learn how “unusual” different labels are for given
inputs. This unusualness is captured by a noncon-
formity score s(x, y): higher scores mean label
y is less plausible for input x (more in appendix
A.1.). CP then sets a threshold τ̂ which is chosen
as the (1 − α)(n + 1)-quantile of these scores in
the calibration set, ensuring the coverage guarantee.
For any new input x, the prediction set includes all
labels below this threshold:

C(x) = {y ∈ Y : s(x, y) ≤ τ̂} (2)

3 Method

We use AraBERT-v2 (Antoun et al., 2020) as
the backbone, following the strongest BAREC
baselines (Elmadani et al., 2025a). The original
benchmark reports four preprocessing pipelines
based on CAMeL tools (Obeid et al., 2020) (Word,
Lex, D3Lex, D3Tok) but we could not run the
CAMeL D3 analyzer in our environment. Because
BAREC releases the dev/test sentences already pre-
processed with these pipelines, we include them for
comparison. For the blind split, however, only raw
text is provided; we therefore adopt AraBERT’s
recommended Farasa segmentation (Abdelali et al.,
2016). For training objectives, we replicate the
benchmark baselines: Cross-Entropy (CE) and

2BAREC corpus shared-task-2025

Earth Mover’s Distance (EMD) (Hou et al., 2017),
and an ordinal Regression variant. Our addition
is a Focal-loss objective (Lin et al., 2017) tailored
to the long-tailed 19-level label distribution; we
report it alongside the baselines and simple ensem-
bles: probability averaging, and majority voting.

Our post-processing approach combines confor-
mal prediction with expected value decoding. We
first generate prediction sets with coverage guaran-
tees, then produce final predictions by averaging
within these sets. We apply CP only to the proba-
bilistic classifiers (CE/EMD/Focal); the Regression
head is reported as point predictions only.

Prerequisites and Notation. Let Y =
{1, ..., 19} denote the ordered labels. A trained
classifier produces posterior probabilities p(y | x)
for input x. For any x, we build form a conformal
prediction set C(x) ⊆ Y and then decode to a
single label.

Calibration and Tuning Protocol. We split the
official development set into two stratified halves:
a calibration split (dev-cal) for learning conformal
thresholds, and a tuning split (dev-tune) for hyper-
parameter selection and evaluation. See the split
details in Table 5 in Appendix A.5.

Set Construction. We evaluate three standard
nonconformity score functions for multiclass con-
formal prediction: naïve (inverse-probability), APS
(Adaptive Prediction Sets) (Romano et al., 2020),
and RAPS (Regularized APS) (Angelopoulos et al.,
2020).

Renormalization within the set. We first renor-
malize probabilities within the conformal set

pC(y | x) =
p(y | x)∑

j∈C(x) p(j | x)
for y ∈ C(x).

We then predict the rounded posterior mean

ŷ(x) = round


 ∑

y∈C(x)

y pC(y | x)


 .

The choice of weighted mean is motivated by
its role as the Bayes-optimal point estimator under
quadratic loss. While this is not strictly optimal
for our discrete classification setting, we employ
it as a computationally simple heuristic that aligns
with the quadratic penalty structure of the primary
evaluation metric (QWK). For the document-level
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track, we applied our best-performing sentence-
level model to all sentences in a document and
assigned the document’s readability as the maxi-
mum predicted level across its sentences, following
the shared task definition. We report the full exper-
imental setup in appendix A.2.

4 Results

Dev/test results demonstrate that clitic-aware pre-
processing substantially improves performance:
Farasa and D3Tok consistently outperform word-
level and lexical baselines, with Farasa achieving
the best QWK scores under CE, EMD, and regres-
sion losses, and on par under Focal loss. Given
Farasa’s consistent performance across dev/test
splits and its availability as the only accessible
preprocessor for blind evaluation, we standardize
on Farasa preprocessing for all subsequent experi-
ments (full results in Appendix A.4).

Table 1 reports sentence-level results on the
BAREC 2025 test set. +CP improves QWK over
each baseline while reducing exact Acc, and in-
creases ±1Acc. The strongest single model is Fo-
cal+CP (QWK 84.4; +2.6 over Focal); CE+CP and
EMD+CP gain +1.6 and +1.1 QWK, respectively.
The Avg and Most Common ensembles also im-
prove QWK (to 84.9 and 84.6) and reduce Dist
(down to 1.01). To quantify headroom if a user
could reliably choose from the CP set, we add a
non-deployable Oracle: it selects the gold label
whenever it lies in the CP set, otherwise falls back
to Focal+CP. This upper bound reaches QWK 95.3
and Acc 94.8, closely tracking the target coverage
(α=0.10), and illustrates the potential of human-in-
the-loop use of CP sets. Results on the blind test set
(Table 2) validate the robustness of our approach.
The ensemble averaging method achieves the high-
est performance at 85.7 QWK, while individual CP-
enhanced models reach competitive scores of 84.3
(CE), 84.6 (EMD), and 85.3 (Focal). The regres-
sion baseline achieves 85.41 QWK, demonstrating
strong performance of the regression formulation
without post-processing. The consistent pattern of
QWK improvements across different loss functions
and evaluation sets demonstrates the generalizabil-
ity of our conformal prediction approach.

5 Discussion

We analyze our conformal prediction approach
with the focal loss model and APS at α = 0.1,
the best-performing setting on the dev-tune split.
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Figure 1: Coverage failure rates by domain and text
class. Each domain shows three grouped bars repre-
senting Advanced, Foundational, and Specialized text
classes. The dashed line shows the overall failure rate
(5.12%).

The analysis highlights two aspects: (1) coverage
reliability and failure patterns, (2) error redistribu-
tion underlying improvements in ordinal metrics.

5.1 CP Coverage Analysis

Using α = 0.1 targeting 90% coverage, we report
94.88% empirical coverage with an average set size
of 5 levels, a substantial reduction from the full
19-class space. This means that in nearly 95% of
Arabic texts, the correct readability level appears in
a compact, interpretable set. The remaining 5.12%
coverage failures show systematic domain varia-
tion: 4.3% for Arts & Humanities (70/1,625), 6.1%
for STEM (10/163), and 7.1% for Social Sciences
(38/535). We define failure rate as the proportion of
cases where the true label falls outside the confor-
mal prediction set. Figure 1 reveals that failures are
not uniformly distributed across text types. Social
Sciences exhibits the highest rates, particularly for
Foundational and Specialized texts (8-9% failure
rates), while Arts & Humanities remains close to
the overall rate. STEM shows elevated failure rates
(6-7%) across all text classes. This variation sug-
gests that domain-adaptive calibration strategies
could improve coverage reliability for challenging
text types. Additional coverage diagnostics are
provided in Appendix A.3.

5.2 Why QWK improves despite lower exact
accuracy

QWK increases because many large errors shrink
while only a smaller set of perfect predictions be-
come near misses. On the dev–tune split, CP turned
362 perfect predictions into errors (15.6%), and
86.7% of these new errors were only ±1 level.
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Model Variant QWK Acc19 ±1 Acc19 Dist Acc3 Acc5 Acc7

CE (Baseline) 82.6 55.5 71.6 1.04 79.8 71.4 65.4
CE + CP 84.3 50.3 72.9 1.03 80.1 70.1 63.8
EMD (Baseline) 82.8 54.4 71.4 1.04 79.7 71.5 64.6
EMD + CP 83.9 49.4 73.4 1.04 79.7 70.4 63.3
Focal (Baseline) 81.8 55.4 71.7 1.07 79.7 71.4 65.3
Focal + CP 84.4 42.7 74.5 1.08 78.0 67.9 61.0
Regression (Baseline) 83.8 42.0 73.2 1.12 78.0 67.3 59.8
Average 84.9 47.3 74.0 1.03 79.8 69.6 63.0
Most Common 84.6 49.6 74.4 1.01 80.1 70.9 64.4
Oracle Decoder 95.3 94.8 95.3 0.20 96.4 95.6 95.3

Table 1: BAREC test, sentence-level. “Baseline” = fine-tuned point decoder. “+CP” = conformal prediction
(α=0.10) with our QWK-aligned mean-in-set decoder; applied to CE/EMD/Focal only (Regression is point-only).
“Oracle” = upper bound that selects the gold label if it lies in the CP set; otherwise falls back to Focal+CP. All results
use Farasa preprocessing.

Model Variant QWK
CE (Baseline) 82.6
CE + CP 84.3
EMD (Baseline) -
EMD + CP 84.6
Focal (Baseline) -
Focal + CP 85.3
Regression (Baseline) 85.4
Average 85.7
Most Common 84.8
Document-level (Max over sentences) 73.3

Table 2: Blind test set QWK results. Missing baseline
values (–) indicate models not submitted without CP
enhancement. Document-level results use the maximum
predicted sentence-level difficulty per document.

At the same time, 397 originally incorrect predic-
tions improved (17.1%): 80.6% shrank by 1 level,
14.7% by 2, 3.1% by 3, and 1.6% by 4. Since
QWK penalizes errors by the squared distance,
shrinking many large mistakes yields big gains
(e.g., reducing a 4-level error to 1 cuts the penalty
from 16 to 1).

6 Conclusions and Future Work

We presented a simple, model-agnostic post-
processing method for Arabic readability assess-
ment that combines conformal prediction with ex-
pected value decoding. Applied to the BAREC
Shared Task 2025, our approach achieved consis-
tent QWK gains of 1-3 points across multiple base
models. In the strict track, our submission achieves
QWK scores of 84.9% (test) and 85.7% (blind test)

for sentence level, and 73.3% for document level.
Beyond leaderboard gains, the method produces
compact prediction sets with statistical coverage
guarantees, offering both improved accuracy and
interpretable outputs for human-in-the-loop use.

Future work could extend this approach in sev-
eral ways. Mondrian conformal prediction could
calibrate separately for different text types or com-
plexity ranges, potentially reducing coverage fail-
ures in difficult cases. Multi-granularity training
using the BAREC mappings (3-, 5-, and 7-level
schemes) may improve generalization across diffi-
culty levels. Finally, rule-based or heuristic decod-
ing strategies informed by the official annotation
guidelines (Habash et al., 2025) could refine label
selection from CP sets by leveraging linguistic cues
and common annotation patterns.

7 Limitations

While our approach improves QWK and reduces
high-penalty errors, several limitations remain.
Most error reductions occur within medium dif-
ficulty ranges, leaving large-gap errors at higher
levels (e.g., 15–19) largely unresolved. The ef-
fectiveness of our approach depends on the base
model’s calibration: overconfident but incorrect
probability estimates can lead to suboptimal con-
formal sets, and renormalization may not fully cor-
rect such biases. Finally, our CP implementation
yields slightly conservative coverage (94% vs. 90%
target), suggesting room for tighter calibration or
adaptive thresholding.
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A Appendix A

A.1 Nonconformity Scores

In conformal prediction, a nonconformity score
s(x, y) quantifies how atypical a candidate label
y is for an instance x given the model’s output
distribution p(y | x). We evaluate three standard
multiclass scoring functions:
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Naïve (Inverse Probability). The simplest ap-
proach uses the complement of the predicted prob-
ability:

snaive(x, y) = 1− p(y | x) (3)

This yields smaller scores for high-probability
labels, producing larger prediction sets for low-
confidence predictions.

Adaptive Prediction Sets (APS) (Romano et al.,
2020). Let π1, π2, . . . , πK denote the classes sorted
in descending order of their probabilities p(π1 |
x) ≥ p(π2 | x) ≥ · · · ≥ p(πK | x). For a given
label y, let r(y) be its rank in this sorted order. The
APS score is the cumulative probability mass up to
and including label y:

saps(x, y) =

r(y)∑

j=1

p(πj | x) (4)

Regularized Adaptive Prediction Sets (RAPS)
(Angelopoulos et al., 2020). RAPS extends APS
by adding a linear rank-based penalty:

sraps(x, y) =

r(y)∑

j=1

p(πj | x) + λ · r(y) (5)

where λ ≥ 0 is the regularization parameter con-
trolling the size-coverage trade-off. In this work,
we set λ = 0.01.

A.2 Experimental Setup
All experiments were conducted on a single
NVIDIA A100 GPU using Google Colab Pro.
Training was performed for 6 epochs with a batch
size of 64, a learning rate of 5 × 10−5, and the
Adam optimizer. The best checkpoint was selected
based on development set performance measured
by Quadratic Weighted Kappa (QWK).

A.3 CP Coverage Plots
To better understand the behavior of our confor-
mal prediction variants, we provide supplementary
plots analyzing performance, coverage calibration,
and set size trends across different miscoverage
rates α. In Figure 2, we show the relationship be-
tween miscoverage rate α and Quadratic Weighted
Kappa (QWK) for three conformal prediction meth-
ods on the dev-tune set. APS and RAPS maintain
stable QWK across all α values, consistently out-
performing the baseline. The naïve method de-
grades sharply beyond α > 0.2, indicating poor
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Figure 2: Quadratic Weighted Kappa performance vs.
miscoverage rate (α) for three conformal prediction
scoring methods on the dev-tune split. The dashed line
represents baseline performance without conformal pre-
diction.

0.70 0.75 0.80 0.85 0.90 0.95
Target Coverage

0.70

0.75

0.80

0.85

0.90

0.95
Ac

tu
al

 C
ov

er
ag

e

NAIVE
APS
RAPS
Perfect Calibration

Figure 3: Coverage calibration quality showing actual
vs. target coverage rates. The dashed line represents
perfect calibration where actual coverage equals target
coverage.

robustness when allowing larger miscoverage. In
Figure 3, we plot the actual coverage against the
target coverage for Naïve, APS, and RAPS meth-
ods. All methods achieve coverage above the target
across the range, indicating slight conservativeness.
This effect is most pronounced for APS, which
consistently overshoots the target coverage. Such
conservative calibration ensures statistical validity
but may produce larger prediction sets than nec-
essary, potentially impacting their interpretability.
Finally, figure 4 shows the relationship between the
miscoverage rate α and the average prediction set
size for the three nonconformity scoring methods.
For α, APS and RAPS yield larger sets than the
naïve method, with APS producing the widest sets.

A.4 Preprocessing & Loss Ablations
A.5 Dev Data Split
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Loss Input QWK Acc19 ±1 Acc19 Dist
CE Word 77.6 53.4 68.2 1.24
CE Lex 76.4 49.0 66.1 1.32
CE D3Lex 79.8 53.0 68.3 1.19
CE D3Tok 81.4 53.3 70.9 1.14
CE Farasa 80.2 55.5 70.6 1.13
EMD Word 78.2 52.0 67.3 1.24
EMD Lex 79.5 48.8 66.8 1.24
EMD D3Lex 80.4 52.2 68.3 1.18
EMD D3Tok 81.2 53.1 69.8 1.13
EMD Farasa 81.4 54.8 71.0 1.10
Regression Word 79.3 38.5 69.4 1.30
Regression Lex 80.9 35.8 69.2 1.31
Regression D3Lex 82.3 38.7 70.7 1.26
Regression D3Tok 82.4 40.7 71.5 1.20
Regression Farasa 82.9 43.3 72.5 1.15
Focal Word 77.6 52.6 67.6 1.25
Focal Lex 77.9 49.4 67.0 1.27
Focal D3Lex 80.0 53.4 69.1 1.18
Focal D3Tok 80.5 56.0 71.1 1.12
Focal Farasa 80.4 56.1 71.0 1.12

Table 3: AraBERTv2 results on the BAREC Development set across different loss functions and input representa-
tions.

Loss Input QWK Acc19 ±1 Acc19 Dist
CE Word 79.2 54.0 68.6 1.17
CE Lex 78.4 49.7 66.9 1.23
CE D3Lex 80.6 53.2 68.1 1.14
CE D3Tok 81.9 52.8 70.9 1.10
CE Farasa 82.6 55.5 71.6 1.04
EMD Word 80.7 53.3 68.9 1.13
EMD Lex 80.6 49.6 67.0 1.18
EMD D3Lex 81.3 53.3 69.6 1.11
EMD D3Tok 81.7 52.7 69.3 1.10
EMD Farasa 82.8 54.5 71.4 1.04
Regression Word 81.4 38.8 70.4 1.23
Regression Lex 81.4 35.5 70.1 1.26
Regression D3Lex 82.8 39.2 70.9 1.18
Regression D3Tok 83.1 40.7 72.2 1.15
Regression Farasa 83.8 42.0 73.2 1.11
Focal Word 79.9 53.9 69.4 1.14
Focal Lex 79.5 50.6 67.7 1.19
Focal D3Lex 80.9 53.1 69.6 1.13
Focal D3Tok 82.2 55.2 71.2 1.06
Focal Farasa 81.8 55.4 71.7 1.07

Table 4: AraBERTv2 results on the BAREC Test set across different loss functions and input representations.
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Class Original % Dev-Cal Dev-Tune Split Ratio
1 44 0.6 32 12 73:27
2 68 0.9 49 19 72:28
3 182 2.5 126 56 69:31
4 78 1.1 55 23 71:29
5 417 5.7 284 133 68:32
6 189 2.6 130 59 69:31
7 701 9.6 476 225 68:32
8 613 8.4 417 196 68:32
9 236 3.2 162 74 69:31
10 1012 13.8 686 326 68:32
11 409 5.6 279 130 68:32
12 1491 20.4 1010 481 68:32
13 349 4.8 239 110 68:32
14 1072 14.7 727 345 68:32
15 258 3.5 177 81 69:31
16 114 1.6 80 34 70:30
17 49 0.7 36 13 73:27
18 13 0.2 10 3 77:23
19 15 0.2 12 3 80:20

Total 7310 100.0 4981 2329 68:32

Table 5: Development set stratified split into calibration (Dev-Cal) and tuning (Dev-Tune) subsets.
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Figure 4: Average prediction set sizes across miscover-
age rate (α) for the three conformal prediction scoring
methods.
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Abstract

Navigating the complexities of Arabic read-
ability prediction requires addressing the lan-
guage’s rich morphology and structural diver-
sity. In the BAREC Shared Task 2025, we
participated in all tracks using a stacked ensem-
ble meta learning framework. Our approach
combined seven fine-tuned transformer, whose
outputs fed into a meta classifier trained on
multiple features, including individual predic-
tions, their average, and the average top pre-
diction probabilities. On the blind test set,
our ensemble achieved a Quadratic Weighted
Kappa (QWK) of 86.4%, demonstrating the ef-
fectiveness of integrating diverse transformer
encoders for fine grained Arabic readability
classification and the potential of meta learning
in morphologically rich contexts.

1 Introduction

Arabic readability prediction assesses how difficult
a text is for its intended audience, supporting ap-
plications such as text simplification (Fang et al.,
2025), adaptive learning (Fitrianto et al., 2024),
and automated grading (Qwaider et al., 2025). In
Arabic, the task is particularly challenging due to
the language’s morphological richness and wide
dialectal variation, and it also plays a crucial role
in promoting equitable access to information for
readers of varying proficiency levels.

The Balanced Arabic Readability Evaluation
Corpus (BAREC) dataset (Elmadani et al., 2025a)
heightens this complexity by covering multiple gen-
res from news, literature, educational content, chil-
dren poems, social media and more other genres
that was discussed by them. This diversity intro-
duces significant lexical, syntactic, and stylistic
variation, requiring models to capture cues from
orthographic patterns to higher level semantics.

In our effort to contribute to this evolving field,
we participated in the BAREC Shared Task 2025
(Elmadani et al., 2025b), which focuses on sentence

and document level Arabic readability prediction
across 19 distinct difficulty levels. The competi-
tion comprises three tracks: a Strict track, where
only BAREC data is permitted for training; a Con-
strained track, where the BAREC dataset, SAMER
corpus (Alhafni et al., 2024), and SAMER lexicon
(Al Khalil et al., 2020) are available; and an Open
track, where any external resources may be used.

Our main objective was to assess whether a
stacked meta learning system could achieve com-
petitive performance by leveraging the strengths
of several fine-tuned transformer models. In this
framework, seven transformer based language mod-
els served as base predictors, followed by a meta
classifier trained on multiple features details of
which will be discussed later on to predict the final
readability level. We extended the system in the
constrained track by incorporating lexical features
extracted from the SAMER lexicon which is an
arabic readability resource that assigns difficulty
levels to individual words, making it possible to es-
timate text complexity based on its lexical content.
In the open track, we also explored a prompt based
zero shot approach with GPT 4.1, by feeding the
model with a structured annotation guidelines to
guide and refine its predictions.

Our stacked meta learning system achieved 2nd
place in Track 1 (sentence level) and 2nd in Track
2 (sentence level), but only 7th in document level
Track 1 and was not tested in Track 2 due to poor
performance. This indicates its strength at the sen-
tence level but limited effectiveness for documents,
partly due to a trade off between QWK and accu-
racy. Employing the LLM for human like annota-
tion was also ineffective.

The paper is organized as follows: §2 reviews re-
lated work, §3 presents the dataset, §4 the method-
ology, §5 the results, §6 the discussion, and §8 the
conclusion and future work.
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2 Related Work

Zalmout et al. (2016) showed that early automatic
readability assessment relied on traditional formu-
las like Flesch Reading Ease (Flesch and Gould,
1949), Flesch Kincaid (Kincaid et al., 1975), and
Dale Chall (Dale and Chall, 1948), focusing on
surface features such as sentence and word length
and vocabulary familiarity. They later extended
this by incorporating lexical and syntactic features
into SVMs.

For Arabic, Saddiki et al. (2018) conducted the
most extensive study, employing a wide range of
lexical and syntactic features for L1 and L2 tasks.
Their results demonstrated that leveraging L1 fea-
tures can improve L2 readability prediction, high-
lighting the benefits of cross task feature sharing.

Ambati et al. (2016) compared syntactic fea-
tures from incremental CCG and non-incremental
phrase parsers, showing that incremental parsing
enhanced both accuracy and speed, with further
improvements from adding psycholinguistic fea-
tures. Similarly, Deutsch et al. (2020) found that
neural models, ranging from SVMs to BERT, can
match or outperform feature augmented systems
when trained on sufficient data, suggesting that
deep models already capture key readability indi-
cators.

Liberato et al. (2024) introduced a multi model
framework for Arabic word level readability
(Hazim et al., 2022) and fragment level readabil-
ity, combining lexicon, frequency, statistical, and
transformer based models, and demonstrated that
cascaded and aggregation strategies yield stronger
results. Recent research further explores deep learn-
ing approaches (Lee and Vajjala, 2022; Imperial
and Kochmar, 2023) and the use of large language
models (LLMs) (Naous et al., 2024; Huang et al.,
2024; Marulli et al., 2024), leveraging their ad-
vanced language understanding to predict and ana-
lyze readability with greater nuance.

Building on prior work, we participated in all
three tracks of the shared task, Track 1 (sentence
and document level), Track 2 (sentence level), and
Track 3 (sentence level) exploring two main direc-
tions: (1) integrating machine learning models with
fine-tuned models to leverage the strengths of both
through a stacked meta classifier in Track 1&2, and
(2) evaluating the capacity of LLMs in Track 3
to emulate human annotation through systematic
prompt engineering.

3 Data

3.1 BAREC Dataset
The Balanced Arabic Readability Evaluation Cor-
pus (BAREC) is a large scale dataset for Arabic
readability assessment, containing 69,441 manu-
ally annotated sentences (over one million words)
across 19 readability levels, ranging from kinder-
garten to postgraduate. It is designed to balance
genre, topic, and audience coverage, providing a
rich resource for evaluating Arabic text complexity.

The dataset is divided into four subsets: training,
validation, and public test splits, which are pro-
vided during the development phase, and a private
test set, which is used to evaluate the final systems
after the development phase concludes.

We conducted thorough evaluations using the
validation and public test sets, followed by a fi-
nal assessment of the system on the blind test set
provided for the shared task.

# Docs # Sentences # Words
Train 1,518 54,845 832,743
Dev 194 7,310 101,364
Public Test 210 7,286 105,264
Blind Test 100 3,420 53,052

Table 1: Dataset statistics for the training, validation,
public test, and blind test sets.

3.2 SAMER Lexicon
We present the SAMER Lexicon, a 40K lemma lev-
eled readability resource for Arabic. The lexicon
comprises 40,000 lemma and part of speech pairs,
each annotated with one of five readability levels.
This resource offers a standardized reference for
assessing lexical difficulty, enabling its integration
into a wide range of readability prediction and edu-
cational technology applications.

4 Methodology

4.1 Overview
In this paper, we present our submissions for the
three tracks of the BAREC shared task. For Tracks
1 and 2, we followed the recommendation from
the BAREC main paper, which suggested framing
the task as a regression problem to achieve higher
QWK scores. Building on this, we fine-tuned mul-
tiple transformers and then trained a stacked meta
classifier ML model to predict the final readabil-
ity level based on their outputs. In contrast, Track
3 adopts a fundamentally different approach: we
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experimented with LLMs, specifically leveraging
the ChatGPT 4.1, to generate predictions directly
through prompt based inference.

4.2 Track 1 & Track 2: Stacked Meta
Classifier Approach

The preprocessing stage involved removing both
kashida and all diacritics from the text. We then
fine-tuned several transformer based models, where
the input was the complete sentence and the target
label was the readability level of that sentence. The
outputs from the fine-tuned models were used as
inputs to a stacked meta classifier with three fea-
ture types: (1) raw predictions from each model,
(2) their average, and (3) the average of the top
prediction probabilities. We tested these features
individually and in combination. For efficiency in
deployment, the meta classifier was implemented
as a lightweight ML model (classifier or regressor)
operating on model predictions rather than raw text.

We experimented with using these features indi-
vidually and in combination, presenting only the
best results achieved through the combination of all
three features. To ensure computational efficiency
in the final deployment stage, we implemented the
meta classifier as a lightweight machine learning
model (either a classifier or a regressor) that oper-
ates on the predictions of the fine-tuned models.

Added Lexical Features for Track 2 While
Track 2 used the same pipeline, we augmented
the meta classifier input with three lexical features
from the SAMER lexicon. Each word was lemma-
tized using the CAMeL Tools MSA disambiguator
(Obeid et al., 2020), then matched to the SAMER
lexicon; if not found, the closest match was se-
lected via edit distance. For each sentence, we
calculated (1) the most frequent, (2) the maximum,
and (3) the average SAMER level, which were con-
catenated with the existing meta classifier features
to improve prediction accuracy.

We fine-tuned several transformer based mod-
els, including AraBERTv02 (Antoun et al., 2020),
AraBERTv2 (Antoun et al., 2020), MARBERTv2
(Abdul-Mageed et al., 2021), bert base arabic
camelbert msa (Inoue et al., 2021), XLM RoBERTa
large (Conneau et al., 2019), bert qarib (Abdelali
et al., 2021) and NuSentiment multilingual (Wang
et al., 2024), following the regression based setup
described earlier.

For the document level setting, we applied the
same process at the sentence level, then assigned

each document the maximum readability level pre-
dicted for any sentence it contained.

4.3 Track 3: LLM Based Approach
In this track, our goal was to emulate human anno-
tation using a powerful LLM by embedding the full
Arabic annotation guidelines (Habash et al., 2025)
into the prompt. These guidelines define the evalu-
ator’s role, describe the 19 readability levels across
six linguistic dimensions, and provide examples,
constraints, and ACTFL aligned progression from
simplest to most complex. By embedding these
criteria in the prompt, we guided the LLM to pro-
duce annotations consistent with human judgments,
enhanced through prompt engineering techniques
such as role specification, task definition, criteria
conditioning, and strict output formatting.

5 Results

5.1 Sentence Level
5.1.1 Track 1 & 2
We evaluated the performance of the fine-tuned
models individually as well as within the meta
learning framework. As shown in table 2,
CAMeLBERT-MSA achieved the highest perfor-
mance among all base models, with a QWK of
82.8% on the development set and 83.8% on the
public test set.

Model Dev-QWK Dev-Acc Test-QWK Test-Acc
Arabertv2 77.9% 27.0% 78.8% 27.2%
Arabertv02 80.9% 29.9% 81.9% 29.3%
MArabertv2 81.4% 28.1% 82.1% 28.2%
camel_bert_msa 82.8% 36.7% 83.8% 36.5%
XLM-ROBERTA 80.6% 38.5% 81.8% 39.3%
bert_qarib 79.9% 26.6% 81.3% 26.0%
Nu_sent 81.1% 27.8% 82.1% 27.9%

Table 2: Performance of base models on the dev and
public test sets (Track 1, sentence-level prediction) for
QWK and accuracy.

For the ensemble setting, we conducted an ex-
tensive series of experiments using a wide range
of machine learning classifiers and regressors. As
shown in Table 3, the Naïve Bayes models both
Gaussian and Categorical consistently yielded the
best results. This result was observed when training
on the individual predictions of the seven fine-tuned
models, and further improved when incorporating
the average score across models. We explored all
possible combinations of model predictions, and
the best performance was achieved when using the
predictions from all seven models together. Perfor-
mance increased even more when we additionally
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included the average of the top predicted probabili-
ties for each instance.

Model Dev-QWK Dev-Acc Test-QWK Test-Acc
Logistic Regression 81.9% 45.1% 82.8% 44.5%
Linear Regression 82.6% 37.9% 83.8% 39.0%
Random Forest Classifier 81.0% 41.7% 81.5% 41.4%
Random Forest Regressor 81.8% 39.5% 82.7% 39.8%
GaussianNB 83.9% 39.2% 84.9% 38.1%
CategoricalNB 83.7% 38.1% 84.9% 37.6%
Bagging Classifier 80.6% 42.1% 81.1% 41.6%
Bagging Regressor 81.6% 39.9% 82.5% 39.4%

Table 3: Performance of the meta classifier on the dev
and public test sets

For track 2, The same ensemble configuration
was then applied with the addition of the previ-
ously discussed features. As shown in Table 4, this
led to only a marginal improvement on the overall
performance.

Model Dev-QWK Dev-Acc Test-QWK Test-Acc
Logistic Regression 81.8% 45.1% 82.8% 44.4%
Linear Regression 82.7% 38.0% 83.8% 39.1%
Random Forest Classifier 81.7% 44.9% 81.5% 44.7%
Random Forest Regressor 82.0% 40.3% 82.7% 40.6%
GaussianNB 83.9% 38.9% 84.9% 37.7%
CategoricalNB 83.7% 38.1% 84.9% 37.7%
Bagging Classifier 80.9% 44.3% 81.1% 43.6%
Bagging Regressor 81.5% 39.8% 82.5% 39.9%

Table 4: Performance of the meta classifier on the dev
and public test sets.

We selected the CategoricalNB model due to its
outstanding performance on the public test set and
applied it to the blind test. The results are presented
in Table 5.

Track Model QWK Acc
Track 1 CategoricalNB 86.4% 39.7%
Track 2 CategoricalNB 86.4% 39.9%

Table 5: Overall performance on Track 1 and Track 2
Blind test.

5.1.2 Track 3
For the LLM trial, even after extensive prompt
engineering and providing the ChatGPT 4.1 API
with the full BAREC guidelines, performance was
poor, achieving only 40.7% QWK on the dev set
when predicitng on the sentence level.

5.2 Document Level
For the document level assessment, we applied the
previously described approach on Track1; however,
it yielded suboptimal results with 69.6% QWK and
34% accuracy. The reasons for this underperfor-
mance are examined in detail in the Discussion

section. Since the results were unsatisfactory on
Track1, we did not extend this approach to Track 2.

6 Discussion

The results show that the stacked meta learner clas-
sifier has a strong positive impact compared to in-
dividual fine-tuned models, with CategoricalNB
achieving slightly better performance than Gaus-
sianNB for sentence level predictions. However,
this approach did not transfer well to the document
level, where higher accuracy is crucial. Regression
based models, while yielding high QWK, tend to
have lower accuracy, which limits their effective-
ness for document level prediction.

Adding the lexical features produced only a
marginal improvement of 0.2% in accuracy, indi-
cating limited impact.

For Track 3, using GPT-4.1 with the provided
guidelines and a few prompt engineering tech-
niques performed poorly, failing to effectively
mimic the human annotation process.

7 Error Analysis

As shown in appendix figures 3 and 4 , the model
excels on Classes 10, 8, and 7 but struggles with
6, 1, and 5, often confusing them with neighboring
levels. Mid levels are more distinct, while lower
levels exhibit significant overlap.

8 Conclusion & Future Work

This shared task provided a valuable opportunity to
advance Arabic readability prediction by compar-
ing diverse modeling strategies across three tracks.
Our results highlight the effectiveness of a stacked
meta learner, which consistently outperformed in-
dividual fine-tuned transformer models, with Cat-
egoricalNB delivering the best sentence level re-
sults. However, the approach proved less effective
for document level prediction, where the accuracy
QWK trade off in the fine-tuned models.

These findings emphasize the need for models
that balance both accuracy and QWK for document
level prediction, as well as more impactful feature
integration strategies. Future directions include
exploring hybrid architectures, leveraging contex-
tual lexical embeddings, and developing advanced
prompting or fine-tuning methods for LLMs to bet-
ter align outputs with human judgments.
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A Full Evaluation Metrices per approach

Tables 6, 7 and 8 present the extended results, including the four metrics reported in the BAREC paper.
As noted earlier, both CategoricalNB and GaussianNB consistently achieve high QWK scores relative to
the other models. However, on the blind test set, CategoricalNB consistently outperforms GaussianNB.

Model D-QWK D-Acc D-±1 D-Dist T-QWK T-Acc T-±1 T-Dist
Arabertv2 77.9% 27.0% 63.7% 1.41 78.8% 27.2% 64.4% 1.36
Arabertv02 80.9% 29.9% 68.1% 1.31 81.9% 29.3% 69.2% 1.27
MArabertv2 81.4% 28.1% 66.8% 1.36 82.1% 28.2% 67.1% 1.31
camel_bert_msa 82.8% 36.7% 71.5% 1.22 83.8% 36.5% 72.3% 1.17
XLM-RoBERTa 80.6% 38.5% 70.6% 1.26 81.8% 39.3% 71.5% 1.20
bert_qarib 79.9% 26.6% 66.9% 1.37 81.3% 26.0% 68.2% 1.31
Nu_sent 81.1% 27.8% 66.6% 1.38 82.1% 27.9% 66.7% 1.33

Table 6: Extended performance of base models on the dev (D) and public test (T) sets (Track 1: Sentence Level),
including QWK, accuracy, ±1 accuracy, and distribution distance.

Model D-QWK D-Acc D-±1 D-Dist T-QWK T-Acc T-±1 T-Dist
Logistic Regression 81.9% 45.1% 64.7% 0.36 82.8% 44.5% 65.3% 0.34
Linear Regression 82.6% 37.9% 72.0% 0.36 83.8% 39.0% 72.1% 0.37
Random Forest Classifier 81.0% 41.7% 65.5% 0.31 81.5% 41.4% 66.3% 0.26
Random Forest Regressor 81.8% 39.5% 68.9% 0.30 82.7% 39.8% 69.7% 0.29
GaussianNB 83.9% 39.2% 66.8% 0.27 84.9% 38.1% 67.1% 0.30
CategoricalNB 83.7% 38.1% 70.1% 0.34 84.9% 37.6% 70.3% 0.34
Bagging Classifier 80.6% 42.1% 65.8% 0.29 81.1% 41.6% 66.3% 0.30
Bagging Regressor 81.6% 39.9% 68.0% 0.29 82.5% 39.4% 68.7% 0.28

Table 7: Extended performance of ensemble models on the dev (D) and public test (T) sets (Track 1: Sentence
Level), including QWK, accuracy, ±1 accuracy, and distribution distance.

Model D-QWK D-Acc D-±1 D-Dist T-QWK T-Acc T-±1 T-Dist
Logistic Regression 81.8% 45.1% 64.7% 0.36 82.8% 44.4% 65.3% 0.33
Linear Regression 82.7% 38.0% 72.0% 0.35 83.8% 39.1% 72.0% 0.37
Random Forest Classifier 81.7% 44.9% 66.6% 0.30 81.5% 44.7% 67.2% 0.28
Random Forest Regressor 82.0% 40.3% 70.1% 0.31 82.7% 40.6% 70.7% 0.30
GaussianNB 83.9% 38.9% 66.6% 0.27 84.9% 37.7% 67.0% 0.30
CategoricalNB 83.7% 38.1% 70.1% 0.34 84.9% 37.7% 70.5% 0.33
Bagging Classifier 80.9% 44.3% 66.4% 0.31 81.1% 43.6% 67.3% 0.32
Bagging Regressor 81.5% 39.8% 69.2% 0.31 82.5% 39.9% 70.1% 0.30

Table 8: Extended performance of ensemble models on the dev (D) and public test (T) sets (Track 2: Sentence
Level), including QWK, accuracy, ±1 accuracy, and distributional distance.
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B Prompt Details and Example

The following figure 1 illustrates the prompt used in the third track of the shared task, where we explored
prompt based zero shot classification using GPT 4.1. In this setting, the model was provided with
structured BAREC annotation guidelines to mimic human labeling. Figure 2 presents the guidelines
extracted from Habash et al. (2025), which were embedded in the prompt to serve as a rubric or set of
criteria for guiding the model in selecting the appropriate readability level.

Figure 1: Prompt example for the Arabic Readability Assessment
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Figure 2: Example of the guidelines used in the prompt to differentiate between the 19 different readability levels
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C Error Analysis Confusion Matrix

Figure 3: Confusion matrix on the dev set
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Figure 4: Confusion matrix on the public test set

D Model Hyperparamters

In this paper, we used the same hyperparameters for all models, training on the training set and tuning on
the dev set. Each model was trained for 10 epochs with a batch size of 32 for both training and evaluation.
We applied a weight decay of 0.01 and used a learning rate of 5e-5. The evaluation strategy was set to run
at the end of each epoch, with the best model automatically loaded based on the lowest validation loss,
which served as the metric for model selection.
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Abstract

This paper presents my participation in the
Sentence-level Readability Assessment, Strict
track of the BAREC Shared Task 2025 (El-
madani et al., 2025a). Building upon prior
work that fine-tuned pre-trained transformer
models (Elmadani et al., 2025b), this work
explores the impact of incorporating a rich
set of handcrafted features on readability pre-
diction performance. A total of 51 features
were extracted from the BAREC corpus (El-
madani et al., 2025b), including morpholog-
ical, lexical, and syntactic indicators, lever-
aging established computational linguistics
tools. These features were integrated into a
hybrid architecture that combines transformer-
based contextual embeddings with dense lay-
ers for feature processing. To optimize perfor-
mance, experiments included freezing strate-
gies and gradual unfreezing, alongside architec-
tural variations with additional classification
layers. Among the tested models, the best
performance was achieved with MARBERT,
reaching a Quadratic Weighted Kappa (QWK)
of 80.95% on the test set, and 83.1% on the
blind test set.

1 Introduction

Readability assessment aims to determine the ease
or difficulty with which a reader can comprehend a
given text. In educational contexts, accurate read-
ability prediction supports tasks such as tailoring
learning materials to students’ proficiency levels,
selecting appropriate reading passages, and devel-
oping adaptive learning systems. While research
in English readability assessment has been exten-
sive, Arabic remains comparatively underexplored,
even though it has a rich morphology, diglossic na-
ture, and complex orthographic and syntactic struc-
tures, all of which present unique challenges for
computational modeling. The Sentence-level Read-
ability Assessment task introduced in the BAREC
Shared Task 2025 (Elmadani et al., 2025a) ad-

dresses these challenges by focusing on predicting
19 readability levels, based on the Taha/Arabi21
readability framework (Taha, 2017), for isolated
Arabic sentences. Sentence-level assessment is
inherently more challenging than document-level
assessment, as the absence of broader discourse
and contextual cues limits the available linguis-
tic signals for prediction. Previous work (El-
madani et al., 2025b), has demonstrated competi-
tive performance using fine-tuned transformer mod-
els without incorporating additional features. In
this work, we present a hybrid approach that in-
tegrates 51 handcrafted linguistic and structural
features with transformer-based contextual embed-
dings. These include counts of specific morpho-
logical forms (e.g., dual and plural noun/adjective
inflections, broken plurals, verb tense and voice
distinctions), syntactic constructions (e.g., nominal
and verbal sentence types, complex clausal struc-
tures, object presence), functional particles (e.g.,
negation, prepositions, demonstratives, vocatives),
and broader lexical indicators (e.g., unique word
count, content word proportion, vocabulary rich-
ness measures. We further explore strategies such
as layer freezing, gradual unfreezing, and the addi-
tion of extra classification layers to enhance perfor-
mance. The results on both the test and blind test
sets demonstrate that the inclusion of complemen-
tary features alongside transformer representations
can yield improvements over purely transformer-
based baselines, though the degree of improvement
is model-dependent.

2 Background

The BAREC Shared Task 2025 (Elmadani et al.,
2025a) introduced the Sentence-level Readability
Assessment challenge for Arabic, designed to pro-
mote the development of models capable of fine-
grained readability prediction. The task is framed
as a multi-class classification problem with 19 dis-
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crete readability levels. These levels are assigned to
individual sentences based on a combination of lin-
guistic, lexical, and pedagogical criteria, enabling
precise targeting of reading materials to learner pro-
ficiency levels. I participated in the Strict Track
where participants are restricted to using only the
provided training data without incorporating any
external corpora or embeddings. The dataset is split
into training, development, test, and blind test sets.
Each instance comprises an Arabic sentence and its
readability label. The challenge lies in the granu-
larity of the classification (19 levels), the diglossic
and morphologically rich nature of Arabic, and the
limited contextual cues available at the sentence
level.

While readability assessment for English has
benefited from decades of research using both hand-
crafted features and neural models (Sun et al., 2020;
Deutsch et al., 2020; Heilman et al., 2007; Petersen
and Ostendorf, 2009), Arabic-specific efforts re-
main comparatively limited. Early efforts relied on
textbook corpora and statistical machine learning
models (Al-Khalifa and Al-Ajlan, 2010). More re-
cent work has explored both handcrafted linguistic
features and modern pretrained language models
(PLMs) such as AraBERT (Berrichi et al., 2024).
The latest research trends emphasize hybrid ap-
proaches that combine traditional rule-based meth-
ods with PLMs, leveraging their complementary
strengths for improved Arabic readability predic-
tion (Liberato et al., 2024).

The SAMER project has further advanced Ara-
bic readability resources. The SAMER Lexi-
con (Al Khalil et al., 2020) provides a five-level
readability-annotated lexicon of approximately
26K lemmas, covering multiple dialects and achiev-
ing high inter-annotator agreement. Building on
this, the SAMER Corpus (Alhafni et al., 2024)
constitutes the first manually annotated Arabic par-
allel corpus for text simplification, consisting of
around 159K words from 15 Arabic novels, each
accompanied by two simplified parallel versions at
different readability levels. These resources pro-
vide an important foundation for readability and
simplification research in Arabic.

In addition, (Hazim et al., 2022) introduced
a Google Docs add-on for Arabic word-level
readability visualization. The tool integrates the
SAMER Lexicon with morphological analysis and
Arabic WordNet to highlight difficult words in con-
text and suggest simpler alternatives. This practi-
cal interface enables annotators and educators to

assess, simplify, and edit text directly within a fa-
miliar document editor, thereby making readability
resources more accessible and actionable for cor-
pus creation and pedagogical tasks.

3 System Overview

In this paper, the system adopts a hybrid architec-
ture that integrates transformer-based contextual
embeddings with handcrafted linguistic features
for sentence-level readability prediction in Arabic.
The design was motivated by the need to capture
both deep semantic representations and explicit lin-
guistic signals grounded in the BAREC annotation
framework (Habash et al., 2025).

Five pre-trained models were experimented with:
MARBERT , MARBERTv2 (Abdul-Mageed et al.,
2021), AraBERTv2, AraBERTv02 (Antoun et al.,
2020), and CamelBERT-MSA (Inoue et al., 2021).
These models were selected for their strong per-
formance on Arabic NLP tasks and their coverage
of Modern Standard Arabic (MSA) and dialectal
variants. For each model, the final hidden state
of the [CLS] token, was extracted as the sentence
representation.

3.1 Features

To complement the transformer embeddings, we
engineered 51 handcrafted features inspired by the
BAREC guidelines (Habash et al., 2025). These
include:

• Morphological features: counts of prefixes,
suffixes, verb tenses, plural forms, passive
voice, etc.

• Syntactic features: dependency-based indi-
cators such as presence of nominal sentences,
verbal sentences with/without objects, voca-
tives, preposed predicates, and coordination
structures.

• Word/syllable counts: normalized counts of
unique words and syllables, leveraging dia-
critized forms for accuracy.

• Vocabulary-based features: sentence-level
lexical difficulty scores derived from a
lemma–POS vocabulary dictionary, aug-
mented with the SAMER (Al Khalil et al.,
2020) and dialect-sensitive markers.

• Content-based features: estimated
idea/conceptual difficulty levels (ranging
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from concrete to symbolic/abstract), obtained
by fine-tuning a sentence-level AraBERT
(Antoun et al., 2020) classifier.

Full details of the features and their extraction
process are provided in the appendix A, but a sum-
mary of the methodology is given here. Feature
extraction combined a range of resources, includ-
ing CAMeL Tools (Obeid et al., 2020), regular
expressions, external lexicons, and custom Python
scripts. Morphological features were obtained us-
ing the CAMeL Tools morphological disambigua-
tor, which decomposed tokens into base forms and
affixes. This enabled systematic counting of pre-
fixes, suffixes, and clitics at the sentence level, as
well as identifying verb tense and voice distinc-
tions such as active versus passive forms. Bro-
ken plurals and feminine plurals were similarly
detected through combinations of morphological
tags, following the rules outlined in Table 4 in
the appendix. Syntactic features were extracted
from dependency parses generated by CamelParser
(Elshabrawy et al., 2023). Each sentence was trans-
formed into a syntactic tree, from which binary
indicators were derived to mark the presence of
grammatical phenomena such as nominal versus
verbal sentences, vocatives, and coordination struc-
tures. This rule-based approach ensured that subtle
markers of syntactic complexity were systemati-
cally encoded, as summarized in Table 5 in the
appendix.

Content-based features followed the BAREC
framework, which defines eight levels of concep-
tual difficulty from concrete ideas to abstract or
symbolic knowledge. A sentence-level AraBERT
(Antoun et al., 2020) classifier was fine-tuned to
predict these levels, which were then used as cate-
gorical features. Vocabulary-based features were
derived through a multi-step pipeline aimed at
quantifying lexical difficulty. First, a lemma–POS
dictionary was constructed from the BAREC train-
ing set by tracking the distribution of each pair
across all 19 readability levels. To account for
noise and rare outliers, three thresholding strategies
were evaluated (strict, relaxed-1%, and relaxed-
2%), where the relaxed-1% variant provided the
best balance between robustness and sensitivity.
This dictionary allowed each sentence to be as-
signed a vocabulary score based on the most ad-
vanced lemma–POS pair it contained. To further
strengthen coverage and align with curriculum-
based readability scales, the dictionary was en-

riched with entries from the SAMER lexicon
(Al Khalil et al., 2020), which provided additional
structured mappings between words and difficulty
levels. Together, these methods ensured that the
handcrafted features captured complementary di-
mensions of linguistic complexity-morphological,
syntactic, semantic, and lexical-beyond transformer
embeddings.

3.2 Hybrid Architecture

The system combines transformer embeddings with
feature representations through a dual-branch ar-
chitecture.

Transformer branch. A BERT encoder pro-
duces contextual embeddings for the input sen-
tence.

Feature branch. Handcrafted features f ∈ Rd

(where d = 51) are processed through a Multi-
Layer Perceptron (MLP) with batch normalization
and ReLU activations.

Fusion. The feature representation is concate-
nated with the transformer [CLS] embedding.

Classification. A linear layer (softmax) maps the
fused representation to 19 readability levels.

4 Experimental Setup

4.1 Dataset and Splits

We conduct experiments on the BAREC Shared
Task 2025 dataset (Elmadani et al., 2025b) , which
provides labeled sentences for sentence-level read-
ability assessment. Following the official setup,
we use the train, development (dev), and test splits
provided. Additionally, we evaluate the blind test
set, which contains hidden labels released only for
the final submission phase.

4.2 Preprocessing

We integrated both raw text and handcrafted fea-
tures into our pipeline. For each split, we merged
the sentence text with 51 extracted linguistic fea-
tures. One-hot encoding was done on categorical
features such as content and vocabulary related
features. Finally, labels were shifted to a 0–18
range for compatibility with PyTorch’s classifica-
tion layer.

4.3 Training Setup

We experiment with five transformer models:
MARBERT, MARBERTv2, CamelBERT-MSA,
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Model Development Set Test Set

Acc19 ±1 Dist QWK Acc7 Acc5 Acc3 Acc19 ±1 Dist QWK Acc7 Acc5 Acc3

CamelBERT-MSA 46.36 61.60 1.47 72.97 56.81 62.80 70.18 48.39 64.27 1.35 75.37 58.81 63.71 71.21
MARBERTv2 52.64 67.91 1.23 78.40 62.38 67.10 73.80 53.23 68.49 1.16 80.06 62.65 66.98 73.24
AraBERTv02 45.31 60.82 1.58 67.22 55.75 62.04 68.91 46.73 63.01 1.48 68.80 56.82 62.15 69.13
AraBERTv2 43.42 59.86 1.53 72.37 53.98 60.94 68.00 44.99 62.65 1.41 74.29 55.56 61.05 68.76
MARBERT 54.69 69.28 1.19 79.38 63.93 68.44 75.08 54.45 69.75 1.11 80.95 63.93 67.99 74.11

Table 1: Sentence-level readability results on BAREC (Dev/Test). Best per column in bold.

Acc19 ±1 Dist QWK Acc7 Acc5 Acc3

Blind Set (submitted system) 56.10 72.50 1.00 83.10 67.00 70.50 75.80

Table 2: Official hidden-set results of our submission. Acc19 = exact 19-class accuracy; ±1 = adjacent accuracy;
Dist = mean absolute distance.

AraBERTv2, and AraBERTv02. We use the Hug-
ging Face Transformers library for model initial-
ization and PyTorch for training. Tokenization is
performed with the respective model’s pretrained
tokenizer, truncating or padding sequences to a
fixed maximum length. Models were trained us-
ing AdamW (lr=2e-5), batch size 16, for 6 epochs
with Cross-Entropy loss, linear warmup/decay
scheduling, and 0.3 dropout on an NVIDIA CUDA-
enabled GPU. To improve generalization, we adopt
a gradual unfreezing strategy: BERT embeddings
are frozen at the start, with the last 4 layers un-
frozen after epoch 1 and the full encoder unfrozen
after epoch 2. Early stopping with patience 3 is
applied based on validation QWK.

4.4 Evaluation Metrics
Readability assessment is treated as an ordinal clas-
sification task. We adopt the official metrics of the
shared task:

• Quadratic Weighted Kappa (QWK) – pri-
mary metric, penalizing larger misclassifica-
tions more heavily.

• Accuracy (Acc19/Acc7/Acc5/Acc3) – clas-
sification accuracy at different granularities
(collapsing 19 labels into 7, 5, or 3 bins), as
show in table 3.

• Adjacent Accuracy (±1 Acc19) – off-by-1
tolerance measure.

5 Results

Table 1 reports the performance of the hybrid archi-
tecture on all five pretrained models on the devel-

Granularity Group BAREC Levels (1-19)

Acc3
1 1–11
2 12–13
3 14–19

Acc5

1 1–7
2 8–11
3 12–13
4 14–15
5 16–19

Acc7

1 1
2 2–5
3 6–8
4 9–10
5 11–13
6 14–15
7 16–19

Table 3: Coarse-grained groupings of the 19 BAREC
readability levels used to compute Acc3, Acc5, and
Acc7.

opment and test splits of the BAREC Shared Task
2025. Overall, MARBERT achieved the strongest
performance, reaching a QWK of 79.38% on the
dev set and 80.95% on the test set. It also achieved
the lowest average distance (1.11) and the highest
exact accuracy (54.45%), confirming its robustness
for fine-grained sentence-level readability assess-
ment. MARBERTv2 followed closely, with a test
QWK of 80.06%, suggesting that both MARBERT
variants are particularly well-suited for the task.

We compared the hybrid models to text-only
baselines for each pretrained model from (?) . The
feature branch produced consistent improvements
only with MARBERT (best QWK and lowest dis-
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tance), whereas CamelBERT-MSA and AraBERT
(v2/v02) showed very similar scores with and with-
out features across Acc19,±1 Acc, Dist, and QWK.
This indicates that the benefit of feature–text fusion
is model-dependent rather than universal, and that
strong PLM representations can already capture
much of the signal for some encoders.

Blind set (official leaderboard). On the blind
set used for the leaderboard, our submitted system
achieved the results in Table 2. This placed us 9th
on the Strict Path.

6 Conclusion

This work presented a hybrid transformer–feature
architecture for sentence-level Arabic readability
assessment in the context of the BAREC 2025
Shared Task. By integrating 51 handcrafted lin-
guistic, syntactic, morphological, and lexical fea-
tures with contextual embeddings from pretrained
Arabic language models, the system sought to cap-
ture complementary signals for fine-grained read-
ability classification across 19 levels. Experimen-
tal results highlighted that MARBERT delivered
the strongest performance, achieving a QWK of
80.95% on the test set and 83.1% on the hidden
leaderboard, underscoring its robustness for han-
dling sentence-level complexity in Arabic. The
findings demonstrate that while transformer-based
models alone provide strong baselines, combining
them with structured linguistic indicators can fur-
ther enhance performance, though the degree of
improvement is model-dependent. This work con-
tributes valuable insights into how feature engineer-
ing and representation learning can be jointly lever-
aged for readability modeling in morphologically
rich and diglossic languages like Arabic. Future
research may focus on incorporating dialectal di-
versity, enriching the dataset with larger and more
varied corpora, and further engineering linguistic
features to capture nuanced aspects of Arabic sen-
tence complexity.

7 Limitations

This work is constrained by several limitations that
restrict the scope and generalizability of its find-
ings. First, the observed benefits of combining
handcrafted linguistic features with transformer-
based embeddings appear to be model-dependent.
Improvements were most notable with MARBERT,
while other pretrained models showed less consis-
tent gains. This raises questions about the robust-

ness and generalizability of the hybrid approach,
suggesting the need for broader experimentation
across architectures and domains. Second, the cur-
rent setup focuses on sentence-level readability as-
sessment, which inherently overlooks discourse-
level context. Cohesion, coherence, and pragmatic
cues that extend beyond individual sentences are of-
ten crucial for determining text difficulty, and their
absence limits the granularity of prediction. Third,
although the handcrafted features were carefully
designed to reflect BAREC annotation guidelines,
they rely on rule-based extraction pipelines that
may introduce errors or fail to capture more nu-
anced aspects of Arabic syntax, morphology, and
dialectal variation. These constraints highlight the
need for richer and more diverse datasets and the
development of adaptive, data-driven feature engi-
neering techniques. Addressing these challenges
will be essential for advancing the accuracy, and
real-world applicability of Arabic readability as-
sessment systems.
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word count. To align with this framework, a com-
prehensive set of linguistic features was engineered,
rooted in these dimensions. These features fall un-
der five main categories: morphological, syntac-
tic, word/syllable counts, vocabulary-based, and
content-based. Feature selection was guided by
the criteria outlined in the BAREC guidelines to
reflect the linguistic signals that influence sentence
complexity.

Feature extraction was conducted using a com-
bination of CAMeL Tools (Obeid et al., 2020),
regular expressions, external lexicons, and custom
Python scripts. Below is a breakdown of each fea-
ture group and the extraction methods used:

• Morphological Features

– Number of prefixes, suffixes, and cl-
itics: Extracted using CAMeL Tools’
morphological disambiguator. Each to-
ken was decomposed into its base form
and affixes, and counts were aggregated
per sentence.

– Verb tense and voice (e.g., passive,
active): Identified using the POS tags
and morphological features provided by
CAMeL Tools.

– Use of different forms ( broken plu-
rals, feminine plurals): Detected using
morphological patterns and specific tag
combinations (e.g.,singular form and plu-
ral num) from CAMeL analysis.

Table 4 shows the specific rules for all mor-
phological features.

• Syntactic Features
Syntactic complexity plays a key role in de-
termining sentence-level readability in Ara-
bic. To capture this, a set of rule-based
syntactic features was developed using de-
pendency parsing outputs using the Camel-
Parser(Elshabrawy et al., 2023).

A dependency parse was first used to construct
syntactic trees for each sentence, allowing for
the identification of grammatical relations be-
tween words. From these structures, a set of
binary features was extracted to reflect the
presence or absence of key syntactic phenom-
ena.

Table 5 shows the specific rules for all Syntac-
tic features.

• Content-Based Features
The BAREC annotation guidelines include a
dedicated dimension for evaluating the con-
ceptual and semantic difficulty of a sentence,
referred to as the content level. This dimen-
sion considers the type of knowledge required
for comprehension, the presence of abstract
or symbolic ideas, and the cognitive demands
placed on the reader. The guidelines define
eight content levels, ranging from direct and
concrete ideas (e.g., daily life topics requir-
ing no prior knowledge) to highly abstract,
symbolic, or culturally nuanced content that
assumes specialized background knowledge.
To automatically estimate this content com-
plexity, a sentence-level classifier was devel-
oped by fine-tuning an AraBERT model. The
model was trained to predict one of the eight
content levels defined in the guidelines, treat-
ing this as a multi-class classification task.
These predicted levels were then included as
features in the broader feature set used for
readability prediction. Table 6 provides a sum-
mary of the eight content levels defined in the
BAREC framework, along with example indi-
cators used during annotation.

• word/syllable counts

– Word count: Computed as the number
of unique words in a sentence, ignoring
repetitions, or punctuation.

– syllable count: The number of syllables
in each word is computed by incorporat-
ing morphological and phonetic informa-
tion. The CAPHI (consonant–vowel pat-
tern) representation, the diacritized form
of the word, and morphological prefix
annotations are used for a more accurate
count of syllables. The CAPHI string
is tokenized and scanned for vowel seg-
ments, each indicating a potential sylla-
ble. Specific linguistic rules are applied
to refine the syllable count:

* The final vowels are excluded if it is
a diacritic (H. @Q«B
 @ �HA¿Qk).

* Morphological prefixes such as the
definite article ( 	­K
Qª�JË @ È@ ) and con-

junction ( �é 	®£A« ð@ð) are excluded, as
they do not contribute to the core syl-
labic structure of the main word.
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ccc

Feature Feature (Arabic) Rule
Singular imperfective verb XQ 	®ÖÏ @ ¨PA 	�ÖÏ @ Éª 	®Ë @ num=s, asp=i, pos=verb

Prtoclitic: Definite article Al+ 	­K
Qª�JË @ È@ : ��K. @ñ� prc0=Al_det

Proclitic: Conjunction wa+ 	­¢ªË@ ð@ð : ��K. @ñ� prc2=wa_conj

Enclitic: First Person Singular pronoun É��JÖÏ @ XQ 	®ÖÏ @ ÕÎ¾�JÖÏ @ Q�
ÖÞ
	� : ��k@ñË enc0=1s_pron / 1s_poss / 1s_dobj

Plural imperfective verb ©Òm.Ì'@ ¨PA 	�ÖÏ @ Éª 	®Ë @ pos=verb, asp=imp, num=p

Prepositional proclitics �éÊ��JÓ Qk.
	¬ðQk : ��K. @ñ� prc1=bi_prep / li_prep / ka_prep

Enclitic: Singular and Plural pronouns ©Ôg. ð


@ XQ 	®Ó É��JÓ Q�
ÖÞ

	� : ��k@ñË enc0 in [1p_dobj, ..., 3p_pron]

Dual (in nouns and adjectives) �HA 	®�Ë@ð ZAÖÞ�


B@ ú


	̄ ú 	æ�JÖÏ @ num=d, pos=noun / adj / noun_quant /
adj_comp

Sound feminine plural ÕËA�Ë@ �I	K 
ñÖÏ @ ©Ôg. form_num=p, form_gen=f, pos=noun /
adj

Singular and plural perfective verb ©Òm.Ì'@ð XQ 	®ÖÏ @ ú
æ
	�AÖÏ @ Éª 	®Ë @ pos=verb, asp=p, num=s / p

Sound masculine plural ÕËA�Ë@ Q» 	YÖÏ @ ©Ôg. form_gen=m, form_num=p, pos=noun /
adj

Dual perfective verb ú 	æ�JÖÏ @ ú
æ
	�AÖÏ @ Éª 	®Ë @ asp=p, num=d, pos=verb

Dual imperfective verb ú 	æ�JÖÏ @ ¨PA 	�ÖÏ @ Éª 	®Ë @ asp=i, num=d, pos=verb

Singular imperative verb XQ 	®ÖÏ @ QÓ


B@ Éª 	̄ pos=verb, asp=c, num=s

Enclitics: dual pronoun É��JÖÏ @ ú 	æ�JÖÏ @ Q�
ÖÞ
	� : ��k@ñË enc0=[2d_dobj, ..., 3d_pron]

Broken plurals Q�
�º�JË @ ©Ôg. pos=noun / adj, form_num=s, num=p

Waw of oath Õæ��®Ë @ ð@ð prc2=wa_prep and followed by qas-
sam_lex

Plural imperative verb ©Òm.Ì'@ QÓ


B@ Éª 	̄ asp=c, num=p, pos=v

Conjunctions (e.g., then, until, or...) ¡�. P �H@ðX


@ match of lex

Dual imperative verb ú 	æ�JÒÊË QÓ


B@ Éª 	̄ asp=c, num=d, pos=verb

Ba of oath Õæ��®Ë @ ZAK. prc1=bi_prep, lex in qassam_lex

Passive voice Èñêj. ÒÊË ú

	æJ. ÖÏ @ vox=p, pos=verb

Ta of oath Õæ��®Ë @ ZA�K prc1=ta_prep, lex in qassam_lex

Table 4: Morphological Features and Rules from BAREC Guidelines
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Table 5: Syntactic Features and Rules from BAREC Guidelines

Feature Feature (Arabic) Rule
Nominal sentence �éJ
ÖÞ�B@ �éÊÒm.Ì'@ parent != inna and sis-

ters, has a child with De-
pendency relation: SBJ
(subject), POS tag not
equal to VRB

Verbal sentence w/o di-
rect object

éK. Èñª 	®Ó 	àðYK. �éJÊª 	̄ �éÊÔg. parent = verb, no OBJ
Dependency relation

Preposition and object PðQm.×+ PAg. parent pos: PRT,
pos=prep in FEATS,
has a child with Depen-
dency relation: OBJ

Verbal sentence with
one nominal direct ob-
ject

Èñª 	®Ó ©Ó �éJÊª 	̄ �éÊÔg.Õæ� @ Yg@ð îE.

parent = PRT with
pos=prep, has a child
with Dependency rela-
tion: OBJ

Sentence with two verbs 	á�Êª 	̄ AîD 	̄ �éÊÔg. verb count
Verbal sentence with a
clausal direct object in-
troduced with Masdar
’an [˜to/that]

	à


@ AêËñª 	®Ó �éJÊª 	̄ �éÊÔg.�éKPY�ÖÏ @

Token is , pos = PRT
Has a child: pos =
VRB deprel = OBJ
asp=i(imperfective)

Verbal sentence with
two direct objects úÍ@
 øYª�J�K �éJÊª 	̄ �éÊÔg.	á�Ëñª 	®Ó

parent pos = VRB Two
children with Depen-
dency relation = OBJ

Vocative øXA 	JÖÏ @ parent has pos:PRT,
FEATS include
pos=part_voc Has
a child with Depen-
dency relation = OBJ

Inna and its sisters Aî�E@ñ 	k


@ð 	à@
 parent matches the

lemma set, has a child
with Dependency rela-
tion=PRD

Kana and its sisters é�K @ñ 	k


@ð 	àA¿ parent pos=verb, lemma

in kana set, has a child
with Dependency rela-
tion = PRD

Preposed predicate,
postponed subject

Q 	k 
ñÖÏ @


@Y�JJ. ÖÏ @ð ÐY�®ÖÏ @ Q�. 	mÌ'@ Dependency relation=

SBJ, has a child: pos !=
VRB, index of parent <
index of child

Nominal sentence with
a nominal predicate �éÊÔg. AëQ�. 	g �éJ
ÖÞ�



@ �éÊÔg.( 	à

�
@Y�JJ.Ó AîD
	̄ ) �éJ
ÖÞ�



@

The sentence does not
start with a verb It con-
tains a child node with
deprel == "TPC" (topic)

False idafa (tall in
stature)

( �éJ
 	¢ 	®Ë) �éJ
ËAJ
 	k �é 	̄ A 	�@
 parent pos: NOM,
pos=adj in FEATS, Has
a child with Depen-
dency relation = IDF

Exception ZA 	J�J���@ pos ’=’partrestrict
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Table 6: Idea / Content Levels in English and Arabic

Idea / Content
øñ�Jm×ð �èQº 	̄

Direct, explicit, and concrete idea. No symbol-
ism in the text. ú


	̄ �éK
 	QÓP B . �éJ
�kð �é m�'
Qå�ð �èQå��A J. Ó �èQº 	̄
.�	JË @

Content is from the reader’s life. No symbol-
ism in the text. .�	JË @ ú


	̄ �éK
 	QÓP B . 
øPA�®Ë @ �èAJ
k 	áÓ øñ�JjÖÏ @
Some symbolism, or not everything is stated
directly in the sentence. É¾K. Qå��A J. ÖÏ @ l�'
Qå��J Ë @ ÐY« ð



@ �éK
 	QÓQË@ 	�ªK.�éÊÒm.Ì'@ ú


	̄ Xñ��®ÖÏ @
Some symbolism that requires the reader to
seek help to understand the idea. �èY«A�Ó úÍ@
 
øPA �®Ë @ AêªÓ h. A�Jm�'


�éK
 	QÓQË@ 	�ªK.�èQº 	®Ë @ 	áÓ Xñ��®ÖÏ @ éË hQå���
 	áÓ
Some symbolism at the event level in the sen-
tence that the reader understands through prior
knowledge.

ú

	̄ �HYmÌ'@ øñ�J�Ó úÎ« �éK
 	QÓQË@ 	áÓ Zú
æ

�� ¼A 	Jë
ÈC 	g 	áÓ ð



@ é� 	® 	J K. 
øPA �®Ë @ A ê»PYK
 �éÊÒ m.Ì'@�é�®K. A�Ë@ é 	̄PAªÓ

A degree of symbolism and a need for prior
knowledge to understand the meaning of the
sentence.

�é 	̄Q ª Ò Ê Ë �ék. Agð �é K
 	Q ÓQ Ë@ 	á Ó �ék. PX ¼A 	J ë
. �éÊÒm.Ì'@ 	áÓ Xñ��®ÖÏ @ Ñê 	®�K
 ú
»

�é�®K. A�Ë@
Symbolic ideas and deeper meanings, espe-
cially in terms of the psychological dimension
of characters/events. Local cultural expres-
sions that may not be understood by those out-
side the culture.

YJ
ª� úÎ« �é�A 	g 	á£AK. ú 	æªÓð �éK
 	QÓP PA¾ 	̄ 
@
Q�
K. Aª�K . �H@Yg



B@ ð



@ �HAJ
� 	j ��ÊË ú
æ�

	® 	JË @ YªJ. Ë @
ú

	̄ ¼Q�� ���
 B 	áÓ AêÒê 	®K
 B Y�̄ �éJ
Ê m× �éJ
 	̄ A �®�K

. �é 	̄ A �®�JË @ � 	® 	K
Symbolic, abstract, scientific, or poetic ideas
that require prior linguistic and cognitive
knowledge to understand.

h. A�Jm�
�'ð �éK
Qª �� ð



@ , �éJ
ÒÊ«� , �èXQm.× , �éK
 	QÓP PA¾ 	̄



@

AîD
Ê« ZA 	JJ. ÊË �é �®K. A� �éJ
 	̄QªÓð �éK
ñ 	ªË 	¬PAªÓ úÍ@

. AêÒê 	̄ Ég.



B
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* In the absence of CAPHI informa-
tion, syllables are counted by identi-
fying diacritic characters correspond-
ing to short vowels within the dia-
critized form of the word.

• Vocabulary-based Features

Vocabulary was handled in three different
ways to estimate the lexical difficulty of sen-
tences. Firstly, to estimate the vocabulary dif-
ficulty of a sentence, a level-based vocabu-
lary scoring system was constructed using the
training set of the BAREC dataset. The pro-
cess began by extracting all lemma–Part of
Speech (POS) pairs from the training data us-
ing the cameltools disambiguator. For each
pair, the number of occurrences was counted
across all 19 BAREC readability levels. This
allowed for identifying the earliest level at
which each lemma–POS pair appeared in the
corpus.

To account for annotation noise or occasional
use of advanced vocabulary in lower levels,
three variants of vocabulary level assignment
were considered:

– Strict: The lowest level at which the
lemma–POS pair appeared.

– Relaxed (1%): The lowest level where
the pair appeared, allowing for a 1% er-
ror margin of frequency across levels.

– Relaxed (2%): Similar to the above but
with a 2% margin.

These thresholds introduced flexibility, ensur-
ing that a few early occurrences of complex
vocabulary in lower-level sentences did not
skew the overall difficulty estimation.

Once each lemma–POS pair was associated
with a level, a vocabulary-level dictionary was
constructed containing all lemma–POS pairs
from the training data along with their as-
signed difficulty levels. This dictionary was
then used to map vocabulary in the develop-
ment and test sets. New input sentences were
transformed into lists of lemma–POS pairs,
and for each sentence, the vocabulary level
was defined as the highest (i.e., most diffi-
cult) level among all matched pairs. Experi-
ments were conducted using all three thresh-
old variants, and the version yielding - 1% er-
ror margin- the best performance was selected

for use in the final model.

In addition to the data-driven vocabulary
extracted from the training set, it was ob-
served that expanding the lexical coverage
further improved performance. The BAREC
annotation guidelines specifically reference
certain levels from the SAMER readability
lexicon (Al Khalil et al., 2020) as indica-
tive of vocabulary difficulty. To incorporate
this, the SAMER lexicon was used to aug-
ment the existing vocabulary-level dictionary.
Lemma–POS pairs from SAMER were as-
signed levels in accordance with the BAREC
guidelines, thereby enriching the vocabulary
feature set with structured, curriculum-aligned
information.

To introduce dialectal sensitivity—also high-
lighted in the BAREC guidelines—a supple-
mentary lexicon from the BAREC project was
utilized. This lexicon consists of approxi-
mately 5,000 annotated words, each marked
with a dialectal match indicator. Although this
represents a relatively small subset of the over-
all vocabulary, it introduces an important di-
mension of variation and adds a foundational
layer of dialectal awareness to the feature set.

This layer is particularly valuable because it
enables the model to distinguish between vo-
cabulary that overlaps across Modern Stan-
dard Arabic and dialects versus vocabulary
that exists only in dialectal usage. Words
that are common across both MSA and di-
alects—such as “chair" (ú
æ�Q»), which ap-

pears consistently in both—are typically intro-
duced at earlier reading levels and thus ranked
lower in complexity. In contrast, words like
“window," which differ in MSA and dialectal
forms (e.g., “ �è 	Y 	̄ A 	K" vs. “¼AJ. ��"), are treated as
more complex and are ranked at higher read-
ability levels. Incorporating this information
allows the model to better reflect the lexical
difficulty that dialectal divergence introduces,
especially for learners who are trained primar-
ily on MSA vocabulary.

In addition to the above features, the barec
dataset specifes certain closed groups of
vocabs that can be identified using the
Cameltools disambiguator, these are shown
in table 7.
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Table 7: Vocabulary Feature Levels (English and Arabic)

Vocabulary
�H@XQ 	®ÖÏ @

Proper noun
Personal pronouns (non-clitics) ÕÎ« Õæ�@

É� 	® 	JÓ Q�
ÖÞ
	�

Singular demonstrative pronoun
XQ 	®ÖÏ @ �èPA ��B
 @ Õæ� @

Prepositions Qm.Ì'@
	¬ðQk

Dual and plural demonstrative pronoun ©Ôg. , ú 	æ�JÓ �èPA ��@ Õæ� @
Negation particles ù


	® 	JË @ 	¬Qk


@

Singular relative pronouns �èXQ 	®ÖÏ @ É�ñË@ ZAÖÞ�


@

Dual and plural relative pronouns. ©Òm.Ì'@ð ú 	æ�JÖÏ @ É�ñË@ ZAÖÞ�


@
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Abstract

PalNLP addressed Arabic readability level pre-
diction as a fine-grained ordinal classification
problem by strictly using the Balanced Arabic
Readability Evaluation Corpus (BAREC). The
approach treats the 19-class ordinal classifica-
tion problem as a regression task with post-
hoc threshold optimization, leveraging a BERT-
based model and an ensemble strategy. The
system achieved a Quadratic Weighted Kappa
(QWK) score of 81.1 in the blind test dataset,
indicating an almost perfect agreement between
the system’s classifications and the true labels,
and placing 18th out of 24 teams. The find-
ings show that the model effectively learned
broad readability patterns, with a competitive
±1 accuracy, but faced challenges in accurately
predicting readability levels of most sentences.

1 Introduction

The overlap between automatic readability assess-
ment (ARA) and other NLP tasks highlights its
importance. In summarization, for example, read-
ability frameworks and ARA may complement clas-
sic summarization metrics by evaluating the output
of audience-aware or level-controlled summariza-
tion models by predicting the level of the generated
summary against the original text input. Control-
ling summaries for readability levels can help these
models generate summaries that are more suitable
for their targets, as was done by Luo et al. (2022)
for biomedical texts.

Similarly, Plain Language (PL) and Easy-to-
Read1 (E2R) initiatives have been gaining trac-
tion in Europe (Espinosa-Zaragoza et al., 2023;
Martínez et al., 2024; Madina et al., 2024). They
aim to make governmental texts more accessible
for non-native speakers, people with reading lim-
itations, and people with cognitive, intellectual,
or learning disabilities. As part of the CLEARS

1Easy-to-read is also referred to as “easy reading".

Shared Task in IberLEF-2025 (Botella-Gil et al.,
2025), Ayesh et al. (2025) attempted to trans-
form Spanish texts in accordance with PL and E2R
guidelines and used the Fernández Huerta Readabil-
ity Index as one of the main metrics of evaluating
the results. This index shows the importance of
readability levels as an evaluation metric for a suc-
cessful summary. Such alignment to reader profi-
ciency supports better comprehension and learning
outcomes (Elmadani et al., 2025b).

This task is particularly challenging for Ara-
bic due to its morphological richness and ortho-
graphic ambiguity, and the diglossia that exists
between Modern Standard Arabic and spoken di-
alects (Suwaiyan, 2018; Liberato et al., 2024; El-
madani et al., 2025b). The scarcity of large, fine-
grained, and publicly available Arabic readability
resources has further limited the development of ro-
bust modeling approaches. Existing resources like
the word-level SAMER Lexicon (Al Khalil et al.,
2020) and word- and document-level SAMER Cor-
pus (Alhafni et al., 2024) are valuable but often
domain-specific or coarse in granularity.

The new Balanced Arabic Readability Evalu-
ation Corpus (BAREC) (Elmadani et al., 2025b)
offers an opportunity to explore readability pre-
diction with high granularity by providing over
69 thousand sentences2 labeled across 19 readabil-
ity levels, enabling modeling that captures lexical,
morphological, and syntactic variation.

This paper presents the system that was submit-
ted to the BAREC 2025 Shared Task (Elmadani
et al., 2025a) for predicting BAREC readability
levels, which can be summarized as a regression-
then-discretization approach that is optimized for
Quadratic Weighted Kappa (QWK). This formu-
lation directly accounts for the ordinal nature of
the labels and prioritizes proximity to the real level
over exact level matches. The contributions of

2Sentence here is used broadly to mean a standalone text.
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this system can be summarized as follows: (1) a
regression-based approach with coordinate descent
threshold optimization for ordinal classification, (2)
the integration of a BERT-based model with class
imbalance handling and ensemble aggregation, and
(3) the analysis of performance across granularities,
showing strong ordinal capture but challenges in
fine-grained separation.

2 Background

Readability assessment in Arabic has benefited
from recent advances in corpus creation and lexical
resource development. The Taha/Arabi21 frame-
work (Taha-Thomure, 2017) provides a 19-level
scale for educational text leveling, which BAREC
adapts to the sentence level through refined anno-
tation guidelines encompassing lexical, morpho-
logical, syntactic, and semantic features (Habash
et al., 2025). Complementary resources include the
SAMER readability lexicon (Al Khalil et al., 2020),
which contains over 26,000 lemmas annotated with
five difficulty levels by language experts from mul-
tiple Arab regions, and the SAMER reading corpus
(Alhafni et al., 2024), which spans 1.4 million to-
kens from UAE curriculum materials and 5.6 mil-
lion tokens from literary works. These resources
support both lexical- and document-level readabil-
ity modeling. Tools such as the word-level read-
ability visualization add-on (Hazim et al., 2022)
demonstrate practical applications in assisted text
simplification and highlight the potential of inte-
grating lexical difficulty features into automatic
assessment systems.

In this shared task, participants predicted read-
ability levels of texts from the BAREC dataset, with
evaluation based on QWK. PalNLP participated in
the strict, sentence-level track, meaning no addi-
tional external data was used in the development of
the system alongside the sentence-level version of
the BAREC dataset.

3 System Overview

The system addresses Arabic readability prediction
as a continuous regression problem with post-hoc
threshold optimization, treating the 19-class ordi-
nal classification task through a regression-then-
discretization approach optimized for Quadratic
Weighted Kappa (QWK). This is due to the ordi-
nal nature of the readability levels. The system
used CAMeL-Lab’s readability-arabertv2-d3tok-
CE, which was used in the dataset’s paper (El-

Hyperparameter Value
Input processing Padding to 512 tokens
Batch size 16
Epochs 6 with early stopping
Learning rate 2e-5 with adaptive scheduling

Table 1: Hyperparameters used in the system. Early
stopping also includes patience of 3 epochs.

madani et al., 2025b), as the foundation model.
Although the model was originally fine-tuned as a
classification model with cross-entropy loss, this
system adapted its architecture for regression to
leverage the strong readability-sensitive features
learned in the CE setup while optimizing for con-
tinuous predictions. It was then combined with
a threshold optimization algorithm, and later, an
ensemble methodology.

The system used the sentence-level BAREC
dataset, loaded from HuggingFace, without any ad-
ditional data. Instead of using the default training
and validation splits, these two sets were combined,
and 5-fold stratified cross-validation was applied
to the merged dataset. This was due to a sustained
plateau in validation loss throughout the initial ex-
periments. As a result, the system is not directly
comparable to other participants’ systems. The test
split remained unchanged. To address class im-
balance, PyTorch’s WeightedRandomSampler was
used with inverse class frequency weighting during
training to ensure that rare readability levels were
adequately represented.

4 Experimental Setup

The core architecture consists of a BERT-based re-
gressor with a single continuous output head where
ordinal class labels are treated as continuous values
for training. MSE loss was employed with AdamW
optimization, and a combination of linear warm-
up and ReduceLROnPlateau scheduling based on
validation QWK performance. Table 1 shows the
specific hyperparameter values in the system.

Throughout the tens of experiments that were
run before this final one was adopted, the systems
under-performance on the validation dataset was
observed despite achieving good scores in the train-
ing. A key innovation in this approach is the coordi-
nate descent algorithm for threshold optimization;
rather than using simple rounding to discretize con-
tinuous predictions, the model iteratively optimizes
the thresholds associated with each class to maxi-
mize QWK on validation data through grid-based
coordinate descent with multiple passes. This
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strategy consistently provided 1-2% improvements
over naive rounding during the training.

Final results are derived by thresholding the con-
tinuous predictions into class labels. The best
model of each fold gets saved and the different
folds are used to predict the readability level by ag-
gregating the predictions using each fold’s thresh-
old weights.

5 Results and Error Analysis

5.1 On the provided datasets

The results of cross-validation, found in Table 4
in Appendix A, showed consistency, with a QWK
range of 79.85-80.21, indicating robust generaliza-
tion.

After the training was done, and the system con-
cluded with a QWK score of 79.66 with global
thresholds, the predictions on the provided test
dataset were obtained by ensembling all different
folds, where predictions from the best model of
each fold were combined using a weighted ensem-
ble approach. This means that fold-specific thresh-
old weights were applied before aggregating to fi-
nal discrete readability predictions. The final QWK
score on the test set was 77.7.

Table 2 summarizes the system’s performance
on the test dataset after ensembling. The results
show that the model certainly learned the ordinal
structure of BAREC well and that its misclassified
labels were close to the correct level, as evidenced
by the ±1 level accuracy. The model, however,
struggled with exact classification. An illustration
of this can be found in Figure 1.

Impact of domain and word count. After a
curious look into the top 100 sentences with the
predicted levels furthest from the true levels3, it
was apparent that those that were underestimated
(i.e., the true readability levels were higher than
the predicted ones) were short, with 94% of those
being fewer than 5 words long. 76% of those short
sentences are specialized or advanced texts; 32%
are specialized and advanced texts from the Emi-
rati curriculum, while 22% come from the Quran.
Detecting the true readability level of these specific
sentences might have required a model that also
considers qualitative features, such as the source of
the text and its class. Examples of such texts can
be found in Appendix D.

350 sentences in each direction (positive and negative dif-
ferences) were considered in this analysis.

A similar pattern can be seen among sentences
whose readability levels were overestimated (i.e.,
their true readability levels were lower than the
predicted ones) where 46% were 5 words long or
fewer, and 68% were 7 words long or fewer. The
length of these sentences might have had an impact,
but the impact of the type of the text (foundational,
specialized, or advanced) was not as significant, as
there was somewhat an equal distribution between
specialized and advanced (52%) and foundational
(48%) texts. A deeper look into why the model
overestimated their levels is required.

Impact of diacritics. Despite using an Arabic-
specific BERT model, it seems that the system con-
tinuously misclassified texts with diacritics as ones
with high readability levels. While the reasons be-
hind why that happened make sense, it was not an
outcome that was expected at all. The sentence
with one of the greatest differences from the true
readability level was a diacritized proper name4

with no inherent difficulty. It had a readability level
of 3 but was misclassified as having a readability
level of 15. Another example5 had a readability
level of 8 but was classified as 15 due to the diacrit-
ics. These stark differences reflect the importance
of pre-processing Arabic texts to allow the trained
models to capture real features that reflect the read-
ability levels of texts, rather than superficial ones
such as diacritics that do not necessarily entail a
difficult or advanced level.

After this error was detected, the test set was
passed through the system to generate predictions,
however, this time the diacritics were stripped us-
ing PyArabic’s6 strip_diacritics method be-
forehand. The performance on the de-diacritized
test set can be found in Table 2, alongside the orig-
inal scores before stripping diacritics. The new
results better resemble those of PalNLP’s on the
blind test set, and an improvement can be seen
in all metrics, especially a +3.5 improvement in
the QWK score and both the exact and ±1 level
accuracy scores.

Additionally, the ranges of difference between
the true readability and predicted levels dropped
from (-15, 12) to (-11, 8)7: the drop in each com-

4Y� g.� AÓ
�	á�K.

�Y�Ô �g
�

@ 	á� K


�YË@ �H. AîD���
Sentence ID: 10400320088

5 Z� AJ.
�̄ �QË @ 	á« ú 	æªÖÏ @ I.�

�j. m�
��' ÕË Z� @Xñ�Ë@ �è�P

�
A �	¢ 	JË @ 	áÓ� A�J. �j. �«

Sentence ID: 30100250057
6https://pypi.org/project/PyArabic/
7The highest negative difference is on the left, and the

highest positive difference is on the right.
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Metric Before SD After SD
QWK 77.7 81.25

Exact Accuracy 29.99% 34.37%
±1 Level Accuracy 65.88% 69.48%
7-Class Accuracy 50.96% 54.78%
5-Class Accuracy 51.85% 53.17%
3-Class Accuracy 66.58% 67.94%

Table 2: The system’s performance on the test set, be-
fore and after stripping diacritics (SD).

ponent indicates reduced error bounds, reflecting
fewer extreme under- and over-estimations and
more tightly aligned predictions with the true read-
ability levels. Table 5 in Appendix B further solid-
ifies the improvement in performance; it shows a
great improvement in exact predictions (+319) cou-
pled with consistently less differences after strip-
ping diacritics.

The heat maps in Appendix D further illustrate
the improvement: after stripping diacritics, the con-
fusion matrix becomes more diagonal, with notice-
ably fewer misclassifications concentrated in the
upper readability levels.

5.2 On the blind test dataset
The system achieved 18th place out of 24 teams
with an official QWK score of 81.1. The score
is close to the organizers’ baseline of 81.5. Ta-
ble 3 contains a summary of the performance of
PalNLP’s system on the blind test set. Overall,
the consistency between cross-validation (79.96-
80.21), test set (77.7), and competition results
(81.1) demonstrates the effectiveness of the val-
idation strategy, and the system performing better
in the blind test set shows that the model did not
overfit on the training dataset.

It can be safely said that the ordinal structure
of the BAREC dataset was effectively captured by
the system, as evidenced by the much smaller gap
in ±1 accuracy between the system (69.8%) and
the organizers’ (72.0%). This indicates that the
model learned the ordinal structure well and that
its misclassified labels are mostly close to the cor-
rect level. Additionally, performance gaps between
PalNLP’s system and the baseline decreased dra-
matically as classification granularity was reduced,
from 25% difference in 19-class accuracy to only
4% in 3-class accuracy. This shows that the model
successfully learned broad readability patterns.

The system, however, struggled with fine-
grained distinctions between adjacent levels. The

Metric PalNLP Baseline
Avg. Absolute Distance 1.3 1.0

QWK 81.1 81.5
Exact Accuracy 33.1% 58.1%

±1 Level Accuracy 69.8% 72.0%
7-Class Accuracy 57.2% 67.7%
5-Class Accuracy 63.6% 71.4%
3-Class Accuracy 72.5% 76.5%

Table 3: The system’s performance on the blind test set,
provided by the prediction log on CodaBench. The base-
line scores were taken from the competition’s leader-
board on CodaBench.

significant gap in exact accuracy between this sys-
tem (33.1%) and the organizers’ (58.1%) contrasted
with the minimal QWK difference is expected as
the regression framework was optimized for rank
correlation rather than precise classification.

6 Conclusion

This paper presented a regression-then-
discretization system for Arabic readability
prediction on the BAREC dataset, with a focus
on maximizing QWK. By modeling the task as
a continuous regression problem with post-hoc
threshold optimization, the results showed that the
system captured the ordinal nature of readability
levels in BAREC, favoring proximity to the true
label over exact agreement. The BERT-based
model with stratified cross-validation, class
imbalance handling, and ensemble aggregation
produced results that consistently generalized
across validation, test, and competition evaluations.

Several key observations emerged. (1) The sys-
tem broadly understood readability patterns but
found fine-grained separation between adjacent
levels challenging. (2) The regression formula-
tion, combined with threshold optimization, con-
sistently outperformed naive rounding strategies
and improved alignment with the dataset’s ordinal
structure. (3) The error analysis highlighted sys-
tematic weaknesses, such as underestimation of
short, specialized sentences, and misclassification
of diacritized text as advanced-level material. (4)
The consistent alignment between cross-validation,
test, and blind test results prove that PalNLP’s strat-
egy was robust with minimal overfitting.

The role of pre-processing and text-specific fea-
tures point toward future refinements, such as train-
ing the model after handling diacritics and possibly
other pre-processing techniques. Further work may
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explore the performance of this system after inte-
grating additional resources such SAMER that can
alleviate the effect of class imbalances in BAREC.
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A Cross-validation scores

Table 4 presents the five-fold cross-validation re-
sults. Across folds, the optimized thresholding
strategy (QWKopt) consistently outperformed fixed
rounding (QWKround) by about 1–2 points, con-
firming the benefit of post-hoc threshold optimiza-
tion. Training generally converged within 3–6
epochs, with early stopping triggered in three out
of five folds. These results indicate stable model
performance and reduced overfitting across folds.

B Differences between predicted and true
levels in the test set, before and after SD

Table 5 shows the distribution of differences be-
tween predicted and true levels before and after
stripping diacritics. The results show a reduction
in large deviations (e.g., no cases at ±15 or ±12
after SD, and consistent decreases from ±11 to ±5),
alongside an increase in exact matches (0 differ-
ence rose from 2185 to 2504). This indicates that
SD reduces the frequency of extreme cases while
improving overall alignment with the gold labels.

C Heat maps

Figures 1 and 2 show the normalized confusion
matrices before and after stripping diacritics. The
post-SD heat map exhibits a clearer diagonal pat-
tern, reflecting reduced over-prediction of lower
readability levels and stronger agreement between
true and predicted labels.

Fold QWKopt QWKround Epochs ES
1 79.85 78.05 3 At epoch 1
2 80.21 78.82 5 At epoch 3
3 79.96 78.56 6 No
4 79.96 78.85 6 No
5 79.90 78.77 6 At epoch 5

Table 4: Cross-validation results, with 5 folds. QWKopt

refers to the QWK score using the threshold optimiza-
tion strategy detailed earlier, as opposed to the score
using fixed rounding shown in QWKround. Early stop-
ping (ES) was included here to show when the QWK
results on the (custom) validation dataset plateaued.

Difference FbeforeSD FafterSD

±15 1 0
±12 1 0
±11 5 2
±10 6 3
±9 11 6
±8 27 18
±7 84 62
±6 94 59
±5 185 163
±4 344 306
±3 600 519
±2 1128 1086
±1 2615 2558
0 2185 2504

Table 5: The frequencies of differences between the
predicted and true levels in the test set, before and after
stripping diacritics (SD). The 0 difference in the last row
is synonymous with the frequency of exact predictions
made by the system.

D Examples of extreme differences

• 	à� A
�
¾ ��Ë@ �ñ�Ü

�	ß “Population growth"
predicted RL: 6, true RL: 14
(ID: 20400120059)

•
��è �ZA 	�@
� “Lighting"
predicted RL: 3, true RL: 11
(ID: 20400200031)

• . �	àñ	KA �®Ë @ “The law."
predicted RL: 4, true RL: 12
(ID: 20400360004),

• : ����̄ A 	K
�

@ “I discuss"

predicted RL: 4, true RL: 12
(ID: 20400550017)
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Figure 1: A normalized confusion matrix (heat map) of
predicted levels against the true levels of texts in the test
dataset before stripping diacritics.

Figure 2: A normalized confusion matrix (heat map) of
predicted levels against the true levels of texts in the test
dataset after stripping diacritics.
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Abstract

We present a visual-language approach to Ara-
bic readability assessment using the PIXEL Vi-
sion Transformer, which processes rendered
text as images to bypass tokenization chal-
lenges. Our system participated in the BAREC
2025 Shared Task (Sentence-level Strict track).
We evaluate orthographic variants (normaliza-
tion, diacritization, transliteration) and mor-
phological segmentation with different visual
boundary markers. Results show that diacritiza-
tion provides useful visual cues for disambigua-
tion, morphological segmentation improves
over word-level processing, and transliterated
scripts outperform native Arabic script. Our
approach demonstrates the potential of visual
processing for readability assessment in com-
plex languages and writing systems.

1 Introduction

Text readability is fundamental to effective compre-
hension, retention, reading speed, and engagement,
with texts exceeding a reader’s ability often leading
to disengagement and frustration (DuBay, 2004).
For Arabic, a language spoken by over 400 million
people worldwide, developing robust readability
assessment models is crucial for advancing literacy,
language learning, and academic performance (El-
madani et al., 2025b). These models are essential
for educators to prepare appropriate reading mate-
rials and enhance the learning experience, making
complex concepts accessible to a wide range of
students across the Arab world’s linguistically di-
verse populations. Arabic readability assessment
presents significant challenges rooted in the lan-
guage’s morphological richness, dialectal variants,
orthographic ambiguity and inconsistency (Habash,
2010), and the profound implications of these com-
plexities on standard tokenization methods.

We introduce an alternative approach: treating
text as a visual signal. By rendering Arabic sen-
tences as images and processing them with the

(a)

(b)

(c)

(d)

(e)

Figure 1: Visual comparison of Arabic script input vari-
ants, from top: (a) Default, (b) Normalized, (c) Dia-
critized, (d–e) Morphological segmentation (Tatweel
and default).

PIXEL Vision Transformer (Rust et al., 2022),
we aim to capture readability cues directly from
the graphetic and typographical properties of the
text. This approach offers several advantages: (1)
It bypasses the vocabulary bottleneck of token-
based models, avoiding sparsity and tokenization
errors; (2) It naturally encodes orthographic and
morphological variation; and (3) It facilitates cross-
language and cross-script transfer from large-scale
pretraining.

We describe our submission to the BAREC 2025
Shared Task on Arabic readability assessment (El-
madani et al., 2025a), where we: (1) Apply PIXEL
to sentence-level Arabic readability; (2) Compare
orthographic variants including normalization, di-
acritization, and transliteration; (3) Evaluate mor-
phological segmentation schemes with different
visual boundary markers.

Our experiments reaffirm PIXEL’s robustness
on orthographic variance and reveal that diacriti-
zation provides beneficial visual disambiguation
cues, morphological segmentation can improve
performance, and transliterated scripts yield more
tractable visual patterns. The findings highlight the
potential of visual processing for readability assess-
ment in complex languages and writing systems.
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2 Background

2.1 Arabic Readability Assessment

The Arabic readability assessment landscape fea-
tures several important datasets and frameworks.
Taha-Thomure (2017) developed a 19-level text lev-
eling framework for children’s literature, adopted
by the Arab Thought Foundation’s Arabi21 ini-
tiative to tag over 9,000 books. This procedural
framework outlines ten qualitative and quantita-
tive criteria, including text genre, abstractness of
ideas, vocabulary, text authenticity, and sentence
structure, primarily targeting full texts and early
education

The SAMER project contributed a five-level
readability lexicon for Modern Standard Arabic
(Al Khalil et al., 2020), initially containing 26,000
lemmas and later expanded to more than 40,000.
The lexicon was manually annotated in triplicate
by language professionals from three regions of
the Arab world and with detailed annotation guide-
lines. SAMER also produced the first manually an-
notated Arabic text simplification corpus (Alhafni
et al., 2024), 159K words from 15 fiction novels
with document- and word-level annotations. These
efforts are supported by practical applications such
as the Google Docs add-on by Hazim et al. (2022),
which visualizes word-level readability to assist
human annotators in text simplification

Leveraging the SAMER project resources, Lib-
erato et al. (2024) systematically explored different
modeling approaches for Arabic readability assess-
ment, ranging from rule-based methods to Arabic
pretrained language models. Their research bench-
marked models on a newly created corpus at both
word and sentence fragment levels, highlighting the
challenges posed by Arabic’s morphological rich-
ness and limited readability resources. Their find-
ings demonstrated that combining different model-
ing techniques yielded the best results.

Further extending these initiatives, the Balanced
Arabic Readability Evaluation Corpus (BAREC)
(Elmadani et al., 2025b) provides a large-scale, fine-
grained dataset consisting of 1,922 documents with
69,441 sentences spanning over 1 million words.
This corpus is carefully curated to cover 19 read-
ability levels, from kindergarten to postgraduate
comprehension, balancing genre diversity, topical
coverage, and target audiences. BAREC is consid-
ered the largest and most fine-grained manually an-
notated Arabic readability resource to date (Habash
et al., 2025).

2.2 Arabic Processing Challenges
Arabic poses major challenges for NLP tasks.

Morphological richness is a significant char-
acteristic, entailing complex inflections and cliti-
cization. Arabic words inflect for numerous gram-
matical features such as gender, number, person,
case, aspect, mood, and voice, while also incorpo-
rating various attachable proclitics (e.g., conjunc-
tions, prepositions, definite article) and enclitics
(e.g., pronominal objects) (Liberato et al., 2024).
This complexity leads to an extensive number of
word forms; for example, Modern Standard Ara-
bic (MSA) verbs alone can have upwards of 5,400
forms (Obeid et al., 2020). Such morphological
complexity results in lexical sparsity and signifi-
cantly complicates tasks like tokenization. In fact,
Arabic exhibits a vocabulary growth rate approxi-
mately 2.5 times higher and out-of-vocabulary rates
about 10 times higher than English (Habash, 2010).

Dialectal variations further complicate Arabic
processing. While MSA is the formal written stan-
dard used in education, media, and literature across
the Arab world, it is not the native language of
any Arab speaker. Instead, native speakers com-
municate using a diverse array of informal spoken
dialects that differ considerably from MSA and
from each other in their phonology, morphology,
lexicon, and even syntax (Habash, 2010). A key
issue is the general lack of standardized spelling
systems for Arabic dialects, which contributes to
orthographic inconsistency. For instance, different
forms of the letter Alif (

�
@ , @
 ,



@ , @) can represent the

same linguistic unit: the common writing �@P in-

stead of the standard �


@P results in different char-

acter codes despite conveying the same word. Or-
thographic normalization addresses this issue by
converting letter variants or visually similar letters
into a single, standardized form (Obeid et al., 2020).
At the same time, informal sociolinguistic norms
often guide how dialects are written, and NLP sys-
tems must be able to recognize and adapt to these
conventions to fully leverage the information such
texts provide.
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Orthographic ambiguity is a pervasive prob-
lem in written Arabic. This means that a single
written form can correspond to multiple different
meanings and grammatical analyses. For example,
the word AîD�PX (drshA) can be interpreted in several
ways depending on the implied diacritics: as a verb
meaning ’he taught her’, another verb meaning ’he
studied it’, or a noun phrase meaning ’her lesson’.
While automatic disambiguation methods, such as
Maximum Likelihood Estimation (MLE) disam-
biguators (Khalifa et al., 2016), attempt to resolve
this issue by inserting diacritical marks that spec-
ify short vowels and consonantal geminations, the
resulting proliferation of unique tokens further in-
tensifies lexical sparsity and adds to the vocabulary
bottleneck already posed by Arabic’s morphologi-
cal richness.

Script complexity and allographic variation
pose additional challenges for visual process-
ing. The Arabic script provides multiple differ-
ent graphs that can represent the same letters as in
contextual forms (e.g Ayin variants ª , « , © ,¨),
multi-character ligatures and complex word-level
ligatures. While Unicode normalization can be ap-
plied to avoid inflated token vocabularies (Obeid
et al., 2020), standard font features will map even
Unicode-standardized input to different graphs,
leading to visual variation.

Transliteration schemes such as Buckwal-
ter (BW) and Habash-Soudi-Buckwalter (HSB)
(Habash et al., 2007), offer an alternative ap-
proach to handling Arabic’s orthographic com-
plexity. HSB is particularly beneficial for visual
processing, as different Arabic letter variants are
mapped to visually similar Latin glyphs while pre-
serving the orthographic distinctions of the source
script (Figure 2). Additionally, Latin-based repre-
sentations present fewer rendering challenges since
they do not exceed typical line boundaries, unlike
certain Arabic diacritics and punctuation marks.

2.3 Visual Embeddings for Language

The PIXEL model (Rust et al., 2022) treats text as
images by rendering text in fixed fonts and process-
ing image patches through Vision Transformers
(Dosovitskiy et al., 2020). PIXEL is built upon the
architecture of Masked Autoencoders (He et al.,
2021), which are scalable self-supervised learners
that use an asymmetric encoder-decoder design
and masking to reconstruct missing image pixels
for efficient visual representation learning. PIXEL

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Visual comparison of script variants before
and after diacritization: (a,b) Arabic script, (c,d) Buck-
walter, (e,f) HSB. Transliterated forms properly display
all diacritic information, with HSB maintaining intuitive
visual representations of Arabic letter variants such as
different Alif forms ( @ A,



@ Â, @
 Ă) .

has demonstrated strong performance as a founda-
tion model across various languages and scripts, in-
cluding Arabic, where it achieves near-parity with
token-based models on core NLP tasks (95.7% vs.
95.4% POS tagging accuracy compared to BERT;
77.3 vs. 77.7 LAS in dependency parsing).

The PIXEL model addresses some of the men-
tioned challenges: orthographic variations often
appear as visually similar glyphs, and the visual
representation allows accessing morphemes with-
out tailored tokenization. This continuous vocab-
ulary representation is particularly useful for di-
alectal data, as demonstrated by experiments on
German dialects (Muñoz-Ortiz et al., 2024). How-
ever, there is still a potential pitfall when processing
allographs.

This approach naturally handles RTL scripts,
though Rust et al. (2022) note processing limita-
tions where RTL sentences are processed from end
to beginning, potentially affecting positional learn-
ing.

2.4 BAREC Shared Task 2025
The BAREC Shared Task 2025 focuses on fine-
grained Arabic readability assessment, participants
in the shared task are challenged to build models for
both sentence-level and document-level readability
classification.

A strong baseline for this task, as established
in the research accompanying the BAREC cor-
pus, is AraBERTv2 (Antoun et al., 2020). This
model, when used with the D3Tok input variant
and Cross-Entropy loss, achieved the best perfor-
mance across various metrics in initial benchmark-
ing experiments. We compare our results to the
Word input variant.
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3 System Overview

Our pipeline begins by rendering each Arabic text
as an RGB image. We use Noto Sans Arabic at
a fixed font size on a white background, follow-
ing the standard PIXEL methodology (Rust et al.,
2022). Sentences are rendered to a fixed image size
determined by the patch size and the maximum
sequence length. The image is then split into non-
overlapping 16×16 patches, each patch is flattened
and linearly projected to the ViT encoder. For fine-
tuning, we append a linear classification head, with
softmax and cross-entropy loss.

4 Experimental Setup

4.1 Text Processing Variants

We introduce two dimensions of preprocessing:

Orthographic encoding manipulates surface
forms to test the effect of script and phonological
cues. For Arabic script, we evaluate the individual
effects of (i) dediacritization and (ii) orthographic
normalization, as well as their combination, and
compare them to the default and fully diacritized
forms (via CAMeL’s MLE disambiguator). For
transliterated scripts we restrict evaluation to three
variants (default, normalized+dediacritized, and di-
acritized).

Morphological encoding manipulates word
structure. Using CAMeL Tools’ MLE-based to-
kenizer, we segment words into stems and clitics
(e.g., AîE. A�J»ð → Aë + H. A�J» + ð). To make these
boundaries visually salient, we experiment with
different markers: standard ASCII markers (+_ and
_+), Arabic tatweel to maintain script consistency,
and spaces treating morphemes as distinct visual
units (Figure 1).

4.2 Evaluation Metrics

We report results on Accuracy, ±1 Accuracy, MAE,
and Quadratic Weighted Kappa (QWK) as the pri-
mary metric which measures agreement while ac-
counting for the ordinal distance between predicted
and true levels.

5 Results and Analysis

5.1 Orthographic Encoding Effects

Table 1 summarizes the impact of orthographic vari-
ants across Arabic, Buckwalter, and HSB scripts.
A consistent pattern emerges: transliterated scripts
outperform Arabic script across all metrics, with
HSB achieving the highest QWK (69.3%), fol-
lowed by Buckwalter (68.0%), while Arabic peaks
at 66.5%. This "script gap" of approximately 3-
4 QWK points suggests that visual regularity in
Latin-based representations provides advantages
for the vision transformer architecture.

Within each script, preserving orthographic and
diacritic distinctions generally benefits PIXEL per-
formance more than normalization. Diacritization
shows particular promise for transliterated scripts,
improving QWK by 1.3 points for Buckwalter and
2.4 points for HSB. However, diacritization effects
in Arabic script are mixed, possibly due to incom-
plete visual rendering of diacritical marks that ex-
tend beyond typical line boundaries.

5.2 Morphological Encoding Effects

Table 2 presents the impact of morphological seg-
mentation on readability assessment. Morphologi-
cal segmentation using D3TOK generally improves
performance over word-level processing, with both
tatweel and space markers achieving 67.4% and
67.0% QWK respectively, compared to 66.3% for
unsegmented text. The standard ASCII markers
under-perform the baseline word-level approach.
The effectiveness of space separation is particu-
larly noteworthy, despite spaces already serving as
word boundaries in the text.

5.3 Official Results

For official submission, we submitted the predic-
tions of the default Arabic script variant. Table 3
shows that our model achieved 68.4% QWK on the
blind test. However, PIXEL significantly underper-
formed the AraBERTv2 baseline, which achieved
76.2% QWK.

6 Conclusion and Future Work

PIXEL naturally handles orthographic variation
while benefiting from morphological and phono-
logical signals in richer text representations. En-
glish pretraining benefits from Latin script regular-
ity, though the performance gap with token-based
models suggests need for further optimization.
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Script Configuration Accuracy ±1 Acc MAE QWK

Arabic

Default 40.0% 53.0% 1.74 66.5%
Dediacritized 41.0% 53.7% 1.74 63.9%
Ortho Normalized 38.8% 51.5% 1.79 65.6%
Ortho Normalized & Dediacritized 40.0% 53.3% 1.73 64.8%
Diacritized 41.7% 54.7% 1.70 65.8%

Buckwalter
Default 42.3% 55.7% 1.70 66.7%
Ortho Normalized & Dediacritized 43.5% 56.1% 1.70 65.0%
Diacritized 43.4% 56.4% 1.64 68.0%

HSB
Default 42.7% 55.6% 1.66 66.9%
Ortho Normalized & Dediacritized 43.5% 56.3% 1.69 64.9%
Diacritized 43.3% 56.7% 1.61 69.3%

Table 1: Orthographic encoding results on the test set.

Morphological Scheme Boundary Marker Accuracy ±1 Acc MAE QWK
WORD – 39.0% 52.9% 1.72 66.3%

D3TOK
Default (+_/_+) 40.9% 54.0% 1.74 65.4%
Tatweel 42.0% 54.9% 1.69 67.4%
Space 42.0% 55.2% 1.69 67.0%

Table 2: Morphological encoding results on the test set.

Track Model Test Blind Test
Acc ±1 Acc MAE QWK Acc ±1 Acc MAE QWK

Strict PIXEL-English 40.0% 53.0% 1.74 66.5% 41.5% 56.8% 1.6 68.4%

AraBERTv2 (WORD) 51.1% 65.1% 1.31 76.2%

Table 3: Strict results on Official and Blind tests vs. AraBERTv2 WORD.

The ’script gap’ warrants investigation across ad-
ditional scripts to determine whether effects reflect
Latin-specific advantages or broader visual regu-
larity factors. Future work could explore visual
augmentations, different fonts, and document-level
readability assessment.

This experiment illustrates how PIXEL can be
used to assess the informative potential of specific
text manipulations. Tatweel, a native Arabic elon-
gation mark, is presented here merely as an exam-
ple of a script-internal feature that could be evalu-
ated in this way, with potential relevance for human
readers.

Future work could explore PIXEL’s ability to
capture purely visual cues that affect human read-
ing, such as glyph similarity or diacritic placement.
In particular, experiments predicting reading speed
could further investigate these effects.

7 Limitations

We tested orthographic variation over the English
pretrained PIXEL-base model, giving advantage
for Latin characters over Arabic.

We used the default render configuration and it
occasionally rendered Arabic script outside of the
image.
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A Additional Experimental Details

All models were trained using PyTorch 2.5.1 with
CUDA 12.4 on two NVIDIA GeForce RTX 3090
GPUs. The rendering pipeline used PangoCairo
text renderer. We preprocess all variants with
Unicode-normalization and tatweel removal. We
used the default architecture composed of 12 Trans-
former layers, hidden size of 768, 12 attention
heads, totaling 86M encoder parameters.
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A.1 Training Hyperparameters
Fine-tuning: 86M parameters, sequence length
256, batch size 64, learning rate 5e-05, 7 epochs,
dropout 0.1, model selection based on Dev set
Cross Entropy loss. Morphological encoding vari-
ants were trained on half the batch size and learning
rate and on a single GPU.

Code Availability
Our code is available at: https://github.com/
bensapirstein/pixel
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Abstract

This paper describes our system for the BAREC
2025 Shared Task on Arabic Readability As-
sessment. Our approach is centered on a hy-
brid model that combines the deep contextual
representations of a pre-trained transformer
(AraBERTv02) with a rich set of engineered
linguistic features. We extracted over 200 lex-
ical, morphological, syntactic, and semantic
features, which were refined to the 100 most
informative ones through a multi-stage selec-
tion process. Our final model demonstrates sig-
nificant effectiveness, achieving a Quadratic
Weighted Kappa (QWK) of 82.7% and an ex-
act accuracy of 57.6% on the official blind test
set. These results highlight the powerful syn-
ergy between transformer-based embeddings
and explicit linguistic signals for the nuanced
task of assessing Arabic text readability.

1 Introduction

Automatic Readability Assessment (ARA) aims to
predict the difficulty level of a given text for a target
audience. Although extensively studied for English,
ARA for Arabic remains a developing field, pre-
senting unique and significant challenges for mod-
ern Natural Language Processing (NLP) models
(Liberato et al., 2024). The complexity of Arabic,
which comes from its rich derivational morphol-
ogy, optional diacritization, and the widespread phe-
nomenon of diglossia, complicates the extraction
of reliable readability features. Traditional read-
ability formulas, often translated into English, do
not capture these linguistic nuances. More recent
machine learning and deep learning models have
shown promise (Hazim et al., 2022), yet their perfor-
mance is often constrained by the scarcity of large,
high-quality, and fine-grained annotated corpora
for Arabic.

The BAREC Shared Task 2025 on Arabic Read-
ability Assessment (Elmadani et al., 2025a) directly
addresses this gap by introducing a new, large-scale,

and balanced corpus designed for this purpose (El-
madani et al., 2025b) . This initiative provides a
crucial benchmark for the development and evalu-
ation of sophisticated Arabic ARA systems. The
task challenges participants to move beyond surface-
level features and explore more complex linguistic
and semantic representations to accurately predict
readability scores.

In this paper, we present our system for the
BAREC Shared Task. Our approach is novel in its
hybrid architecture, which synergistically combines
deep contextual embeddings from a pre-trained
Arabic transformer model with a rich set of hand-
crafted linguistic features. These features are specif-
ically designed to capture the morphological, syn-
tactic, and psycholinguistic dimensions of Arabic
text that influence reading comprehension. By inte-
grating these diverse feature sets, our model aims
to create a more holistic and accurate representa-
tion of text complexity. We hypothesize that this
multi-faceted approach will outperform models that
rely solely on either deep learning or traditional fea-
ture engineering, thereby setting a new standard for
Arabic readability assessment.

2 Background

The BAREC Shared Task 2025 (Elmadani et al.,
2025a) focuses on fine-grained, sentence-level read-
ability assessment for Modern Standard Arabic.
The primary goal is to predict a readability score
for a given Arabic sentence on a continuous scale.
The task is structured into three main tracks:

• Open Track: Participants are allowed to use
any external data, resources, or pre-trained
models to build their systems.

• Constrained Track: Participants are re-
stricted to using only the provided training set
of BAREC Corpus (Elmadani et al., 2025b)
and specific, pre-approved external resources,
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namely the SAMER Corpus (Alhafni et al.,
2025) and the SAMER Lexicon (Al Khalil
et al., 2020).

• strict Track: Participants are restricted to us-
ing only the provided training set of BAREC
Corpus.(Elmadani et al., 2025b)

We participated in the strict track.
The task utilizes BAREC (Balanced Arabic Read-

ability Corpus) (Elmadani et al., 2025b), a compre-
hensive dataset containing sentences sourced from
diverse genres and annotated according to detailed
guidelines (Habash et al., 2025). Each sentence in
the corpus is assigned a readability score derived
from expert human annotations, which reflects the
cognitive effort required for a reader to understand
it. An example of an input sentence and its corre-
sponding output score is shown below:

Input: قلانعطنيب

َ

خوان

َ

ف

ْ

بلاق

ُ

ِدون

(Translation: Between the thrust of spears and the
fluttering of banners.)
Output: 17

Prior work in Arabic readability has evolved
significantly. Early studies focused on adapting
the classic readability formula, such as the Flesch-
Kincaid index, which mainly uses shallow fea-
tures such as word and sentence length. Later re-
search incorporated more sophisticated and Arabic-
specific linguistic features, including morpholog-
ical complexity and syntactic structures, into ma-
chine learning frameworks like Support Vector Ma-
chines (SVM) and Random Forests (Cortes and
Vapnik, 1995) (Breiman, 2001). With the advent of
deep learning, researchers began to leverage neural
networks and, more recently, large pre-trained lan-
guage models like AraBERT (Antoun et al., 2020)
and CAMeLBERT (Inoue et al., 2021). These mod-
els have demonstrated strong performance by learn-
ing rich semantic representations directly from text.
Our work builds upon these advances by propos-
ing a hybrid system that leverages the strengths of
both feature-based and deep learning paradigms,
a strategy we believe is crucial for capturing the
multifaceted nature of text readability in Arabic.

3 System Overview
Our system is designed to address the multifaceted
challenge of Arabic text readability by integrating
deep contextual understanding with explicit linguis-
tic knowledge. The core of our approach is a hybrid

neural architecture that leverages a pre-trained trans-
former model alongside a curated set of engineered
features.

Design Rationale: The primary challenge in
readability assessment is to capture a wide range
of signals, from syntactic complexity and lexical
choice to semantic coherence. While pre-trained
models like BERT excel at learning contextual rep-
resentations, they may not explicitly capture spe-
cific linguistic phenomena known to influence read-
ability. Our design decision to fuse BERT with
handcrafted features is motivated by this; we pro-
vide the model with both implicit, learned repre-
sentations and explicit, targeted linguistic cues, cre-
ating a more robust and informed system.

Algorithmic Framework: Our model, imple-
mented in PyTorch and the Hugging Face
transformers library, consists of two main com-
ponents: a text encoding module and a feature fu-
sion classifier.

1. Textual Representation: We use the
aubmindlab/bert-base-arabertv02
model to generate contextualized embeddings
for the input text. For a given sentence, the
final hidden state of the special [CLS] token is
used as its aggregate semantic representation.
Let this be denoted as etext ∈ R768.

2. Linguistic Feature Representation: The 100
features selected from our feature engineering
pipeline are compiled into a numerical vec-
tor, fraw. This vector is standardized using a
StandardScaler (fit on the training data) to
ensure zero mean and unit variance, resulting
in the final feature vector fnum.

3. Hybrid Feature Fusion: The textual and lin-
guistic representations are combined through
concatenation to form a unified feature vector:

c = [etext ⊕ fnum]

where ⊕ denotes the concatenation operation.
This vector c ∈ R768+100 serves as input to
the final classification layer.

4. Classification Head: The combined vector
c is passed through a multi-layer perceptron
(MLP) to predict the readability level. This
layer is trained to classify the input into one
of the 19 ordinal readability classes.
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Training Configuration: The model is trained
for a maximum of 10 epochs using the AdamW
optimizer with a learning rate of 5 × 10−5 and a
linear learning rate scheduler. To counteract class
imbalance, we employ a weighted Cross-Entropy
Loss, with weights inversely proportional to class
frequencies. We utilize mixed-precision training for
efficiency. The model’s performance is monitored
on the validation set using the Quadratic Weighted
Kappa (QWK) score, and we apply early stopping
with patience of 2 epochs to prevent overfitting.

4 Experimental Setup

Dataset: We utilized the BAREC sentence-level
dataset for our experiments. The data is partitioned
into three distinct sets: a training set for model
development, a validation set for hyperparameter
tuning, and a test set for final evaluation. The re-
spective sizes and characteristics of these splits are
determined by the original dataset providers. In
addition to the standard splits, we also process the
sentence-level blind test set.

Preprocessing and Feature Engineering: To
prepare the data for our models, we implement a
comprehensive pre-processing and feature engineer-
ing pipeline.

Text Normalization: Each sentence undergoes
a series of normalization steps using the camel-
tools library(Obeid et al., 2020). This includes
Unicode normalization, normalization of Alef ,أ) ,إ
آ to ,(ا Alef Maksura ى) to ,(ي and Teh Marbuta ة)
to ,(ه followed by the elimination of all diacritics.

Feature Extraction: We extract a rich set of more
than 200 features from the normalized text, lever-
aging the capabilities of camel-tools. These fea-
tures can be categorized as follows:

• Surface Features: Basic statistics such as
word count, average and standard deviation
of word length, and the ratio of long (>= 7
characters) and short (<= 3 characters) words.

• Character-level Features: Ratios of non-
Arabic characters, punctuation, numbers,
mathematical operators, and other symbols
within each sentence.

• Morphological Features: Proportions of var-
ious parts of speech (POS), gender, number,
aspect, case, and other morphological charac-
teristics derived from the top analysis of an

MLE disambiguator. We also compute mor-
phological richness, verb-to-noun ratio, and
affix ratios (prefix, suffix) based on morpho-
logical tokenization.

• Semantic Features: We include the count
and ratio of Named Entities (NER), a senti-
ment score (positive, neutral, negative) and
dialect identification scores, particularly the
confidence score for Modern Standard Arabic
(MSA).

• Lexical Features: The ratio of stop words in a
sentence and the stem diversity, calculated as
the ratio of unique stems to the total number
of stems.

Feature Selection: To reduce dimensionality and
mitigate multicollinearity, we apply a three-stage
feature selection process to the training data:

1. Variance Thresholding: Features with vari-
ance below a threshold of 0.01 are removed.

2. Correlation Filtering: Highly correlated fea-
tures are filtered out. We compute the Pear-
son correlation matrix and remove one feature
from any pair with a correlation coefficient
greater than 0.95.

3. Tree-based Selection: A Random Forest clas-
sifier is trained on the remaining features to
rank their importance. The top 100 most in-
formative features are selected for the final
feature set.

Implementation Details
Our primary model is a hybrid architecture that
combines a pre-trained transformer with the engi-
neered numerical features. The model is built using
PyTorch and the Hugging Face transformers li-
brary.

Model Architecture: We use the
aubmindlab/bert-base-arabertv02 model as
our text encoder. The output representation of the
[CLS] token is extracted and concatenated with the
vector of scaled numerical features. This combined
vector is then passed through a classification head
consisting of a linear layer, a SiLU activation
function, a dropout layer (p = 0.2), and a final
linear layer to produce the output logits for the 19
readability classes. A dropout layer (p = 0.3) is
also applied to the combined feature vector before
it enters the classifier.
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Training: The model is trained for a maximum
of 10 epochs with a batch size of 16. We use the
AdamW optimizer with a learning rate of 5× 10−5

and a linear learning rate scheduler. To address
class imbalance, we employ a weighted Cross-
Entropy Loss function, where weights are inversely
proportional to class frequencies in the training set.
We utilize mixed-precision training to accelerate
computation. Early stopping is implemented with
a patience of 2 epochs, monitored by the valida-
tion Quadratic Weighted Kappa (QWK) score. The
best-performing model based on validation QWK
is saved for evaluation.

Evaluation Metrics
Given the ordinal nature of the readability labels,
we evaluated model performance using a suite of
metrics. In addition to standard classification and
regression metrics like Exact Accuracy and Mean
Absolute Error (MAE). We also report Adjacent
Accuracy (allowing for an off-by-one error), the
3, 5, and 7 Levels Accuracy—classifying the sen-
tences as if they are classified into 3, 5, and 7 dif-
ferent classes, respectively—and the Quadratic
Weighted Kappa (QWK), which is particularly
well-suited for measuring inter-rater agreement on
an ordinal scale.

MAE =
1

n

n∑

i=1

|yi − ŷi|

QWK = 1−
∑

i,j wijOij∑
i,j wijEij

where wij are the weights, Oij is the observed
count, and Eij is the expected count for a label
pair (i, j).

5 Results

Our system’s performance was evaluated on the
official BAREC blind test set. We also conducted
internal experiments to compare different configu-
rations of our model’s classification head on the de-
velopment set. The internal comparison results are
included in Appendix A. The evaluation focuses on
metrics suited for ordinal classification, primarily
Quadratic Weighted Kappa (QWK), alongside
Exact Accuracy, Adjacent Accuracy (Acc ±1),
and Mean Absolute Error (MAE).

5.1 Official Blind Test Set Results
On the official competition blind test set, our final
model achieved a strong performance, demonstrat-

ing its robustness and generalization capabilities.
The system attained a QWK of 82.7%, confirming
a high level of agreement with the gold-standard
labels. The exact accuracy was 57.6%, while the
adjacent accuracy (Acc ±1) reached 72.3%, indi-
cating that most of our model’s errors were minor,
differing by only a single readability level. The
complete results are presented in Table 1.

QWK Acc Acc ±1 MAE

82.7% 57.6% 72.3% 1.06

Acc (3) Acc (5) Acc (7)

77.2% 71.3% 67.4%

Table 1: Final results of our system on the official
sentence-level blind test set.

The high QWK and adjacent accuracy scores
validate our hybrid approach, confirming that com-
bining pre-trained language models with carefully
engineered linguistic features is highly effective for
sentence-level readability assessment in Arabic.

6 Conclusion

In this paper, we present our system for the BAREC
2025 Shared Task on sentence-level Arabic Read-
ability Assessment. Our approach successfully in-
tegrated a powerful pre-trained Arabic transformer
model with a comprehensive set of linguistic fea-
tures to create a robust prediction system. The
final model achieved an impressive Quadratic
Weighted Kappa of 82.7% on the blind test set,
demonstrating the efficacy of our methodology.

Our key finding is that, while transformers are
excellent at capturing semantic context, their per-
formance is significantly enhanced by explicit fea-
tures that describe lexical complexity, morpholog-
ical richness, and sentence structure. This hybrid
strategy proved crucial for navigating the subtleties
of the Arabic language. Future work could involve
exploring more advanced transformer architectures,
incorporating features from diverse linguistic re-
sources, and conducting a thorough error analysis
to better understand the remaining challenges in
automatic readability assessment.
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A Internal Model Comparison

To select the best architecture, we compared three
variants of our BERT-based model on the develop-
ment set: one using a SiLU activation function, one
using the Swish function, and one employing an
ordinal regression head. The results, summarized
in Tables 2 3, show that the models with SiLU and
Swish activation functions performed very similarly
and slightly better than the ordinal regression ap-
proach across most metrics. Based on its marginally
higher QWK score, the BERT (SiLU) configuration
was selected for the final submission.

Model Accuracy Accuracy ±1 MAE

BERT (swish) 56.18% 70.66% 1.0917
BERT (SiLU) 55.87% 69.90% 1.1023
BERT (ordinal) 53.61% 69.78% 1.1473

Table 2: Model Performance Metrics (Part 1)

Model QWK Acc (7) Acc (5) Acc (3)

BERT (swish) 81.15% 65.45% 69.01% 74.60%
BERT (SiLU) 81.17% 64.41% 67.95% 74.55%
BERT (ordinal) 79.35% 63.38% 67.06% 72.87%

Table 3: Model Performance Metrics (Part 2)
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Abstract
Automatic Readability Assessment estimates
how hard a text is for its target readers, using
features such as vocabulary, spelling, morphol-
ogy, etc. Based on this premise, we evaluate
our experiments on Arabic language under the
BAREC 2025 shared task protocol. This paper
addresses the sentence-level readability assess-
ment task with strict track, that allows only the
use of BAREC train set to predict Arabic read-
ability on a fine-grained 19-level scale. Our
solution is based on a two-phase fine-tuning
of AraBERT-v2 on a custom feature set of the
BAREC corpus. In the blind test set, the system
achieves a QWK of 85.6%.

1 Introduction

Automatic Readability Assessment (ARA) is the
task of computationally modeling the reading and
comprehension difficulty of a text for a specific
target audience. Its applications are diverse and
impactful, spanning human-facing scenarios such
as selecting appropriate educational materials for
language learners, supporting readers with learning
disabilities, and facilitating self-directed learning.
In machine-facing contexts, ARA is instrumental
in ranking search results by complexity, controlling
the reading level of machine-translated output, and
evaluating the efficacy of automatic text simplifi-
cation systems (Vajjala, 2021). For Arabic, ARA
is particularly challenging due to rich morphology,
orthographic variation (e.g., diacritics and normal-
ization) and dialectal/code-switching phenomena.

In this work, we aim to build a strong yet sim-
ple Arabic ARA system for the BAREC Shared
Task (Elmadani et al., 2025a). We participate in the
strict track of the sentence-level readability assess-
ment where models must be trained exclusively on
the training set of the Balanced Arabic Readabil-
ity Evaluation Corpus (BAREC)1 (Habash et al.,
2025).

1https://barec.camel-lab.com/sharedtask2025

We cast sentence readability as scalar regression
and then explicitly align training with the evalu-
ation metric Quadratic Weighted Kappa (QWK).
Concretely, we fine-tune AraBERT in two phases:
an MSE warm-up followed by a differentiable
QWK objective (SoftQWKLoss) that converts the
scalar prediction into soft, distance-aware probabil-
ities over the 19 levels and optimizes (1−QWK)
on a soft confusion matrix. On the input side, we in-
ject text metadata and statistics as well as linguistic
cues (D3Tok) derived from CAMeL tools (Obeid
et al., 2020). Empirically, this combination reaches
QWK test results of 84.88, improving slightly over
the 83.9 QWK score yielded by MSE-only phase.
On the blind test leaderboard, we ranked in the 4th
position out of 16 participations, with a 85.6 QWK
for the sentence readability level subtask. The code
of this solution is publicly available2.

In summary, the proposed solution is composed
of: (1) a compact AraBERT pipeline for Arabic
readability that requires minimal feature engineer-
ing yet remains competitive, and (2) a metric-
aligned training recipe (MSE → SoftQWK) that is
architecture-agnostic and easy to reproduce.

Next, we present some background and we for-
malize the task and its input/output setup; then
we present our method and training objectives, de-
scribe the experimental setup, and report results.
We follow with error analyses, discuss limitations,
and conclude.

2 Background

2.1 History of Automatic Readability
Assessment (ARA)

The origins of ARA date back nearly a century to
the development of manually computed readabil-
ity formulas. These formulas are characteristically
simple, often expressed as weighted linear func-

2https://github.com/Saoussan/BAREC_Arabic_
Readability_Assessment

362

https://barec.camel-lab.com/sharedtask2025
https://github.com/Saoussan/BAREC_Arabic_Readability_Assessment
https://github.com/Saoussan/BAREC_Arabic_Readability_Assessment


tions of easily quantifiable, surface-level textual
features (Vajjala, 2021). Among the most influen-
tial and enduring of these is the Flesch Reading
Ease formula (Flesch, 1948), which calculates a
score on a 0-100 scale, based on average sentence
length and average word length in syllables, and
the Dale-Chall formula which uses a predefined
list of common words to identify “difficult” vo-
cabulary (Dale and Chall, 1948).The shift towards
supervised machine learning, which reframes read-
ability assessment as a classification or regres-
sion problem, allowed for the integration of richer
sets of linguistic features. Algorithms like Sup-
port Vector Machines (SVM) or Random Forests,
demonstrated superior performance compared to
traditional formulas (Imperial and Kochmar, 2023).
While researchers have progressed to complex neu-
ral network architectures, the traditional, simpler
formulas continue to exist, especially in fields like
education or healthcare, that value prediction inter-
pretability (Vajjala, 2021).

2.2 Challenges of Arabic Language

Applying ARA methodologies to the Arabic lan-
guage presents a set of challenges that are not ade-
quately addressed by models developed primarily
for English. These challenges stem from the in-
herent linguistic characteristics of Arabic, which
impact text complexity (Cavalli-Sforza et al., 2018).
First, Arabic is a morphologically rich language,
characterized by a highly inflectional system. This
means that surface-level metrics like average word
length in characters, may be poor indicators of dif-
ficulty for Arabic. Second, Arabic orthography is
marked by an ambiguity due to the optionality of
diacritics (short vowel markings) in most written
texts. A single undiacritized word form can cor-
respond to multiple distinct words with different
meanings and pronunciations, which can only be
resolved through context. Third, no one speaks the
Modern Standard Arabic (MSA) as a native mother
tongue, a language that can differ substantially in
lexicon, phonology, and grammar from the daily
dialect. This complicates the very definition of a
“target reader” and may make the task of assessing
readability for L1 speakers challenging (Cavalli-
Sforza et al., 2018).

2.3 ARA for Arabic

The research community has recently focused
on Arabic text readability providing scientific re-
sources (Al Khalil et al., 2020; Alhafni et al., 2024;

Elmadani et al., 2025b; Habash et al., 2025; Hazim
et al., 2022). The trajectory of Arabic ARA has
largely mirrored that of English, beginning with
attempts to adapt or create formulas tailored for
Arabic (El-Haj and Rayson, 2016; Cavalli-Sforza
et al., 2018; Liberato et al., 2024) and machine
learning techniques (Cavalli-Sforza et al., 2018;
Bessou and Chenni, 2021). Recently, we witnessed
the development of pre-trained language models
(PLMs), pre-trained specifically for the Arabic lan-
guage (Inoue et al., 2021; Liberato et al., 2024;
Antoun et al., 2020). Upon its release, AraBERT
established new state-of-the-art results across var-
ious Arabic NLP benchmarks. In this work, we
propose a two-phase fine-tuning of AraBERT PLM
to predict Arabic text readability levels.

3 System Overview

For our experiments, we build upon the AraBERT-
v2 baseline (Elmadani et al., 2025b), but extend it
with additional features and a two-phase optimiza-
tion strategy. Specifically, we fine tune AraBERT-
v2 (Antoun et al., 2020) as the backbone encoder,
while enriching its input with surface-level statis-
tical indicators (e.g., word count and word-length
statistics) and a morphologically segmented rep-
resentation generated using the D3tok segmenter
(Obeid et al., 2020), alongside the raw text. On top
of the encoder, we employ a single-neuron regres-
sion head to predict continuous readability scores.
In phase one, we fine-tune the model using mean
squared error (MSE) loss to capture the ordinal
nature of readability classes. Since the main evalu-
ation metric in the challenge is QWK, we continue
the fine-tuning of the model in phase two, with
a differentiable Soft Quadratic Weighted Kappa
(SoftQWK) loss (de la Torre et al., 2018), directly
aligning optimization with the official evaluation
metric (Cohen, 1968).

For this purpose, we take inspiration from (Diaz
and Marathe, 2019) and turn the scalar prediction
into a soft class distribution to be compatible with
the SoftQWK loss. We clamp the real prediction
value to a [1. . . 19] vector and spread its mass over
the 19 readability levels with a Gaussian window
centered at the predicted class. That yields a soft
label probability vector P ∈ RK . With one-hot
gold labels T , we construct a soft confusion matrix

O = T tP (1)

and the chance agreement E. Using the standard
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Figure 1: Example of an enriched data sample

quadratic weight matrix W , the QWK is defined as

κ = 1 − ⟨W,O⟩
⟨W,E⟩ , (2)

During the training, we optimize the loss L

L = 1− κ. (3)

4 Experimental Setup

4.1 BAREC Corpus

All our experiments are running on the Balanced
Arabic Readability Evaluation Corpus (BAREC)
dataset (Elmadani et al., 2025b; Habash et al.,
2025). BAREC comprises over 69K sentences
(around 1M words) covering three domains: Hu-
manities, Social Sciences, and STEM and aimed at
three readership groups (Foundational, Advanced,
Specialized). Each sentence is annotated for read-
ability on a fine-grained 19-level scale using guide-
lines developed by the authors. BAREC is consid-
ered as the largest Arabic corpus for readability
assessment.

The authors establish baseline readability mod-
els (Elmadani et al., 2025b), at multiple granular-
ities (19, 7, 5, 3 levels). We use the existing split
of the BAREC Corpus which is ≈80% for training,
≈10% for validation, and ≈10% for testing (see
Table 2).

Regarding feature preparation, we extend the
input representation with additional components
beyond the BAREC baseline setup. Each train-
ing instance is formatted as a single sequence that
concatenates (i) origin metadata provided by the
corpus, (ii) surface-level statistical indicators such
as word count and word-length statistics, (iii) the
raw text, and (iv) its D3tok-based morphological
segmentation. The adopted features are listed bel-
low:

• Word count: the number of words in the raw
sentence

• Document: the name of the source document
• Book: the name of the document’s book
• Author: the name of the document’s author
• Domain: the document’s domain (one of Arts

& Humanities, STEM or Social Sciences)
• Text class: the document’s readership group

(one of Foundational, Advanced, or Special-
ized)

• Diacritics coverage: frequency of diacritics
in the raw sentence

• Average word length: the mean number of
characters per word in the raw sentence

• Word length standard deviation: the stan-
dard deviation of the number of characters per
word in the raw sentence

• Sentence: the raw text
• D3tok: morphologically segmented represen-

tation of the sentence
To ensure the model can differentiate between

these heterogeneous sources of information, the
components were separated by the special de-
limiter token [SEP]. We add a list of field sep-
arators as special tokens to the tokenizer ([WC],
[ANN], [DOC], [BOOK], [AUTH], [DOM], [TC],
[DC], [WLA], [WLS]) in order to prevent them from
being broken into subwords. This enriched repre-
sentation provides the encoder with both shallow
statistical cues and deeper morphological structure,
while maintaining a structured and learnable in-
put format. The model’s input will look like the
example in Figure 1.

4.2 Our experiments

We treat readability level prediction as a regression
problem. We use a two-phase training schedule
with distinct losses. In Phase 1, We fine-tune the
AraBERT-v2 pretrained model in mixed-precision
mode for 6 epochs with a batch size of 64. An
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Loss Acc19 ±1 Acc19 Acc7 Acc5 Acc3 QWK Dist
SoftQWK 34.8% 74.0% 64.8% 72.0% 86.6% 84.8% 1.19
Baseline 43.1% 73.1% 61.1% 67.8% 75.9% 84.0% 1.13

Table 1: Results of our system compared to the baseline on the shared BAREC Test set

#Documents #Sentences #Words

Train 1,518 (79%) 54,845 (79%) 832,743 (80%)
Dev 194 (10%) 7,310 (11%) 101,364 (10%)
Test 210 (11%) 7,286 (10%) 105,264 (10%)

All 1,922 (100%) 69,441 (100%) 1,039,371 (100%)

Table 2: BAREC splits

AdamW optimizer minimizes the Mean Squared Er-
ror (MSE) between the scalar prediction ŷ and the
gold label y using a learning rate of 2× 10−5 with
linear warm-up over 10% of the total updates. We
consider the best checkpint on validation set, which
is the third epoch, then, in Phase 2, we switch to
the differentiable QWK objective (SoftQWKLoss):
each ŷ is converted to a Gaussian-smoothed distri-
bution over the 19 levels, a soft confusion matrix
is accumulated, and we minimize 1− κ so that op-
timization is aligned with the leaderboard metric.

For evaluation, from the raw scalar ŷ we re-
port MAE. For ordinal metrics, we round and
clip ŷ to the range [1, 19] and compute QWK,
tolerance-1 accuracy (AdjAcc19), exact 19-way
accuracy (Acc19), and coarse-bin accuracies
(Acc7/Acc5/Acc3) obtained by collapsing the 19
levels into 7/5/3 groups (Elmadani et al., 2025b).

5 Results

In Phase 1:. We train an AraBERTv2-based system
on inputs combining origin metadata, statistical
indicators, raw text, and D3Tok features, using an
MSE loss. This yields an evaluation QWK of 83.9.
In Phase 2: We then fine-tune the Phase-1 model
with the SoftQWK loss, reaching almost a QWK
of 84.9 which is above the shared task baseline
(Table 1).

Error analysis: The per-level MAE plot (Fig-
ure 2) shows the largest errors at the highest read-
ability levels. To understand the origins of these
errors, we analyse the confusion matrix (Figure 3)
which indicates that many true level-18/19 items
are predicted as level 16. This is clearly due to
the class imbalance that affects the boundary at the
top of the scale. In the future, we will investigate
employing data and loss weighting techniques to
tackle this problem.

Figure 2: Per-level evaluation MAE vs. true level

Figure 3: Confusion matrix (evaluation) of predictions
cluster along the diagonal, with underestimation at high
true levels (17–19).

6 Conclusion

In this work, we presented a competitive sys-
tem for Arabic readability in the BAREC shared
task. Using AraBERTv2 with lightweight meta-
data/statistics and CAMeL-derived D3Tok features
from the BAREC dataset, we trained in two phases:
an MSE warm-start followed by a metric-aligned
SoftQWK loss. This increased QWK from 84.0%
to 84.88% on the test set. Error analysis shows that
most remaining mistakes occur at the highest lev-
els (17–19), likely due to class imbalance. Going
forward, we plan to mitigate this by augmenting
training with the SAMER dataset (Alhafni et al.,
2024) and other related resources.
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Abstract

Sentence-level readability assessment, which
measures how easily individual sentences can
be understood, has seen significant advances in
English. However, Arabic readability assess-
ment remains underexplored, primarily due to
the language’s morphological complexity and
the scarcity of fine-grained annotated datasets.
To address this gap, we leveraged the BAREC
corpus, which provides 69K sentences anno-
tated across 19 readability levels, enabling us
to develop and compare five different modeling
strategies ranging from lightweight classifiers
to fine-tuned Arabic language models. Our ex-
periments revealed that task-specific pretrain-
ing with CamelBERT yielded substantial per-
formance gains, while curriculum learning of-
fered benefits in specific scenarios. Ultimately,
direct fine-tuning achieved state-of-the-art per-
formance (QWK = 82.4). Through detailed
error analysis, we identified that models strug-
gledmost with distinguishing between the lower
readability level 2 and higher readability levels
(15-19), highlighting the inherent challenges in
fine-grained Arabic readability modeling across
the full spectrum of proficiency levels.

1 Introduction

Readability assessment measures how easily a text
can be read and understood by its target audience.
It is crucial in various contexts including pedagog-
ical settings, foreign language learning, health lit-
eracy (Djoudi et al., 2025), and content accessibil-
ity (Xia et al., 2016; Vajjala and Meurers, 2012;
Collins-Thompson and Callan, 2004; Fox and Dug-
gan, 2013). To enable automatic assessment, many
resources have been made available ranging from
datasets with annotated readability levels to read-
ability assessment models. While progress in En-
glish readability assessment has been extensive
(Azpiazu and Pera, 2019; Deutsch et al., 2020; Qiu
et al., 2021; Devlin et al., 2019), Arabic readability
assessment remains less studied. Arabic presents

unique challenges due to its morphological richness,
complex derivational patterns, and limited availabil-
ity of fine-grained annotated resources. The avail-
able datasets predominantly employ binary (Soli-
man and Familiar, 2024) or ternary classification
schemes (Al-Khalifa and Al-Ajlan, 2010), which
train models with an oversimplified view of reading
proficiency. Fine-grained readability levels offer
the potential to better capture the continuous spec-
trum of literacy levels across diverse readers and
provide more nuanced assessments that align with
real-world reading abilities.

To address these limitations, we utilize the
newly introduced BAREC corpus (Balanced Arabic
Readability Evaluation Corpus) 1 (Elmadani et al.,
2025b), a large-scale, fine-grained corpus contain-
ing over 69,000 sentences from 1,922 documents.
The corpus spans 19 readability levels, from kinder-
garten (1) to postgraduate (19), covering diverse
genres and domains (Arts & Humanities, Social
Sciences, STEM) across three readership groups
(Foundational, Advanced, Specialized).

Our contributions include systematic evalua-
tion of five distinct model architectures, spanning
lightweight MLP classifiers over pre-trained em-
beddings to full progressive and direct fine-tuning
of Arabic language models. We demonstrate that:

1. task-specific pretraining is essential, with
readability-focused CamelBERT substantially
outperforming general-purpose models;

2. curriculum learning provides situational bene-
fits in fine-tuning settings;

3. direct fine-tuning achieves state-of-the-art per-
formance (QWK = 82.4);

4. comprehensive error analysis reveals difficulty
in distinguishing lower readability level 2 and
higher readability levels (15 to 19).

1BAREC corpus: https://huggingface.co/datasets/
CAMeL-Lab/BAREC-Shared-Task-2025-sent
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2 Background

Text difficulty evaluation traditionally used surface-
level formulas like DCRS (Dale and Chall, 1948),
FKGL (Kincaid et al., 1975), Dawood and El-Heeti
(Al-Dawsari, 2004), AARI (Al Tamimi et al., 2014),
and OSMAN (El-Haj and Rayson, 2016). The de-
velopment of readability corpora enabled richer
statistical and neural modeling approaches.

These corpus-driven advances have been most
prominent in English, with resources including
WeeBit (Vajjala and Meurers, 2012), Newsela (Xu
et al., 2015), Cambridge (Xia et al., 2016), On-
eStopEnglish (Vajjala and Lučić, 2018) (document-
level), S1131 (Štajner et al., 2017), CEFR-SP
(Arase et al., 2022) (sentence-level), and cross-
lingual corpora MDTE (De Clercq and Hoste,
2016), CompDS (Brunato et al., 2018). For Ara-
bic, efforts such as (Hazim et al., 2022) have
facilitated Arabic readability annotations, lead-
ing to the development of resources spanning
multiple granularities: documents (Arability (Al-
Khalifa and Al-Ajlan, 2010), DLI (Forsyth, 2014),
Taha/Arabi21 (Taha-Thomure, 2017), ZAEBUC
(Habash and Palfreyman, 2022), QAES (Bashendy
et al., 2024)), sentences (README++ (Naous et al.,
2024), DARES (El-Haj et al., 2024), BAREC (El-
madani et al., 2025b)), and words (KELLY (Kilgar-
riff et al., 2014), SAMER (Al-Khalil et al., 2020),
Arabic Vocab Profile (Soliman and Familiar, 2024),
extended SAMER (Alhafni et al., 2024)).

Building on these corpus development efforts,
broader research has focused on Arabic readability
modeling using diverse strategies (Liberato et al.,
2024). To advance this field further and provide
a standardized evaluation framework, the BAREC
Shared Task 2025 (Elmadani et al., 2025a) intro-
duces 19-level fine-grained readability prediction
with three tracks: Strict (BAREC corpus only), Con-
strained (BAREC & SAMER corpora), and Open
(any public data). We participate in the Strict Track
for sentence-level assessment, predicting Arabic
sentence difficulty on a 19-point scale (1 = easiest,
19 = hardest) using models trained exclusively on
BAREC training data.

3 System Overview

We experiment with CAMeLBERTMix_MLP and
CAMeLBERTWCE_MLP, which combine contextual
embeddings from Arabic BERT models with a
lightweight multilayer perceptron (MLP) clas-
sifier. CAMeLBERTMix_MLP employs bert-base-

arabic-camelbert-mix 2 (Inoue et al., 2021), a
general-purpose encoder trained on a mix of
modern standard, dialectal, and classical Ara-
bic, while CAMeLBERTWCE_MLP uses readability-
camelbert-word-CE 3 (Elmadani et al., 2025b), fine-
tuned on the same dataset as this shared task. Sen-
tences are tokenized with a maximum length of 256
tokens, encoded, and aggregated via mean pool-
ing over attention-masked hidden states to yield
768 dimensional embeddings. These embeddings
are normalized using RobustScaler and fed into the
MLP, which was selected via 5-fold stratified cross-
validation. The best-performing configuration is
a two-layer architecture (256-128 neurons), ReLU
activation, L2 regularization (α = 0.01), trained
with Adam optimization (initial learning rate 10−4,
adaptive scheduling), batch size 64, and amaximum
of 300 epochs.
P_CAMeLBERTWCE_MLP architecture implements

a progressive multilayer perceptron (MLP) trained
with a curriculum learning strategy. The model
is trained sequentially through multiple stages
of increasing granularity (3-5-7-19 levels), uti-
lizing the same 768 dimensional embeddings as
CAMeLBERTWCE_MLP. The 19-level ground truth la-
bels are collapsed into intermediate targets using
custom binning strategies to create more balanced
distributions: 3-level bins [0, 7, 13, 19], 5-
level bins [0, 4, 8, 12, 16, 19], and 7-level
bins [0, 3, 6, 9, 12, 15, 17, 19]. Training
begins with a simple 3-level classifier (2-layer archi-
tecture with 256 and 128 neurons), then progresses
to 5-level and 7-level classifiers, and finishes with
a 19-level classifier (3-layer architecture with 512,
256, and 128 neurons). The stage-specific architec-
ture scales with task complexity. A weight transfer
mechanism preserves learned hidden layer repre-
sentations between stages. The model is optimized
using Adam with an adaptive learning rate (initial
η = 10−3, reduced to 5 × 10−4 during transfer
phases), a batch size of 64, and L2 regularization
(α ∈ [0.008, 0.01]) and a maximum of 100-300
epochs per stage depending on complexity.
PFT_CAMeLBERTWCE implements a Progressive

CamelBERT (Inoue et al., 2021) Fine-tuning ap-
proach that fine-tunes the CAMeL-Lab/readability-
camelbert-word-CE transformer model through cur-
riculum learning stages [3, 5, 7, 19]. The ap-

2https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-mix

3https://huggingface.co/CAMeL-Lab/
readability-camelbert-word-CE
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proach learns dynamic label mappings from dataset
annotations rather than using fixed binning strate-
gies like we did in P_CAMeLBERTWCE_MLP. Training
begins with 3-level classification using a dropout-
regularized classification head (dropout=0.3), pro-
gressively transferring the fine-tuned BERT en-
coder weights to subsequent stages while initial-
izing fresh classification heads for each target gran-
ularity. Training uses AdamW optimization with
linear warmup scheduling, adaptive learning rates
(2e-5 initial, 1e-5 for transfer stages). The intuition
is that learning coarse readability distinctions (3-5-
7 levels) first provides foundational representations
that will improve fine-grained (19 levels) classifica-
tion performance.
FT_CAMeLBERTWCE serves as an ablation study to

test the core hypothesis behind PFT_CAMeLBERTWCE.
It eliminates the progressive curriculum learning
stages to perform direct, end-to-end fine-tuning of
the CAMeL-Lab/readability-camelbert-word-CE
model on the full 19-level classification task. The
motivation for this simpler approach is twofold.
First, it questions whether a powerful pre-trained
transformer inherently possesses the latent lin-
guistic understanding to discern fine-grained read-
ability distinctions without being guided through
coarser labels. Second, it tests if the consider-
able computational and architectural overhead of
multi-stage progressive training is justified, or if
a single-stage model can achieve comparable per-
formance more efficiently. To ensure a fair com-
parison, FT_CAMeLBERTWCE retains the same opti-
mization strategy (AdamW, linear warmup) and
regularization (dropout=0.3) as the final stage of
PFT_CAMeLBERTWCE. Thus allowing us to directly
attribute any performance differences to the pres-
ence or absence of the curriculum learning frame-
work, rather than other hyperparameters.

4 Experimental Setup:

4.1 Dataset
We used the Balanced Arabic Readability Evalua-
tion Corpus (BAREC)4, a large-scale, fine-grained
corpus containing over 69,000 sentences from
1,922 documents. As illustrated in Table 1, the cor-
pus spans 19 readability levels, from kindergarten
(1) to postgraduate (19), which can also be col-
lapsed into coarser 7, 5, or 3 readability levels. For
more details on sentence readability annotation, re-

4BAREC corpus: https://huggingface.co/datasets/
CAMeL-Lab/BAREC-Shared-Task-2025-sent

Figure 1: Distribution of the train/validation/test split in
the BAREC corpus by level of readability

fer to the BAREC readability annotation guidelines
by (Habash et al., 2025).

Level Arabic Translation Reasoning
1 'معن' “Yes” Simple single-

word
19 يفتلَثمةروصوأ'

'يلمأنمسفنلا

“Or an image
represented in
the soul from
my hope.”

Complex
poetic expres-
sion, rich in
imagery

Table 1: Comparison of linguistic complexity between
beginner and advanced Arabic expressions.

4.2 Preprocessing

Before training, we applied a multi-stage clean-
ing pipeline to ensure text consistency and qual-
ity. This involved removing sentences with missing
values or placeholders (e.g., #NAME?), collapsing
excessive whitespace, and dropping exact dupli-
cates. For Arabic processing, we utilized CAMeL
Tools (Obeid et al., 2020), a comprehensive suite
of NLP resources for morphological analysis, dis-
ambiguation, dialect identification, normalization,
and tokenization 5. A key step was dediacritization
to remove short vowels and phonetic marks witch
are infrequent in modern Arabic and can introduce
noise in NLP tasks. Dediacritization allowed us to
focus on underlying lexical forms (e.g., لٌيمَجبٌاتِك

was converted to ليمجباتك , or “A beautiful book”).
The pipeline removed 2.5-5% of rows, retaining
95-97% of the dataset across splits (52k train, 7.1k
validation, 7k test). The final distribution of these
readability levels is shown in Figure 1.

5CAMeL Tools:https://github.com/CAMeL-Lab/
camel_tools
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4.3 Metrics

The BAREC shared task 6 organizers define the
readability prediction problem as an ordinal classi-
fication task and adopt the following evaluation 7

measures: Quadratic Weighted Kappa (QWK)
(Cohen, 1968): The primary evaluation metric for
the shared task. It’s an extension of Cohen’s Kappa
that measures agreement between predicted and ref-
erence labels, applying a quadratic penalty to larger
misclassifications. Accuracy (Acc): The percent-
age of exact matches between predicted and gold
labels on the 19-level scale scale Acc19. Variants
Acc7, Acc5, and Acc3 are computed on collapsed
7-, 5-, and 3-level versions of the scale, respectively.
Adjacent Accuracy (±1 Acc19): counts predic-
tions as correct if they are either exact matches or
differ by at most one level from the true label. Av-
erage Distance (Dist): Also referred to as Mean
Absolute Error (MAE), it captures the mean ab-
solute difference between predicted and reference
labels.

5 Results

Our team’s runs (LIS in (Elmadani et al., 2025a)),
were evaluated on Codabench 8. Table 2 shows
results on the blind test set, using the QWK
and Acc19 metrics (Section 4.3). Initial experi-
ments with MLP classifiers on embeddings demon-
strated the importance of domain-specific pretrain-
ing. The general-purpose CAMeLBERTMix_MLP per-
formed poorly, while CAMeLBERTWCE_MLP utiliz-
ing embeddings from a readability focused model
demonstrated marked improvement, confirming the
efficacy of task-specific pretraining. Introducing
curriculum learning (P_CAMeLBERTWCE_MLP) pro-
vided only a marginal gain, indicating that while
progressive binning can stabilize training, its impact
is limited with a frozen encoder. In contrast, cur-
riculum learning proved more beneficial in the fine-
tuning setting. PFT_CAMeLBERTWCE, which progres-
sively fine-tunes the encoder through increasingly
granular label spaces, outperformed both MLP-
based models. Finally, direct fine-tuning without
curriculum (FT_CAMeLBERTWCE) achieved the best
overall QWK (82.4) and second-best Acc19 (57.5),
slightly surpassing the progressive strategy.

6BAREC shared task: https://barec.camel-lab.com/
sharedtask2025

7Evaluation metrics: https://github.com/CAMeL-Lab/
barec_analyzer/tree/main

8Codabench: https://www.codabench.org/

To better understand model behavior, we
conducted an error analysis of the two fine-
tuning approaches (PFT_CAMeLBERTWCE and
FT_CAMeLBERTWCE) on the preliminary test
set. We reported conditional error rates by
readability level, calculated as the percentage
of incorrect predictions within each readability
level. Additionally, we provided a confusion
matrix in Figures 3 and 4 (Appendix A) for both
the best-performing model (FT_CAMeLBERTWCE
and second-best model (PFT_CAMeLBERTWCE) to
illustrate prediction tendencies and error patterns in
greater detail. While FT_CAMeLBERTWCE achieved
superior overall performance, the error rate
analysis (Figure 2, Appendix A) reveals that
PFT_CAMeLBERTWCE demonstrates lower error rates
for specific readability levels (3-6, 9, 11, 12, 16,
17), suggesting that curriculum learning provides
targeted improvements for certain readability
levels despite lower aggregate performance. This
level-specific analysis complemented the aggregate
metrics by revealing where each model struggled
most in distinguishing between readability levels,
providing insights into the model’s systematic
biases and failure modes.

6 Conclusion

We evaluated neural approaches for Arabic sen-
tence readability assessment, comparing MLP clas-
sifiers using CamelBERT embeddings with trans-
former fine-tuning methods. Task-specific pretrain-
ing proved to be essential, general embeddings
failed while readability-focused ones improved per-
formance substantially. Curriculum learning pro-
vided marginal gains with frozen encoders but
helped stabilize fine-tuning. Direct CamelBERT
fine-tuning (FT_CAMeLBERTWCE) achieved best re-
sults (QWK = 82.4, Acc = 57.5), surpassing base-
lines and slightly outperforming progressive fine-
tuning. Our experiments highlight three key in-
sights. First, task-specific pretraining is crucial for
Arabic readability assessment, with domain-aligned
representations significantly outperforming general-
purpose embeddings. Second, curriculum learn-
ing offers modest but situational benefits. Third,
direct fine-tuning remains both efficient and effec-
tive, achieving state-of-the-art performance without
complex training strategies. Error analysis revealed
systematic biases across difficulty levels, as illus-
trated in Figure 2 (Appendix A). Future work will
explore hybrid architectures combining transform-
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Model Description QWK Acc19

Baseline Competition baseline 81.5 58.1
CAMeLBERTMix_MLP Word Embedding + MLP 41.2 21.2
CAMeLBERTWCE_MLP Word Embedding + MLP 80.5 55.7
P_CAMeLBERTWCE_MLP Word Embedding + Progressive training of MLP 80.7 55.9
PFT_CAMeLBERTWCE Progressive Fine-tuning 82.0 56.7
FT_CAMeLBERTWCE Standard Fine-tuning 82.4 57.5

Table 2: Model performance on the blind test measured using Quadratic Weighted Kappa (QWK) and Accuracy
(Acc19). P = progressive training strategy; PFT = progressive fine-tuning; FT = standard fine-tuning; MLP =
multi-layer perceptron. CAMeLBERTWEC = CAMeLBERT-Word-CE; CAMeLBERTMix = CAMeLBERT-Mix.
Bold indicates the best result; underlined indicates the second-best.

ers with linguistic features and multi-agent frame-
works.

Limitations

This study was limited to transformer-based ap-
proaches and word embeddings. Incorporating ex-
plicit linguistic features (such as syntactic complex-
ity, lexical diversity, and discourse markers) could
complement these neural representations and poten-
tially improve both readability prediction accuracy
and model explainability.
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Figure 2: Error Rate by readability level on the preliminary test set

Figure 3: Prediction of FT_CAMeLBERTWCE on the preliminary test set
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Figure 4: Prediction of PFT_CAMeLBERTWCE on the preliminary test set
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Abstract

We present ImageEval 2025, the first shared
task dedicated to Arabic image captioning.
The task addresses the critical gap in multi-
modal Arabic NLP by focusing on two com-
plementary subtasks: (1) creating the first
open-source, manually-captioned Arabic im-
age dataset through a collaborative datathon,
and (2) developing and evaluating Arabic im-
age captioning models. A total of 44 teams
registered, of which eight submitted during
the test phase, producing 111 valid submis-
sions. Evaluation was conducted using au-
tomatic metrics, LLM-based judgment, and
human assessment. In Subtask 1, the best-
performing system achieved a cosine similarity
of 65.5, while in Subtask 2, the top score was
60.0. Although these results show encouraging
progress, they also confirm that Arabic image
captioning remains a challenging task, partic-
ularly due to cultural grounding requirements,
morphological richness, and dialectal variation.
All datasets, baseline models, and evaluation
tools are released publicly to support future
research in Arabic multimodal NLP.

1 Introduction

Image captioning, the automatic generation of
natural language descriptions for visual content
(Hossain et al., 2019), represents a fundamen-
tal challenge at the intersection of computer vi-
sion and natural language processing (Saraswat
et al., 2024). While significant progress has been
achieved for high-resource languages, particularly
English, Arabic image captioning remains severely
underexplored despite Arabic being spoken by over
400 million people worldwide (Mohamed et al.,
2023b).

The challenges of Arabic image captioning ex-
tend beyond typical technical hurdles. Arabic’s
rich morphology, diverse dialectal variations, short

Manual Caption (Culturally Relevant):
	PQK.



@ Yg



@ , 	á�
¢�Ê 	̄ ú


	̄ �éJ
ÊgA�Ë@ A¾« �é 	JK
YÓ ú

	̄ P@�	Qm.Ì'@ Yj. �Ó Qê 	¢�� �èPñ�

AÓ , �éÖß
Y�̄ P@ñ�


@ð �HñJ
K. éK. ¡J
m�

�' , 	á�
�K 	PPAJ. Ë @ é�J 	K 	Y
JÓð é�JJ. �®K. �éJ
 	K AÒ�JªË@ ÕË AªÖÏ @
. �é 	JK
YÒÊË ú


	m�'
PA
�JË @ð ø
 PA

	�mÌ'@ ©K. A¢Ë@ �ºªK

Translation: Al-Jazzar Mosque in Acre, Pales-
tine, a major Ottoman landmark with its dome
and minaret, surrounded by old houses and
city walls reflecting the city’s history.

Generated Caption ( Culturally Irrelevant):
é�JJ. �®K. @ �Q�
J.» @ �Yj. �Ó 	áÒ 	��J�K , �éJ
ÊgA� �é 	JK
YÖÏ A �Üß
Y�̄ A�K
PAÒªÓ @ �Q 	¢	JÓ Qê 	¢�� �èPñ�
. �éJ
 	®Ê	mÌ'@ ú


	̄ QjJ. Ë @ ©Ó , �é 	� 	® 	j	JÓ ú

	GAJ.Óð ÉJ
 	j	JË @ PAm.�

��
AK.
�
A£Am× , é�J 	K 	Y
JÓð

Translation: A coastal city view with a
mosque, palm trees, and low-rise buildings by
the sea.

Figure 1: Comparison of captions for the same image.
The manual caption is culturally relevant, while the
generated caption lacks cultural specificity.

vowel omissions, right-to-left script, and cultural di-
versity require specialized approaches that consider
linguistic, cultural, and contextual factors (Jarrar
et al., 2023b). Moreover, the lack of large-scale,
high-quality Arabic image-caption datasets has hin-
dered progress in this domain.

To address these challenges and highlight the
unique issues in Arabic image captioning, we or-
ganized the ImageEval 2025 shared task, which
comprised two complementary subtasks: Subtask
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1, a collaborative image captioning datathon, and
Subtask 2, an evaluation of Arabic image caption-
ing models. The task design follows principles of
cultural and linguistic authenticity, methodologi-
cal diversity, and rigorous evaluation. Subtask 1
ensured that captions accurately reflected the per-
spectives and contextual norms of Arabic speakers,
moving beyond direct translations from other lan-
guages. Figure 1 illustrates a comparison between
manual and generated captions for the same image,
where the manual caption reflects cultural context
and historically specific information, whereas the
generated caption (by GPT-5 mini) provides a gen-
eral description with limited cultural relevance.

Subtask 2 encouraged participating teams to ex-
periment with a broad range of modeling strate-
gies, including zero-shot, few-shot, and fully super-
vised approaches. Model outputs were evaluated
using a combination of widely adopted automatic
metrics for image captioning, such as BLEU (Pa-
pineni et al., 2002) and cosine similarity (Sharif
et al., 2020), as well as LLM-based assessments
that capture semantic correctness and contextual
appropriateness (Zhang et al., 2025). In addition,
human evaluation was conducted to provide a com-
plementary benchmark, focusing on fluency, cul-
tural adequacy, and alignment with the visual con-
tent, thereby assessing subjective quality aspects
not captured by automatic metrics. The shared
task explicitly addresses challenges such as dataset
scarcity, morphological complexity, cultural speci-
ficity, metric suitability, and resource constraints in
Arabic NLP research.

This paper presents a comprehensive overview
of ImageEval 2025, including our motivation, task
design principles, data collection methodology,
evaluation framework, baseline models, and anal-
ysis of participant approaches and results. Our
contributions include:

• Introduce the first large-scale shared task for
Arabic image captioning, combining collab-
orative data creation with competitive model
evaluation.

• Comprehensive evaluation framework incor-
porating automatic metrics, LLM-based as-
sessment, and human evaluation.

• Analysis of cultural and linguistic challenges
specific to Arabic image captioning.

• Release all resources, including datasets, eval-

uation tools, and baseline models, as open-
source.

The rest of the paper is organized as follows: Sec-
tion 2 reviews related work, Section 3 presents
the shared task overview, Section 4 describes the
evaluation methodology, Sections 5 and 6 detail
Subtasks 1 and 2, Section 7 discusses challenges
and insights, Section 8 covers impact and future
directions, and Section 9 concludes the paper.

2 Related Work

2.1 Evolution of Image Captioning
Early image captioning relied on template-based
(Farhadi et al., 2010; Kulkarni et al., 2013) and re-
trieval methods (Devlin et al., 2015; Ordonez et al.,
2011), but the field was revolutionized by the adop-
tion of encoder-decoder frameworks, where CNNs
extract image features and RNNs or LSTMs gen-
erate captions (Stefanini et al., 2023; Ming et al.,
2022; Hossain et al., 2018; Verma et al., 2023). The
introduction of attention mechanisms allowed mod-
els to focus on salient image regions, improving
caption relevance and fluency (Yu et al., 2019; Liu
et al., 2020; Yan et al., 2021; Wang et al., 2020;
Gao et al., 2020). Transformer-based models fur-
ther advanced the field by enabling parallel process-
ing and capturing long-range dependencies, lead-
ing to state-of-the-art results on benchmarks like
MSCOCO (Yu et al., 2019; Yan et al., 2021; Xian
et al., 2022; Parvin et al., 2023). Recent vision-
language models such as CLIP, BLIP, and GPT-4V
leverage large-scale pretraining and multimodal
fusion, achieving remarkable performance and en-
abling new applications in accessibility and content
retrieval (Khodave and Powar, 2025; Cho and Oh,
2023; Betala and Chokshi, 2024; Nguyen et al.,
2023).

2.2 Multilingual and Cross-lingual Image
Captioning

Multilingual image captioning has gained trac-
tion, with datasets like COCO-CN and Crossmodal-
3600 supporting multiple languages (Cho and Oh,
2023; Li et al., 2019; Song et al., 2023). Most
research, however, still focuses on resource-rich
languages, with English dominating available data
and benchmarks (Khodave and Powar, 2025; Cho
and Oh, 2023; Li et al., 2019; Song et al., 2023).
Cross-lingual transfer approaches, such as using
visual pivots or synthetic data, have shown promise
in generating captions for low-resource languages
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(Al-Buraihy and Wang, 2024; Zhang et al., 2023;
Hitschler et al., 2016; Song et al., 2023). Recent
models employ transformer architectures and rein-
forcement learning to improve semantic and stylis-
tic alignment across languages (Al-Buraihy and
Wang, 2024; Zhang et al., 2023; Song et al., 2023).
Despite these advances, morphologically complex
languages like Arabic remain underexplored, and
open-source models often lag behind proprietary
systems in multilingual performance (Cho and Oh,
2023; Zha et al., 2022; Betala and Chokshi, 2024;
Song et al., 2023).

2.3 Arabic NLP and Multimodal Processing

Arabic NLP presents unique challenges due to its
rich morphology, complex script, and wide dialec-
tal variation (Nayouf et al., 2023). Moreover, the
meaning of many Arabic words can shift signifi-
cantly depending on context (Jarrar, 2021; Akra
et al., 2025). Several studies have been conducted
on Arabic image captioning (Elbedwehy and Med-
hat, 2023; Emami et al., 2022b; ElJundi et al., 2020;
Afyouni et al., 2021; Alsayed et al., 2023; Hejazi
and Shaalan, 2021). While significant progress has
been made in text-only Arabic NLP, multimodal
applications, especially image captioning, are still
nascent. Recent studies have proposed transformer-
based and hybrid models for Arabic image caption-
ing, often leveraging pre-trained language models
such as AraBERT, MARBERT, and CamelBERT
(Badarneh et al., 2025; Yu et al., 2019; Elbedwehy
and Medhat, 2023; Emami et al., 2022b; Afyouni
et al., 2021; Alsayed et al., 2023; Sabri, 2021).
These models have demonstrated improved perfor-
mance over translation-based approaches, but the
lack of large, high-quality Arabic datasets remains
a major bottleneck (Elbedwehy and Medhat, 2023;
Emami et al., 2022b; ElJundi et al., 2020; Afy-
ouni et al., 2021; Alsayed et al., 2023; Hejazi and
Shaalan, 2021). Comparative studies highlight the
importance of tailored preprocessing and feature
extraction for Arabic, with some models achieving
BLEU-4 scores up to 0.16, outperforming earlier
work (Elbedwehy and Medhat, 2023; Alsayed et al.,
2023; Sabri, 2021; Hejazi and Shaalan, 2021).

2.4 Shared Tasks in Multimodal NLP

Shared tasks and benchmarks such as MSCOCO,
VQA, and COCO-CN have been instrumental in
advancing image captioning and multimodal NLP
(Khodave and Powar, 2025; Cho and Oh, 2023; Li
et al., 2019; Betala and Chokshi, 2024). These chal-

lenges foster innovation, provide standardized eval-
uation, and drive the development of robust models
(Khodave and Powar, 2025; Cho and Oh, 2023; Li
et al., 2019; Betala and Chokshi, 2024). In addition,
several Arabic shared tasks have addressed a range
of NLP tasks, including named entity recognition
(Jarrar et al., 2024, 2023a), language understand-
ing (Khalilia et al., 2024), and dialect identification
(Abdul-Mageed et al., 2024, 2023), demonstrating
the value of community-driven evaluation across
diverse language technologies. However, no major
shared task has specifically targeted Arabic image
captioning, highlighting a significant gap and an op-
portunity for future community-driven efforts (Cho
and Oh, 2023; Betala and Chokshi, 2024; Sabri,
2021).

3 Shared-task Overview

The ImageEval 2025 shared task comprises two
primary subtasks: Subtask 1, the Image Caption-
ing Datathon, and Subtask 2, the Image Captioning
Models Evaluation. Subtask 1 focuses on the man-
ual creation of Arabic image captions, requiring
participants to produce natural, culturally appro-
priate, and contextually aligned descriptions. Cap-
tions must be written manually, without the use
of generative AI tools, and participants were pro-
vided with minimal contextual information about
the images. This guidance helps teams generate
meaningful captions that accurately reflect the con-
tent and cultural context of each image.

Subtask 2 evaluates the performance of Arabic
image captioning models. Participants are allowed
to use external datasets and retrieval-augmented
generation (RAG) approaches; however, the sub-
mitted system must rely entirely on the provided
dataset for evaluation. This requirement ensures a
standardized and fair comparison across participat-
ing models.

The shared task received 44 registrations, and
during the test phase, 8 teams submitted a total of
111 entries (109 submissions for Subtask 1 and 2
submissions for Subtask 1). In addition, 8 system
description papers were submitted and all were ac-
cepted. To facilitate consistent evaluation and scor-
ing of submissions, we employed Codabench12, a
well-established platform for shared-task evalua-
tion. Furthermore, we established and shared a
dedicated web page for the shared task, providing

1https://www.codabench.org/competitions/9447/
2https://www.codabench.org/competitions/9450/
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participants with guidelines and detailed informa-
tion as a reference 3. Table 1 presents a detailed
overview of the participating teams, listed in alpha-
betical order, along with their affiliations and the
subtasks in which they participated.

4 Evaluation

4.1 Human Evaluation
We selected approximately 5% of the test data and
applied four qualitative metrics to all participating
teams. Each metric was rated on a scale from 1
(lowest) to 4 (highest):

• Cultural Relevance – Measures whether the
description reflects cultural specificity and
provides contextual information related to the
scene.

• Conciseness – Assesses whether the descrip-
tion conveys information directly and suc-
cinctly, without unnecessary repetition or dis-
persion of details.

• Completeness – Evaluates the extent to which
the description covers all aspects of the im-
age, including events, entities, and relevant
elements.

• Accuracy – Measures whether the description
contains correct information, free from factual
or conceptual errors.

4.2 Automatic Metrics
The task considered the following metrics for auto-
matic evaluation of submissions.

• BLEU measures n-gram (n ∈ [1, 4]) over-
lap between generated and reference captions,
and applies smoothing for sparse higher-order
n-grams.

• ROUGE scores: (ROUGE-1, ROUGE-2, and
ROUGE-L) are recall-oriented; they measure
how many reference n-grams are recovered by
the candidate caption and the longest common
subsequence.

• Cosine similarity: compares the angu-
lar distance between vector representa-
tions of the captions. For this task,
we used term-frequency–inverse-document-
frequency (TF–IDF) vectors, where terms are

3https://sina.birzeit.edu/image_eval2025/

n-grams (n ∈ [1, 4]) and each caption is a
document.

• Jaccard Similarity: calculates the intersec-
tion over union of unique word sets, providing
a set-based overlap measure.

• Lin Similarity: is an information-theoretic
metric that computes twice the ratio of the
information content (IC) of the least common
subsumer of both captions, divided by the sum
of the IC of both captions.

4.3 LLM as a Judge

We incorporated LLM as a judge in the scoring
pipeline. Specifically, we employed the OpenAI
GPT-4o model through its API, with a fixed random
seed of 42, and an inference temperature of 0.0 to
ensure reproducibility, using a task-specific system
prompt (Appendix B).

For each (candidate, reference) caption pair, we
provided a structured prompt and instructed the
LLM to assign an integer score between 1 and 10,
where 1 is lowest and 10 is highest similarity. The
evaluation criteria emphasized semantic accuracy,
relevance, and fluency of the candidate caption
compared to the reference one.

Model outputs were parsed to reduce ambiguity,
and evaluations were executed concurrently for ef-
ficiency. Final submission scores were obtained by
averaging across all pairs and mapping results to a
normalized [0, 100] scale.

5 Subtask 1: Image Captioning Datathon

Images depict diverse visual scenes that require
contextually rich and culturally informed descrip-
tions, which motivated the Image Captioning
Datathon (Subtask 1). This subtask aims to gen-
erate captions that are both linguistically natural
and culturally appropriate for Arabic. Given an
image I , the goal is to produce a caption C that ac-
curately describes the content of I while reflecting
Arabic language norms and cultural context. Par-
ticipants were provided with a set of images and
tasked with manually creating descriptive captions
that emphasize meaning, context-awareness, and
cultural grounding. Submissions were required in
a CSV format, containing the corresponding image
ID and the generated caption for each image in
the test set. Figure 2 illustrates an example image
along with its manually annotated caption.
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Team Affiliation Subtask 1 Subtask 2
AZLU (Yassine et al., 2025) Lebanese Univ., Birzeit Univ., Al Azhar Univ. ✓

BZU-AUM (Alkhanafseh et al., 2025) Birzeit Univ. ✓

Averroes (Saeed et al., 2025) Applied Innovation Center, Georgia Tech ✓

Phantom Troupe (Abu Horaira et al., 2025) Chittagong Univ. of Engineering and Technology ✓

VLCAP (Elchafei and Fashwan, 2025) Ulm Univ., Alexandria Univ. ✓

Codezone Research Group (Bichi et al., 2025) Baba Ahmed Univ. Kano ✓

ImpactAi (Al-Qasem and Hendi, 2025) Ggateway ✓

NU_Internship (Gaber et al., 2025) Nile Univ., Ain Shams Univ., Alex. Univ. ✓

Table 1: Participating teams in ImageEval 2025 and their subtasks.

Arabic: �éJ. �̄ Yj. �Ó �ékA�Ë �èPñ�
	­K
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English Translation:
An image of the courtyard
of the Dome of the Rock
Mosque in Al-Haram
Al-Sharif.

Figure 2: Example image with corresponding caption.

5.1 Dataset

The dataset comprises 4, 000 open-source images
collected from multiple domains with careful con-
sideration to ensure cultural relevance and to avoid
sensitive or inappropriate content. The dataset was
systematically partitioned into 16 batches, each
containing 250 images.

The images represent a broad spectrum of Pales-
tinian cultural and social contexts. They encom-
pass everyday life, the activities of liberation move-
ments including military training, the lived expe-
riences of refugees, and significant historical and
touristic landmarks. The selection process priori-
tized diversity of perspectives to produce a dataset
that is both rich and representative.

For evaluation, two batches (500 images) with
pre-existing manual annotations were specified as
mandatory. These annotations served as the ref-
erence ground truth for assessing the quality of
the captions generated by participating teams. All
teams were required to submit captions for these
batches. In addition, teams were allowed to select
further batches for annotation, provided that any
chosen batch was captioned in its entirety.

5.2 Annotation Guidelines

Annotation guidelines were developed to ensure
consistency across participants. Alongside these
guidelines, an annotation file was provided con-
taining 250 images organized into five sheets of 50
images each. Each sheet included a short contex-

tual description, a thumbnail preview, and a URL
to the original high-resolution image.

Participants were instructed to write captions in
Modern Standard Arabic (MSA), avoiding collo-
quial or dialectal forms. Each caption was required
to be between 15 and 100 words (ideally around 50
words, written in 3 – 4 sentences). Captions were
expected to be narrative in style, reflecting emo-
tions, events, historical context, and cultural signifi-
cance, rather than simply listing visible objects. To
ensure quality and consistency, participants were
required to perform all annotations manually with-
out AI assistance and to develop their own detailed
captioning guidelines for internal use.

5.3 Evaluation and Result
For Subtask 1, captions were evaluated using hu-
man evaluation (4.1), automatic metrics (4.2), and
LLM as a judge (4.3). Since cosine similarity and
LLM-based scores showed higher alignment with
human evaluation, they were used for final ranking.
The combined results are summarized in Table 2.

According to automatic metrics, BZU-AUM
(Alkhanafseh et al., 2025) achieved the highest
cosine similarity (65.53), while AZLU (Yassine
et al., 2025) obtained the highest LLM Judge Score
(41.53). Human evaluation results indicate BZU-
AUM scored highest in cultural relevance (3.24)
and completeness (3.08), whereas AZLU scored
highest in conciseness (3.44) and accuracy (3.16).

The results indicate different annotation tenden-
cies between the two teams, with BZU-AUM pro-
ducing more complete and culturally relevant de-
scriptions, while AZLU provided captions that
were comparatively more concise and accurate.

5.4 Discussion
The teams approached manual captioning through
varied annotation strategies, team composition,
quality control practices, and cultural adaptation
methods.
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Teams
Automatic Evaluation Human Evaluation

Rank
(Cosine)

Cosine
Similarity

Rank
(LLM)

LLM
Judge Score

Cultural
Relevance Conciseness Completeness Accuracy

AZLU 2 59.15 1 41.53 3.20 3.44 2.88 3.16
BZU-AUM 1 65.53 2 32.42 3.24 2.76 3.08 2.92

Table 2: Subtask 1 Results: Automatic Evaluation (Cosine Similarity, LLM Judge Score) and Human Evaluation
(Cultural Relevance, Conciseness, Completeness, Accuracy).

Annotation strategies varied with emphasis on
narrative richness and contextual detail, while the
other team focused on brevity and precision. These
tendencies are reflected in the completeness and
cultural depth favoring one team versus prioritized
conciseness and accuracy.

Team composition played a role in shaping an-
notation styles, as teams included native Arabic
speakers with dialectal backgrounds and subject
matter experts for historically or culturally sensi-
tive images. Quality assurance reviewers were also
engaged to enhance consistency.

Quality control measures centered on inter-
nal review processes to ensure that captions ad-
hered to guidelines and maintained fluency. While
inter-annotator agreement was not systematically
enforced across all teams, they adopted informal
checks for coherence and style alignment.

Cultural adaptation approaches were partic-
ularly important, as annotators sought to embed
historical references, social practices, and cultural
nuances in the captions. This emphasis helped
maintain cultural relevance while ensuring captions
extended beyond object description into meaning-
ful narrative.

6 Subtask 2: Image Captioning Model
Evaluation

Subtask 2 addresses the development of models
for automatic Arabic image captioning. Given an
image i ∈ I , the goal is to generate an Arabic
caption ci that is both contextually accurate and
culturally relevant. Participants were provided with
a curated dataset of manually annotated Arabic
images, divided into training and test subsets. The
training subset was shared for model development,
while the test set was released later for caption
generation. Submissions consisted of automatically
generated captions C for each test image i ∈ I , and
were evaluated against the ground truth captions
using established automatic metrics (see Section
4.2) through Codabench.

6.1 Dataset
We prepared a curated dataset of 3, 471 manually
annotated Arabic image-caption pairs, comprising
2, 718 images for training with ground-truth cap-
tions and 753 images reserved for final evaluation.
The images capture a wide range of Palestinian cul-
tural and social contexts, including everyday life,
the activities of liberation movements such as mili-
tary training, the experiences of refugees, and no-
table historical and touristic landmarks. The dataset
is publicly available through Hugging Face45.

6.2 Baselines
To establish performance benchmarks, we es-
tablished two baselines on our human-annotated
dataset: zero-shot and fine-tuning. The code for
these baselines is publicly available on GitHub6.

Zero-Shot Baseline
For the zero-shot baseline, we employed
Qwen2.5-VL-7B-Instruct (Bai et al., 2025), a
vision–language model with a unified image en-
coder and autoregressive text decoder. The model
was applied directly in inference mode, without
any task-specific fine-tuning, to assess its ability to
generate Arabic captions “out-of-the-box.”

A multimodal prompt was designed to combine
(i) the raw image and (ii) an instruction in Arabic
guiding the model to generate culturally appropri-
ate captions (15–50 words). The exact prompt tem-
plate is provided in Appendix A.1. Inference was
performed with a maximum generation length of
128 tokens. Outputs were collected in a structured
format to facilitate evaluation. The final results are
summarized in Table 3

Fine-Tuned Baseline
The same model was fine-tuned on the dataset us-
ing supervised fine-tuning (SFT) with LLAMA-
FACTORY. Each training instance was formatted

4Train: SinaLab/ImageEval2025Task2TrainDataset
5Test: SinaLab/ImageEval2025Task2TestDataset
6Baselines: GitHub Repository
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as a two-turn conversation in which the human
prompt contained the image and a request for de-
scription in Arabic, and the assistant response was
the corresponding gold caption.

Fine-tuning was carried out with parameter-
efficient adaptation using LoRA. We trained for
15 epochs with a batch size of 16 and a maximum
sequence length of 1024 tokens. Optimization em-
ployed AdamW with a learning rate of 2 × 10−5

and a cosine decay schedule with warmup. Dropout
was set to 0.1, and the LoRA configuration used a
rank of 8 with scaling parameter α = 16. Training
and validation losses were monitored throughout,
and checkpoints were saved regularly. The fine-
tuned model is publicly available7.

Fine-tuning consistently improved performance
across all evaluation metrics compared to the zero-
shot baseline, as shown in Table 3, confirming the
effectiveness of task-specific adaptation for Arabic
image captioning.

Baseline BLEU-1 BLEU-4 Cosine
Similarity

LLM
Judge (%)

Zero-shot 0.0992 0.0133 0.5577 27.11
Fine-tuned 0.1698 0.0305 0.5846 30.82

Table 3: Baseline performance on the dataset.

6.3 Participant Systems
All teams adapted pretrained vision–language mod-
els. They relied on translation, fine-tuning, or aug-
mentation, and differed in how they restructured
the captioning pipeline.

Averroes (Saeed et al., 2025) employs a two-
stage pipeline, where one Qwen2.5-VL-7B based
model generates detailed descriptions and another
refines captions. They augmented training data
with AyaVision8B and used BLEU scores to vali-
date and pair with randomized image transforma-
tions. Its key contribution is systematic augmenta-
tion that enhances diversity without distorting the
data distribution.

Codezone Research Group (Bichi et al., 2025)
uses a zero-shot translation pipeline: BLIP gen-
erates English captions, which are translated to
Arabic with M2M100. To ensure consistency in
evaluation, the output is normalized by removing
diacritics, Tatweel, and punctuation. Unlike others,
it avoids fine-tuning, showcasing the viability of
off-the-shelf models combined with robust transla-
tion.

7Finetuned Baseline: Hugging Face

ImpactAi (Al-Qasem and Hendi, 2025) pro-
posed a region-aware captioning method based on
the Region Features Transformer (CRAFT). The
approach extracts a set of salient regions from
each image using Faster R-CNN and encodes
these region features through a transformer en-
coder–decoder architecture, paired with ArabGloss-
BERT tokenization. This integration distinguishes
it from other submitted methods.

Phantom Troupe (Abu Horaira et al., 2025)
uses a translation-centered pipeline: Arabic cap-
tions are translated to English with the Qwen3-14B
model for training and then back-translated at infer-
ence. They fine-tune Qwen2.5-VL-7B with LoRA
for efficient adaptation. Its distinctive feature is the
preservation of cultural nuances during translation
while leveraging strong English captioning models.

NU_Internship (Gaber et al., 2025) adapted a
vector store-based approach to enhance domain
adaptability. They used Gemini-2.5 Flash, ex-
panded the training data, and experimented with
both zero-shot and fine-tuning, with and without
RAG. To fuse the outputs of the top-performing
models, they applied a meta-learning stacked en-
semble using an LLM, selection guided by BLEU
and cosine similarity metrics.

VLCAP (Elchafei and Fashwan, 2025) VLCAP
is an Arabic image captioning framework that con-
ditions generation on interpretable visual labels. A
hybrid vocabulary is derived by extracting noun-
like keywords from training dataset captions and
augmenting them with over 21K translated Visual
Genome concepts. Three retrieval experiments are
conducted using mCLIP, AraCLIP, and Jina V4,
where the top-k most relevant labels for each im-
age are identified to construct the Arabic prompt for
captions generation. These prompts, together with
the original image, are provided to Qwen-VL and
Gemini Pro Vision in separate settings. The best
results are achieved when combining mCLIP for
label retrieval with Gemini Pro Vision for caption
generation, producing culturally coherent and con-
textually accurate Arabic captions, while AraCLIP
with Qwen-VL excels in human-judged quality.

6.4 Evaluation and Results
Subtask 2 was assessed using the same three per-
spectives introduced earlier: automatic metrics
(4.2), LLM as a judge (4.3), and human evalua-
tion (4.1). Table 4 presents the comparative results
for all participating teams.

VLCAP scored the highest cosine similarity
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Teams
Automatic Evaluation Human Evaluation

Rank
(Cosine)

Cosine
Similarity

Rank
(LLM)

LLM
Judge Score

Cultural
Relevance Conciseness Completeness Accuracy

Averroes 2 58.55 1 33.97 3.63 3.43 2.60 2.80

Codezone Research Group 6 38.30 6 15.14 1.10 2.03 1.47 2.03

ImpactAi 4 56.22 4 26.55 3.13 2.73 1.77 1.97

NU_Internship 5 55.32 5 24.87 2.57 2.97 2.13 2.23

Phantom Troupe 3 57.48 3 31.43 3.40 3.27 2.33 2.40

VLCAP 1 60.01 2 33.05 2.57 3.17 2.67 2.97

Table 4: Subtask 2 Results: Automatic Evaluation (Cosine Similarity, LLM Judge Score) and Human Evaluation
(Cultural Relevance, Conciseness, Completeness, Accuracy).

(60.01), whereas Averroes ranked top with the
LLM-Judge (33.97). Human evaluation highlights
further distinctions: Averroes led in cultural rele-
vance (3.63) and conciseness (3.43), while VLCAP
ranked highest in completeness (2.67) and accuracy
(2.97). Phantom Troupe also performed strongly,
particularly in cultural relevance and conciseness.

6.5 Discussion
Submissions varied across model architectures,
training, and fine-tuning strategies.

Model architectures were largely based on fine-
tuning pretrained multilingual vision–language
models, often with LoRA adapters for efficiency.
Several teams relied on cross-lingual transfer by
generating English captions and translating to Ara-
bic, while one system introduced region-aware
modeling with custom transformer components.

Training strategies included data augmentation,
where image transformations and caption valida-
tion expanded the training set, and multi-stage
pipelines that first produced detailed image descrip-
tions before refining them into captions.

Arabic-specific optimizations focused on cul-
tural and linguistic nuances during translation, ded-
icated Arabic tokenizers, and normalization to im-
prove consistency in evaluation.

7 Challenges and Insights

Arabic image captioning faces significant chal-
lenges that stem from linguistic, cultural, and
resource-related gaps. Unlike English, where large-
scale datasets and robust models exist, Arabic
research suffers from a severe shortage of high-
quality, publicly available datasets (Emami et al.,
2022a; Attai and Elnagar, 2020; Mohamed et al.,
2023a; Kadaoui et al., 2025). Most available re-
sources are translations from English rather than
native Arabic captions, which fail to capture authen-
tic linguistic patterns and cultural nuances (Ibrahim

et al., 2025). This scarcity not only limits standard-
ized benchmarking but also fragments research ef-
forts, as scholars are forced to build small-scale
datasets in isolation. Beyond resource limitations,
Arabic itself introduces unique challenges due to
its morphological richness, right-to-left script, con-
nected character system (where OCR is needed),
and extensive dialectal variation. These features
make direct transfer of English-based methods in-
effective, while translation-based approaches accu-
mulate errors and degrade caption quality (Attai
and Elnagar, 2020; Mohamed et al., 2023a). Cul-
tural representation further complicates the task, as
most image datasets are Western-centric and fail
to reflect Arab cultural contexts, leading to mis-
matches between images and captions (Attai and
Elnagar, 2020; Al-Buraihy et al., 2025). Address-
ing these challenges requires not only technical
advances in preprocessing and modeling but also
the creation of culturally authentic datasets tailored
to Arabic’s linguistic and social complexity.

ImageEval 2025 contributes to the benchmark-
ing and further development of Arabic image cap-
tioning, offering a common ground for system com-
parison and incremental progress. By releasing the
datasets, baseline models, and evaluation tools, this
shared task aims to support the community and fa-
cilitate future research in Arabic multimodal NLP.

8 Future Directions

Building on the success and insights from ImageE-
val 2025, we identify several promising directions
for future research and development in Arabic im-
age captioning.

Future research should prioritize the develop-
ment of evaluation metrics that more effectively
capture Arabic morphological complexity, cultural
nuances, and semantic variability, addressing limi-
tations of current automatic measures. Addressing
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Arabic dialectal diversity is another critical area,
requiring models capable of adapting to regional
linguistic variations and code-switching phenom-
ena. Furthermore, enhancing cross-lingual trans-
fer learning from high-resource languages while
maintaining Arabic linguistic and cultural fidelity
represents an important methodological challenge.

Efforts should be directed toward scaling data
collection to develop larger and more diverse Ara-
bic multimodal datasets that include additional do-
mains and cultural contexts. Furthermore, trans-
lating these research advances into practical ap-
plications can enhance accessibility, content man-
agement, and educational technologies for Arabic-
speaking communities.

The foundations established through ImageEval
2025 provide a robust platform for these future
endeavors, with open-source resources and estab-
lished methodologies enabling continued progress
in Arabic multimodal NLP research.

9 Conclusion

ImageEval 2025 represents a significant milestone
in Arabic multimodal NLP, addressing the criti-
cal gap in Arabic image captioning through inno-
vative task design and community collaboration.
The shared task successfully created valuable re-
sources for the research community while high-
lighting unique challenges and opportunities in
Arabic multimodal processing.

Our dual-task approach combining collaborative
data creation with competitive model evaluation
proved effective in both advancing the state-of-the-
art and fostering community engagement. The re-
sults demonstrate both the challenges inherent in
Arabic image captioning and the potential for sig-
nificant progress through focused research efforts.

The datasets, evaluation tools, and insights gener-
ated through ImageEval 2025 provide a foundation
for continued research in Arabic multimodal NLP.
We anticipate that this work will catalyze further
developments in Arabic vision-language process-
ing and contribute to more inclusive and culturally
aware AI systems.

Limitation

This study is limited to Palestinian cultural repre-
sentation and does not cover other Arabic-speaking
regions. The dataset captions are exclusively in
MSA and do not include regional dialects. There-
fore, while suitable for training models on Pales-

tinian cultural contexts, the dataset’s applicability
to other Arabic cultures is restricted. Expanding
to additional dialects and regions is necessary to
enable broader cultural generalization in model
training.
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A Methodology

A.1 Zero-Shot Approach
The zero-shot methodology implements direct inference using the pre-trained QWEN2.5-VL-7B-Instruct
model without domain-specific fine-tuning, serving as a crucial baseline for Arabic image captioning
performance evaluation. The system loads the base model in bfloat16 precision with automatic device
mapping to optimize computational efficiency while maintaining model performance.

A.1.1 Prompt Engineering Strategy
A multimodal prompt was designed combining (i) the raw image and (ii) an instruction asking the model
to generate a natural, culturally appropriate caption in Arabic (15–50 words) task within the Palestinian
Nakba and Israeli occupation framework:

"You are an expert in visual scene understanding and multilingual caption generation. Analyze
the content of this image, which is potentially related to the Palestinian Nakba and Israeli
occupation of Palestine, and provide a concise and meaningful caption in Arabic - about 15
to 50 words. The caption should reflect the scene’s content, emotional context, and should be
natural and culturally appropriate. Do not include any English or metadata — The caption
must be in Arabic."

This design leverages the model’s pre-trained knowledge about historical events, cultural sensitivity,
and multilingual generation capabilities without requiring additional training data.

A.1.2 Inference Pipeline
The system utilizes the processor’s chat template functionality for correct input formatting, followed by
vision information processing for image data handling. Generation parameters are set with a maximum of
128 new tokens to ensure concise yet meaningful Arabic descriptions while preventing overly verbose
outputs.

A.1.3 Methodological Advantages
This zero-shot approach provides several key advantages:

• Rapid deployment without training overhead

• Unbiased evaluation of pre-trained capabilities

• Performance baseline establishment for fine-tuned variant comparison

• Domain-specific assessment of cultural sensitivity and historical context understanding in Arabic

The systematic processing and structured CSV output enable comprehensive performance analysis
across multiple evaluation metrics, supporting both quantitative assessment through BLEU scores and
qualitative evaluation through LLM-as-a-judge scoring systems.

A.2 Fine-tuning Approach
A.2.1 Base Model
We fine-tune Qwen/Qwen2.5-VL-7B-Instruct, a vision–language model (VLM) with a unified image
encoder and autoregressive text decoder. Supervised fine-tuning (SFT) is performed using LLAMA-
FACTORY.

A.2.2 Task Formulation
The objective is Arabic image captioning. Each training example is a two-turn conversation:

• Human: “<image> Describe this image in Arabic.”

• Assistant: gold Arabic description.

The dataset template qwen2_vl is used so that images and text are tokenized consistently with the base
model.
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A.2.3 Data Preparation
Source annotations are provided in an Excel file with File Name and Description columns. We convert
rows to the LLaMA-Factory JSON format with absolute image paths:

• conversations: the prompt/response pair above.

• images: list with one absolute path to the corresponding JPEG.

Before training, we verify the existence and integrity of each image via PIL.Image.verify() and report
any missing files.

A.2.4 Training Configuration
Parameter-efficient fine-tuning is applied with LoRA:

• Stage: SFT Finetuning: lora on all target modules.

• LoRA hyperparameters: rank r=8, α=16, dropout 0.1.

• Sequence length: cutoff = 1024 tokens.

• Batching: per-device batch size = 1, gradient accumulation = 16 (effective batch size 16).

• Optimization: AdamW with learning rate 2× 10−5, cosine LR schedule, warmup ratio 0.1.

• Epochs: 15.

A.2.5 Logging and Checkpointing
Training is launched via llamafactory-cli train with YAML configuration. We log every 5 steps and
save checkpoints every 25 steps to the specified output directory. Loss curves are recorded for monitoring;
external evaluators are not invoked in this pipeline.

A.2.6 Reproducibility Notes
We confirm tokenizer compatibility with Arabic text and report vocabulary size prior to training. All paths
are absolute to avoid path-resolution errors during multi-process loading. The entire procedure is available
at https://github.com/SinaLab/ImageCaptionSharedTask2025.

B LLM As a Judge System Prompt

You are an expert AI evaluator specializing in Arabic language and semantics. Your task is to act
as an impartial judge and evaluate the quality of a "model-generated caption" of a given image by
comparing it to a "ground truth caption" for the same image. You will not see the image itself.
Your entire evaluation must be based on the textual comparison of the two provided Arabic captions.
Assume the "ground truth caption" is the accurate and correct description of the image.
Evaluation Criteria: Please evaluate the "model-generated caption" based on the following criteria,
using a scale of 1 to 10, where 1 is Very Poor and 10 is Excellent.
Semantic Similarity: - How closely does the model’s caption convey the same core meaning as the
ground truth? - Does the caption mention the same key objects, attributes, and actions as the ground
truth? Score 10: The meaning is identical or nearly identical. Score 1: The meaning is completely
different or irrelevant.
REPLY WITH THE SCORE ONLY. NO EXPLANATION
Caption to Evaluate:
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Abstract
This paper details the ImageEval 2025 Shared
Task on Arabic image captioning. We designed
a two-step, zero-shot framework that utilises
the BLIP multimodal vision-language model to
first generate English captions. These captions
are then converted to Arabic via the M2M100
multilingual translation model. We tested the
full pipeline on the official ImageEval 2025
benchmarking set, obtaining a cosine similarity
of 0.383 and an LLM Judge score of 15.14. The
corroborating numerical and qualitative find-
ings confirm the viability of a translation-driven
methodology for cross-lingual image caption-
ing in Arabic, a language often classified as
low-resource. Nonetheless, the experiments
also uncovered weaknesses: subtle semantic
layers and culturally specific references are in-
adequately conveyed in the output and merit
focused attention in subsequent iterations.

Keywords: Arabic image captioning, caption-
ing algorithms, BLIP, M2M100, cross-lingual
transfer, multilingual machine translation

1 Introduction

The task of image captioning presents a signifi-
cant challenge in the fields of computer vision and
natural language processing, where models are ex-
pected to describe images using natural language.
Although considerable effort has been devoted to
English image captioning, generating Arabic cap-
tions that are both culturally relevant and contex-
tually accurate remains a major challenge due to
limited resources and the unique characteristics of
the Arabic language (Bashiti et al., 2025).

The ImageEval 2025 Shared Task initiates an
Arabic image captioning evaluation framework by
providing a dataset of 3,471 images paired with
Arabic captions (Bashiti et al., 2025). This initia-
tive aims to facilitate the development of Arabic
vision-language models capable of generating cul-
turally relevant and linguistically accurate textual
descriptions of images.

Addressing the outlined problem is achievable
through a two-step captioning strategy: first, us-
ing the leading BLIP model to generate English
descriptions of the images, which are then trans-
lated into Arabic using the M2M100 multilingual
machine translation model. This approach takes
advantage of the extensive ImageEval 2025 Shared
Task datasets and the strong translation capabilities
for the generation of Arabic text. Therefore, our
review of the literature suggests that this method
is a new technique for Arabic image captioning,
since no previous research has used this method to
generate captions in Arabic from images.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work, while Section
3 presents our two-stage BLIP+M2M100 method-
ology. Section 4 describes the experimental setup,
followed by Section 5 which presents quantitative
and qualitative results with comparative analysis
against baseline models. Finally, Section 6 con-
cludes with key findings and discusses future re-
search directions for Arabic image captioning.

2 Related Work

The recent development of vision-language mod-
els has predominantly focused on the English lan-
guage, utilizing models such as CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), and BLIP (Li
et al., 2022). These models achieve zero-shot per-
formance by learning joint representations of im-
ages and text from large-scale web datasets. How-
ever, their application to Arabic remains almost
nonexistent, primarily due to the scarcity of avail-
able resources and data.

Research on multilingual image captioning has
primarily focused on multilingual training (Li et al.,
2020), cross-lingual transfer learning (Stefanini
et al., 2023), and other translation-based methods
(Elliott and de Vries, 2023). Although translation-
based approaches to image captioning are straight-
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forward, they are effective when high-quality trans-
lation software is available. A significant advance-
ment in multilingual neural machine translation is
the M2M100 model (Fan et al., 2021), which can
translate directly between one hundred languages
without relying on English as a central pivot lan-
guage.

The processing of Arabic text presents chal-
lenges such as complex morphology, diverse
dialects, and the right-to-left writing direction
(Habash, 2010). These characteristics complicate
Arabic text generation and evaluation, underscor-
ing the importance of advancing image-captioning
systems in Arabic. This, in turn, fosters the devel-
opment of Arabic vision-language understanding
systems.

3 Methodology

This section explains the system architecture, the
process of caption creation for images, translation
from English to Arabic, and text normalization.

3.1 System Architecture

The system architecture consists of the following
two components.

1. English Caption Generation: The BLIP model
generates English descriptions for the given
images.

2. Arabic Translation: English captions are trans-
lated into Arabic using the M2M100 model.
As shown in Figure 1, our proposed system
employs a two-stage pipeline approach.

The modular approach enables the utilization of
existing English vision-language models alongside
state-of-the-art neural machine translation tech-
niques for generating Arabic text.

3.2 Image Captioning and English-to-Arabic
Translation

For English captioning, we use the BLIP-
base model (Salesforce/blip-image-captioning-
base). BLIP employs a unified vision-language
pretraining strategy that integrates the training of
an image encoder, a text encoder, and an image-
grounded text decoder. It is pretrained on large
image-text corpora, enabling the model to generate
accurate captions for images without prior expo-
sure to specific content. For each provided image,
we perform the following steps:

Figure 1: Architecture of the Proposed Model: Arabic
Image Captioning Using BLIP and M2M100

1. The image is resized to a resolution of 384 ×
384 pixels and then normalized as employed
by (Rastogi, 2024).

2. The BLIP vision encoder extracts the corre-
sponding visual features from the image.

3. English captions are generated using beam
search decoding.

4. Translation of the caption is performed on the
selected caption that has received the highest
score.

5. The source language token is set to English
(“en”).

6. Tokenization of the English caption using the
M2M100 tokenizer.

7. Generation of Arabic translations with the
mandatory use of the Arabic language token.

8. Encoding the result to generate the Arabic
caption.
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3.3 Text Normalization

For evaluation purposes, we performed Arabic text
normalization as proposed by (Alami Chehbouni
et al., 2020), which includes the following steps:
Removing diacritical marks, Removal of Tatweel
characters, Removal of punctuation marks, Whites-
pace Standardization.
This normalization accounts for the morphologi-
cal intricacies of the Arabic language, providing
a robust and fair evaluation against the reference
captions.

4 Experimental Setup

This section describes the dataset used, implemen-
tation details, and evaluation metrics.

4.1 Dataset

We conducted a system evaluation using the Im-
ageEval 2025 dataset, which comprises 3,471 im-
ages with captions, distributed as follows (Bashiti
et al., 2025).
1. Training set: 2,718 images
2. Validation set: 75 images
3. Test set: 752 images
The dataset includes a diverse array of visuals ac-
companied by culturally relevant Arabic captions,
making it a robust benchmark for evaluating Arabic
image captioning.

4.2 Implementation Details

The following system configuration was used for
the implementation:

1. Hardware: Image processing with CUDA-
enabled GPUs.
2. BLIP Model: Salesforce/BLIP Image Cap-
tioning Based
3. Translation Model: facebook/m2m100-
418M
4. Framework: PyTorch with the Transform-
ers library.
5. Inference: Conducted in a zero-shot sce-
nario without any prior model tuning.

The entire processing pipeline generates captions
for 752 test images, with an average processing
time of 12.27 seconds per image for both caption
generation and translation.

4.3 Evaluation Metrics

We used multiple metrics to evaluate the quality of
the captions.

1. BLEU Scores: N-gram precision metrics
(BLEU-1 through BLEU-4).
2. ROUGE Scores: Recall-oriented metrics in-
cluding ROUGE-1, ROUGE-2, and ROUGE-
L.
3. Cosine Similarity: A metric for evaluating
multi-lingual sentence embeddings.
4. LLM Judge Score: Evaluation conducted
by large language models.

These metrics analyze various aspects of a cap-
tion, including its text, meaning, and human evalu-
ation.

5 Results and Analysis

This section explains qualitative results, error anal-
ysis, and provides qualitative examples.

5.1 Quantitative Results

Table 1 reports the metrics achieved by our system
in the test set, together with comparisons with the
baseline models.

Our dual-pass translation framework achieves
significant improvements over standard models,
as measured by classical n-gram metrics such
as BLEU and ROUGE. In particular, the system
achieves substantial gains in BLEU-1 (0.2847 com-
pared to 0.0992 for zero shot and 0.1698 for fine
tuned Qwen 2.5-VL), outperforming both zero shot
and fine tuned Qwen 2.5-VL models. However, the
baseline variants exhibit higher cosine similarity
and LLM judge scores, highlighting a complemen-
tary balance between precise semantic representa-
tion and holistic quality assessment offered by the
two architectures.

Table 1: Quantitative Results Comparison – Our Arabic
Image Captioning Method vs. Baseline Models

Metric Our
Method
(BLIP +

M2M100)

Zero-
shot

Qwen
2.5-VL

7B (Base-
line)

Fine-
tuned
Qwen
2.5-VL

7B (Base-
line)

BLEU-1 0.2847 0.0992 0.1698
BLEU-2 0.1623 0.0323 0.0862
BLEU-3 0.0943 0.0190 0.0543
BLEU-4 0.0587 0.0133 0.0305
ROUGE-1 0.0000 0.0000 0.0000
ROUGE-2 0.0000 0.0000 0.0000
ROUGE-L 0.0000 0.0000 0.0000
Cosine Similarity 0.3830 0.5577 0.5846
LLM Judge Score 15.1400 27.1100 30.8200
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5.2 Qualitative Assessment Outcomes
Beyond numerical evaluation, the framework was
assessed using qualitative criteria that addressed
both the cultural and linguistic appropriateness of
the generated captions.

1. Cultural Relevance: 1.10
2. Conciseness: 2.03
3. Completeness: 1.47
4. Accuracy: 2.03

The modest scores highlight a pressing need to
improve cultural depth and caption comprehensive-
ness, while conciseness and accuracy demonstrate
steady, if not outstanding, performance.

5.3 Error Analysis
This section, examining the generated captions, un-
covers some recurring issues.

1. Idioms: Some English phrases and sayings
do not have an equivalent in Arabic.
2. Cultural Relevance: Some generated cap-
tions include references that lack culturally
relevant details or specific information. Mor-
phological variations in Arabic pose chal-
lenges to exact lexical matching due to its
complex morphology.
3. Object Misrecognition: Some devices or
ideas that belong to specific cultures are mis-
recognized.

5.4 Comparative Analysis
Our two-stage approach demonstrates distinct per-
formance characteristics compared to the baseline
models.

Strengths:

1. Led performance evaluation using surface
n-gram overlap metrics (BLEU, ROUGE).
2. Leveraging advanced English vision-
language encoding techniques
3. Stable pipeline extending from Arabic vi-
sion to generated captions

Limitations:

1. Achieved through dedicated multilingual
captioning models.
2. Performance on large language model eval-
uation metrics continues to lag behind state-
of-the-art benchmarks.
3. Qualitative assessments identify instance-
specific gaps in cultural relevance, reaffirming
the necessity of localized context.

However, results indicate that translation-based
pipelines produce captions with high linguistic fi-
delity to reference standards, whereas models that
retain multilingual embeddings convey deeper se-
mantic information, albeit with slightly lower lexi-
cal precision.

6 Limitation

No Direct Visual-Arabic Learning: The approach
cannot learn how Arabic speakers naturally de-
scribe visual content, relying instead on English vi-
sual understanding followed by translation, which
misses Arabic-specific visual-linguistic patterns.

7 Conclusion and Future Work

The shift and contribution of this paper lies within
the use of the BLIP and M2M100 to produce a new
two-stage Arabic image captioning system as well
as the comparative Qwen 2.5-VL (zero-shot and
fine-tuned) baseline analysis of the Arabic datasets.
The regional context has not previously been ana-
lyzed.
Furthermore, this study presents a two-phase Ara-
bic captioning architecture that takes advantage of
existing English vision-language models alongside
tile-based multilingual translation services. The
resulting system achieved a competitive cosine sim-
ilarity score of 0.383, demonstrating the feasibility
of translation-centric cross-lingual image caption-
ing. Performance metrics indicate that translation-
based approaches outperform conventional n-gram
baselines; however, evaluations of semantic coher-
ence and cultural representation reveal gaps that
require targeted refinement. Future iterations will
incorporate deeper multilingual embeddings and
culturally aware context modules to enhance both
meaning preservation and cultural resonance.

Future enhancements may include the following:

1. Direct Arabic Vision-Language Models:
Develop fully end-to-end Arabic image cap-
tioning systems that utilize large-scale, cultur-
ally specific datasets to maximize relevance.
2. Cultural Context Enhancement: Integrate
structured cultural knowledge graphs with an-
notation pipelines to ensure that relevance
scoring and caption generation reflect nuanced
local traditions.
3. Hybrid Approaches: Combine the rigor
of lexically precise, translation-inspired sys-
tems with the deep semantic capabilities of
multilingual transformers within a balanced,

393



modular, and selective architecture.
4. Advanced Text Normalization: Implement
state-of-the-art morphological disambiguation
and dialect-aware normalization techniques to
standardize Arabic text while minimizing con-
textual distortion.

The ongoing research highlights the rapid
progress in Arabic artificial intelligence. The up-
coming ImageEval 2025 benchmark is expected to
further intensify competition in Arabic vision and
language comprehension.
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Abstract

This paper presents a new Arabic image cap-
tioning dataset created for the ImageEval 2025
Shared Task. The dataset focuses on images
related to conflict, resistance, and everyday life
under occupation. Each image is paired with
a Modern Standard Arabic caption of 40–70
words that describes what is shown and adds
cultural or emotional context. To help anno-
tators write rich and consistent captions, we
used prompt-based guidelines, including step-
by-step reasoning and writing from specific
roles such as journalists or humanitarian ob-
servers. This method produced captions that are
both descriptive and meaningful. The dataset
fills an important gap in Arabic resources, espe-
cially for sensitive and historically significant
topics. It can be used to train and evaluate Ara-
bic vision language models, test multilingual AI
systems, and support applications in journalism,
education, and cultural preservation.

1 Introduction

The ImageEval 2025 Shared Task encourages mul-
tilingual, culturally sensitive image captioning by
having participants create Arabic captions for pic-
tures that call for emotional, historical, or cultural
knowledge. We make a contribution by compiling
a dataset of Arabic captions that have been human-
annotated for photos that show resistance, conflict,
and day-to-day life under occupation. A crucial task
in computer vision and natural language process-
ing, image captioning produces natural language
descriptions for visual content and facilitates uses
like content indexing, accessibility, and visual story-
telling. Even though the field has been advanced by
large datasets like MS-COCO citelin2014microsoft,
Flickr30k citeyou2016image, and Visual Genome
citekrishna2017visual, they limit culturally rich or
emotionally charged narratives by concentrating
on English and generic domains. Despite being
widely spoken, Arabic is still under-represented,

which limits the use of large language models and
vision-language in these situations. With thorough,
human-written captions in formal Arabic (40–70
words) that capture both the visible content and
any underlying cultural or emotional meaning, our
dataset fills this gap. We used Chain-of-Thought
(Wei et al., 2022; Kharma et al., 2025) and Role-
Based prompting (Bubeck et al., 2023) to guarantee
consistency and depth, directing annotators to rea-
son methodically and adopt viewpoints similar to
those of a journalist or witness. This tool facili-
tates the development of socially conscious AI sys-
tems, the training and assessment of Arabic vision-
language models, and the improvement of multilin-
gual LLMs. Additionally, it offers a standard for the
ImageEval 2025 Shared Task, allowing models to
be assessed on culturally relevant and contextually
rich captions.

In the remaining portion of the paper, relevant
work, dataset construction, annotation methodol-
ogy, caption analysis, use cases, and future direc-
tions are discussed.

2 System Overview

In this section, we describe the dataset creation and
annotation process used in our submission to the
ImageEval 2025 Shared Task.

2.1 Dataset Composition and Historical
Context

With an emphasis on the Palestinian experience as
it has been shaped by resistance, displacement, and
colonisation, this dataset tackles the dearth of cul-
turally rich and emotionally charged Arabic image
captioning data. In contrast to other datasets that
contain neutral, apolitical content, it contains im-
ages of life under occupation, acts of protest and
survival, and aspects of cultural continuity and defi-
ance. These images function as digital repositories
of memory and identity in addition to being training
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data for vision-language models.
Two datasets of 250 images each, arranged into

five thematically distinct sheets, were selected for
analysis. As outlined in Table 1, each sheet focusses
on a distinct facet of Palestinian history and daily
life, guaranteeing coverage of both traumatic and
resilient experiences.

Our dataset’s imagery captures the nuanced his-
torical and sociopolitical background of Palestine.
Over 700,000 Palestinians were displaced and over
400 villages were destroyed during the 1948 Nakba,
which was the result of political repression, house
demolitions, military raids, and growing Zionist set-
tlement during the British Mandate (1917–1948).
Images of destroyed homes, military checkpoints,
refugee camps, civilian resistance, and everyday
resiliency were produced by later events, such as
the 1967 Six-Day War and the ongoing occupa-
tion of the West Bank, Gaza, and East Jerusalem.
This range of adversity and resilience is reflected
in the photographs we have chosen. Archival col-
lections, documentary photography, and publicly
accessible materials that adhere to ethical and legal
guidelines are examples of sources. While avoiding
exploitative or dehumanising content, each image
was carefully assessed for its emotional and histor-
ical significance. The captions emphasise social
cohesion, cultural pride, and dignity while high-
lighting both suffering and resiliency.

In addition to offering top-notch, ethically
sourced content for training and assessing Ara-
bic vision-language models, this curation approach
guarantees that the dataset portrays a complex,
multi-layered Palestinian narrative that is frequently
missing from widely used computer vision datasets.

2.2 Prompt-Guided Annotation Strategy
We used a structured prompt engineering approach
to generate high-quality captions for the shared task,
allowing for expressive captions that go beyond
straightforward image descriptions. Formal cap-
tions of 40–70 words per image were written by
native Arabic speakers who had received training
in descriptive writing and sociopolitical context.

There are two primary methods for guided an-
notation: Role-Based prompting (Bubeck et al.,
2023) and Chain-of-Thought prompting (Wei et al.,
2022; Kharma et al., 2025). Methodical reason-
ing was promoted by Chain-of-Thought prompting,
in which annotators first discussed observable ele-
ments (people, objects, and setting), then thought
about actions or events, and lastly discussed histor-

ical, symbolic, or emotional ramifications. A child
standing next to debris, for instance, could be ex-
plained not only in terms of the obvious damage but
also in terms of the larger context of displacement or
societal memory. As a result, the captions were con-
textually rich and semantically layered. Annotators
were given distinct viewpoints, such as journalist,
eyewitness, or humanitarian, along with suggested
questions and tones for each role, thanks to role-
based prompting. This method maintained thematic
coherence while expanding the emotional and stylis-
tic scope of captions.

Grammar, clarity, cultural correctness, and the
absence of bias or conjecture were all examined in
each caption. When an image had more than one
caption, narrative and emotional significance were
given priority during the selection process.

This dataset creates insightful, culturally relevant
captions and allows for deeper interaction with im-
ages through the integration of structured prompt-
ing. It offers a standard for assessing Arabic vision-
language models on content that demands both fac-
tual accuracy and narrative depth, and it method-
ologically advances socially conscious AI.

2.3 Experimental Setup

Data. We use 500 images with one caption each,
organized in two batches (250/250). Each row has
image_id, caption, and batch_id. Text is UTF-8
and in Modern Standard Arabic (MSA).

Annotation. Native Arabic speakers wrote the
captions in a spreadsheet interface. They followed
the template in Section 3.2 (role = journalist, eyewit-
ness, or humanitarian). Rules: 40–70 words, MSA
only, no speculation, no identification of minors.

Review. We used a two-pass review. Checks
covered length, grammar, MSA register, factual
grounding, tone, and role. Items that failed were
corrected or replaced.

Stats. The numbers in Section 4 were computed
with a simple script: word count by whitespace
tokens and sentence count by Arabic/English punc-
tuation.

Packaging. We provide a CSV with image_id,
caption, batch_id. Prompt texts and scripts will
be released after review.

3 Results and Analysis

This section reports the caption characteristics used
in our ImageEval 2025 shared-task submission.
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3.1 Linguistic and Structural Characteristics
of the Captions

For ease of clarity, formality, and cultural depth,
all of the captions are written in Modern Standard
Arabic (MSA); the use of colloquial language was
avoided given that MSA is preferred for academic,
journalistic, and historical concerns. All captions
are around 50 words in length, but could range
from 15 words to 100 words in length. This is
enough room to describe the visual content, while
also adding context that was cultural, historical, and
emotional. Captions are often more than facts, they
represent a thoughtful and interwoven narrative that
conveys historical significance and meaning.

Using formal, understandable language, this cap-
tion opens with an objective, detailed description of
the visual scene, emphasising the subject’s posture,
surroundings, and companions. It then deciphers
traditional attire and facial expressions as symbolic
expressions of resistance and identity. Lastly, it
highlights the image’s political and cultural signifi-
cance by placing it within a larger historical narra-
tive. Reflecting the Chain-of-Thought prompting
technique employed during annotation, the struc-
ture logically moves from particular visual details
to general historical significance.
Similarly, foe example this caption presents a his-
toric landmark with rich cultural connotations:

،سدقلايفةفرشملاةرخصلاةبقةيخيراتلاةروصلاهذهرهظت"

راجشأبةطاحم،ةليصألاةيمالسإلااهترامعوةزيمملاةيبهذلااهتبقب

ةطقللاهذهلثمت.فيرشلامرحللةبحرلاتاحاسلاوةخماشلاورسلا

،هتسادقوىصقألادجسملالامجنيرشعلانرقلالئاوأنمةردانلا

قيرعلانيطسلفخيراتىلعًادهاشيمالسإلاملعملااذهفقيثيح

ميختيتلاةنيكسلاوءودهلاةروصلادسجت.ةيمالسإلااهتراضحو

ءارسإلاتايركذهتايطيفلمحييذلا،سدقملاناكملااذهىلع

ءاحنأعيمجيفنيملسملابولقيفةصاخلاسدقلاةناكموجارعملاو

".ملاعلا .
Here, the caption highlights the landmark’s reli-
gious and cultural significance while creatively
describing the surrounding landscape and archi-
tectural beauty. Words like "ةسادقلا" and "هنيكسلا" ,
arouse the reader’s emotions and spirituality, urging
them to value the location beyond its outward ap-
pearance. The caption maintains coherence and nar-
rative flow in accordance with the dataset’s guide-
lines by fusing together visual, historical, and cul-
tural layers.
A third example depicts a historically significant
landscape:

يبنلابابنمنوتيزلالبجةردانلاةيخيراتلاةروصلاهذهرهظُت"

يتلانايدولاوةسدقملالالتلادتمتثيح،سدقلايفدوواد

دهشملايفودبي.نورقلاربعةميظعةينيدوةيخيراتًاثادحأتدهش

ةرثانتملاةيثارتلاينابملاوةيرجحلاةميدقلاسدقلاراوسأنمءزج

روضحلاىلإريشتةنذئمقفألايفرهظتامنيب،لبجلاحوفسىلع

لئاوأنمةطقللاهذهيكحت.ةسدقملاةنيدملايفقيرعلايمالسإلا

اهخيراتوةرعولااهسيراضتب،ةدلاخلاسدقلاةصقنيرشعلانرقلا

يذلايفاقثلاويناحورلاعباطلاةدسجم،نيطسلفبلقيفرذجتملا

".ةكرابملاضرألاهذهزيمي

This caption incorporates detailed topographical
description, historical references, and spiritual sym-
bolism, capturing the multifaceted nature of the
depicted scene. The use of descriptive phrases like

ةسدقملالالتلا and ""رذجتملاخيراتلا reflects an elevated lin-
guistic style that enriches the viewer’s understand-
ing. The caption also conveys a temporal dimension
by situating the image historically نرقلالئاوأنم"

"نيرشعلا , enhancing its documentary value.
All of the captions in this dataset have a similar
structure, in that they describe the visible com-
ponents in the picture first, and then provide an
interpretation of the image based on a historical,
cultural, and/or emotional context, in order to in-
troduce meaning to the submissions to train vision-
language models. Role-based prompting provides
a way to translate the different perspectives: wit-
ness or humanitarian perspectives use emotional,
personal language, whereas journalistic captions
sought objectivity and clarity. Having multiple
voices is important to allow for multiple perspec-
tives of conflict, identity, and cultural heritage to
contribute to a cohesive narrative. The dataset with
the relatively balanced length of captions, formal-
ity of Modern Standard Arabic, and content that
is culturally meaningful offers the opportunity to
contribute to the understanding of Arabic vision-
language models in sensitive and complex domains.

3.2 Dataset-level
Table 3 shows the dataset is length-controlled yet
varied: mean ≈54 words (median 51), 79.2% within
the 40–70 target, and about 2.7 sentences per cap-
tion.

3.3 Shared Task Evaluation Results
With a BLEU-4 score of 0.41 and a ROUGE-L
score of 0.56, our system demonstrated a high de-
gree of phrasing and structural alignment with ref-
erence captions. Additionally, it received an LLM
judge score of 32.42 and a cosine similarity mean
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of 65.53, which indicate linguistic fluency and se-
mantic closeness. According to these findings, our
system outperformed all others in terms of meaning
accuracy and fluency. Only a few minor visual de-
tails were left out of the captions, which did a good
job of capturing the cultural and historical context.

4 Use Cases and Future Directions

This Arabic image captioning dataset, emphasizing
cultural identity, resistance, and conflict, enables
research on vision-language models and the devel-
opment of socially significant AI.

4.1 Use Cases
This dataset pairs historically significant images
with culturally rich captions to support a variety of
important applications:

• Multimodal LLM and Arabic VLM train-
ing: Improves models to comprehend intricate
historical, cultural, and affective image con-
texts.

• Assistive technologies: Enhances accessibil-
ity for Arabic speakers by offering more de-
tailed, contextualised descriptions of images..

• Cultural heritage preservation: Aids in
recording and disseminating Palestinian his-
tory and regional conflicts to educational in-
stitutions.

• Digital archiving: Makes it possible to create
searchable, semantically rich archives that aid
in research and preserve collective memory.

• Journalism and humanitarian work: Auto-
mates fact-checking of photos from conflict
areas and sensitive, accurate storytelling.

4.2 Future Directions
Although this dataset provides a useful tool for re-
searching the relationship between language, cul-
ture, and history, much more could be done to ex-
pand its use, boost its influence, and guarantee re-
sponsible use. The following areas will be the focus
of future efforts:

• Increase the number and variety of images.

• Incorporate more languages and a greater va-
riety of Arabic dialects.

• Examine how language models handle bias,
cultural quirks, and emotions using the dataset.

5 Limitations and Ethical Considerations

Even though this dataset has special historical
and cultural significance, responsible use requires
acknowledging its limitations and ethical issues.
These elements are summed up in the points that
follow:
Limitations:

• Small size: Only 250 images, limiting di-
versity of visuals and contexts (Torralba and
Efros, 2011).

• Language: Captions in Modern Standard Ara-
bic (MSA) ensure consistency but exclude di-
alectal nuances (Abdul-Mageed et al., 2023).

• Generalizability: Integration with other
datasets is recommended (Nguyen and
Ploeger, 2025).

Ethical Considerations:

• Includes delicate and possibly upsetting mate-
rial (conflict, trauma, and displacement).

• Risks of abuse, deception, or retraumatization.

• Guidelines for annotations placed a strong em-
phasis on factual, courteous descriptions that
shunned bias or sensationalism.

6 Conclusion

The lived experiences of Arabic-speaking commu-
nities impacted by historical trauma and conflict
are being connected to AI for the first time with this
dataset. It does more than just describe pictures; it
tells stories with social and emotional significance,
highlighting cultural heritage, resiliency, and resis-
tance. AI can now interpret images while honour-
ing the voices and histories they represent thanks to
this method. To guarantee that future AI tools con-
tinue to be morally and culturally appropriate, we
encourage continued cooperation between linguists,
historians, AI researchers, and local communities.
The AI community can support social justice and
cultural memory preservation by growing and im-
proving these datasets and encouraging inclusive
practices.

In the end, this resource shows how AI can be
used not only for Arabic vision-language research
but also as a tool for empathy, comprehension, and
historical preservation, encouraging work that re-
spects human experience and crosses cultural di-
vides.
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Appendix: Additional Tables

Table 1: Overview of key historical events and figures
in Palestinian and Rif resistance history.

Topic Details

Mohammed
bin Abdelkrim
El Khattabi El
Ouryaghli

Moroccan judge and fighter, leader
of the Rif resistance against Spanish
and French colonialism, founder of
the Republic of the Rif (1882–1963).

1948 War Started May 15, 1948; Arab-Zionist
conflict caused mass Palestinian dis-
placement (“Nakba”).

Jerusalem Capital of Palestine, historic and re-
ligious city with Al-Aqsa Mosque;
strategic central highlands location.

Palestinian
Cities Occupied
in 1948

Haifa, Acre, Jaffa: cultural and com-
mercial hubs; Nablus and Bethle-
hem: religious and historical signifi-
cance.

British and Zion-
ist Colonialism
(1917–1948)

Palestinians faced repression and dis-
placement during the British Man-
date, resisted through uprisings,
strikes, and armed struggle.

Zionist Attacks
on Beirut

Israeli invasion caused widespread
destruction and thousands of civilian
casualties.

Lebanese
Civil War
(1975–1990)

Fifteen-year multifaceted conflict
with 120,000 deaths and millions
displaced, involving multiple sectar-
ian, Palestinian, Israeli, Syrian, and
international actors.

Table 2: Summary of key historical events and cultural
aspects of Palestine and the Rif region (second dataset).

Topic Details

British and
Zionist
Colonialism
(1917–1948)

Persecution escalated under the
British Mandate, including home de-
molitions, military raids, and dis-
placement.

1967 War 1967 war caused Israeli occupation
of key territories and further Pales-
tinian displacement.

Jerusalem Capital of Palestine; historic city
with Al-Aqsa Mosque and Dome of
the Rock, Islam’s third holiest site

Palestinian
Cities Occupied
in 1948

Haifa, Acre, Jaffa: historic trade cen-
ters; Nablus, Bethlehem: key reli-
gious and cultural sites.

Daily Life in
Palestine

Markets, religious centers, rural
herding, fishing, and glassmaking re-
flect social and economic diversity.

Table 3: Caption statistics (overall).

Statistic Value

Images 500
Captions 500
Target length (words) 40–70
Mean words per caption 53.99
Median words per caption 51
Sentences per caption (avg.) 2.72
% within 40–70 words 79.2%
Min / Max words 3 / 148
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Abstract

This paper presents our approach to the Im-
ageEval Shared Task for Arabic image caption-
ing, with a focus on the Captioning with Re-
gion Features Transformer (CRAFT) model.
The system combines Faster R-CNN-based re-
gion feature extraction with a custom vision
transformer encoder and transformer decoder,
trained on a custom, human-annotated dataset
with a Palestinian context. To ensure fair-
ness in evaluation, we compare CRAFT with
an alternative Vision-Encoder–Decoder system
(AraViT-GPT). Performance was assessed us-
ing BLEU, ROUGE, cosine similarity, and an
LLM-based semantic evaluation. Results show
that CRAFT achieved the highest cosine sim-
ilarity (56.22 on the test set), indicating su-
perior semantic fidelity to reference captions,
while AraViT-GPT showed marginally better n-
gram precision and LLM-judge scores. These
findings demonstrate the advantages of region-
focused visual encoding for Arabic caption gen-
eration, particularly in the context of context-
rich and historically significant imagery.

1 Introduction

This paper presents our work in Subtask 2 of the
ImageEval 2025 Shared Task on developing and
evaluating image captioning models (Bashiti et al.,
2025). This subtask focuses on generating cul-
turally relevant and contextually accurate Arabic
captions for images.

We developed CRAFT (Captioning with Re-
gion Features Transformer), which uses region-
level visual features extracted via Faster R-CNN
(ResNet-50 backbone), followed by a custom vi-
sion transformer encoder and transformer decoder.
We also compared this main model with a custom
transformer-based model, AraViT-GPT, as well as
the baseline model provided in the shared task.

Our experiments showed that CRAFT achieved
the highest semantic fidelity, with cosine similarity
scores of 57.22 (validation) and 56.22 (test), while

AraViT-GPT slightly outperformed in n-gram pre-
cision and LLM judge scores. In the official leader-
board, our system ranked 4th in both cosine sim-
ilarity and LLM-based evaluation, and 5th in the
human evaluation track, where real annotators as-
sessed caption quality.

The main challenge we encountered was named
entity recognition, where the model occasionally
produced factual inaccuracies when identifying spe-
cific people or locations, despite correctly recog-
nizing the general scene context. Our code and
training pipeline are available at Github .

2 Background

The main task addressed in this paper is image
captioning (Subtask 2), where the model takes an
image as input and generates an Arabic caption for
it. The model’s performance is then evaluated using
metrics such as BLEU, ROUGE, cosine similarity,
and an LLM-based semantic scoring metric.

The provided dataset consists of 3,471 manu-
ally captioned images in Arabic. The dataset en-
compasses a diverse range of scenes, including
buildings, people, and artifacts. It presents various
challenges, such as identifying individuals’ names
and handling both colored and black-and-white im-
ages. Each image features a unique Arabic caption,
annotated by a human, that provides a detailed de-
scription of the image. The dataset particularly
focuses on the Palestinian historical narrative.

3 System Overview

Our empirical study compares two algorithms:
Captioning with Region Features Transformer
(CRAFT) and (AraViT-GPT). In this section, we
discuss the CRAFT model, which achieved the
highest cosine similarity results of the two models.
Details of AraViT-GPT are in Section 6, which we
included as part of our ablation study.
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Figure 1: Faster R-CNN output showing region propos-
als, capturing multiple people and contextual objects.

3.1 Region Feature Extraction using Faster
R-CNN

Given the heterogeneity of our images (crowds,
many objects, and photo-of-photo artifacts), we
use a pre-trained Faster R-CNN (Ren et al., 2015)
with a ResNet-50 backbone (He et al., 2016) to pro-
pose regions. Rather than process full images, we
extract k = 50 regions of interest (ROIs) per im-
age, yielding a 50× 1024 embedding tensor; these
features, together with normalized box coordinates,
serve as input to the vision transformer backbone
(Fig. 1). We also tested a dynamic k chosen by
clustering ROIs via the elbow method (typically
15–70 per image), but it sometimes dropped impor-
tant objects (Hendi et al., 2023). Also we tried a
fixed k = 100, which offered no improvement over
k = 50.

3.2 Visual Encoder

Our custom Vision Encoder processes region fea-
tures from Faster R-CNN. The features are first uni-
fied by a projection layer, combined with learned
positional embeddings, and then passed to a Trans-
former encoder with an optimal configuration of
two layers (L=2) and two attention heads (H=2), as
determined by hyperparameter tuning using a grid
search (Bergstra and Bengio, 2012). This process
generates a [Batch, 50, 768] embedding that is sub-
sequently passed to the caption decoder (Fig. 2).

3.3 Caption Decoder

The caption decoder generates Arabic text using
ArabGlossBERT (Al-Hajj and Jarrar, 2022; Antoun
et al., 2020), which provides a vocabulary of ap-
proximately 64,000 tokens. Token and positional
embeddings are mapped to a 768-dimensional
space to match the visual features from the en-
coder. Both text embeddings and visual features
are then fed into a Transformer decoder. This de-

Figure 2: Architecture of the Vision Encoder, showing
the three main components: projection of region fea-
tures, addition of learned positional embeddings, and a
multi-layer Transformer encoder.

coder is configured with a maximum caption length
of M=97, with its optimal parameters of L=2 lay-
ers and H=2 attention heads determined by a grid
search (Fig. 3).

Figure 3: Architecture of the Caption Decoder, showing
token embedding, addition of positional embeddings,
Transformer decoder, and final projection to vocabulary.

3.4 Sequence Decoder

For caption generation, we use the beam search
method (Vaswani et al., 2017). In this iterative
process, the decoder maintains a set of candidate
sequences (beams) at each step. A causal mask is
applied to prevent the model from attending to fu-
ture positions, and only the top candidates, ranked
by their cumulative probabilities, are retained. The
process terminates upon reaching the maximum
sequence length of 97, at which point the highest-
scoring sequence is selected as the final caption.

4 Experimental Setup

4.1 Data Split

All experiments were conducted using the Shared
Task dataset, with no external data involved in the
process. The dataset was split into training (2,718
samples) and test (753 samples) sets. During the
Task, we also received 75 images for validation.
The test set was used exclusively to evaluate the
models’ generalization performance.
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4.2 Data Preprocessing

We normalized all Arabic captions to reduce noise:
unified orthographic variants (Alef, Yeh, Teh
Marbuta), removed Tatweel and diacritics, stan-
dardized punctuation to Latin equivalents, and col-
lapsed redundant whitespace. The slash (/) in date-
like captions was treated as an unknown token by
the tokenizer, so we replaced it with a space (e.g.,
‘09/1970’ → ‘09 1970’) before tokenization. These
steps improved the model’s predictions.

4.3 Training setup

Prior to the full training, we conducted hyperparam-
eter tuning over a limited run of 10 epochs. The
grid search included the number of encoder and
decoder layers, the number of attention heads, and
the batch size. For more details on the hyperpa-
rameter tuning, see Appendix A.1. The optimal
configuration was found to be 2 layers for both the
encoder and decoder, 2 attention heads, and a batch
size of 8 (see Appendix A.1). This resulted in a
model size of approximately 132 million trainable
parameters.

Using these settings, the full training was per-
formed on a NVIDIA T4 GPU via Google Colab
for 40 epochs with early stopping, which occurred
at epoch 30. The AdamW optimizer (Loshchilov
and Hutter, 2017) was employed alongside a lin-
ear learning rate scheduler initialized at 1× 10−4.
Cross-entropy loss was selected as the objective
function. To further enhance model generaliza-
tion, we applied online data augmentation where
each sample was exposed to randomized transfor-
mations on every epoch. These included horizon-
tal flips, mild affine transformations (rotations up
to ±15◦, translations up to ±5, scaling between
0.9–1.1, and shear up to ±3◦), as well as photo-
metric changes such as brightness and contrast ad-
justments, gamma correction to simulate aging ef-
fects, and the addition of light Gaussian noise with
σ ≤ 0.05. Collectively, these augmentations in-
creased sample diversity and made the model more
robust to variations in historical images.

Finally, our implementation, developed in
Python, utilized PyTorch and TorchVision for
model training (Paszke et al., 2019; Marcel and
Rodriguez, 2010), alongside NumPy. We used
Matplotlib and Seaborn for visualization, Hugging
Face Transformers for transformer components,
and Weights & Biases (W&B) for experiment track-
ing.

4.4 Evaluation Metrics

To comprehensively assess both models, we used
a mixed set of evaluation metrics provided in the
shared task description paper (Bashiti et al., 2025):
BLEU (Papineni et al., 2002) for n-gram precision,
ROUGE (Lin, 2004) for recall-oriented overlap,
cosine similarity for semantic alignment in embed-
ding space, and a Large Language Model (LLM)
judge (GPT-4o) to imitate human judgments (Al-
Qasem et al., 2025). While BLEU and ROUGE
quantify surface overlap, cosine similarity indicates
whether a predicted caption conveys the reference
meaning. Because semantic similarity is our pri-
mary objective, we assign greater weight to cosine
similarity when comparing models. This weight-
ing, together with the LLM judge, guided our con-
clusion about which model best suits the target
application.

5 Results

In this section, we report the performance of
the two models, provide examples from the best-
performing model, and highlight some flaws ob-
served in its predictions. As shown in Table 1, and
following our protocol in Section 4, cosine similar-
ity is treated as the primary metric because it best
captures semantic fidelity to the reference captions.

5.1 Quantitative findings

The results in Table 1 show that the CRAFT model
achieves higher scores on both splits in terms of
cosine similarity, with 57.22 on the validation set
and 56.22 on the test set, indicating greater seman-
tic closeness in the embedding space. On the other
hand, AraViT-GPT holds a slight lead in n-gram
precision (BLEU-1–4) and achieves the highest
LLM-Judge score (26.55 on the test set). Both
models record near-zero results on the ROUGE
metrics, which in this case reflects the lack of exact
lexical overlap between the generated and refer-
ence captions. For context, we also benchmarked
both models against the shared-task baseline, see
Table 2. While both models exceed the baseline on
BLEU-1–4, the fine-tuned baseline attains the high-
est cosine similarity (58.46) and LLM-as-judge
score (30.82) on the test set.

5.2 Prediction Discussion

To complement the quantitative results, we present
a qualitative comparison between the two models’
outputs on selected images from the Test dataset.
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Metric CRAFT AraViT-GPT

Val Test Val Test

BLEU-1 19.68 19.07 21.05 21.40
BLEU-2 10.56 9.66 11.48 11.59
BLEU-3 7.01 6.00 8.54 8.48
BLEU-4 4.21 3.78 5.18 5.22
ROUGE-1 0 0 0 0
ROUGE-2 0 0 0 0
ROUGE-L 0 0 0 0
Cosine Similarity Mean 57.22 56.22 55.35 55.46
LLM Judge (/100) 22.07 22.34 26.07 26.55

Table 1: Comparison of CRAFT and AraViT-GPT per-
formance on validation and testing sets.

Ours Baseline (Qwen 2.5-VL 7B)

Metric CRAFT (Test) AraViT-GPT (Test) Zero-shot Fine-tuned

BLEU-1 19.07 21.40 9.92 16.98
BLEU-2 9.66 11.59 3.23 8.62
BLEU-3 6.00 8.48 1.90 5.43
BLEU-4 3.78 5.22 1.33 3.05
ROUGE-1 0 0 0 0
ROUGE-2 0 0 0 0
ROUGE-L 0 0 0 0
Cosine Similarity Mean 56.22 55.46 55.77 58.46
LLM Judge (/100) 22.34 26.55 27.11 30.82

Table 2: Test-set comparison between our models and
the baseline. Baseline values are taken from the shared-
task notebooks and converted to a percentage scale for
comparability.

These examples highlight cases where the captions
are accurate, partially correct, or fail to capture
the main scene, providing deeper insight into each
model’s strengths and weaknesses.

Example 1 Figure 4 shows a large crowd scene
which includes a public demonstration in support
of Palestine. The CRAFT caption ("A photo of
a demonstration in Beirut following the events
of September 1970.") uses the correct event term
demonstration and gives a clear, precise description
of the scene, and it also gives a year and location for
the image. By contrast, the AraViT-GPT caption
("An image of part of the Palestinian activities")
is generic, does not explicitly describe the event,
and reads less fluently. CRAFT provides a more
accurate and informative caption for this image.

Example 2 Figure 5 shows a group of individu-
als in military uniforms gathered around the Pales-
tinian leader Yasser Arafat while wearing sun-
glasses in a training camp. The CRAFT model pro-
duced the caption: "An image of Yasser Arafat,
Farouk Qaddoumi, and Ismail Shammout in
one of the Palestinian revolution camps". This
output demonstrates the model’s ability to correctly
identify Yasser Arafat, who is wearing sunglasses,

Figure 4: A photo of a historical demonstration in sup-
port of Palestine.

and the training camp. However, it also introduces
factual errors by naming two additional individ-
uals (Farouk Qaddoumi and Ismail Shammout)
who are not confirmed to be present in the image.
The AraViT-GPT model captioned the image as:
"An image of a parade of Palestinian Liberation
Army soldiers in one of the training camps",
which is more generic, omits any individual identi-
fication, and focuses solely on the setting.

Figure 5: A photo of a training camp involving members
of the Palestinian revolution and Yasser Arafat in the
middle of the group

6 Ablation study

As part of our ablation study, we implemented
an intermediate image captioning system using a
Vision-Encoder–Decoder architecture. This was
not the final model reported in our main results,
but it served to evaluate the performance trade-offs
of combining a vision transformer encoder with a
transformer-based autoregressive decoder.
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Encoder The encoder component uses the
google/vit-base-patch16-224 Vision Trans-
former (Dosovitskiy et al., 2021), which processes
input images into a fixed-length sequence of vi-
sual embeddings. Images are preprocessed using
ViTImageProcessor to ensure consistent scaling,
normalization, and patch segmentation.

Decoder The decoder is initialized from a pre-
trained GPT-2 model (Radford et al., 2019).
Since GPT-2 was originally trained with an
English tokenizer, we replace its tokenizer
with aubmindlab/bert-base-arabertv2 (An-
toun et al., 2020) to enable high-quality Arabic
caption generation. The decoder’s embedding layer
is resized to match the Arabic tokenizer’s vocabu-
lary size, and a new padding token is introduced to
handle sequence batching.

Tokenizer Adaptation To accommodate GPT-
2’s architecture (Radford et al., 2019) with the Ara-
bic tokenizer, the model configuration is updated
to set decoder_start_token_id, eos_token_id,
and pad_token_id appropriately. This ensures
proper autoregressive decoding in Arabic.

Integration The encoder’s output embed-
dings are passed to the decoder through the
VisionEncoderDecoderModel framework from
HuggingFace Transformers (Wolf et al., 2020).
Training optimizes the cross-entropy loss over
token predictions, ignoring padding tokens via
masking.

7 Conclusion

In this paper, we developed CRAFT, a custom Ara-
bic image captioning model that integrates Faster R-
CNN region features, a custom vision transformer
encoder, and a transformer decoder. The system
was trained on a custom human-annotated dataset
focused on the Palestinian narrative. We also de-
veloped AraViT-GPT, another Arabic captioning
model, to evaluate against CRAFT. The evaluation
results show that CRAFT excelled in semantic sim-
ilarity, which was our primary metric, achieving
a cosine similarity score of 56.22 on the test set.
In contrast, AraViT-GPT achieved slightly higher
BLEU and LLM judge scores.

We also demonstrated that CRAFT was able to
identify people, locations, artifacts, and many other
objects in the images. Despite the strengths of
CRAFT, it has limitations, including occasional

factual inaccuracies in named entities and limited
lexical overlap with reference captions.

Future work will focus on scaling the dataset
with more diverse Arabic captions, refining named
entity recognition through multimodal pretraining,
and incorporating nucleus sampling to improve cap-
tion fluency.

8 Limitations

While our approach achieved a good performance,
several limitations remain. First, the dataset size is
relatively small compared to standard benchmarks
in image captioning, which restricts the general-
ization capacity of large-scale transformer models.
Second, the captions are single reference annota-
tions; it would be better for the model to have mul-
tiple references per image in order to capture the
variability of natural language and allow fairer eval-
uation. Finally, our experiments were conducted
on a single GPU (NVIDIA T4), which constrained
the scale of hyperparameter exploration and limited
the feasibility of training larger models.
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A Appendix

A.1 Final parameters used in training

Table 3: Training hyperparameters used in the experi-
ments.

Parameter Value
Number of epochs 40
Batch size 8
Encoder layers 2
Decoder layers 2
Attention heads (encoder) 2
Attention heads (decoder) 2
Learning rate 1× 10−4

Optimizer AdamW
Learning rate schedule Linear
Loss function Cross Entropy Loss
Max sequence length 97
Input features 50 regions

A.2 Grid search tuning results
This section presents the results of our grid search
experiments, showing how different hyperparame-
ter configurations affected training and validation
loss, as well as BLEU, ROUGE, and cosine simi-
larity scores. The plots illustrate the trade-offs that
guided our choice of the final configuration.
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(a) Training loss across hyperparameter configurations. (b) Validation loss across hyperparameter configurations.

(c) BLEU-1 scores. (d) BLEU-2 scores.

(e) BLEU-3 scores. (f) BLEU-4 scores.

(g) ROUGE-1 scores. (h) ROUGE-2 scores.

(i) ROUGE-L scores. (j) Cosine similarity across configurations.

Figure 6: Loss curves and evaluation metrics across hyperparameter configurations during the grid search.
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Abstract

We present VLCAP, an Arabic image caption-
ing framework that integrates CLIP-based vi-
sual label retrieval with multimodal text gen-
eration. Rather than relying solely on end-to-
end captioning, VLCAP grounds generation in
interpretable Arabic visual concepts extracted
with three multilingual encoders, mCLIP, Ara-
CLIP, and Jina V4, each evaluated separately
for label retrieval. A hybrid vocabulary is
built from training captions and enriched with
about 21K general domain labels translated
from the Visual Genome dataset, covering ob-
jects, attributes, and scenes. The top-k re-
trieved labels are transformed into fluent Ara-
bic prompts and passed along with the origi-
nal image to vision–language models. In the
second stage, we tested Qwen-VL and Gem-
ini Pro Vision for caption generation, resulting
in six encoder–decoder configurations. The
results show that mCLIP + Gemini Pro Vi-
sion achieved the best BLEU-1 (5.34%) and
cosine similarity (60.01%), while AraCLIP
+ Qwen-VL obtained the highest LLM-judge
score (36.33%). This interpretable pipeline en-
ables culturally coherent and contextually ac-
curate Arabic captions.

1 Introduction

In today’s digital age, images are everywhere,
shared across social media platforms, embedded
in news articles, used in education, e-commerce,
and communication. With the rapid growth of
visual content, images have become a dominant
form of information exchange and expression. This
widespread presence highlights the need for intel-
ligent systems that can understand, interpret, and
describe visual content effectively (Gendy and Pa-
tel, 2024).

Image captioning is the task of automatically
generating syntactically correct and semantically
meaningful sentences that describe an image’s con-
tent. It plays a vital role in bridging the gap be-

tween visual content and natural language. Equip-
ping machines with the ability to interpret and de-
scribe visual information offers numerous benefits,
including enhanced information retrieval, support
for early childhood education, assistance for vi-
sually impaired individuals, and applications in
social media, among others. While understanding
the content of an image may seem effortless, even
for children, it remains a significant challenge for
computers (Eljundi et al., 2020).

Vision-language (VL) models have significantly
advanced image understanding and captioning
tasks in English and other high-resource languages
(Zhang et al., 2024). However, Arabic image cap-
tioning remains underexplored, particularly for cul-
turally rich datasets requiring grounded and inter-
pretable visual understanding. End-to-end gener-
ation models often fail to capture the fine-grained
semantics, contextual nuances, and socio-cultural
cues inherent in Arabic visual scenes.
This paper presents our submission to the ImageE-
val Shared Task, specifically the Image Caption-
ing Models Evaluation Subtask. The objective of
this subtask is to develop Arabic image captioning
models capable of generating culturally relevant
and contextually accurate image descriptions. To
address this task, we propose VLCAP, a modu-
lar Arabic captioning pipeline that integrates vi-
sual label reasoning with multimodal generation.
Unlike prior work, which mainly adapts English
datasets or relies on end-to-end models, our ap-
proach explicitly grounds captioning in Arabic vi-
sual concepts. In the first stage, we conduct three
separate experiments using CLIP-based encoders
AraCLIP (Al-Barham et al., 2024), mCLIP (Chen
et al., 2023), and Jina V4 (Günther et al., 2025)
to extract the top-k Arabic visual labels for each
image. These labels act as interpretable anchors
representing “what is seen.”

In the second stage, we use these extracted la-
bels to construct enriched prompts, which are then
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combined with the original images and fed into two
different vision–language models in separate exper-
iments: Qwen-VL (Bai et al., 2023) and Gemini
Pro Vision (Anil et al., 2023). This setup enables
us to systematically evaluate which combination
of label extraction model and caption generation
model yields the most culturally aligned, seman-
tically accurate, and fluent Arabic captions. By
decoupling visual recognition from linguistic de-
scription, VLCAP improves both cultural relevance
and model transparency.

The rest of this paper is organized as follows:
Section 2 reviews the background and related work
on Arabic image captioning and the dataset used
in our study, while Section 3 presents VLCAP, our
proposed Arabic vision–language captioning sys-
tem, and describes the system overview. Section
4 discusses the results of our experiments. Finally,
Section 5 concludes the paper.

2 Background

The ImageEval 2025 Shared Task focuses on eval-
uating image captioning models for the Arabic lan-
guage, with two main subtasks: (1) Building an
open-source dataset of images with culturally ap-
propriate, naturally written Arabic captions, sup-
porting the development of Arabic-native image
captioning resources and (2) Automatic generation
of Arabic captions for given images. We partic-
ipated in Subtask 2: Image Captioning Models
Evaluation, which requires participants to generate
captions for a set of images in Arabic (Bashiti et al.,
2025).

In Subtask 2, the input is a single image, and
the output is a short, descriptive caption in Ara-
bic. Captions are submitted in CSV format, with
each row containing the image_id and the gener-
ated caption. The generated captions are evaluated
against a hidden reference set using a combination
of automatic metrics ROUGE, BLEU and LLM-as-
a-judge to assess semantic similarity and overall
quality. The images cover a broad range of every-
day scenes, enabling the models to learn both literal
and contextually enriched descriptions. The dataset
is culturally relevant, reflecting both Modern Stan-
dard Arabic and occasional dialectal expressions.

The dataset used in this shared task is entirely
in Arabic and consists of high-quality, manually
curated captions. It includes a training set of 2,718
images with human-authored captions, a validation
set of 76 images with undisclosed gold-standard

captions, and a test set of 753 images, also with
undisclosed gold-standard captions.

Research on Arabic image captioning has been
steadily growing, although it still lags behind
progress in English captioning. Early work in the
field primarily involved adapting English datasets
by translating captions into Arabic or creating Ara-
bic versions of existing datasets like Flickr8k and
MS-COCO. (Al-muzaini et al., 2018) developed an
Arabic image captioning dataset and implemented a
model using a convolutional neural network (CNN)
for image feature extraction and a recurrent neural
network (RNN) with an LSTM decoder for sen-
tence generation. These models laid the foundation
for subsequent developments in Arabic caption-
ing. (Eljundi et al., 2020) proposed an end-to-end
model that directly transcribes images into Arabic
text. They developed an annotated dataset for Ara-
bic image captioning (AIC). They also developed
a base model for AIC that relies on text transla-
tion from English image captions. The two models
are evaluated with the new dataset, and the results
show the superiority of their end-to-end model.

More recent studies have focused on building
specialized datasets and improving model architec-
tures. (Al-Malki and Al-Aama, 2023) built ‘Ara-
bicFashionData’ dataset, which contains labeled
images of clothing items. Using this data, re-
searchers developed an attention-based encoder-
decoder model that achieved a high BLEU-1 score
of 88.52. (Za’ter and Talafha, 2022) highlighted
the lack of standardized Arabic benchmarks and
proposed unified datasets for evaluating multi-task
learning approaches using pre-trained word embed-
dings, which showed moderate improvements in
caption quality.

Transformer-based models have also gained
traction. (Emami et al., 2022) explored Arabic
image captioning using deep bidirectional trans-
formers by integrating pre-trained language mod-
els into the generation process. (Alsayed et al.,
2023) expanded on this by analyzing the impact
of text preprocessing tools like CAMeL Tools
and various image encoders such as ResNet152.
Their experiments demonstrated substantial im-
provements in BLEU-4 scores up to 148% and
their best-performing model outperformed existing
approaches by 379%.

Vision-language models have introduced further
advancements. The VIOLET model (Mohamed
et al., 2023) combines a vision encoder with a
Gemini text decoder. It leverages an automated
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Figure 1: VLCAP system overview. The framework operates in two stages: (1) Arabic visual labels are retrieved by
computing image–text similarity with a multilingual multimodal encoder (mCLIP, AraCLIP, or Jina V4) against a curated label
vocabulary; (2) the retrieved labels are inserted into an Arabic prompt, which together with the original image, is passed to a
vision–language model (Qwen-VL or Gemini Pro Vision) to generate the final caption.

Figure 2: Visual Labels Vocab Builder. Construction of the Arabic visual label vocabulary: Most frequent content words
extracted from the training captions and augmented with general-domain visual concepts translated from the Visual Genome
dataset, producing the final vocabulary used for label retrieval.

method to collect Arabic caption data from English
sources, resulting in strong performance, including
a CIDEr score of 61.2 on a manually annotated
Arabic dataset.

In another recent approach, (Elbedwehy and
Medhat, 2023) experimented with combining vi-
sual features extracted from powerful image en-
coders like SWIN, ConvNeXt, and XCIT, along-
side Arabic pre-trained language models such as
CAMeLBERT and MARBERTv2. This feature fu-
sion strategy significantly improved the fluency and
accuracy of the generated captions, outperforming
earlier models.

3 System Overview

Unlike prior work that mainly adapts English
datasets or relies on end-to-end models, our ap-
proach explicitly grounds captioning in Arabic vi-
sual concepts. We present VLCAP, a modular
Arabic image captioning framework that decouples
visual label extraction from caption generation to
enhance cultural alignment, semantic accuracy, and
interpretability. The system operates in two main
stages as shown in Figure 1, supported by a com-
prehensive Arabic visual vocabulary constructed
through the Visual Label Builder (Figure 2).

3.1 Arabic Visual Vocabulary Construction

As a preliminary step, we built a vocabulary of
Arabic visual labels from two sources: (1) most
frequent content words extracted from the training
captions after removing Arabic stopwords, num-
bers, and very short tokens, and (2) an augmented
set of 21,000 high-frequency visual concepts, cov-
ering objects, attributes, and scenes, translated
from the Visual Genome dataset (Krishna et al.,
2017) and adapted to Arabic cultural contexts. This
vocabulary serves as the foundation for all subse-
quent label matching.

3.2 Visual Label Extraction

During inference (Figure 1), for each input im-
age, multimodal similarity scores are computed
between image embeddings and vocabulary label
embeddings using three CLIP-based encoders: Ar-
aCLIP, mCLIP, and Jina V4. Cosine similarity
ranking is applied to select the top-k matched la-
bels per image, which serve as interpretable visual
representations of “what is seen.” These matched
labels are stored for later use in caption genera-
tion. Three separate experiments, one for each
CLIP-based encoder, are conducted to determine
the most effective label extractor.
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Model BLEU-1 Mean Cosine Similarity Mean LLM Judge Score
Base Model (Bashiti et al., 2025) 16.98 58.46 30.82
Gemini+mCLIP 5.34 60.01 33.05
Gemini+AraCLIP 4.25 58.89 36.33
Gemini+Jina V4 4.49 57.81 34.80
Qwen+mCLIP 5.20 58.39 23.49
Qwen+AraCLIP 4.57 57.19 31.40
Qwen+Jina V4 4.17 57.03 30.35

Table 1: Performance comparison of our CLIP-augmented captioning system (Gemini and Qwen combined with
mCLIP, AraCLIP, and Jina V4) against the Base Model.

Participant Cosine Simi-
larity Mean

Base Model 58.46
VLCAP (Ours) 60.01
Averroes (Saeed et al., 2025) 58.55
phantom_troupe (Horaira et al.,
2025)

57.48

ImpactAi (Al-Qasem and Hendi,
2025)

56.22

Codezone Research Group
(Bichi et al., 2025)

38.30

Table 2: Cosine Similarity Mean scores for participating
teams.

Participant LLM Judge Score
Base Model 30.82
Averroes 33.97
VLCAP (Ours) 33.05
phantom_troupe 31.43
ImpactAi 26.55
Codezone Research Group 15.14

Table 3: LLM Judge Score results for participating
teams.

3.3 Prompt-Guided Caption Generation

The top-ranked labels (typically 25–30) are
used to construct an Arabic prompt of the
form: “: �éJ
ËA�JË @ Qå�A 	JªË @ Ð@Y 	j�J�AK. [top-ranked selected la-

bels] . �é�̄YK. �èPñ�Ë@ øñ�Jm× 	­�”. This prompt, along
with the input image, is fed into a vision–language
model. We experiment with two models: Qwen-
VL and Gemini Pro Vision. The resulting captions
are grounded in both the visual content and the
matched labels, ensuring cultural relevance and
semantic accuracy.

3.4 Combination Analysis Evaluation

By pairing each of the three label extractors with
both caption generation models, we evaluate a total
of six configurations. The evaluation focuses on
identifying the optimal combination for producing
culturally aligned, semantically accurate, and fluent
Arabic captions.

4 Results

The official evaluation of shared task submis-
sions employed three complementary methods:
Cosine Similarity, which quantifies lexical close-
ness between generated and reference captions af-
ter Arabic-specific normalization and TF–IDF n-
gram comparison; LLM-as-a-Judge, using Ope-
nAI’s GPT-4o to assess semantic accuracy, rele-
vance, and fluency under reproducible conditions;
and Manual Evaluation, where 5% of the test set
was human-rated on cultural relevance, concise-
ness, completeness, and accuracy.

The results in Table 1 demonstrate that our sys-
tem, which integrates CLIP-based visual label de-
tection with Qwen and Gemini, consistently out-
performs the base model (Bashiti et al., 2025)
across all evaluation metrics. While the base model
achieves the highest BLEU-1 score due to its di-
rect captioning pipeline, it lags behind in seman-
tic similarity and human-preference evaluations.
For the Gemini model, mCLIP yields the strongest
BLEU-1 and cosine similarity means, reflecting
closer alignment with ground-truth captions and se-
mantic coherence. Notably, AraCLIP, despite lower
BLEU-1 and cosine similarity scores, achieves the
highest LLM Judge Score, indicating that captions
generated with AraCLIP labels are often judged
as more contextually relevant or human-preferred.
Jina V4 provides balanced performance across all
metrics for Gemini. For Qwen, mCLIP again ranks
highest in BLEU-1 and cosine similarity, but its
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Participant Cultural Relevance Conciseness Completeness Accuracy
VLCAP 2.57 3.17 2.67 2.97
Averroes 3.63 3.43 2.60 2.80
Phantom Troupe 3.40 3.27 2.33 2.40
Codezone Research Group 1.10 2.03 1.47 2.03
ImpactAi 3.13 2.73 1.77 1.97

Table 4: Manual evaluation results based on Cultural Relevance, Conciseness, Completeness, and Accuracy.

LLM Judge Score is relatively low, suggesting that
Qwen’s outputs are less favored by human evalu-
ators compared to Gemini. Conversely, AraCLIP
and Jina V4 improve Qwen’s LLM Judge Scores,
highlighting the role of the CLIP-based label ex-
tractor in shaping user-perceived caption quality.

Overall, these results confirm that our CLIP-
augmented system enhances performance beyond
the baseline, particularly in semantic similarity and
human preference, with the choice of CLIP model
exerting a stronger influence on caption quality
than the downstream vision–language model itself.

In this shared task, our system achieved the
highest performance in the Cosine Similarity met-
ric, ranking first among all participating teams
(Table 2), and secured second place in the LLM-
as-a-Judge evaluation (Table 3), reflecting strong
results in both semantic adequacy and fluency.
In the manual evaluation Table 4, our captions
ranked first in Completeness (2.67%) and Accu-
racy (2.97%), while placing second in Cultural Rel-
evance (2.57%) and Conciseness (3.17%). These
outcomes underscore the system’s ability to gener-
ate Arabic captions that are accurate, comprehen-
sive, and semantically faithful, while maintaining
competitive performance in cultural appropriate-
ness and conciseness.

5 Conclusion

In this work, we introduced VLCAP, a modular
Arabic image captioning framework that separates
visual label extraction from caption generation to
enhance cultural alignment, semantic accuracy, and
interpretability. Through six experiments com-
bining three CLIP-based encoders with two vi-
sion–language models, we found that Gemini Pro
Vision + mCLIP delivered the strongest lexical
and semantic performance (BLEU-1: 5.34, cosine
similarity: 60.01), whereas Qwen-VL + AraCLIP
achieved the highest LLM-based human-alignment
score (36.33). These outcomes demonstrate that
VLCAP’s decoupled design allows tuning for dif-

ferent evaluation priorities and provides a transfer-
able approach for culturally aware captioning in
other low-resource languages.
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Abstract
Generating culturally accurate captions for im-
ages in Arabic remains a challenging task due
to the language’s rich morphology, complex
syntax, and diverse cultural contexts.Cultural
preservation involves capturing the significance
and emotional resonance of images related to
Palestinian heritage, ensuring accurate repre-
sentation for future generations. We present
a translation-assisted, instruction-tuned mul-
timodal pipeline for Arabic image caption-
ing, developed for the ImageEval 2025 Shared
Task Subtask 2: on the evaluation of im-
age captioning models.Our approach leverages
the Qwen2.5-VL-7B-Instruct model with 4-
bit quantization, fine-tuned using Parameter-
Efficient Fine-Tuning (PEFT) with LoRA. We
implemented a pipeline involving translation
of Arabic captions to English, followed by
back-translation to generate fluent Arabic out-
puts. We evaluated several vision-language
models, including Qwen2.5 VL (7B), Llama
3.2 (11B), and Pixtral (12B). The Qwen2.5 VL
(7B) model achieved a BLEU-1 score of 22.6, a
Cosine Similarity of 57.48, and an LLM Judge
Score of 31.43, securing third place in the com-
petition. These results underscore the potential
of instruction-tuned multimodal models to pro-
duce culturally sensitive Arabic captions.

1 Introduction
Image captioning, the task of generating natural
language descriptions for visual content, has ad-
vanced rapidly with the rise of deep learning and
vision-language models. While these techniques
have achieved impressive results in English and
other resource-rich languages, extending them to
Arabic presents distinctive challenges due to the
language’s morphological richness, syntactic flexi-
bility, and dialect diversity(Al-Khalifa et al., 2021).
Arabic words often encode extensive grammati-
cal information within a single token, variations
in word order can influence fluency, and regional
dialects differ both lexically and culturally. The

ImageEval 2025, First Arabic Image Captioning
Shared Task addresses these gaps by introducing
the first open-source, manually captioned Arabic
dataset, enabling the development of culturally rel-
evant models (Bashiti et al., 2025). In this paper,
we present the Phantom Troupe team’s participa-
tion in Subtask-2,where we developed a translation-
assisted, instruction-tuned multimodal pipeline us-
ing the Qwen2.5-VL (7B) model.
Our key contributions include:

• We Developed a bidirectional translation
pipeline that significantly improved Arabic
image captioning by leveraging multilingual
pretraining data, producing more accurate and
contextually relevant captions.

• We Analyzed the effects of preprocessing tech-
niques (e.g., RGB versus grayscale inputs),
translation quality, and Low-Rank Adaptation
(LoRA) configurations to optimize model per-
formance and understand their impact on cap-
tion quality.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work on Arabic image cap-
tioning. Section 3 describes the dataset used in this
study. Section 4 introduces our methodology, in-
cluding preprocessing, translation, and fine-tuning
steps. Section 5 details the parameter settings,
while Section 6 presents results and error analysis.
Section 7 discusses ethical considerations, Section
8 outlines limitations, and Section 9 concludes the
paper.

2 Related Works
Arabic image captioning is a growing research area
focused on creating natural language descriptions
for images while respecting the unique features of
the Arabic language. This involves dealing with
its complex word forms, varied sentence structures,
and regional dialects, as well as capturing cultural
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details to make the captions both accurate and
meaningful. The challenges of Arabic captioning
stem from its rich morphology, flexible syntax, and
diverse dialects. Early advances in image caption-
ing were shaped by the introduction of attention
mechanisms (Xu et al., 2015), which have since
been adapted for Arabic in multiple studies. A com-
prehensive review highlighted the need for cultur-
ally aware datasets and models tailored to Arabic’s
linguistic diversity (Al-Khalifa et al., 2021).

Several architectural innovations have been pro-
posed to address these challenges. The AraCap
framework combined convolutional and recurrent
networks to improve fluency and semantic accuracy
(Afyouni et al., 2021), while other approaches lever-
aged visual–textual feature concatenation with pre-
trained word embeddings for performance gains
(Elbedwehy and Medhat, 2023). ResNet50-based
visual backbones have also been explored for Ara-
bic captioning tasks (Alazzam, 2022).

Training strategies have evolved alongside ar-
chitectural improvements. Multi-task learning has
been shown to boost caption quality (Za’ter and
Talafha, 2022), and self-critical sequence training
(SCST) (Rennie et al., 2017) has been adapted for
Arabic contexts to refine generation through rein-
forcement learning. Transfer learning from large-
scale vision–language models has further improved
performance (Ibrahim et al., 2024), while compar-
ative analyses have examined the impact of deep
learning factors on accuracy and robustness (Hejazi
and Shaalan, 2021). More recently, BLIP-based vi-
sion–language integration has demonstrated strong
results for Arabic caption generation (Sayed et al.,
2024).

Overall, existing work reflects steady progress
in Arabic image captioning, yet also underscores
the need for models that are not only computation-
ally efficient but also linguistically and culturally
efficient.

3 Dataset Description
We utilized the dataset provided for the Shared
Task on Arabic Image Captioning with Cultural
Relevance, part of ImageEval 2025 (Bashiti et al.,
2025).The dataset contains 3,071 manually anno-
tated images, with 2,717 used for training, 75 for
validation and 279 reserved for testing. It includes
manually written Arabic captions in the training
set that capture the language and cultural details
common in Arabic-speaking communities. The
test set, provided without captions, ensures a blind

evaluation process.Our generated captions were
evaluated via the CodaLab platform using standard
metrics such as BLEU, cosine similarity to assess
their accuracy and cultural relevance.

4 Methodology

4.1 System

Our goal is to produce culturally accurate Arabic
captions for historical and cultural images by pre-
serving named entities, and details such as attire
and artifacts. Figure 1 provides an overview of
the full pipeline. It illustrates how the vision en-
coder, translation component, and fine-tuning pro-
cess are linked together. This layout helps clarify
how visual information flows into the model and
is combined with the translated text before caption
generation.

4.2 Image Preprocessing
We have converted all images to grayscale to main-
tain a consistent visual style and reduce computa-
tional complexity by removing non-essential color
channels.While RGB inputs can offer richer vi-
sual information, our focus was on structural and
textural features rather than color-based cues.As,
our dataset contained relatively few RGB images,
making grayscale a more uniform choice.All im-
ages were resized to 224×224 pixels to match the
model’s input requirements.

4.3 Translation
We translated the original Arabic captions into En-
glish using the unsloth/Qwen3-14B model and then
back-translated the outputs into Arabic after fine-
tuning. This loop improved clarity and fluency, as
working in English helped the model generate more
precise and descriptive captions while preserving
meaning. We chose Qwen3-14B for its strong mul-
tilingual training, which made it more effective
than alternatives like MarianMT, especially in re-
taining culturally significant expressions. Although
we did not run a large-scale comparison, qualitative
checks showed that Qwen3-14B reduced meaning
loss during back-translation, which justified its in-
clusion in the pipeline.

4.4 Image-Caption Pairing
Each preprocessed image was paired with its trans-
lated English caption. We then used these image-
caption pairs to fine-tune our model, ensuring that
the training process learned to generate accurate
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Figure 1: Multimodal architecture for Arabic image captioning using vision-language models

Figure 2: Prompt provided to Qwen2.5-VL-7B-Instruct-
bnb-4bit for caption generation

and culturally informed descriptions. Figure 2 il-
lustrates instruction–response formatting for fine-
tuning. This formatting ensured consistency be-
tween training and inference prompts for caption
generation.

4.5 Initial Experimentation
We have evaluated several open-source mul-
timodal and language models for Arabic im-

age caption generation. Specifically,we ex-
perimented with unsloth/Llama-3.2-11B-Vision-
Instruct and unsloth/Pixtral-12B-2409.Both mod-
els were loaded in 4-bit quantized format using
the Unsloth library for memory efficiency and
configured with gradient checkpointing to sup-
port longer context processing.Although these mod-
els produced syntactically valid Arabic captions,
the outputs lacked semantic adequacy.Pixtral-12B
demonstrated strong visual grounding, accurately
capturing fine details, but had higher resource de-
mands and slower training. Llama-3.2-11B-Vision
converged faster but occasionally omitted culturally
specific information BLEU and cosine similarity
scores indicated suboptimal performance which
motivated us to explore a model with stronger mul-
tilingual vision language alignment capabilities.

4.6 Overview of the Adopted Model
We adopted unsloth/Qwen2.5-VL-7B-Instruct-bnb-
4bit as our final system due to its efficient mul-
timodal integration, strong instruction-following
capabilities, and relatively low computational cost
compared to larger models. The model was loaded
in 4-bit NF4 quantization using BitsAndBytes.
LoRA adapters were applied to both vision and lan-
guage heads with rank = 64, alpha = 64, and zero
dropout, enabling parameter-efficient fine-tuning
while keeping the base model largely frozen.

Fine-tuning was performed using the TRL
SFTTrainer for 3 epochs with a batch size of 32,
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a learning rate of 5 × 10−5, a cosine scheduler,
and the AdamW 8-bit optimizer with weight decay
of 0.01. Gradient checkpointing and FP16 mixed
precision were used to reduce memory usage and
accelerate training.

5 Parameter Setting
Initial Experiments:
LoRA rank = 16, alpha = 32, dropout = 0.05, batch
size = 4, learning rate = 5× 10−5, 3 epochs.

Final Model
LoRA rank = 64, alpha = 64, dropout = 0.0, batch
size = 32, learning rate = 5× 10−5, 3 epochs,

6 Results and Analysis
Table 1 compares the performance of the models
on Arabic image captioning. We can see that Qwen
2.5-VL (7B) consistently outperforms both LLaMA
3.2 (11B) and Pixtral (12B). It achieves the high-
est BLEU-1 score (22.6), the best cosine similarity
(57.48), and the highest LLM judge score (31.43),
indicating that its captions are not only more accu-
rate but also better aligned with human judgment.

Table 1: Evaluation Metrics for Arabic Image Caption-
ing Models

Model BLEU-1 Cosine LLM Judge
Mean Sim. Mean Score

Qwen2.5 VL (7B) 22.6 57.48 31.43
Llama 3.2 (11B) 18.9 49.32 26.75
Pixtral (12B) 15.4 42.19 22.10

LLaMA 3.2 (11B) performs moderately well, but
its captions sometimes miss finer cultural or contex-
tual details. Pixtral (12B), struggles to generate se-
mantically accurate and culturally relevant captions.
Overall, these results highlight that Qwen 2.5-VL
strikes the best balance between understanding the
images and producing fluent, culturally aware Ara-
bic captions, making it the most suitable choice for
future enhancements in Arabic image captioning
systems.

6.1 Error Analysis
Even though Qwen 2.5-VL generates high-quality
captions, we noticed some recurring mistakes.
Sometimes the model mixes up different Arabic
dialects during translation, which can make the
captions sound slightly inconsistent. It also occa-
sionally drops culturally important terms. These
errors show that while the model understands the

images well, capturing the finer linguistic and cul-
tural details in Arabic remains a challenge.

7 Ethical Considerations
For this study, we used the dataset provided in the
shared task, which is publicly available. We en-
sured that all data usage complied with the task
guidelines.Since Arabic is culturally and linguis-
tically diverse, we paid special attention to avoid
biased or offensive captions.We also recognize that
automated captions may occasionally miss cultural
or contextual nuances, so we recommend using
them to support human judgment rather than re-
placing it, especially in sensitive contexts.

8 Limitations
Although the proposed pipeline performed well in
the shared task, it has several limitations. Reliance
on translation and back-translation makes the sys-
tem dependent on intermediate translator quality,
with errors sometimes propagating into final cap-
tions. Dialectal variation is also challenging, as
the model often defaults to Modern Standard Ara-
bic, limiting its reflection of regional varieties like
Palestinian or Levantine Arabic. The dataset (3,071
images) is relatively small compared with large-
scale English or Chinese resources, restricting gen-
eralization to unseen cultural contexts. Compu-
tational constraints also prevented testing larger
models or diverse ensembles that could boost per-
formance. Future work should explore larger, cul-
turally diverse datasets, direct Arabic captioning,
and improved handling of dialectal diversity.

9 Conclusion
This study has demonstrated the effectiveness of
our approach to Arabic image captioning. By fine-
tuning Qwen2.5-VL-7B-Instruct and employing
translation-based training strategies, we achieved
strong performance across multiple evaluation met-
rics. Integrating cultural preservation techniques
and efficient fine-tuning proved essential for captur-
ing the subtle linguistic details in Arabic captions.

Our comparison with other vision-language mod-
els highlights the clear advantage of instruction-
tuned large language models in generating fluent,
context-aware, and culturally sensitive descriptions.
At the same time, challenges such as translation de-
pendency and dialectal variations remain, pointing
to opportunities for future work.
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Abstract

Arabic image captioning remains underex-
plored in vision–language research due to lim-
ited resources and the linguistic complexity of
Arabic. In the ImageEval 2025 Shared Task,
we evaluated three models, AIN, BLIP-Arabic-
Flickr-8k, and Qwen 2.5, across zero-shot,
fine-tuning, retrieval-augmented, and ensem-
ble setups. Our official submission, fine-tuned
BLIP with retrieval augmentation, ranked 5th
overall based on both cosine similarity and
LLM-as-a-judge scores. Post-submission ex-
periments showed that ensemble captioning
yielded the strongest captions across metrics.
These findings demonstrate that even modest
fine-tuning combined with retrieval augmenta-
tion can substantially improve Arabic caption-
ing quality, which is significant in light of the
limited resources for the language.

1 Introduction

Image captioning, the automatic generation of tex-
tual descriptions for visual content, has advanced
significantly with the advent of large-scale vision–
language models. While state-of-the-art systems
achieve impressive performance in English and
other high-resource languages, Arabic image cap-
tioning remains a challenging task due to its mor-
phological complexity, limited annotated datasets,
under-representation in multimodal benchmarks,
lack of large-scale pretrained models, and tok-
enization compatibility issues. The difficulty is
amplified in domain-specific contexts, where cap-
tions must reflect cultural, historical, and linguistic
nuances accurately.
This study, conducted as part of ImageEval

2025 (Bashiti et al., 2025), focuses on a culturally
and historically sensitive setting: generating Ara-
bic captions for images related to the Palestinian
Nakba. Producing accurate captions in this con-
text requires not only linguistic fluency but also

*Equal contribution.

captions that remain faithful to historical narratives
and avoid introducing misleading or invented de-
tails. Existing models often struggle with such spe-
cialized demands, leading us to assess which ap-
proaches perform best in this setting.
We present a comparative analysis of AIN

(Heakl et al., 2025), BLIP (Li et al., 2022), and
Qwen 2.5 VL (Bai et al., 2025) on the ImageE-
val 2025 Image Captioning Shared Task dataset.
Each model is evaluated under four configurations:
zero-shot with a RAG post-generation layer, fine-
tuning, fine-tuning combined with RAG, and an
LLM-based stacking ensemble for image caption-
ing. The RAG component aims to improve domain
relevance and factual grounding of the generated
captions, while the stacking ensemble is designed
to minimize errors by fusing captions produced by
the top-performing models.

2 Background

2.1 Related Work

Prior work has explored transformer-basedmodels,
such as VIOLET (Mohamed et al., 2023), which
employs a two-stage decoder for improved Ara-
bic captioning. Additionally, multitask encoder–
decoder approaches have been leveraged to en-
hance performance by leveraging action classifi-
cation and pre-trained embeddings (Za’ter and Ta-
lafha, 2022).

2.2 Dataset

The dataset used in this study comprises 3,471
manually captioned images, primarily depicting
events and scenes related to the Israeli–Palestinian
conflict. It is divided into a training set of 2,718
images and a test set of 753 images. The training
set was made available to participants for model
development, while the test set was released later
for automatic caption generation.
Each image is uniquely identified by its file-

419



name (serving as its ID) and paired with a corre-
sponding caption in a separate annotation file. The
annotation file contains two columns—the textual
description and the associated image filename—
allowing direct mapping between captions and im-
ages.
The dataset is hosted on Hugging Face and dis-

tributed as part of the Image Captioning Shared
Task 2025.
To expand our training data, we used Gemini-

2.5-flash (Comanici et al., 2025) to paraphrase
each caption twice, creating two additional cap-
tions per image. This allowed us to train with
multi-reference captions. A custom Python script
was developed to interact with the Gemini API,
producing alternative Arabic captions that main-
tained the exact meaning of the originals. We tried
various prompts on a small subset of the data, and
the one that best preserved the original meaning
was selected for generating the full dataset. This
prompt, which ensured the quality and semantic
consistency of the generated captions, is provided
in Appendix A.1. Figure 1 shows an example im-
age from the dataset with its human-written cap-
tion.

Figure 1: ا༡ڎ ሒᇭ มฃاܳڰܹފޚ٭ اܳٺۜݠߌߵ ྘༥ݷ ۏٷިد ೞಱܳٺڎر ݬިره
.ೞಱاܳٺڎر ݁أފଲ୍ات

3 System Overview

In our study, we conducted experiments utiliz-
ing three distinct models. The first is AIN (Ara-
bic Inclusive Large Multimodal Model), which
was developed by MBZUAI and trained on 3.6
million multimodal samples for English and Ara-
bic captioning. The second is BLIP, a vision–
language model extensively pre-trained on diverse
web image–text datasets; we employed a publicly
available variant from Hugging Face that had been
fine-tuned on the Arabic Flickr8k dataset. The

GitHub Repository

third is Qwen 2.5-VL, provided by the task organiz-
ers, which had already been fine-tuned and served
as a benchmark for comparison in our analyses.
To enhance domain adaptability, we integrated

a post-generation refinement layer inspired by
(Ramos et al., 2023), adapting it to our task. A
vector store was constructed from all Palestinian
Nakba–related captions in the augmented training
set, enabling the retrieval of examples with high
semantic or lexical similarity to each generated
caption. The retrieved examples, together with
the original output, were provided to Gemini-2.5-
flash, which revised the caption to align with the
tone, style, and terminology of the retrieved mate-
rial. The goal was to improve historical accuracy
and stylistic consistency, while reducing obvious
mistakes or hallucinations.
As the concluding phase in enhancing the

quality of generated captions, we implemented
an LLM-based stacking ensemble inspired by
(Bianco et al., 2023). This approach involved
providing captions generated by the models with
the highest BLEU and cosine similarity scores to
a meta-learner, utilizing the prompt detailed in
Appendix A.3. This methodology facilitated the
amalgamation of the most promising candidate
captions, resulting in outputs that synthesized the
strengths of multiple models while effectivelymiti-
gating their prevalent errors. The complete ensem-
ble pipeline is illustrated in Figure 2.
We opted for the Gemini-2.5-flash model for

both refinement and ensemble methodologies, ow-
ing to its generation quality. Additionally, its com-
plementary tier rendered it a pragmatic choice for
conducting iterative experimentation.
Building on the two methodologies described

above, we designed four experiments aimed at sys-
tematically assessing and enhancing caption qual-
ity, namely:
• Zero-shot captioning with post-generation RAG
• Fine-tuned captioning
• Fine-tuned captioning with post-generation
RAG

• LLM-based stacking ensemble
These approaches enabled a comparison of

model performance across fine-tuning, retrieval-
based contextual enhancement, combined meth-
ods, and ensemble learning.
Results reported for each configuration are post-

submission results, obtained by submitting model
outputs to the CodaLab evaluation server of the
Image Captioning Shared Task 2025. Generated
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Figure 2: Pipeline diagram of the ensemble system. It integrates fine-tuned BLIP augmented with a RAG refine-
ment layer, fine-tuned Qwen, and zero-shot Ain, with final caption fusion performed by Gemini.

captionswere compared to ground-truth references
using established metrics: BLEU (1–4) (Papineni
et al., 2002), mean cosine similarity, and LLM-as-
a-judge, (Wei et al., 2024), which, in this case, is
GPT-4o (OpenAI et al., 2024). However, all offi-
cial results are included in section 5.2.

4 Experiment Setup

All models under evaluation were fine-tuned using
LORA (Hu et al., 2021) on the augmented Train-
ing dataset. All experiments were conducted using
the Lightning.ai platform. For fine-tuning, AIN
model was trained on NVIDIA L40S GPUs. while
BLIP was trained on NVIDIA L4 GPUs. All train-
ing scripts were executed in a VS Code environ-
ment within Lightning.ai.

4.1 Data Preprocessing

Prior to training, all textual data was standard-
ized using the Camel Tools library (Obeid et al.,
2020) to ensure consistency and reduce ortho-
graphic variability in Arabic script. The prepro-
cessing pipeline included Unicode and digit nor-
malization, removal of diacritics, and orthographic
unification (e.g., mapping آ أ, إ, to ,ا ى to ,ي and ة
to .(ه Elongation marks (Tatweel) were stripped,
along with non-linguistic elements such as dates,
numbers, and punctuation. Finally, whitespace
was normalized by collapsing multiple spaces and
trimming edges. These steps yielded clean, lin-
guistically normalized input free of irrelevant to-
kens, leading to cleaner inputs and more depend-
able downstream results.

4.2 Model Fine-Tuning

The fine-tuning configuration is summarized in Ta-
ble 1. BLIP was trained for three epochs with a
batch size of 16 and a weight decay of 0.001. AIN
was trained for ten epochs with a batch size of 64
and a higher weight decay to enhance its ability to
generate high-quality Arabic captions. In contrast,
Qwen was fine-tuned by the shared task organiz-
ers for fifteen epochs with a batch size of 16 using
a cosine learning rate scheduler.

5 Results

5.1 Post-submission Results

This section reports the performance of the eval-
uated image captioning models under the four
configurations described in Section 3, with zero-
shot results included for comparison in Table 2.
While traditional n-gram overlap metrics yielded
relatively low scores, performance was higher on
LLM-as-a-judge and cosine similarity, indicating
that the generated captions were semantically re-
lated to the images but diverged from the ground
truth in lexical choice.

Metric BLIP AIN-8B Qwen-7B
BLEU-1 (mean) 3.58 3.5 9.92
BLEU-2 (mean) 1.57 1.17 3.23
BLEU-3 (mean) 0.95 0.64 1.90
BLEU-4 (mean) 0.78 0.44 1.33
Cosine Similarity (mean) 38.01 59.69 55.77
LLM-as-a-Judge 6.29 25.27 27.11

Table 2: Evaluation scores for zero-shot Model caption-
ing
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Model Learning Rate Batch Size Epochs Optimizer Weight Decay Loss Function
BLIP 2× 10−4 16 3 AdamW 0.001 Cross-Entropy
AIN 2× 10−4 64 10 AdamW 0.01 Cross-Entropy
Qwen 2.5 2× 10−5 16 15 AdamW 0 Cross-Entropy

Table 1: Fine-tuning hyperparameters for each evaluated model.

5.1.1 Zero-shot captioning with
post-generation RAG

This experiment evaluated the effect of the RAG
layer on zero-shot models without prior task-
specific training. As shown in table 3, For BLIP,
both cosine similarity and LLM-as-a-judge im-
proved slightly, reaching 42.96 and 7.2. For AIN
and Qwen, only LLM-as-a-judge increased, with
scores of 29.49 and 30.51, while cosine simi-
larity declined relative to the zero-shot baseline.
Nonetheless, RAG improved BLEU_1 across all
three models, with BLIP, AIN, and Qwen achiev-
ing 10.12, 7.79, and 10.28, though the gain for
Qwen was marginal. These findings suggest that
RAG helped in some cases (like BLIP) but not in
others, meaning the gains depend heavily on how
each model integrates external context. Caption-
ing examples are provided in Appendix B.
Metric BLIP AIN Qwen-2.5 VL
BLEU-1 (mean) 10.12 7.79 10.28
BLEU-2 (mean) 3.73 3.25 4.42
BLEU-3 (mean) 2.31 2.0 2.75
BLEU-4 (mean) 1.86 1.41 1.89
Cosine Similarity (mean) 42.96 55.15 52.39
LLM-as-a-Judge 7.2 29.49 30.51

Table 3: Evaluation scores for zero-shot Model caption-
ing with RAG.

5.1.2 Fine-Tuned model captioning
Fine-tuning improved model alignment with the
Palestinian Nakba domain (Table 4), though the
magnitude of improvement varied across models.
BLIP demonstrated substantial gains, achieving
a mean cosine similarity of 54.18 and an LLM-
as-a-judge score of 22.99. Qwen also improved,
though less markedly, with a mean cosine simi-
larity of 58.46 and an LLM-as-a-judge score of
30.82. In contrast, AIN generalized poorly, re-
flecting weaker domain alignment, We suspect this
may be because AIN was originally trained on
broader multimodal data and struggled to adapt to
the very specific Nakba-related captions, as both
cosine similarity and LLM-as-a-judge scores de-
clined. Captioning examples are documented in
Appendix C.

Metric BLIP AIN Qwen-2.5-VL
BLEU-1 (mean) 21.40 3.64 16.98
BLEU-2 (mean) 10.66 1.21 8.62
BLEU-3 (mean) 6.15 0.75 5.43
BLEU-4 (mean) 4.29 0.56 3.05
Cosine Similarity (mean) 54.18 52.92 58.46
LLM-as-a-Judge 22.99 15.66 30.82

Table 4: Evaluation scores for Fine-tuned Model cap-
tioning

5.1.3 Fine-tuned Captioning with
Post-generation RAG

The integration of both domain adaptation tech-
niques yielded a notable improvement in perfor-
mance. As shown in table 5, BLIP showed only
marginal gains over the raw fine-tuned model
across n-gram overlap, cosine similarity, and
LLM-as-a-judge scores, scoring 22.77, 55.32 and
24.87 respectively. However, AIN exhibited a
more nuanced increase in LLM-as-a-judge, accom-
panied by a slight decline in cosine similarity; how-
ever, its BLEU score increased significantly, ris-
ing to 8.25 compared to the raw fine-tuned model.
By contrast, Qwen’s performance declined slightly
across both cosine similarity and LLM-as-a-judge
metrics. Appendix D contains the captioning ex-
amples.
Metric BLIP AIN Qwen-2.5-VL
BLEU-1 (mean) 22.77 8.25 14.23
BLEU-2 (mean) 11.29 3.2 7.44
BLEU-3 (mean) 6.34 2.02 5.09
BLEU-4 (mean) 4.39 1.41 3.63
Cosine Similarity (mean) 55.32 51.63 53.91
LLM-as-a-Judge 24.87 20.51 26.52

Table 5: Evaluation scores for Fine-tuned Model cap-
tioning with RAG

5.1.4 LLM-based stacking ensemble
To leverage complementary strengths across mod-
els, we fused captions generated by Zero-shot AIN,
Fine-tuned Qwen, and Fine-tuned BLIP with RAG
using the meta-learner described in Section 3. Al-
though this ensemble did not achieve the high-
est BLEU score,only scoring a BLEU_1 score of
8.47, it outperformed all non–zero-shot configura-
tions in terms of semantic alignment and human-
likeness, attaining the best cosine similarity 59.17
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and LLM-as-a-judge 32.92 scores as shown in ta-
ble 6. The captioning examples are presented in
Appendix E.

Metric Meta-Learner
BLEU-1 (mean) 8.47
BLEU-2 (mean) 4.08
BLEU-3 (mean) 2.29
BLEU-4 (mean) 1.5
Cosine Similarity (mean) 59.17
LLM-as-a-Judge 32.92

Table 6: Evaluation scores for LLM-based stacking en-
semble (Meta-Learner)

Overall, the results highlight a clear perfor-
mance hierarchy across the four approaches. RAG
provided improvements in both zero-shot and fine-
tuned settings, with its effect on zero-shot mod-
els being substantial, though still below the gains
achieved through fine-tuning alone. When com-
bined with fine-tuning, RAG yielded further gains
across most models. Notably, while other mod-
els reached top performance in individual metrics,
the ensemble consistently achieved near top results
across most metrics, yielding the best overall per-
formance on average.

5.2 Official Results

As mentioned in Section 1, our official results are
based on the outputs of fine-tuned BLIPwith RAG,
which determined our ranking. The evaluation pri-
marily relied on LLM-as-a-judge and cosine simi-
larity metrics, yielding scores of 24.87 and 55.32.
Additionally, 5 percent of the test set was evaluated
by humans using qualitative criteria, cultural rele-
vance, conciseness, completeness, and accuracy,
rated from 1 to 4, with definitions in Appendix F.
Our model showed competitive performance, with
conciseness achieving a score of 2.97 and cultural
relevance 2.57, while completeness and accuracy
obtained scores of 2.13 and 2.23, respectively, as
shown in table 7.

Metric Score
Cultural Relevance 2.57
Conciseness 2.97
Completeness 2.13
Accuracy 2.23

Table 7: Official human evaluation results for fine-
tuned BLIP with RAG.

6 Conclusion

In conclusion, most reported results were obtained
post-submission, whereas the official ranking re-
lied exclusively on fine-tuned BLIP with a RAG
layer, which achieved the highest BLEU score
of 22.77. The ensemble’s meta-learner attained
the top LLM-as-a-judge score of 32.92 and nearly
matched zero-shot AIN in cosine similarity with
59.17. The effect of RAG, however, varied across
models: while it consistently acted as a refinement
layer that enhanced outputs, its contribution was
contingent on the strength of the underlying model.

7 Limitations

This study’s limitations stem from computational
and resource constraints. Conducted on the free
tier of the Lightning.ai platform with only 15 GPU
credits, our experiments were limited in scale and
duration. This precluded exhaustive hyperparam-
eter searches and constrained the number of train-
ing epochs for larger models. The post-generation
RAG and ensemble layers, implemented with the
rate-limited Gemini-2.5-flash API, required test
set inferences to be batched across multiple days
and reduced opportunities for extensive prompt en-
gineering. Finally, while our LLM-based stack-
ing ensemble achieved the best qualitative perfor-
mance, its sequential inferences and reliance on an
additional LLMmeta-learner make it computation-
ally expensive, resulting in high latency and mem-
ory demands. These factors limited its practicality
for real-time, resource-constrained industrial de-
ployment. In addition to these computational con-
straints, the ground-truth captions for the test data
were hidden from participants, precluding the use
of additional evaluation metrics that might have
provided further insights intomorphologically rich
Arabic.
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A Prompt Templates

A.1 Prompt to Expand Training Dataset
ا܋ٺص ،ጥ጑ڣݯ ݆݁ «orig» ይዧݱިرة: ا৙৑ݬܹ٭۰ اܳྥފ݄٭۰ ሒሃ ۱ڍه
اܳݱިرة، َڰݴ ܳިݬژ ۰ਃಸاܳأݠ ً؇ይዧ؞۰ اܳྥފ݄٭۰ ݆݁ દઊරඝآ ඔ൹༟ިَ
ذاّ۬. ปฃأৎ৊ا وܳـܝ݆ ෛ੼ٺܹڰ۰ ۰༚؇ًݱ٭
A.2 Prompt used to Train our models
Analyze the content of this image, which is poten-
tially related to the Palestinian Nakba and Israeli
occupation of Palestine, and provide a concise and
meaningful caption in Arabic — about 15 to 50
words. The caption should reflect the scene’s con-
tent and emotional context, and should be natural
and culturally appropriate. Do not include any En-
glish, metadata, or titles — the caption must be in
Arabic.

A.3 Prompt sent to the Meta learner in the
LLM-based stacking ensemble method

You are an expert in image captioning. Your task is
to merge three captions (one descriptive zero-shot
caption and two domain-specific captions) into a
single final caption.
Rules:

• Preserve and prioritize important domain-
specific terminology and keywords from the
domain captions, since they are valuable for
matching hidden reference captions.

• Use the zero-shot caption to add descriptive
details and improve fluency, but keep the re-
sult concise and natural.
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• Conflict resolution rule:

– If the domain captions conflict with each
other or with the zero-shot caption, treat
the zero-shot caption as the reference
and adjust the domain information ac-
cordingly.

– If the conflict is minor (e.g., synonyms
or phrasing), prefer the domain wording.

• Avoid redundancy, contradictions, or over-
long sentences.

• Keep the result concise (one short sentence if
possible) and avoid redundancy.

• Output one final caption that balances accu-
racy, fluency, and semantic richness.

Captions to merge:

• Zero-shot caption: zero

• Domain-specific caption 1: domain1

• Domain-specific caption 2: domain2

Output: return a single caption that integrates
the strengths of all three inputs, maximizes seman-
tic overlap and cosine similarity with likely hidden
reference captions. caption:

B Zero-shot with RAG Captioning
Examples

Figure 3: Zero-shot with RAG on Example 1
AIN: ا݁؇م ۊޚ؇ً؇ لܹࠔࠫ واߌ߳݁؇ن ༡؇لࡗࡲ ؇ዛዀڣ لޙ۳ݠ .1942 ༟؇م لިرك ިਃ಻ ሒᇭ ਃಸܹٺ݄ިر ݁ޝஓ஄ݠ ّޙ۳ݠ اܳݱިرة
ᆇ໲໕ܭ و༟޺޾ اਵਦلܝ٭۰ اఈః༟م اࠍ੅ܹڰ٭۰ ሒᇭ ଫଊّز ݁ފٺڎߌߵة. ޗ؇و৖৑ت ۋިل اࠍ੊؇ܳފ۰ اܳލۛݱ٭؇ت ݆݁ ༟ڎد

اዛዀܳިدل۰. ොຳఈዳዧ؇ث ਃಱڰި ݁ܝٺٴ۰ ݆݁ اܳݱިرة داود. ۰ᆇ໶ໟ
Blip: ዛᔻݠ༥؇ن ሒᇭ اఈః༟৙৑م وᆇ໲໕ߺࠊن ݁ߺࠊ۰َ ྵืఈః݁ ߌߵࣁࣖون ඔ൹اܳڰܹފޚ٭ྡྷ٭ اܳލٴ؇ب ݆݁ ۰༟ި݄௵௯௫ ݬިرة

ً؇ࠍ੊ݞا߉ߵ ሒᇀاܳأݠ اܳލٴ؇ب
Qwen: ༡؇لࡗࡲ ሒᇃި٭ዝཡܳا اෑෂ؜ࡗࡲ ౫౜దڎث ۋ٭ت ،1942 ༟؇م لިرك ިਃ಻ ሒᇭ ؇༟؇݄اۏٺ اܳݱިرة ّޙ۳ݠ

ሒᇭ لޙ۳ݠ .ሒᇃި٭ዝཡܳا ا๤དྷৎ৊وع ݿ٭؇ق ሒᇭ ዻዧوذ ،มฃاܳڰܹފޚ٭ اܳލأص وواڢؕ اዛዀܳިدل۰ اܳگݯ٭۰ ؜݆ واߌ߳݁؇ن
.۰ਃ಻ި٭ዝཡܳا ᄎცݠ੆اࠍ و༟޺޾ ௧ௌلਵਦ৖৑ا اܳأ޺޾ اࠍ੅ܹڰ٭۰

Figure 4: Zero-shot with RAG on Example 2
AIN: ݁޺޾ ؜٭؇ر ይዧޚଫଃان ݁ݯ؇د ݿఈఃح আॻ༟ มฃاܳڰܹފޚ٭ اܳٺۜݠߌߵ ྘༥ݷ ݆݁ ۏٷިد ೞಱࣁࣖر اܳݱިرة ّޙ۳ݠ

.ೞಱاܳٺڎر ݁أފଲ୍ات ا༡ڎ ሒᇭ
Blip: ل۬ ୍ଲ؜ފ ݁أڎات ᆇ໲໕ܭ ༥ීෂܭ ݬިره

Qwen: ݆ᆙᆕ ا৖৑ܳ؞؇م، ؜݆ ොຳټ؇ ༠؇ܳ٭۰ ارض റണ೴ލ٭ޔ لگިم و۱ި ا৖৑ۋٺఈఃل ۏٷڎي ّޙ۳ݠ اܳݱިرة
اৎ৊ٷޚگ۰ ሒᇭ ا๤ཡܳاع أ؇ر ؕ݁ اܳٺأ؇݁ܭ ۏ۳ިد

Figure 5: Zero-shot with RAG on Example 3
AIN: আॻ༟ ؇༥؇༶اۋٺ اৎ৊ٷޚگ۰، ሒᇭ ۰ਃಸਵ؜ ৎ৊ޙ؇۱ݠة ݆݁৙৑ا ڢިات ܳگ݄ؕ 1928 ༟؇م ݆݁ ݬިرة

لިاۏ۳ިن ඔ൹༲ܹ݁ފ ؜ފଲ୍ي ߓ߳ي ر༥؇ل ؇ዛዀڣ لޙ۳ݠ اዛዀܳިدي. ఈዳዧݿྥ٭ޚ؇ن ۰ᆇᅦاᄴᄟا ۰ਃ಻؇لޚ ଫଊܳا اܳފ٭؇ݿ؇ت
ا৙৑رض. আॻ༟ أෛங؇ص ݿگިط ؜݆ اܳأٷ٭ڰ۰ اৎ৊ިاۏ۳؇ت أݿڰݠت ۋ٭ت ،દઊٺޙ؇۱ݠৎ৊ا
Blip: රඞب ఈః༠ل ဦ਼ر ଫଊ݁أ ؇ୖ୒ިوݬ ؜ٷڎ ا๤ཡৎ৊ل۰ اᄴᄟً؇ً؇ت ොຬ٭ިن ဦ਼ر ݿႤၽن

Qwen: มฆܳا ሒᇃ؇لޚ ଫଊܳا ا৖৑ۋٺఈఃل ݿ٭؇ݿ؇ت ঌॻ༟ ؇༥؇༶اۋٺ 1928 اؗފޚݴ ሒᇭ ۰ਃಸਵ؜ ݁ޙ؇۱ݠات
اৎ৊ޙ؇۱ݠات. ᆇᅪأب มฆܳا ل۰ ୍ଲاܳأފ ይዧگިات ݁ܝټژ ّިا༥ڎ وݿޔ ،ඔ൹గఒފৎ৊ا و݁گڎݿ؇ت ۋگިق اݿዛውڎڣب

Figure 6: Zero-shot with RAG on Example 4
AIN: ሒᇃ؇لޚ ଫଊܳا ا৖৑ۋٺఈఃل ۏٷިد لگިم ۋ٭ت ،1948 ༟؇م اܳگڎس ۰਍ಱ݁ڎ ݆݁ ዝདྷ݁ڎا اܳݱިرة ّޙ۳ݠ
وᆇ໲໕ߺࠊن اܳأފଲ୍ي اෑෂي ߌߵࣁࣖون ඔ൹ਃ಻؇لޚ ߓߵ ۏٷިد ۰ٔఈఃٔ اܳݱިرة ሒᇭ لޙ۳ݠ .ሒᇀਵ؜ ݁ٺޙ؇۱ݠ ً؇؜ٺگ؇ل

ا৖৑ۋٺఈఃل ؕᆇᅪ اዝདྷৎ৊ڎ ۱ڍا لأܝݴ ّگܹ٭ڎل۰. ྵืఈః݁ ߌߵࣁࣖي اᄳᄟي ሒᇀاܳأݠ ا༥ීෂܭ لگٺ؇د ྘ྲྀٷ݄؇ اܳٴٷ؇دق،
اਐ಻৖৑ڎاب. ڣଫଐة ఈః༠ل ඔ൹گڎݿ٭గጻዧ ሒᇃ؇لޚ ଫଊܳا

Blip: اܳލ؇رع ሒᇭ ଫଃ૭૏ون ا๤ཡৎ৊ي اࠍ྘੊ݷ ࠍ੊ٷިد ݬިره
Qwen: اݪޚݠاً؇ت. ఈః༠ل ዻዧوذ اܳگڎس، ሒᇭ ሒᇬاਵ؜ ༥ීෂܭ ඔ൹ਃ಻؇لޚ ߓߵ ۏٷިد ا؜ٺگ؇ل اܳݱިرة ّޙ۳ݠ
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Figure 7: Zero-shot with RAG on Example 5
AIN: أ༡ڎ ሒᇭ ۰༲ܹݿ৙৑ا اݿٺ༱ڎام আॻ༟ ૭૙؇ء، ܾዛዊ྘ྲྀ ،ඔ൹ّܹ؇گৎ৊ا ݆݁ ۰༟ިᆇ୞୘ ೞಱࣁࣖر اܳݱިرة ّޙ۳ݠ

ا৙৑رض. আॻ༟ ෛ੼ٺܹڰ۰ ೞಱࣁࣖر وݪأ٭؇ت ౪౜దڍون ۋ٭ت اܳڰܹފޚ٭ྡྷ٭۰، اܳټިرة ݁أފଲ୍ات
Blip: ا৖৑رض আॻ༟ ૭૏ٺܹگިن ܳٷ؇س ݬިره

Qwen: اܳݱިرة ༂຃ر؇ّ ا৖৑رض. ঌॻ༟ ෠ຬܹފިن اෛங৖৑؇ص ݆݁ ۰༟ި݄௵௯௫ ᆇ໶໢أ؇ اܳݱިرة ّޙ۳ݠ
و݁ݱިر৖৑ި۳෠੼ ؇۱ن.

C Fine-tuned Captioning Examples

Figure 8: Fine-tuned models on Example 1
AIN: ෠ຬܹݴ اৎ৊گڎ۰݁، ሒᇭ .1942 ༟؇م ඔ൹ڣܹފޚ ሒᇭ اۋٺڰ؇ܳ٭۰ ۰༟؇ڢ ሒᇭ ّ؇رෛຬ٭۰ ࠍ੆ޙ۰ اܳݱިرة ّܹٺگޔ
ި۱ اܳݱިرة ஼ணਵਦ ا๤ཏৎ৊ح. ሒᇭ ෠ຬݠي اᄳᄟي اࠍ੆ڎث ߌߵاڢٴިن ݁ڎرج، ሒᇭ رᆙᆊ٭۰ ྵืఈః݁ ሒᇭ اࠍ੆ݯިر

ا๤ཏৎ৊ح. ሒᇭ ෠ຬݠي اᄳᄟي ๴ཏ྘ཬීෂا اࠍ੆ڎث
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ܳگިات ؜ފଲ୍ي ৖৑ۋٺڰ؇ل ݬިرة

Qwen: 1942 ༟؇م لިرك ިਃ಻ ሒᇭ ৖৑ۏٺ݄؇ع ݬިرة

Figure 9: Fine-tuned models on Example 2
AIN: රඞب ఈః༠ل 1992 ༟؇م ሒᇭ اܳگިڢ؇ز ݁ٷޚگ۰ ሒᇭ ل۰ ୍ଲ؜ފ ݁ٷޚگ۰ ሒᇭ ዝདྷ݁ڎا اܳݱިرة ّܹٺگޔ
ᆇ໲໕ܭ ඹඞا݁۬. ሒᇭ ݁ټྟب ݁ފڎس وᆇ໲໕ܭ ؜ފଲ୍ي زي ߌߵࣁࣖي ۏٷڎي لޙ۳ݠ اৎ৊گڎ۰݁، ሒᇭ اܳލ྘ލ؇ن.

اৎ৊ٺڰ۠ݠات. ؜݆ اܳٴۜت ᆇᅦܹ٭؇ت ሒᇭ ૭૏ٺ༱ڎم اَ۬ ොຬٺ݄ܭ واᄳᄟي ࢴࣖل۬، ሒᇭ ا৖৑ݿྥލأ؇ر ۏ۳؇ز ૰૏ٴ۬ ۏ۳؇زا
Blip: ೞಱاܳٺڎر ݁أފଲ୍ات ا༡ڎ ሒᇭ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ඔ൹ّܹ؇݁گ ೞಱܳٺڎر ݬިرة

Qwen: ঌॻਃಮا๤ང৕৑ا ا৖৑ۋٺఈఃل ڢٴܭ ݆݁ ݁ފዛውڎڣ۰ ݁ٷޚگ۰ ሒᇭ ا৙৑ܳ؞؇م ؜݆ ౫ౖదت ؇ً࿌ۏٷڎ ّޙ۳ݠ اܳݱިرة
.1967 ިਃ಻ިل ߌߵان/ ඹඞ රඞب ఈః༠ل

Figure 10: Fine-tuned models on Example 3
AIN: ؇༥؇༶اۋٺ ،1928 ༟؇م أؗފޚݴ ሒᇭ ۰ਃಸਵ؜ اۋٺ༥؇༶؇ت ݆݁ ۰༟وਵਦ ݁ލ؇۱ڎ اܳݱިرة ّܹٺگޔ
ሒᇃ؇لޚ ߓߵ ۏٷڎي لޙ۳ݠ اৎ৊گڎ۰݁، ሒᇭ اৎ৊ٷޚگ۰. ሒᇭ اዛዀܳިدي ا৖৑ݿྥ٭ޚ؇ن ࣁࣖ؜ܾ มฆܳا ۰ਃ಻؇لޚ ଫଊܳا ଫଃًاܳٺڎا আॻ༟

ݬأٴ۰. ᄭᄟ؇༡ ሒᇭ ا৙৑رض আॻ༟ اਵਦأة ߙߵڢڎ ྘ྲྀٷ݄؇ ؇ਃಸਵ؜ ݁ٺޙ؇۱ݠا ႟ߵ၍ ߌ
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ܳگިات ؜ފଲ୍ي ৖৑ۋٺڰ؇ل ݬިرة

Qwen: ل۰ ا৖৑ݿٺأ݄؇ر اܳފܹޚ؇ت ڢٴܭ ݆݁ ؇ً࿌୍ଲ؜ފ ؇ً༥؇༶اۋٺ ّޙ۳ݠ اܳݱިرة

Figure 11: Fine-tuned models on Example 4
AIN: لޚ؇ਃ಻؇ن ߓߵ ۏٷڎل؇ن لگިم اৎ৊گڎ۰݁، ሒᇭ .1948 ༟؇م اܳگڎس ሒᇭ ݁ټଫଃا ዝདྷ݁ڎا اܳݱިرة ّܹٺگޔ
اࠍ੅ܹڰ٭۰ ሒᇭ لޙ۳ݠ ݁ފڎݿ؇. රඝ৚৑وا ਍ಸڎڢ٭۰ ᆇ໲໕ܭ ؇ᆇᆅڎ༡أ ّگܹ٭ڎل۰، ྵืఈః݁ ߌߵࣁࣖي ሒᇀਵ؜ ر༥ܭ ً؇ۋٺ༶؇ز

اৎ৊؇رة. ݆݁ ݁ލ؇ة
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ܳگިات ؜ފଲ୍ي ৖৑ۋٺڰ؇ل ݬިرة
Qwen: اܳگڎس ሒᇭ ෛஙݱً؇ لأٺگ݄؇ن ඔ൹ਃ಻؇لޚ ߓߵ ඔ൹ۏٷڎل ّޙ۳ݠ اܳݱިرة

Figure 12: Fine-tuned models on Example 5
AIN: ل۰ ୍ଲ؜ފ ࣁࣖرਊಱ؇ت ሒᇭ اܳྡྷފ؇ء ݆݁ ۰༟ިᆇ୞୘ ૰૜؇رك ۋ٭ت اܳ؞؇۰ً ሒᇭ ዝདྷ݁ڎا اܳݱިرة ّܹٺگޔ

ይዧݠ݁؇ل۰. ෛ੼ٺܹڰ۰ وݪأ٭؇ت ౪౜దڍن ّܝٺ٭ܝ٭۰،
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ܳگިات ؜ފଲ୍ي ৖৑ۋٺڰ؇ل ݬިرة

Qwen: 10 اܳݱިرة ሒᇭ لޙ۳ݠ و اܳٷ؇ر، إޗఈఃق আॻ༟ દઑڎرਐಱ ሒᇆఈዳዧا اܳڰٺ٭؇ت ݆݁ ۰༟ިᆇ୞୘ ّޙ۳ݠ اܳݱިرة
ሒᇭ ሒᇬ؇اܳٴ ෠ຬܹݴ ྘ྲྀٷ݄؇ اܳٷ؇ر، ৕৑ޗఈఃق و૭૏ٺأڎن اܳٴٷ؇دق ݆ܹᆇ໲໕ ڣٺ٭؇ت 5 اܳݱިرة ሒᇭ لޙ۳ݠ ۋ٭ت ڣٺ؇ة،

෠ஙݠة ༠ܹژ اܳڰٺ٭؇ت. اܳݱިرة ሒᇭ لޙ۳ݠ و اࠍ੅ܹڰ٭۰،
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Image AIN Blip Qwen

Example 1 A picture of the Biltmore Confer-
ence in New York in 1942. Chaim
Weizmann appears giving a speech
to a number of figures sitting at
round tables, with American flags
and a flag with the Star of David
in the background. The picture is
from the YIVO Institute for Jew-
ish Research.

A picture of a group of Palestinian
youth in colorful clothes carrying
flags at the Arab Youth Festival in
Algeria.

A picture showing a meeting in
NewYork in 1942, where the Zion-
ist leader ChaimWeizmann speaks
about the Jewish cause and the
reality of the Palestinian people
within the Zionist project, with
the American flag and the Zionist
movement’s flag appearing in the
background.

Example 2 A picture of Palestine Liberation
Army soldiers training on an anti-
aircraft weapon of a certain caliber
in a training camp.

A picture of a man carrying mili-
tary equipment.

A picture showing an occupation
soldier combing an empty field in
search of mines, within efforts to
deal with the effects of conflict in
the region.

Example 3 A picture from 1928 showing
security forces suppressing an
Arab demonstration in the region,
protesting British policies support-
ing Jewish settlement. Armed
men in military uniforms appear
confronting demonstrators, where
violent clashes occurred leading
to the fall of individuals to the
ground.

Rafah residents receiving Egyp-
tian tanks entering Rafah crossing
during the war.

Arab demonstrations in August
1928 rejecting the policies of the
British occupation that targeted
the rights and sanctities of Mus-
lims, amid an intensemilitary pres-
ence that suppressed the protests.

Example 4 A picture showing a scene from
Jerusalem in 1948, where British
occupation soldiers arrest an Arab
protester. Three British soldiers
inmilitary uniforms carrying rifles
appear, escorting an Arab man in
traditional clothes, reflecting the
suppression of Jerusalemites by
the British during the Mandate pe-
riod.

A picture of Egyptian army sol-
diers walking in the street.

A picture showing British sol-
diers arresting an Iraqi man in
Jerusalem during the events.

Example 5 The photo shows a group of
fighters, including women, being
trained to use weapons in a Pales-
tinian revolution camp, where they
take different training positions on
the ground.

A picture of people lying on the
ground.

A picture showing a gathering of
people sitting on the ground. The
date and the photographer are un-
known.

Table 8: English translations of captions generated by the models under the zero-shot with RAG configuration.

D Fine-tuned with RAG Captioning
Examples

Figure 13: Fine-tuned models with RAG on Example 1
AIN: ෠ຬܹݴ .1942 ༟؇م ඔ൹ًڰܹފޚ اۋٺڰ؇৖৑ت ۰༟؇ڢ ሒᇭ أڢࡗࡲ ّ؇رෛຬ޶ ༡ڎث ݆݁ ؇ਊ಻؇༥ اܳݱިرة ّޙ۳ݠ
আॻ༟ لأݠض اᄳᄟي ๴ཏ྘ཬීෂا اࠍ੆ڎث ਐಱ؇ًأިن ݁ڎرج، ሒᇭ رᆙᆊ٭۰ ྵืఈఃஓ୾ اࠍ੆ݯިر ݆݁ ༟ڎد اৎ৊گڎ۰݁ ሒᇭ

.ሒᇧ؇݁৙৑ا اܳݱژ ሒᇭ اࠍ੆ݯިر ඔ൹ً ً؇رزة ෛஙݱ٭۰ ଫଊّز ا๤ཏৎ৊ح.
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۬ اܳټިره ܳگިات ؜ފଲ୍ي اۋٺڰ؇ل ݆݁ ݬިره

Qwen: .1942 ༟؇م لިرك ިਃ಻ ሒᇭ ً ؇༟؇݄اۏٺ ّިٔݑ ݬިرة

Figure 14: Fine-tuned models with RAG on Example 2
AIN: وᆇ໲໕ܭ ل؇ ୍ଲ؜ފ ل؇ ز ߌߵࣁࣖي ۏٷڎل؇ ّޙ۳ݠ ،1992 ༟؇م ً؇ܳگިڢ؇ز ل۰ ୍ଲ؜ފ ݁ٷޚگ۰ ሒᇭ ዝདྷৎ৊ڎ ݬިرة
اܳٴۜت ᆇᅦܹ٭؇ت ሒᇭ ૭૏ٺ༱ڎم أَ۬ لأٺگڎ اݿྥލأ؇ر ۏ۳؇ز ૰૏ٴ۬ ۏ۳؇زا ᆇ໲໕ܭ პაႰ ඹඞا݁۬، ሒᇭ ݁ټྟٺ؇ ݁ފڎݿ؇

اৎ৊ٺڰ۠ݠات. ؜݆
Blip: ೞಱاܳٺڎر ݁أފଲ୍ات ا༡ڎ ሒᇭ มฃاܳڰܹފޚ٭ اܳٺۜݠߌߵ ྘༥ݷ ۏٷިد ೞಱܳٺڎر ݬިره

Qwen: රඞب ఈః༠ل ݁ٷޚگ۰ ሒᇭ ا৙৑ܳ؞؇م ؜݆ ౫ౖదت ঌॻਃಮا๤ང৕৑ا ا৖৑ۋٺఈఃل ڢިات ݆݁ ࠍ੊ٷڎي ݬިرة
.1967 ިਃ಻ިل ߌߵان/ ඹඞ
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Image AIN Blip Qwen

Example 1 The picture captures a historical
moment in a ceremonial hall in
Palestine in 1942. In the fore-
ground, the attendees sit in formal
clothing in a tiered seating, observ-
ing the event taking place on the
stage. The center of the picture is
the main event taking place on the
stage.

A picture of a military celebra-
tion of the Palestinian revolution
forces in Beirut.

A picture of a meeting in New
York in 1942.

Example 2 The picture captures a scene in a
military area in the Caucasus re-
gion in 1992 during the Chechen
war. In the foreground, a soldier
appears wearing a military uni-
form and carrying a pistol fixed in
his belt. He is holding a device
resembling a sensor in his hands,
which is likely used in operations
for detecting explosives.

A picture of the training of the
Palestinian revolution fighters in
one of the training camps.

The picture shows a soldier search-
ing for mines in an area targeted by
the Israeli occupation during the
June 1967 war.

Example 3 The picture captures horrific
scenes from Arab protests in Au-
gust 1928, protesting the British
measures supporting Jewish
settlement in the region. In the
foreground, a British soldier is
kicking an Arab protester while
a woman lies on the ground in a
difficult state.

A picture of a military celebra-
tion of the Palestinian revolution
forces in Beirut.

The picture shows a military
protest by the colonial authorities.

Example 4 The picture captures an exciting
scene in Jerusalem in 1948. In
the foreground, two British sol-
diers are detaining an Arab man
wearing traditional clothing, one
of them holding a rifle and the
other a pistol. In the background,
pedestrians appear.

A picture of a military celebra-
tion of the Palestinian revolution
forces in Beirut.

The picture shows two British
soldiers arresting a person in
Jerusalem.

Example 5 The picture captures a scene in the
forest where a group of women are
participating in tactical military
training, taking different shooting
positions.

A picture of a military celebra-
tion of the Palestinian revolution
forces in Beirut.

The picture shows a group of girls
who are training in shooting, and
the picture shows 10 girls, where
in the picture 5 girls carry rifles
and are preparing to shoot, while
the rest are sitting in the back-
ground, and in the picture there is
a tree behind the girls.

Table 9: English translations of captions generated by the models under the fine-tuning configuration.

Figure 15: Fine-tuned models with RAG on Example 3
AIN: ݪڎ ،1928 ༟؇م أؗފޚݴ ሒᇭ ۰ਃಸਵ؜ اۋٺ༥؇༶؇ت ݆݁ ۰༟وਵਦ ݁ލ؇۱ڎ اܳݱިرة ّܹٺگޔ

྘ྲྀٷ݄؇ اܳލ؇رع، ሒᇭ ݁ٺޙ؇۱ݠا ႟ߵ၍ ߌ و۱ި ሒᇃ؇لޚ ߓߵ ۏٷڎي لޙ۳ݠ اৎ৊ٷޚگ۰. ሒᇭ ሒᇃ؇لޚ ଫଊܳا اਐ಻৖৑ڎاب ݿ٭؇ݿ؇ت
إ؜٭؇ء. ᄭᄟ؇༡ ሒᇭ ا৙৑رض আॻ༟ اਵਦأة ߙߵڢڎ

Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۬ اܳټިره ܳگިات ؜ފଲ୍ي اۋٺڰ؇ل ݆݁ ݬިره
Qwen: .۰ਃ಻ި٭ዝཡܳا ل۰ ا৖৑ݿٺأ݄؇ر اܳފܹޚ؇ت ਍ಾڰڍه ؇ً࿌ ୍ଲ؜ފ ؇ً༥؇༶اۋٺ اܳݱިرة ّޙ۳ُݠ

Figure 16: Fine-tuned models with RAG on Example 4
AIN: اৎ৊گڎ۰݁، ሒᇭ .ሒᇃ؇لޚ ଫଊܳا اਐ಻৖৑ڎاب ڣଫଐة ఈః༠ل ،1948 ༟؇م اܳگڎس ݆݁ ዝདྷ݁ڎا اܳݱިرة ّޙ۳ݠ
රඝ৚৑وا ਍ಸڎڢ٭۰ ᆇ໲໕ܭ ؇ᆇᆅڎ༡أ ،۰ًਵو؜ ر༥ܭ ً؇ۋٺ༶؇ز لگި݁؇ن اᆙᆊීෂ޶ ً؇ෑෂي لޚ؇ਃ಻؇ن ߓߵ ۏٷڎل؇ن لޙ۳ݠ

݁ފڎݿ؇.
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۬ اܳټިره ܳگިات ؜ފଲ୍ي اۋٺڰ؇ل ݆݁ ݬިره

Qwen: රඞب. أ਍ು؇ء اܳگڎس ሒᇭ ෛஙݱً؇ لأٺگఈఃن ඔ൹ਃ಻؇لޚ ߓߵ ඔ൹ۏٷڎل ّޙ۳ُݠ ݬިرة
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Figure 17: Fine-tuned models with RAG on Example 5
AIN: اෂී݁؇ل۰ আॻ༟ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ڢިات ݆݁ ඔ൹ّܹ؇و݁گ ނ؇ً؇ت ݁گ؇ఈఃّت ೞಱࣁࣖر اܳݱިرة ّޙ۳ݠ

ًܹٴٷ؇ن. ೞಱاܳٺڎر ݁أފଲ୍ات أ༡ڎ ሒᇭ اܳٺܝٺ٭ܝ٭۰ واܳٺڎرਊಱ؇ت
Blip: ଫଃًوت ሒᇭ اܳڰܹފޚ٭ྡྷ٭۬ اܳټިره ܳگިات ؜ފଲ୍ي اۋٺڰ؇ل ݆݁ ݬިره

Qwen: ਍ಸ؇دق ݆ዛዊ݁ ᆇᅴݴ ᆇ໲໢ܭ ۋ٭ت اܳٷ؇ر، إޗఈఃق আॻ༟ દઑڎرਐಱ ڣٺ٭؇ت ๤དྷ؜ ݆݁ ۰༟ި݄௵௯௫ ݬިرة
اܳڰٺ٭؇ت. ༠ܹژ ෠ஙݠة وّޙ۳ݠ اࠍ੅ܹڰ٭۰، ሒᇭ ل؇ت රඝ৙৑ا ෠ູܹݴ ྘ྲྀٷ݄؇ ఇዳዧޗఈఃق، و૭૏ٺأڎدن

E LLM-based stacking Ensemble
Captioning Examples

Figure 18: LLM-based stacking Ensemble on Example
1
Meta Learner: ሒᇭ ਃಸܹٺ݄ިر ৎ৊ޝஓ஄ݠ وا৖৑ݿިد ً؇ਃಸ৖৑ݥ ݬިرة
أ݁؇م ؇ً࿓؇ۊޚ لܹࠔࠫ واߌ߳݁؇ن ಣಈᕯިن ؇ዛዀڣ لޙ۳ݠ ،1942 ༟؇م لިرك ިਃ಻
۰ᆇ໶ໟ ᆇ໲໕ܭ و༟޺޾ ଫଃ܋ٴ ௧ௌلਵਦأ ༟޺޾ وۏިد ؕ݁ ا༥ීෂ؇ل، ݆݁ ۰༟ިᆇ୞୘

اࠍ੅ܹڰ٭۰. ሒᇭ داود

Figure 19: LLM-based stacking Ensemble on Example
2
Meta Learner: اܳٺۜݠߌߵ ྘༥ݷ ݆݁ ඔ൹ۏٷڎل اܳݱިرة ّޙ۳ݠ
૰૏ٴ۬ ۏ۳؇زا ᆇ໲໕ܭ ؇ᆇᆅڎ༡أ ዛኗިஓ஄٭۰، ྵืఈః݁ ߌߵࣁࣖل؇ن มฃاܳڰܹފޚ٭

݁ފዛውڎڣ۰ ݁ٷޚگ۰ ݆ᆙᆕ ม฀؜ލ ۋگܭ ሒᇭ ا৙৑ܳ؞؇م ؜݆ و౫ౖదت ا௯௫௵ݠڣ۰
.1967 ިਃ಻ިل ߌߵان/ ඹඞ රඞب ఈః༠ل ঌॻਃಮا๤ང৕৑ا ا৖৑ۋٺఈఃل ݆݁

Figure 20: LLM-based stacking Ensemble on Example
3

Meta Learner: ݆݁ ݁ٺިߙߵاً ؇ً࿌୍ଲ؜ފ ؇ً༥؇༶اۋٺ اܳݱިرة ّޙ۳ُݠ
દઊٺޙ؇۱ݠৎ৊ا ل۰ ا৖৑ݿٺأ݄؇ر اܳފܹޚ؇ت ۬༥ّިا ۋ٭ت ،1928 ༟؇م
ඔ൹ފٺިޗٷగጻዧ ۰༡ި݄ٷৎ৊ا اܳݯ٭؇ڣ۰ إරජاءات আॻ༟ اଫଐ༟اݪً؇ اܳأݠب
۰༲ܹأݿ وᆇ໲໕ߺࠊن اࠍ྘੊ݷ زي ߌߵࣁࣖون ر༥؇ل وۏިد ؕ݁ اዛዀܳިد،

ا৙৑رض. আॻ༟ ܹ݁گިن وأෛங؇ص

Figure 21: LLM-based stacking Ensemble on Example
4

Meta Learner: ؇ً࿌ز ߌߵࣁࣖون ඔ൹ਃ಻؇لޚ ߓߵ ۏٷިداً اܳݱިرة ّޙ۳ݠ
ሒᇭ ّگܹ٭ڎل۰ ྵืఈః݁ ߌߵࣁࣖي ؇ًਃಸਵ؜ ݁ٺޙ؇۱ݠاً لأٺگߺࠊن و ؇ً࿌ ୍ଲ؜ފ

.1948 ༟؇م اܳگڎس

Figure 22: LLM-based stacking Ensemble on Example
5
Meta Learner: દઊࣖߌߵࣁ اܳڰٺ٭؇ت، ݆݁ ۰༟ިᆇ୞୘ اܳݱިرة ّޙ۳ݠ
إޗఈఃق আॻ༟ ؜ފଲ୍ي ೞಱࣁࣖر ሒᇭ ૰૏؇ر܋݆ رᆙᆊ٭۰، ଫଃ༚ ྵืఈః݁
ᆇᅴݴ ᆇ໲໢ܭ ۋ٭ت ଫଃًوت، ሒᇭ اܳڰܹފޚ٭ྡྷ٭۰ اܳټިرة ܳگިات اܳٷ؇ر
ሒᇭ اܳٴگ٭۰ ෠ູܹݴ ྘ྲྀٷ݄؇ اܳٷ؇ر ৕৑ޗఈఃق و૭૏ٺأڎن ਍ಸ؇دق ݆ዛዊ݁

༠ܹڰ۳݆. ෠ஙݠة ؕ݁ اࠍ੅ܹڰ٭۰،
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Image AIN Blip Qwen

Example 1 The picture shows a side of a his-
torical event held in a ceremonial
hall in Palestine in 1942. In the
foreground, several attendees in
formal clothing sit in a tiered seat-
ing, following the main event pre-
sented on the stage. A prominent
figure stands out among the atten-
dees in the front row.

A picture from a military celebra-
tion of the Palestinian revolution
forces in Beirut.

A picture documenting a meeting
in New York in 1942.

Example 2 A picture of a scene in a mili-
tary area in the Caucasus in 1992,
showing a soldier wearing a mili-
tary uniform and carrying a pistol
fixed to his belt, also carrying a de-
vice resembling a sensor believed
to be used in operations for detect-
ing explosives.

A picture of the training of soldiers
of the Palestinian Liberation Army
in one of the training camps.

A picture of a soldier from the Is-
raeli occupation forces searching
for mines in an area during the
June 1967 war.

Example 3 The picture captures horrific
scenes from Arab protests in
August 1928, against the policies
of the British mandate in the
region. A British soldier is shown
kicking a protester in the street,
while a woman lies on the ground
in a state of exhaustion.

A picture from a military celebra-
tion of the Palestinian revolution
forces in Beirut.

The picture shows a military
protest carried out by the Zionist
colonial authorities.

Example 4 The picture shows a scene from
Jerusalem in 1948, during the
British mandate. In the fore-
ground, two British soldiers in of-
ficial uniform are shown detaining
a man and a cart, one of them hold-
ing a rifle and the other a pistol.

A picture from a military celebra-
tion of the Palestinian revolution
forces in Beirut.

A picture showing two British
soldiers arresting a person in
Jerusalem during a war.

Example 5 The picture shows training of
young female fighters and fight-
ers from the Palestinian revolu-
tion forces in shooting and tacti-
cal training in one of the training
camps in Lebanon.

A picture from a military celebra-
tion of the Palestinian revolution
forces in Beirut.

A picture of a group of ten girls
training on shooting, where five of
them are carrying rifles and prepar-
ing to shoot, while the others sit in
the background, and a tree appears
behind the girls.

Table 10: English translations of captions generated by the models under the fine-tuning with RAG configuration.

F Human Assessment metric Definitions

Cultural Relevance – Measures whether the de-
scription reflects cultural specificity and provides
contextual information related to the scene.
Conciseness – Assesses whether the description

conveys information directly and succinctly, with-
out unnecessary repetition or dispersion of details.
Completeness – Evaluates the extent to which

the description covers all aspects of the image, in-
cluding events, entities, and relevant elements.
Accuracy – Measures whether the description

contains correct information, free from factual or
conceptual errors.
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Image Meta Learner

Example 1 A black-and-white picture of the Biltmore Conference in New York in 1942, in which
ChaimWeizmann appears giving a speech in front of a group of men, with a large Amer-
ican flag and a flag with the Star of David in the background.

Example 2 The picture shows two soldiers from the Palestinian Liberation Army wearing camou-
flage clothing, one of them holding a device resembling a shovel and searching for mines
in a grassy field within an area targeted by the Israeli occupation during the June 1967
war.

Example 3 The picture shows a tense military protest from the year 1928, where the colonial author-
ities confronted the Arab demonstrators objecting to the hospitality measures granted to
the Jewish settlers, with men wearing military uniforms carrying weapons and people
lying on the ground.

Example 4 The picture shows British soldiers wearing military uniforms arresting an Arab demon-
strator wearing traditional clothing in Jerusalem in 1948.

Example 5 The picture shows a group of girls, wearing informal clothing, participating in military
training on shooting for the Palestinian revolution forces in Beirut, where five of them
are carrying rifles and preparing to shoot while the rest are sitting in the background, with
a tree behind them.

Table 11: English translations of captions generated by the models under the LLM stacking ensemble configuration.
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Abstract

Image captioning aims to generate natural lan-
guage descriptions of images, combining visual
understanding with language generation. This
task is particularly challenging in low-resource
settings such as Arabic, where annotated data is
limited and captions must reflect both cultural
and linguistic nuances. In this system paper, we
present our approach for the ImageEval 2025
Arabic Image Captioning Shared Task. Our
system is based on the Qwen2.5-VL-7B vision-
language model, enhanced with quality-aware
data augmentation, a two-stage description-to-
caption pipeline, and post-processing for im-
proved fluency. In the official evaluation, our
approach ranked first in the LLM as a Judge
metric with a score of 33.97, second in Cosine
Similarity with a score of 58.55, and first in
the manual evaluation phase conducted by the
organizers.

1 Introduction

Image captioning generates natural language de-
scriptions of images by combining visual under-
standing with language generation. While vision-
language models (VLMs) have achieved strong re-
sults in high-resource languages, applying them to
Arabic remains challenging due to limited anno-
tated data, complex morphology, and the need for
culturally appropriate captions.

The ImageEval 2025 Arabic Image Captioning
Shared Task (Bashiti et al., 2025) addressed these
challenges by releasing a manually annotated Ara-
bic captioning dataset and a standardized evalu-
ation framework. Systems were evaluated using
BLEU (Papineni et al., 2002), Cosine Similarity,
and LLM-as-a-Judge scores (Li et al., 2024) dur-
ing the submission phase, followed by a manual
evaluation by the organizers.

We present our system for this task, built on
the Qwen2.5-VL-7B model (Team, 2025) with
quality-aware data augmentation, a two-stage

description-to-caption pipeline, and regex-based
post-processing. We also explored lighter models
such as BLIP, but Qwen2.5-VL-7B proved supe-
rior. Our system ranked first in LLM-as-a-Judge
(33.97), second in Cosine Similarity (58.55), and
first in manual evaluation, demonstrating the effec-
tiveness of combining large VLMs with targeted
augmentation and structured generation for Arabic
captioning.

The rest of the paper is organized as follows:
Section 3 details our system, Section 4 presents
the dataset, metrics, and results, and Section 6 con-
cludes.

2 Related Work

Image captioning aims to produce natural language
descriptions of images by combining visual recog-
nition with language generation. Early approaches
paired CNN-based encoders with RNN decoders
(Vinyals et al., 2015; Karpathy and Fei-Fei, 2017),
later enhanced by attention mechanisms (Xu et al.,
2015; Anderson et al., 2018) and, more recently,
transformer architectures (Cornia et al., 2020).

The field has since shifted toward large vision-
language models (VLMs) that integrate powerful
image encoders with pretrained language models,
enabling stronger cross-modal reasoning. Promi-
nent examples include CLIP (Radford et al., 2021),
BLIP (Li et al., 2022), Flamingo (Alayrac et al.,
2022), LLaVA (Liu et al., 2023), and Qwen-VL
(Bai et al., 2023; Team, 2025), which leverage
large-scale multimodal pretraining and instruction
tuning to achieve state-of-the-art performance.

Due to their size, adapting VLMs for specific
tasks often relies on parameter-efficient fine-tuning
methods such as LoRA (Hu et al., 2022), imple-
mented in frameworks like PEFT (Mangrulkar
et al., 2022), which significantly reduce computa-
tional and memory requirements while preserving
model quality.
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Evaluating image captioning systems has tra-
ditionally relied on automatic metrics such as
BLEU (Papineni et al., 2002), which measure n-
gram overlap, and cosine similarity with TF–IDF
(Sparck Jones, 1988; Salton and Buckley, 1988),
which captures content similarity beyond surface
form. More recently, human-aligned evaluation
methods such as LLM-as-a-Judge (Li et al., 2024)
have gained attention, assessing captions on seman-
tic accuracy, fluency, and cultural relevance in a
manner closer to human judgment.

3 System Overview

In this section, we outline the progression of
our experiments during the shared task, starting
from initial baselines and gradually introducing
more advanced augmentation strategies and post-
processing techniques. While we kept the under-
lying model architecture unchanged, our approach
evolved from a single-model setup to a two-model
pipeline for improved performance.

3.1 Baseline: Single-Stage Captioning
We began by fine-tuning Qwen2.5-VL-7B 1 using
LoRA to assess its ability to generate Arabic im-
age captions without any additional enhancements.
LoRA allowed us to update only a small subset of
parameters while keeping most of the model frozen,
reducing computational cost while adapting it to
the task dataset. The baseline training prompt was
intentionally simple:

Baseline Prompt

Describe the image in Arabic.

The organizers released scores for both a fully
fine-tuned Qwen model and a zero-shot baseline.
Our LoRA-based variant yielded different out-
comes, which we detail in the results section, and
served as the reference point for all subsequent
enhancements.

3.2 Smaller Architectures
We wanted to explore the feasibility of using
smaller vision-language models for the task, so
we experimented with BLIP (Li et al., 2022). We
started from a checkpoint already fine-tuned on
Flickr8k Arabic captioning dataset2 and further
fine-tuned it on the task dataset. Although BLIP
converged quickly, its performance, particularly in

1https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
2https://huggingface.co/omarsabri8756/blip-Arabic-

flickr-8k

capturing fine-grained Arabic details, was notice-
ably worse than Qwen2.5-VL-7B. Based on these
results, we decided to focus on Qwen2.5-VL-7B
for the subsequent experiments.

3.3 Data Augmentation Strategies

Given the limited size of the training dataset, we
employed two augmentation strategies to improve
generalization and assess the performance of dif-
ferent training pipelines.

Aug1: Classical Image Augmentation. The first
approach, Aug1, applied three random transfor-
mations to each image from a predefined set im-
plemented in the Albumentations library. The
transformations included cropping or padding, hor-
izontal flipping, rotation, small-scale shifting and
zooming, motion blur, and Gaussian noise. Cap-
tions were kept unchanged, tripling the dataset size
and exposing the model to more varied visual pat-
terns while preserving semantic content.

Aug2: Quality-Aware Caption and Image Aug-
mentation. While Aug1 increased visual diver-
sity, it did not introduce textual variation. In Aug2,
we first augmented captions: for each image, we
used Aya-Vision-8B3 to generate three slightly dif-
ferent captions and computed their BLEU score
against the original. Captions scoring below 0.75
were discarded to ensure semantic consistency.
For each retained augmented caption, one random
Aug1 transformation was applied to its image. This
process added 814 high-quality samples to the train-
ing set. Later, we combined these augmentation
strategies with different training pipelines.

3.4 Structured Caption Generation with
Descriptions

We hypothesized that guiding the model to first
produce a detailed description of the image would
lead to more accurate captions. To train such a sys-
tem, we first created a dataset of image–description–
caption triples using Aya-Vision-8B. The descrip-
tions were generated with the following prompt:

Description Data Prompt

Describe this image in detail in Arabic to
help in extracting the following caption be-
tween <cap> tags.
<cap>
caption
</cap>

3https://huggingface.co/CohereLabs/aya-vision-8b
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This prompt was designed to produce not only
a general description, but also to highlight the key
details and important elements that would support
accurate caption generation.

We then fine-tuned Qwen2.5-VL-7B us-
ing a structured output format that explic-
itly separated the description from the caption:

Structured Training Prompt

Describe the image in detail in Arabic.
Then, based on that description, generate
a suitable caption in Arabic (10-30 words).
<description>
Detailed description
</description>
<cap>
Caption
</cap>

This structured approach encouraged the model
to first organize its observations and reasoning be-
fore producing the final caption.

3.5 Two-Model Pipeline
Building on the structured captioning idea, we de-
veloped a two-model pipeline. The first model (De-
scription Model) generated a detailed description
from the image, while the second model (Caption
Model) used both the image and the description to
produce the final caption. Both models were based
on Qwen2.5-VL-7B and trained independently.

3.6 Post-Processing and Model Merging
During evaluation, we found that some generated
captions contained repetitions or redundant phrases.
We applied a regex-based cleaning step to remove
such artifacts, improving fluency and readability.

We also observed that two variants of the two-
model pipeline excelled in different aspects of cap-
tioning, specifically, the pipeline trained with Aug2
and the one without augmentation. To combine
their strengths, we performed model merging, a
technique that integrates parameters from multi-
ple trained models into a single model, aiming to
retain beneficial knowledge from each. We used
MergeKit (Goddard et al., 2024) with the TIES
algorithm (Yadav et al., 2023) to merge the models
at the parameter level, preserving their complemen-
tary capabilities.

3.7 Final System
Our final submission integrated the most effective
components from our experiments. It used the
Aug2 quality-aware augmentation to enrich both
visual and textual diversity, followed a two-model

Training

Training Data
(Images, Captions)

Aug2: Quality-
Aware Augmentation

Caption aug: 3 variants via
Aya → keep BLEU ≥ 0.75

Image aug: one trans-
form per kept caption

Train Description Model
Qwen2.5-VL-7B + LoRA

Train Caption Model
Qwen2.5-VL-7B + LoRA

(Input: Image + Description)

Inference

Input Image

Description Model
Qwen2.5-VL-7B + LoRA

(Image → Description)

Caption Model
Qwen2.5-VL-7B + LoRA

(Image + Descrip-
tion → Caption)

Final Post-Processing
Regex-based de-

duplication & cleanup

Final Arabic Caption

Figure 1: Final system: Aug2 data preparation, two-
model Qwen2.5-VL pipeline (Description then Caption),
and regex-based cleanup.

Qwen2.5-VL-7B pipeline for structured generation
(Description→ Caption), and applied regex-based
cleaning to improve output fluency. The complete
workflow is illustrated in Figure 1.

4 Experiments

4.1 Dataset and Metrics

We used the training data provided by the organiz-
ers of the shared task (Bashiti et al., 2025), a man-
ually captioned dataset of 3,471 images, split into
2,718 for training and 753 for testing. To validate
and analyze our approaches during development,
we further divided the training set into a 90/10 split,
using the smaller portion as a validation set.

Submissions were evaluated using four metrics.
During the submission period, BLEU, Cosine Sim-
ilarity, and LLM as a Judge scores were reported
on the public leaderboard. BLEU measured n-gram
overlap between the generated caption and the ref-
erence, capturing surface-level similarity in word-
ing. Cosine similarity measured the textual close-
ness between generated captions and reference de-
scriptions after Arabic-specific normalization and
TF–IDF vectorization. The LLM-as-a-Judge met-
ric used gpt-4o with a fixed seed and zero tem-
perature to score captions on semantic accuracy,
relevance, and fluency, with results normalized to a
0–100 scale.

After the submission period, the organizers con-
ducted a Manual Evaluation on about 5% of the
test set, assessing Cultural Relevance, Conciseness,
Completeness, and Accuracy, each on a 1–4 scale.
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4.2 Training Setup

All experiments were conducted on a single
NVIDIA A100 GPU with 80 GB of memory. The
Qwen models were fine-tuned using LoRA with
rank 8, targeting all modules. Training was per-
formed with a batch size of 2 and gradient accumu-
lation over 8 steps, giving an effective batch size
of 16. For the BLIP model, a batch size of 8 was
used. We set the learning rate to 2× 10−5 with a
cosine scheduler and a warmup ratio of 0.1, using
bf16 precision. The input cutoff length was fixed
at 2048 tokens. Models were trained for a maxi-
mum of 10 epochs, and the checkpoint achieving
the lowest loss on our validation set was selected
for submission.

4.3 Results and Analysis

Table 1 presents the results of the different variants
of our system across BLEU, Cosine Similarity, and
LLM-as-a-Judge. The baselines provided by the or-
ganizers include a zero-shot Qwen2.5-VL-7B and
a fully fine-tuned version. Our LoRA baseline al-
ready surpassed both organizer-provided baselines,
achieving 22.84 BLEU and 30.19 LLM-as-a-Judge.

Classical image augmentation (Aug1) applied
to the LoRA baseline slightly reduced LLM-as-a-
Judge and Cosine Similarity scores, suggesting that
random visual perturbations without textual aug-
mentation do not consistently help. Applying Aug1
to BLIP yielded lower scores overall, confirming
that BLIP was less competitive for this task.

Structured output improved semantic evalu-
ation, with the structured-only variant achieving
32.96 LLM-as-a-Judge. Adding quality-aware
augmentation (Aug2) increased BLEU to 23.76
but slightly reduced LLM-as-a-Judge, indicating
a trade-off between n-gram overlap and semantic
quality.

The two-model pipeline proved particularly ef-
fective, achieving the highest BLEU (24.99) among
our systems without augmentation and 33.81 LLM-
as-a-Judge when combined with Aug2. Merging
two-model pipelines trained with and without Aug2
preserved strong BLEU and Cosine scores but
slightly lowered LLM-as-a-Judge.

Our final system, two-model pipeline with
Aug2 and regex-based output cleaning, achieved
the highest LLM-as-a-Judge score (33.97), second
place in Cosine Similarity (58.55), and competitive
BLEU (24.39), confirming the benefit of structured
generation, quality-aware augmentation, and light

post-processing.

Model BLEU Cosine LLM-as-a-Judge
Baseline zero-shot (organizers) 9.92 55.77 27.11
Baseline full (organizers) 16.89 58.46 30.82
Baseline LoRA 22.84 56.95 30.19
Baseline + Aug1 22.50 56.33 28.58
BLIP + Aug1 19.95 54.42 19.83
Structured output + Aug2 23.76 57.33 31.71
Structured output 23.31 58.23 32.96
Two-model pipeline 24.99 57.72 32.25
Two-model pipeline + Aug2 24.22 58.58 33.81
Merging two-model variants 24.55 58.53 33.11
Final system 24.39 58.55 33.97

Table 1: Performance of different approaches on the
shared task test set.

4.4 Qualitative Analysis
While automatic metrics such as BLEU provide a
numerical indication of similarity, qualitative in-
spection offers a clearer view of how the model
succeeds and where it fails. We selected four repre-
sentative samples from the validation set. The first
row of Figure 2 presents two failure cases: in the
first, the prediction is entirely off-topic, describing
a political exhibition instead of sculptures; in the
second, the model confuses a youth music rehearsal
with a militant training scene.

The second row shows two successful cases. In
the first, the model correctly identifies a military
training camp, differing only slightly in phrasing,
which still yields a high BLEU score. In the second,
the prediction matches the ground truth exactly for
a school celebration, resulting in a perfect score.
These examples indicate that the model performs
reliably on visually distinctive and well-defined
scenes but struggles when different events share
overlapping contextual cues.

4.5 Official Leaderboard Results
Table 2 shows the official Subtask 2 leaderboard for
Cosine Similarity and LLM-as-a-Judge. Our team
(Averroes) ranked first in LLM-as-a-Judge with
a score of 33.97 and second in Cosine Similarity
(58.55).

In the manual evaluation phase (Table 3), our
system obtained the highest scores in Cultural Rele-
vance (3.63) and Conciseness (3.43), securing first
place in this stage of the competition.

5 Limitations

While our approach demonstrates promising re-
sults, it is constrained by the limited size of the
dataset (2,718 samples), which reduces the model’s
ability to capture diverse semantic and visual pat-
terns. The augmentation strategies we introduced
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Failure 1

GT (AR) �§dq�� dh`��¤  �rq�� ds�� �A�w�n�
GT (EN) Sculptures depicting the Qur’an and the Old Testament
Pred (AR) �A� ¨�¤d�� �K� |r`� ¨� ¨nyWslf�� �An�l� ­Cw}

.TynyWslf�� r§r�t�� Tm\n� �� �AyO�J Tq�r� ,1971
Pred (EN) An image of the Palestinian wing at the Damascus International

Fair in 1971, accompanied by figures from the Palestine Libera-
tion Organization. (BLEU = 0.0)

Failure 2

GT (AR) 
AbK�� �� ¨qyFw� �§r� 	§Cd� Ahy� rh\§ ­Cw}
¨�r`�� 
AbK��  A�rh� ¨� T�CAKml� A¾ �d`tF� ¨nyWslf��
1972 �A� r¶�z��� ¨�

GT (EN) An image showing the training of a Palestinian youth music
group in preparation for participating in the Arab Youth Festival
in Algeria in 1972

Pred (AR) ,¨nyWslf�� r§r�tl� Tyb`K�� Thb��� �� ºAS�± ­Cw}
.�¤ry� ¨� 	§Cdt�� z��r� d�� ��� 

Pred (EN) An image of members of the Popular Front for the Liberation of
Palestine inside a training center in Beirut. (BLEU = 0.2094)

Success 1

GT (AR) d�� ¨� ¨nyWslf�� r§r�t�� Ly�  wn� 	§Cdt� ­Cw}
	§Cdt�� ��rks`�

GT (EN) An image of the training of Palestinian Liberation Army soldiers
in one of the training camps

Pred (AR) ��rks`� d�� ¨� ¨nyWslf�� r§r�t�� Ly�  wn�� ­Cw}
	§Cdt��

Pred (EN) An image of Palestinian Liberation Army soldiers in one of the
training camps. (BLEU = 0.7954)

Success 2

GT (AR) xC�d� «d�� ¨� TynyWsl� TbFAnm� ¨FCd� �f�� ­Cw}
.
§wk�A� �Aytf��

GT (EN) An image of a school celebration on a Palestinian occasion in a
girls’ school in Kuwait.

Pred (AR) xC�d� «d�� ¨� TynyWsl� TbFAnm� ¨FCd� �f�� ­Cw}
.
§wk�A� �Aytf��

Pred (EN) An image of a school celebration on a Palestinian occasion in a
girls’ school in Kuwait. (BLEU = 1.0)

Figure 2: Qualitative examples of Arabic–English captioning. Top row: failure cases with low BLEU scores, where
predicted captions diverge from the ground truth. Bottom row: successful cases with high BLEU scores and strong
semantic alignment.

Team Cosine Similarity LLM-as-a-Judge
VLCAP 60.01 33.05
Averroes (ours) 58.55 33.97
Phantom Troupe 57.48 31.43
ImpactAi 56.22 26.55
Codezone Research Group 38.30 15.14

Table 2: Official Subtask 2 leaderboard for Cosine Sim-
ilarity and LLM-as-a-Judge.

Team Cultural Relevance Conciseness Completeness Accuracy
Averroes (ours) 3.63 3.43 2.60 2.80
Phantom Troupe 3.40 3.27 2.33 2.40
VLCAP 2.57 3.17 2.67 2.97
Codezone Research Group 1.10 2.03 1.47 2.03
ImpactAi 3.13 2.73 1.77 1.97

Table 3: Manual evaluation scores on 5% of the test set
(1=lowest, 4=highest).

mitigate this limitation to some extent, but cannot
fully substitute for a larger, more representative
dataset.

Another limitation lies in the reliance on syn-
thetic captions. Although we applied quality con-
trol to ensure semantic consistency, automatically
generated captions may still introduce noise or over-
look subtle aspects of the images.

Finally, our experiments were conducted with
a single model size (Qwen2.5-7B). The effect of

scaling the model or exploring alternative architec-
tures on caption quality remains an open question
for future work.

6 Conclusion

We presented our Qwen2.5-VL-7B–based system
for the ImageEval 2025 Arabic Image Captioning
Shared Task, integrating quality-aware augmenta-
tion, a two-stage description-to-caption pipeline,
and regex-based post-processing. The system
ranked first in LLM-as-a-Judge, second in Cosine
Similarity, and first in manual evaluation, high-
lighting the effectiveness of combining large vision-
language models with targeted augmentation and
structured generation. Future work will explore
scaling to larger datasets, multilingual pretraining,
and RLHF for improved human alignment.
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Abstract

Image captioning is the task of automatically
generating natural language descriptions for vi-
sual content, with applications in search, social
media, and beyond. While English captioning
has advanced significantly, Arabic captioning
remains underdeveloped due to a scarcity of
high-quality, culturally relevant datasets. This
work, conducted under the ImageEval 2025
Shared Task, addresses this gap by introduc-
ing a novel, manually annotated, open-source
dataset for Arabic image captioning. Our cu-
rated resource consists of 500 unique black-
and-white historical photographs document-
ing pivotal events in modern Palestinian and
Lebanese history. The dataset spans from the
British Colonial era in Palestine through the
events of 1948, and includes documentation
of the 1982 Israeli invasion of Beirut. This
contribution provides a foundational resource
to advance research in Arabic NLP and multi-
modal systems, offering a vital benchmark for
models processing complex historical, cultural,
and traumatic imagery.

1 Introduction

Despite significant progress in English image cap-
tioning, Arabic captioning remains an understud-
ied challenge due to the language’s complex mor-
phology, dialectal diversity, and cultural nuances.
These linguistic and contextual gaps hinder the
development of robust captioning systems for Ara-
bic content. A key issue identified in recent work
on Arabic image captioning is the lack of a well-
structured, high-quality dataset in Modern Standard
Arabic (MSA) (Mohamed et al., 2023).

*Corresponding author.

To address this gap, we participated in the Im-
ageEval 2025 Shared Task (Bashiti et al., 2025),
curating a high-quality dataset of 500 manually an-
notated images. Our approach enforces strict guide-
lines: captions are written exclusively in MSA, ad-
here to length constraints, and prioritize cultural
relevance. This ensures consistency and broad us-
ability for both native speakers and learners, while
providing a reliable resource for fine-tuning Arabic-
capable LLMs.

Crafting high-quality captions in Modern Stan-
dard Arabic (MSA) required meticulous precision
to accurately describe culturally specific elements
(e.g., Palestinian villages, Beirut streets). While
regional dialects are prevalent, we employed MSA
to ensure broad comprehensibility and establish
a formal benchmark. Resources like The Living
Arabic Project were leveraged to ensure linguistic
accuracy and contextual relevance.

The system achieved strong performance, ex-
celling in automated (41.53 LLM judge score) and
human evaluations for conciseness (3.44) and accu-
racy (3.16). While semantic alignment was lower
(59.15 cosine similarity), the methodology proved
effective for generating concise, culturally and lin-
guistically accurate Arabic captions.

In summary, our work makes the following con-
tributions:

• A high-quality MSA caption dataset: Care-
fully annotated with no dialectal influence.

• Culturally relevant descriptions: Each caption
reflects the cultural context of the image.

• Linguistically robust system: Our approach
ensures factual and grammatical correctness
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in generated captions.

2 Background

2.1 Task Setup

For the ImageEval 2025 Shared Task (Subtask 1:
Image Captioning Datathon), our methodology was
designed to generate captions that explicitly ad-
dress the primary evaluation criteria of linguistic
quality and cultural relevance.

Input: Our input consisted of a collection of 500
uncaptioned images depicting Palestinian heritage
(e.g., traditional villages, daily life) and Beirut dur-
ing pivotal historical moments (e.g., the Lebanese
Civil War, Israeli invasions).

Output: Our generated captions were designed
to be culturally grounded in MSA, adhering to
the following key constraints. First, a strict word
count of between 10 and 50 words. Second,
linguistic rigor was maintained by permitting
only MSA, excluding regional dialect vari-
ants(e.g., hñÊË@/teaching board/ (al-lawh)), instead
of (e.g., �èPñJ.�Ë@/blackboard/ as-sabbūrah, a regional
colloquialism) (Za’ter and Talafha, 2022).
Third, we mandated cultural precision. This
required the use of specific, contextually appro-
priate vocabulary, as in the following example:
AêÊë



AK. i. ª�K ú


�æË @ �é 	JK
YÒÊË �éJ
Ê 	g@YË@ �é�Y	JêË @ð ��ñ�®ÖÏ @ Qê 	¢�� �Y�®Ë@ É 	g@X 	áÓ �èPñ�
�é¢kð ÈA�®« 	áÓ ø
 YJ
Ê

�®�JË @ ÑîD�AJ. Ë 	àðY�KQK
 	áK

	YË @/ (s̆ūra min dāhil

al-quds tazhar al-maqwash wa-l-handasa
al-dāhiliyya li-l-madina allati ta’ij bi-ahlihā
alladhina yartaduna libāsahum al-taqłidi min

’iqāl wa-aa) / (A view from Jerusalem’s Old City
showing its arched alleys and bustling crowds
adorned in traditional keffiyehs and headbands).

2.2 Dataset Details

We manually annotated all 500 images with cap-
tions adhering to the above constraints. The dataset
is divided into two primary batches of 250 images,
each further split into four thematic subsets of 50
images.

2.3 Track Participation

Our participation in Subtask 1 (Image Captioning
Datathon) (Bashiti et al., 2025) aimed to demon-
strate high-quality caption generation under strict
linguistic and cultural constraints. We contributed
a rigorously annotated dataset to benchmark MSA

compliance and highlight the importance of accu-
rate historical and cultural context over generic
descriptions.

3 System Overview

3.1 Design Rationale and Core Principles

Our captioning system addresses critical gaps in
prior Arabic image captioning research. Previous
work suffered from a scarcity of high-quality public
datasets in MSA (Za’ter and Talafha, 2022), a
tendency to generate generic descriptions lacking
culturally significant details (Emami et al., 2022),
and complications from Arabic’s dialectal diversity
that hinder linguistic consistency (Emami et al.,
2022).

To overcome these issues, we implemented a
controlled framework. Our primary objective was
to create a high-quality, open-source MSA dataset
to directly address its scarcity. Consequently, we
enforced strict MSA usage, which involved replac-
ing dialectal terms (e.g., É¢�, satl ‘bucket’) with
their MSA equivalents (ñËX, dalw, Bucket).

3.2 Annotation Guidelines

To ensure consistency and quality, all annotators
adhered to a strict set of rules.

First, the Language Standard required captions
to be written exclusively in MSA, prohibiting di-
alectal terms to prevent linguistic interference.

Second, the Descriptive Depth guideline man-
dated comprehensive narratives of 10–50 words,
avoiding simple labels (e.g., Yj. �Ó, masjid, mosque).

Third, Content Requirements obliged annotators
to contextualize scenes by describing precise loca-
tions (e.g. �Y�®ËAK. �éÖß
Y�®Ë@ �èYÊJ. Ë @ ú


	̄ úæ��̄


B@ Yj. �ÖÏ @ (al-Masjid al-

Aqsā fī al-balda al-qadīma bi-al-Quds) ‘Al-Aqsa
Mosque in the Old City of Jerusalem’ ), actions,
and cultural significance.

Fourth, standardized terminology was achieved
by requiring annotators to source all terms from a
project glossary validated using The Living Arabic
Project dictionary (Living Arabic Project, n.d.).

Finally, Cultural and Historical Accuracy was
ensured by verifying culturally significant terms
(e.g. A 	̄ AK
 (Yāfā) ‘Jaffa’) against historical and mul-
tilingual sources, including Wikipedia and digital
archives.
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3.3 Annotation Challenges and Resolution
Strategies

The annotation process encountered several chal-
lenges, resolved through structured protocols: First,
dialectal interference arises from the team’s di-
verse dialects (e.g., using È@ðQå��, shirwāl for trousers).
This was mitigated by developing a collaborative
glossary to reach consensus on standard MSA
terms (e.g. 	àñÊ¢	JK., bantalōn, Pants). Second, po-
litically and Culturally Sensitive Terminology re-
quired precise language for historical scenes. A
mandatory consultation process with historical ad-
visors was instituted to standardize terms (e.g.
�èP 	Qm.×, (majzara), massacre; ú


	æJ
¢�Ê 	®Ë @ ÈA 	�	JË @ (al-nidāl al-
filastı̄nı̄) ‘the Palestinian struggle’; ú


	GA¢�
Q�. Ë @ ÈC�JkB
 @ (al-
ihtilāl al-britānı̄) ‘the British occupation’). Third,
Ambiguity in Transliterated Toponyms was ad-
dressed by implementing a verification protocol
cross-referencing official maps and historical doc-
uments to confirm modern standard Arabic terms
(e.g. AK
Q�.£ (Tabariyyā) ‘Tiberias’).

3.4 Quality Assurance and Validation

A multistage validation process ensured the accu-
racy of captions. Geographic landmarks were veri-
fied against contemporary images from Wikipedia
and official records. A linguist also performed ran-
dom spot checks on finalized captions to verify
adherence to all guidelines in Section 3.2.

4 Dataset

4.1 Dataset Overview

This dataset is based on resources from the Shared
Task organizers, which we have significantly ex-
tended.

First, the organizers provided a core set of 500
uncaptioned images, each with a basic contextual
note. The images were organized into ten thematic
groups of 50 images.

Second, our contribution was to transform this
into a vision and language dataset. We manually
authored a relevant and descriptive caption in MSA
for eachmage.

Finally, the complete data set contains 500 im-
age caption pairs. Thematic coverage includes:
Palestinian resistance (40%), Palestinian cities and
villages (30%), events from the Palestinian-Zionist
conflict (10%), Beirut during the Lebanese Civil
War (10%), and Palestinian daily life and culture
(10%).

4.2 Linguistic Analysis of Captions

To characterize the linguistic properties of our man-
ually authored captions, we conducted a quantita-
tive analysis of lexical and syntactic features. This
provides a clear profile of the dataset for future
users.

Lexical Diversity and Terminology: A fre-
quency analysis of the corpus confirms its thematic
focus. The most frequently named entities are loca-
tion names, led by 	á�
¢�Ê 	̄ (Filastı̄n) (Palestine, occur-
ring in 32% of captions), �Y�®Ë@ (al-Quds) (Jerusalem,
28%), and úæ��̄



B@ Yj. �ÖÏ @ (al-Masjid al-Aqsā) (Al-Aqsa

Mosque, 15%). As the dataset documents historical
events, conceptual nouns such as Z @YîD�� (shuhadā’)
(martyrs) and P 	PAm.× (majāzir) (massacres) are also
highly prevalent, appearing in approximately 35%
and 25% of all captions, respectively. The name
�HðQ�
K. (Bayrūt) (Beirut) occurs in roughly 10% of the
captions, aligning with its defined thematic share.

Syntactic Properties: The captions vary in
length from 8 to 50 words, with an average length
of 15 words, providing substantive descriptions. A
manual analysis of a 100-caption sample revealed
that approximately 60% utilize a nominal sen-
tence structure (e.g., �éJ
ÖÞ�B@ �éÊÒm.Ì'@ (al-jumla al-ismiyya),
which is typical of descriptive Arabic. Furthermore,
given the historical nature of the images, the past
tense is the predominant verbal form, used in over
80% of captions that contain a verb.

4.3 Quality Assurance Framework

To ensure the quality and reliability of the captions,
we employed a multi-faceted evaluation strategy
using automated metrics and human assessment.
A detailed analysis of the evaluation results is pre-
sented in Section 5 (Results).

4.4 External Tools/Libraries

To ensure factual accuracy, toponym spellings and
historical context were verified using Wikipedia
and digital archives. This standardized Arabic
transliteration against alternative names (e.g., A 	̄ AK

for Jaffa/Yafo), prevents ambiguous geographic ref-
erences.

5 Results

5.1 Quantitative Results: Ranking and
Performance of Official Metrics

In Subtask 1 of ImageEval 2025, performance was
assessed through three complementary approaches:
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First, Semantic Alignment (Cosine Similarity):
Captions were evaluated by computing the average
pairwise cosine similarity between TF-IDF vector-
ized character 3-grams of candidate and reference
texts after text normalization. This metric quanti-
fies lexical overlap, accounting for Arabic morpho-
logical variation. As shown in Table 1, BZU-AUM
led (65.53), while our team (AZLU) scored 59.15.

Second, Automated Quality Assessment (LLM
as Judge): A GPT-4o model evaluated captions
on a 0–100 scale for semantic accuracy, fluency in
MSA, and cultural relevance. Using fixed parame-
ters and a structured prompt ensured reproducibil-
ity. Our team (AZLU) led this metric (41.53), re-
flecting strengths in coherence and relevance, while
BZU-AUM scored 32.42.

Third, Manual Evaluation: A 5% stratified sam-
ple was evaluated by native Arabic speakers on four
qualitative metrics (rated 1–4): Cultural relevance,
Concise, Completeness, and Accuracy.

Table 1

Rank
(Cosine) Participants

Cosine
Similarity

Mean

Rank
(LLM)

LLM Judge
Score

1 BZU 65.53 2 32.42
2 AZLU 59.15 1 41.53

Table 1: Cosine Similarity and LLM Judge Score results
for participating teams.

Table 1 reveals a performance inversion: BZU-
AUM led in Cosine Similarity (65.53) but scored
lower on the LLM Judge (32.42), while our team
(AZLU) led on the LLM Judge (41.53) despite a
lower Cosine score (59.15), highlighting a diver-
gence between metric-based and qualitative evalua-
tion.

5.2 Results of the Human Evaluation

The captions were evaluated by a human based on
four main criteria: accuracy, completeness, con-
ciseness, and cultural relevance.

Evaluation by native speakers yielded strong
scores across key qualitative metrics: Cultural Rel-
evance (3.20), demonstrating effective conveyance
of cultural context; Conciseness (3.44), indicating
direct and succinct phrasing; Accuracy (3.16), con-
firming factual alignment with image content. The
lower Completeness score (2.88) suggests occa-
sional omissions of finer contextual details.

5.3 Analysis: The Impact of Design Choices

Our captioning system prioritized the exclusive use
of Modern Standard Arabic (MSA) to ensure lin-
guistic coherence and prevent dialectal variation.
Emphasis was placed on achieving succinctness
while preserving cultural and historical accuracy.
This methodology generated accurate and concise
captions, with strengths in both conciseness and ac-
curacy contributing to strong overall performance.

Participants Cultural
Relevance Conciseness Completeness Accuracy

BZU 3.24 2.76 3.08 2.92
AZLU 3.20 3.44 2.88 3.16

Table 2: Human evaluation results for Subtask 1.

Human evaluation (Table 2) reveals a trade-off:
BZU excels in Cultural Relevance and Complete-
ness, while AZLU scores higher in Concise and
Accuracy, suggesting a contrast between contex-
tual nuance and precise succinctness.

5.4 Error Analysis: System Mistakes,
Confusion Matrices, Error Types

Despite strong overall performance, several areas
for improvement were identified:
Linguistic Errors: Occasional use of non-standard
MSA terms due to dialectal interference.
Cultural Errors:Due to the absence of location
data in some images and limited knowledge of spe-
cific locales, unidentified places are designated as
’Palestine’.
Visual Understanding Errors: Challenges in in-
terpreting fine-grained, culturally nuanced scene
details.

The evaluation was conducted on the whole
dataset after collecting the whole captions in one
csv file containing the batch id,image id, and the
written caption.

5.5 Distinction between Official vs.
Post-Submission Results

Based on the preliminary assessment, our team
(AZLU) performed well, particularly in Concise-
ness and Accuracy, demonstrating the capacity to
generate understandable and culturally relevant cap-
tions.

6 Limitations

While the Dataset addresses a significant gap in
Arabic image captioning resources, it possesses a

441



limitation that presents an opportunity for future
work. The dataset’s scale, with 500 image-caption
pairs, is sufficient for initial benchmarking but re-
mains limited for training large-scale models from
scratch without significant data augmentation or
transfer learning. A larger-scale dataset would be
necessary to achieve state-of-the-art performance
and improve model generalization.

7 Conclusion

This paper detailed a contribution to the ImageEval
2025 Shared Task: a manually annotated dataset of
Arabic image captions in Modern Standard Arabic
(MSA). By enforcing strict linguistic guidelines
and prioritizing cultural relevance, we addressed
key challenges in Arabic captioning, such as di-
alectal variation and a lack of public datasets. Our
results demonstrated strong performance in con-
ciseness and accuracy, validating the annotation
methodology.

While some errors in cultural disambiguation
and completeness were observed, this dataset pro-
vides a foundational resource. Future enhance-
ments could include expanding the dataset size,
integrating multimodal pre-training, and leverag-
ing domain-specific lexicons. This work aims to
advance Arabic natural language generation and
foster greater inclusion of underrepresented lan-
guages in global research.

Acknowledgments

The authors thank the organizers of the ImageEval
2025 shared task, Mustafa Jarrar, Ahlam Bashiti,
and Alaa Aljabari, for their work and guidance. We
also acknowledge the image annotators.

References
Ahlam Bashiti, Alaa Aljabari, Hadi Hamoud, Md. Rafiul

Biswas, Bilal Shalash, Mustafa Jarrar, Fadi Zaraket,
George Mikros, Ehsaneddin Asgari, and Wajdi Za-
ghouani. 2025. ImageEval 2025: The First Arabic
Image Captioning Shared Task. In Proceedings of
the Third Arabic Natural Language Processing Con-
ference (ArabicNLP 2025), Suzhou, China. Associa-
tion for Computational Linguistics.

Jonathan Emami, Pierre Nugues, Ashraf Elnagar, and
Imad Afyouni. 2022. Arabic image captioning using
pre-training of deep bidirectional transformers. In
Proceedings of the 15th International Conference on
Natural Language Generation, pages 40–51, Water-
ville, Maine, USA and virtual meeting. Association
for Computational Linguistics.

Living Arabic Project. n.d. Living arabic project.
https://www.livingarabic.com/.

Abdelrahman Mohamed, Fakhraddin Alwajih,
El Moatez Billah Nagoudi, Alcides Inciarte, and
Muhammad Abdul-Mageed. 2023. Violet: A
vision-language model for Arabic image captioning
with gemini decoder. In Proceedings of ArabicNLP
2023, pages 1–11, Singapore (Hybrid). Association
for Computational Linguistics.

Muhy Eddin Za’ter and Bashar Talafha. 2022. Bench-
marking and improving arabic automatic image
captioning through the use of multi-task learning
paradigm. Preprint, arXiv:2202.05474.

442

https://www.jarrar.info/publications/BAH25.pdf
https://www.jarrar.info/publications/BAH25.pdf
https://doi.org/10.18653/v1/2022.inlg-main.4
https://doi.org/10.18653/v1/2022.inlg-main.4
https://www.livingarabic.com/
https://doi.org/10.18653/v1/2023.arabicnlp-1.1
https://doi.org/10.18653/v1/2023.arabicnlp-1.1
https://doi.org/10.18653/v1/2023.arabicnlp-1.1
https://doi.org/10.48550/arXiv.2202.05474
https://doi.org/10.48550/arXiv.2202.05474
https://doi.org/10.48550/arXiv.2202.05474
https://doi.org/10.48550/arXiv.2202.05474


Proceedings of The Third Arabic Natural Language Processing Conference, pages 443–452
November 8-9, 2025 ©2025 Association for Computational Linguistics

Iqra’Eval: A Shared Task on Qur’anic Pronunciation Assessment
Yassine El Kheir

DFKI
Amit Meghanani

University of Sheffield
Hawau Olamide Toyin

MBZUAI

Nada Almarwani
Taibah University

Omnia Ibrahim
Alexandria University

Youssef Elshahawy
HUMAIN

Mostafa Shahin
University of New South Wales

Ahmed Ali
HUMAIN

Abstract

We present the findings of the first shared
task on Qur’anic pronunciation assessment,
which focuses on addressing the unique chal-
lenges of evaluating precise pronunciation of
Qur’anic recitation. To fill an existing research
gap, the Iqra’Eval 2025 shared task intro-
duces the first open benchmark for Mispro-
nunciation Detection and Diagnosis (MDD)
in Qur’anic recitation, using Modern Standard
Arabic (MSA) reading of Qur’anic texts as its
case study. The task provides a comprehensive
evaluation framework with increasingly com-
plex subtasks: error localization and detailed
error diagnosis. Leveraging the recently devel-
oped QuranMB benchmark dataset along with
auxiliary training resources, this shared task
aims to stimulate research in an area of both
linguistic and cultural significance while ad-
dressing computational challenges in pronun-
ciation assessment.

1 Introduction

The field of Computer-Aided Pronunciation Train-
ing (CAPT) and its core component, Mis-
pronunciation Detection and Diagnosis (MDD),
have become indispensable tools for self-directed
language learners globally (Neri et al., 2008;
Rogerson-Revell, 2021). CAPT systems have
two main usages: (i) pronunciation assessment,
where the system is concerned with the errors in
the speech segment; (ii) pronunciation teaching,
where the system is concerned with correcting and
guiding the learner to fix mistakes in their pro-
nunciation (Kheir et al., 2023a). Arabic presents
unique challenges for CAPT due to its linguis-
tic complexity and diverse varieties. The Arabic
phonological system comprises 34 phonemes, in-
cluding 28 consonants and 6 vowels with distinct
short and long forms, which already surpasses the

complexity of many Indo-European languages. A
particularly salient challenge is posed by complex
phonetic structures not commonly found in other
languages, such as uvular and pharyngeal conso-
nants, and the subtle but semantically crucial dis-
tinction between emphatic and non-emphatic con-
sonants (e.g., / t/ vs. /T/ or /s/ vs. /S/). A slight
mispronunciation, such as a substitution between
these pairs, can alter the meaning of a word en-
tirely (Kheir et al., 2023b, 2024; Alrashoudi et al.,
2025). These challenges in Arabic are ampli-
fied in the domain of Qur’anic recitation. The
recitation of the Holy Qur’an is governed by a
strict set of rules known as Tajweed, which dic-
tates the precise articulation of every phoneme,
including specific rules for elongation, nasaliza-
tion (Idgham, Ikhfaa, Iqlab), and bouncing sounds
(Qalqala). These rules introduce a layer of pho-
netic complexity that is absent in Modern Stan-
dard Arabic (MSA) and requires specialized mod-
els and datasets that can capture these fine-grained
acoustic details (Ahmad et al., 2018; Alagrami and
Eljazzar, 2020; Rahman et al., 2021; Alsahafi and
Asad, 2024). The IqraEval 2025 challenge is mo-
tivated by the Unified Benchmark for Arabic Pro-
nunciation Assessment, with Qur’anic recitation
as its case study (El Kheir et al., 2025). Build-
ing on this foundation, IqraEval 2025 introduces
a standardized benchmark supported by carefully
curated datasets to tackle the challenges of Ara-
bic MDD. To fill existing gaps, we present the first
open benchmark for mispronunciation detection in
MSA, specifically focusing on Qur’anic recitation.
Our main contributions are:

• Task Description: Quranic Mispronuncia-
tion Detection and Diagnosis System.

• Phoneme Set Description: Detailed
phoneme inventory for MSA-based recita-
tion.

1
443



• Dataset Release: Over 80 hours of training
and development speech data.

• Evaluation Framework: Clearly defined
criteria for benchmarking performance.

• Leaderboard: The first public leaderboard
for Qur’anic Mispronunciation Detection.

2 Iqra’Eval 2025

2.1 Task Description
The Iqra’Eval 2025 shared task focuses on mis-
pronunciation detection and diagnosis in Qur’anic
recitation. Given a speech segment and its
corresponding reference transcript, the objective
is to automatically identify pronunciation errors
and localize their positions. In this first itera-
tion of the shared task, the task is framed as a
phoneme recognition problem, where the systems
are expected to accurately predict the pronounced
phonemes in a given MSA-style read Qur’anic
Arabic speech recording.

2.2 Dataset and Evaluation
2.2.1 Training Dataset
CV-Ar Dataset This dataset incorporates an
82.37 hours subset of the Common Voice Dataset
(Ardila et al., 2019) version 12.0 specifically for
MSA Arabic speech recognition. The data set con-
sists of read speech samples collected from a di-
verse pool of speakers with a well-balanced gen-
der distribution. Fully vowelized versions of the
transcriptions developed by El Kheir et al. were
used in this shard task. Additionally, the cor-
pus has been augmented with samples drawn from
Qur’anic recitations (Alrashoudi et al., 2025).

TTS Augmentation Dataset Introduced in El
Kheir et al. to address the scarcity of mispro-
nounced annotated speech data, based on the gen-
erative approach techniques demonstrated in Ko-
rzekwa et al. 2022. The authors used seven in-
house single-speaker TTS systems (5 male and
2 female voices) trained on fully vowelized tran-
scriptions to generate 26 hours of error-free speech
(canonical pronunciations) and 26 hours of speech
with systematically introduced mispronunciations.
The mispronunciation patterns were created by
systematically modifying the input of canonical
transcripts based on a predefined confusion-pairs
matrix derived from phoneme similarity data ex-
tracted from Kheir et al. 2022.

2.2.2 Testing Dataset
QuranMB The test set introduced by El Kheir
et al. consists of 98 verses from the Qur’an, re-
cited by 18 native Arabic speakers (14 females,
4 males), resulting in approximately 2.2 hours of
recorded speech. The speakers were instructed to
read the text while deliberately producing speci-
fied pronunciation errors, which were systemati-
cally selected to emulate the most prevalent mis-
pronunciations reported in the literature on com-
mon errors in Qur’anic recitation. A custom
recording tool was developed to highlight modi-
fied text and display additional instructions speci-
fying the type of error to ensure consistency in er-
ror production (Alrashoudi et al., 2025). The test
set was further annotated by 3 Arabic linguistic
annotators.

2.3 Evaluation
We utilize the specialized phoneme set for
Qur’anic Arabic developed in El Kheir et al.,
2025, which builds on the phonetizer introduced
by Halabi and Wald, 2016. This set of phonemes
includes 62 unique phonemes that account for
all MSA sounds, including gemination (the dou-
bling of consonant sounds). The phonemizer has
been optimized for phonetic coverage in speech
synthesis, employing a greedy algorithm to min-
imize corpus size while maintaining comprehen-
sive phonetic and prosodic coverage.

Evaluation Metrics Our evaluation protocol
adopts the hierarchical structure established in
prior mispronunciation detection research (Li
et al., 2016; Leung et al., 2019; Kheir et al.,
2023a). This framework jointly considers (i) the
annotated verbatim sequence, (ii) the canonical
text-dependent reference sequence, and (iii) the
model prediction. Based on the alignment of these
three sources, predictions are categorized into four
primary classes:

• True Accept (TA): correctly accepted
phones that are both annotated and predicted
as correct pronunciations.

• True Reject (TR): correctly rejected phones
that are both annotated and predicted as mis-
pronunciations. These are further exploited
to distinguish between Correct Diagnosis
(CD) and Error Diagnosis (ED) depending
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Figure 1: Iqra’Eval Shared Task main page.

on whether the predicted phone matches the
canonical pronunciation.

• False Reject (FR): phones that are actually
correct but are incorrectly predicted as mis-
pronunciations.

• False Accept (FA): phones that are actually
mispronounced but misclassified as correct.

From these four categories, we derive the fol-
lowing error rates.

FRR =
FR

TA+ FR
(1)

FAR =
FA

FA+ TR
(2)

DER =
ED

CD + ED
(3)

In addition to error rates, we adopt standard di-
agnostic metrics to evaluate system performance.
Precision and Recall are defined as:

Precision =
TR

TR+ FR
(4)

Recall =
TR

TR+ FA
= 1− FAR (5)

Finally, the overall performance is summarized
using the F1-score, i.e., the harmonic mean of Pre-
cision and Recall:

F1 = 2 · Precision · Recall
Precision + Recall

(6)

3 Shared Task Teams

Submission Rules All resources for IqraEval
are consolidated on the dedicated Hugging Face
organization page1 (see Fig. 1). This page serves
as the central hub for datasets, baseline models,
reference resources, and evaluation tools. Its main
components are summarized as follows:

• Baseline Models. Four pretrained SSL
models are released for participants:
Iqra_hubert_base, Iqra_wav2vec2_base,
Iqra_mhubert_base, and
Iqra_wavlm_base. These provide standard-
ized starting points and ensure comparability
across submissions.

• Datasets. The page hosts multiple datasets
covering training, evaluation, and auxiliary
resources:

1https://huggingface.co/IqraEval
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Figure 2: Iqra’Eval Shared Task Leaderboard.

– IqraEval/Iqra_train: training cor-
pus for system development.

– IqraEval/open_testset: public eval-
uation split for leaderboard submis-
sions.

– IqraEval/Iqra_TTS: synthetic speech
dataset for data augmentation and ro-
bustness testing.

– IqraEval/dummy_samples:
lightweight set for debugging and
format verification.

• Arabic Phonemes. A dedicated Space
provides an interactive inventory of MSA
phonemes, including examples of canonical
pronunciations, which supports error diagno-
sis.

• Papers. A collection highlights accepted
publications, including the IqraEval Inter-
speech 2025 paper (El Kheir et al., 2025),
which formally describes the benchmark.

• Leaderboard2. An interactive Hugging Face
Space is maintained to visualize and compare
system outputs. Submitted predictions are
automatically evaluated and the leaderboard
is updated with human-in-the-loop.

• Code Samples and Evaluation Scripts. The
organization provides baseline code, sample
commands, and the official implementation
of evaluation metrics to standardize experi-
mental pipelines and ensure reproducibility.

2https://huggingface.co/spaces/IqraEval/
Leaderboard

Figure 3: Mispronunciation Detection Modeling
Pipeline

• Submission Workflow. Participants submit
their system outputs in the prescribed CSV
format by email following the format pro-
vided by the organizers. All valid runs are
evaluated automatically, and the results are
published on the leaderboard.

Participating Teams A total of 29 teams regis-
tered for the shared task. Out of these, 11 teams
actively participated in the testing phase and had
their systems ranked on the official leaderboard.
Among them, 6 teams submitted a system descrip-
tion paper, and 5 of these were accepted for pub-
lication in the proceedings of the Iqra’Eval shared
task. The participation spanned multiple regions
across the globe, including teams from the Mid-
dle East, North Africa, Sub-Saharan Africa, South
Asia, Europe, North America and Oceania, reflect-
ing the international interest and diversity of the
research community engaged in this task.

Baselines We establish two baselines for the
Iqra’Eval shared task, as shown in our benchmark
(El Kheir et al., 2025), both of which leverage
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Team Affiliation Paper Published

ANLPers Prince Sultan University, Saudi Arabia ✓
BAIC Applied Innovation Center , Egypt ✓
Greentech Greentech Apps Foundation, United Kingdom/Bangladesh
Hafs2Vec The University of New South Wales, Australia ✓
IqraVec Imperial College London, United Kingdom
Metapseud Independent, Sudan ✓
Misraj Tech Misraj Technology, Saudi Arabia
MONADA - , Tunisia ✓
Mubeen - , -
Ghalib - , -
Push_n_Pray Euromed University of Fes, Morocco

Table 1: List of teams that participated in Iqra’Eval Shared Task.

SSL speech models combined with temporal mod-
eling, as illustrated in Figure 3. Following the
SUPERB setup (wen Yang et al., 2021), the SSL
encoder parameters are frozen and the layer-wise
representations are aggregated through a weighted
sum across transformer layers. The resulting fea-
tures are passed to a model head consisting of
a 2-layer, 1024-unit Bi-LSTM trained with Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006) loss on phoneme sequences. During
inference, phoneme sequences are obtained using
greedy CTC decoding.

• Baseline 1 (mHuBERT): This system em-
ploys the multilingual HuBERT (mHu-
BERT) (Zanon Boito et al., 2024), pretrained
on 90,430 hours of speech covering 147
languages. It represents a strong multilin-
gual SSL model suitable for cross-lingual
phoneme recognition.

• Baseline 2 (WavLM).: This system is
based on WavLM (Chen et al., 2022), a
94M-parameter model pretrained on English
speech. It provides a monolingual reference
point against the multilingual variant.

Our baselines allow us to contrast the effective-
ness of multilingual versus monolingual SSL rep-
resentations for MDD. Below, we provide a brief
description for each team system.

3.1 ANLPers:

ANLPers’System (Qandos et al., 2025) is based
on Whisper-large-v3 (Radford et al., 2023), the
largest Whisper model with 1.55B parameters and

multilingual capabilities. Audio input is resam-
pled to 16 kHz as required by Whisper. The to-
kenizer is extended with 68 phoneme tokens from
(Halabi and Wald, 2016), and the embedding layer
is resized accordingly.

The dataset is preprocessed to retain only au-
dio and phoneme attributes. Audio features are
extracted using the Whisper feature extractor,
and phoneme sequences are encoded as labels.
Training is performed using the Hugging Face
transformers library with a batch size of 4, gra-
dient accumulation of 4 steps, a learning rate of
1× 10−5, and 2 epochs.

3.2 BAIC:
BAIC’System (Mattar et al., 2025) is based on
Wav2Vec2-BERT (Chung et al., 2021). It employs
task-adaptive continued pretraining on large Ara-
bic speech datasets, using phoneme-level labels
automatically generated via the Iqra’Eval phone-
tizer, followed by fine-tuning on the official train-
ing data augmented with synthetic Quran recita-
tions created using XTTS-v2. This strategy allows
the model to internalize fine-grained phonetic dis-
tinctions relevant to mispronunciation detection.

3.3 Hafs2Vec:
This system (Ibrahim, 2025) was trained on two
datasets: EveryAyah/QUL, consisting of 94 hours
of Quran recitations from 28 professional reciters
(filtered to verses under 10 seconds, 54k clips),
and the IqraEval training set ( 79 hours, 74k clips).
Phoneme labels for the reciters were generated
using a custom Quranic phonemizer that outputs
context- and Tajweed-aware phoneme sequences
aligned with the IqraEval phoneme set. The model
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is based on facebook/wav2vec2-xls-r-1b and
fine-tuned for 15 epochs with an effective batch
size of 352, a learning rate of 3 × 10−5, AdamW
optimization, and CTC loss over the phoneme vo-
cabulary, trained on the UNSW Katana HPC with
mixed precision.

3.4 Metapseud:

The submission (Mansour, 2025) applies do-
main adaptation with multi-stage fine-tuning
for phoneme-level Qur’anic mispronunciation
detection using Wav2Vec2.0. In the first stage, the
pretrained wav2vec2-large-xlsr-53-arabic
model is fine-tuned on a large Qur’anic phoneme-
annotated dataset (245k recitations), producing
a general-purpose phoneme recognizer. In the
second stage, the model is further fine-tuned on
the official IqraEval training set (79h) to special-
ize in Qur’anic phoneme structures. Decoding
is performed with CTC and beam search, which
improves performance on the IqraEval open test
set.

3.5 MONADA:

Team MONADA (DAOUD and MESSAOUD,
2025) designed a lightweight system to balance
performance with memory efficiency by plac-
ing a shallow transformer on top of a pretrained
Wav2Vec2.0 feature extractor. Raw audio is pro-
cessed with the S3PRL Wav2Vec2.0 Base fea-
turizer, producing 768-dimensional frame-level
representations, which are then projected into a
smaller hidden dimension and fed into a 3-layer
transformer encoder with 4 attention heads per
layer and a feed-forward size of 1024. The model
is trained using CTC loss. Training is conducted
for 15 epochs with Adam optimizer (learning rate
3 × 10−4, cosine annealing scheduler, minimum
learning rate 1.5×10−5), dropout of 0.15, and gra-
dient clipping. The best model is selected based on
correct rate performance on the development set.

3.6 Mubeen:

The system is based on fine-tuning a Whisper-
medium model using the IqraEval training and
TTS augmentation data. Only the decoder layers
were trained, while the encoder was frozen due to
limited hardware and time, using a learning rate
of 1 × 10−5 for 2 epochs. An additional fine-
tuning pass applied a conservative SpecAugment

(Park et al., 2019) strategy, and the resulting mod-
els were combined by weight averaging. Inference
employed three model configurations with a pair-
wise WER voting strategy.

3.7 Usubmitted Papers

Out of the 11 participating teams in the IqraEval
2025 Shared Task, 5 teams submitted their test set
results to the leaderboard but did not provide any
system description or accompanying paper. While
their performance contributed to the overall com-
petition rankings, the lack of documentation pre-
vents a detailed analysis of their approaches, train-
ing strategies, or architectural choices.

4 Shared Task Results

The overall results for the shared task are in Ta-
ble 2. Team BAIC (Mattar et al., 2025) pre-
sented the best approach, with the best score in
5 of 9 metrics reported. Their model is fol-
lowed closely by Hafs2Vec (Ibrahim, 2025) and
Ghalib. The top 2 approaches included additional
training data with BAIC using synthetic data and
Hafs2Vec using Quranic recitation from human
speakers. The Quranic recitation supplementation
data (94 hours) might have affected the model’s
performance since the training set (79 hours) for
Iqra’Eval 2025 is read in MSA style.

5 Lessons from the First Quran
Pronunciation Challenge

The submissions revealed three main sources of
innovation: model design, data strategies, and
training/inference practices. These reflect the
community’s attempt to balance performance,
computational cost, and linguistic specificity.

5.1 Model Innovations

Most teams built on large pretrained encoders such
as Whisper, Wav2Vec2, XLS-R, or Wav2Vec2-
BERT, demonstrating the effectiveness of trans-
fer learning for Qur’anic mispronunciation de-
tection. Some groups explored lightweight de-
signs, for example MONADA and ShallowTrans-
former, which placed shallow transformer layers
on top of frozen representations to reduce compu-
tational cost. Other innovations included extend-
ing model vocabularies, such as ANLPers, which
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Team F1-score↑ Precision↑ Recall↑ Correct Rate↑ Accuracy↑ TA FR FA CD

Baic 0.4726 0.3713 0.6501 0.8985 0.8701 0.9209 0.0791 0.3499 0.6873
Hafs2Vec 0.4650 0.3292 0.7920 0.8655 0.8488 0.8840 0.1160 0.2080 0.6252
Ghalib 0.4477 0.3218 0.7353 0.8667 0.8506 0.8886 0.1114 0.2647 0.5925
Mubeen 0.4462 0.3250 0.7115 0.8667 0.8506 0.8938 0.1062 0.2885 0.5781
baseline 1 0.4414 0.3093 0.7707 0.8361 0.8234 0.8763 0.1237 0.2293 0.6120
Metapseud 0.4236 0.2879 0.8012 0.8397 0.8213 0.8575 0.1425 0.1988 0.6030
baseline 2 0.4042 0.2715 0.7908 0.8093 0.7955 0.8474 0.1526 0.2092 0.5847
IqraVec 0.3922 0.4483 0.3526 0.5871 0.6123 0.1511 0.2174 0.5812 0.4193
Push_n_Pray 0.3799 0.2454 0.8403 0.8000 0.8510 0.8143 0.1857 0.1597 0.6088
MISRAJ 0.3592 0.2331 0.7833 0.7947 0.7684 0.8147 0.1853 0.2167 0.5355
MoNaDa 0.3497 0.2205 0.8456 0.7713 0.7430 0.7851 0.2149 0.1544 0.5892
ANLPers 0.3224 0.2045 0.7624 0.7682 0.6894 0.7868 0.2132 0.2376 0.5418
GreenTech 0.1997 0.1128 0.8682 0.5033 0.4585 0.5093 0.4907 0.1318 0.4719

Table 2: Evaluation results of different submissions across multiple metrics. Best scores per column are highlighted
in bold. Dashed line separates the top 3 submissions.

augmented Whisper’s tokenizer with 68 Quran-
specific phoneme tokens and resized embeddings
accordingly.

5.2 Data Innovations

Several submissions showed that carefully de-
signed resources were central to performance.
Hafs2Vec introduced a Tajweed-aware phonem-
izer to capture recitation rules such as Idgham and
Ikhfaa, ensuring that phoneme sequences reflected
Qur’anic articulation. BAIC and Mubeen demon-
strated the value of TTS-based augmentation us-
ing XTTS-v2 to generate synthetic recitations.
Hafs2Vec also mixed data from EveryAyah/QUL
with the official IqraEval training set to expand
speaker and style diversity. In addition, BAIC ap-
plied large-scale automatic phoneme labeling with
the IqraEval phonetizer to enable task-adaptive
continued pretraining on Arabic speech corpora.

5.3 Training and Inference Innovations

Beyond data and model design, training prac-
tices had a notable impact. Metapseud applied
multi-stage fine-tuning, first adapting to a large
Qur’anic phoneme corpus and then specializing
on IqraEval. Mubeen selectively fine-tuned only
the Whisper decoder layers due to hardware con-
straints, showing a practical path for parameter-
efficient adaptation. Other strategies included the
use of SpecAugment and conservative regulariza-
tion, weight averaging, WER-based voting, and
beam search decoding. BAIC highlighted the ben-
efits of task-adaptive pretraining, further reinforc-

ing the importance of domain-specific adaptation.
The summary of innovation by each team is de-

scribed in the Table 3.

5.4 Emerging patterns

A number of common themes emerged across sys-
tems. All teams relied on pretrained SSL en-
coders, either Whisper or Wav2Vec2 variants, un-
derlining their versatility as general-purpose fea-
ture extractors. Quran-specific resources, such as
Tajweed-aware phonemizers and synthetic recita-
tions, consistently boosted accuracy and provided
linguistic grounding. Training strategies such as
multi-stage fine-tuning, selective adaptation, and
ensembles yielded measurable gains even without
major architectural changes. Finally, the leader-
board revealed different trade-offs in recall versus
precision, with some systems favoring high recall
for error detection and others prioritizing precision
for stricter evaluation.

5.5 Iqra’Eval 2025 Limitations

Limited Linguistic Scope The generalizability
of our findings is constrained by the limited lin-
guistic scope of the test data. Although the written
Quranic text is standardized, modern spoken Ara-
bic exhibits significant dialectal variation. How-
ever, for this shared task, test data was collected
exclusively from speakers of the Saudi Arabic di-
alect. This might limit the generalizability of the
results, as the model may fail to capture the rich
diversity of the Arabic spoken language.
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Team/System Model Innovation Data Innovation Training/Inference Innovation
ANLPers Whisper-large-v3 with

extended phoneme tok-
enizer

– HF fine-tuning with resized em-
beddings

BAIC Wav2Vec2-BERT back-
bone

TTS augmentation
(XTTS-v2); automatic
phoneme labeling

Task-adaptive pretraining; fine-
tuning on augmented data

Hafs2Vec Wav2Vec2-XLS-R-1B Custom Tajweed-aware
phonemizer; mixing Ev-
eryAyah/QUL + IqraEval

Large-batch CTC training with
AdamW; mixed precision

Metapseud Wav2Vec2.0 (xlsr-53-
arabic)

Large Qur’anic phoneme
corpus (245k)

Multi-stage fine-tuning; CTC
with beam search

MONADA Lightweight shallow
transformer on Wav2Vec2
features

– Efficient training with cosine an-
nealing, dropout, clipping

Mubeen Whisper-medium with
frozen encoder; decoder-
only training

TTS augmentation SpecAugment; weight averag-
ing; WER-based voting

Table 3: Summary of innovations from teams that participated in the first Iqra’Eval Shared Task, grouped by
model, data, and training methods.

Targets-Specific Common Errors During data
collection, speakers were instructed to pro-
duce specific pronunciation mistakes deliberately.
While this covers some common mistakes, it
may not accurately represent the subtle, context-
dependent errors that occur in natural recitation,
which could limit the model’s ability to detect er-
rors in real-world scenarios.

Children IqraEval To the best of our knowl-
edge, there are no publicly available corpora ded-
icated to children’s Qur’an pronunciation learning
and recitation assessment. This lack of resources
highlights a significant research gap, mainly due
to the difficulties of collecting and annotating chil-
dren’s recitation data.

6 Future Work:

We propose the following three directions for fu-
ture research on our challenge, informed by in-
sights from Iqra’25:

6.1 Task Modelling
Looking ahead, three areas appear particularly
promising: (i) the balance between precision
and recall remains an open challenge: systems
must avoid over-flagging errors while still catch-
ing subtle mispronunciations; (ii) resource cre-
ation is essential, especially for rare phonemes and

Tajweed-specific contexts where current datasets
are imbalanced; (iii) efficient adaptation methods
such as parameter-efficient fine-tuning, streaming-
friendly architectures, or lightweight ensembles
could make these models more practical for de-
ployment in real learning settings.

6.2 Data Collection

We need more effort to collect and incorporate
data from a wide range of Arabic dialects, in-
cluding but not limited to Egyptian, Levantine,
and North African. To capture real-world errors,
the next step is to collect recitation audio from a
large, diverse group of non-professional reciters,
which will then be annotated to identify sponta-
neous mispronunciations. Further more, we need
to develop and release a dedicated corpus for chil-
dren’s Qur’an pronunciation learning and recita-
tion assessment, addressing the current absence of
such resources.

6.3 Crowdsourcing platform

We addressed the lack of available data by devel-
oping a custom crowd-sourcing platform 3. This
web application allows users to register and pro-
vide basic demographic information, including
their spoken language, gender, and age. For each

3https://quran-data-collection.sanad.ink
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sentence, a specific instruction guides the user to
introduce a targeted mispronunciation as shown in
Figure 4. In cases where a sentence is particu-
larly challenging, no mispronunciation instruction
is given, and the user simply reads the sentence as
it is. Finally, after a user submits their recordings,
we collect the audio data along with their demo-
graphic metadata. This information is then pre-
pared for release as a dataset. The collected data
will be shared on the Hugging Face platform as
part of a shared task, making it accessible to the
wider research community. We invite researchers
to use our platform to participate and build di-
veristy corpora for the next Iqra’ challenge.

Figure 4: Data collection screenshot
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Abstract

This paper details our submission–Hafs2Vec–
to the Iqra’Eval 2025 shared task on Arabic
mispronunciation detection. Our system is built
upon a wav2vec2-xls-r-1b model, enhanced by
two key contributions: a strategic data mixing
approach and a custom Qur’anic phonemizer.
We augment the official Iqra’Eval training data
with 94 hours of professional Qur’anic recita-
tions, creating a balanced dataset that combines
learner speech with high-quality acoustic refer-
ences. To accurately label the reciter data, we
developed a custom, Tajweed-aware phonem-
izer that captures the specific articulation rules
of Qur’anic recitation. On the QuranMB test
set, our system achieved an F1-score of 46.50%
and a high recall of 79.20%.

1 Introduction

The Iqra’Eval 2025 shared task (Kheir et al.,
2025) provides a crucial benchmark for advancing
Computer-Aided Pronunciation Training in the nu-
anced domain of Modern Standard Arabic (MSA)
and Qur’anic recitation. A primary challenge in
developing effective mispronunciation detection
systems is the inherent variability in speech data.
Learner datasets often contain valuable error pat-
terns but may lack acoustic consistency, while pro-
fessional recordings offer pristine quality but no
examples of common mistakes. Bridging this gap
is essential for building models that are both robust
and accurate.

To address this challenge, our work introduces
two primary contributions. First, we employ a
data mixing strategy that combines the 79-hour
Iqra’Eval training set with 94 hours of professional
Qur’anic recitations. This approach is designed to
improve the model’s generalisation by exposing it
to a wider range of acoustic conditions, speaking
styles, and phonetic details, balancing error diver-
sity with acoustic quality. Second, to enable this

strategy, we developed a custom Qur’anic phone-
mizer (Ibrahim, 2025). This tool generates precise
phonetic transcriptions for the professional reciter
data by incorporating complex Qur’anic articula-
tion rules governed by Tajweed rules and special
symbols within the Qur’anic Uthmani script, which
are not accounted for in standard MSA phonemiz-
ers, such as Halabi and Wald, 2016.

By integrating these components into a fine-
tuned self-supervised learning model framework,
our system achieves strong performance. This pa-
per details our methodology, from data preparation
and phoneme label generation to model training
and evaluation, and provides an in-depth analysis
of the system’s performance and error patterns.

2 Methodology

2.1 Data Configuration

We train on a mixture of professional and normal
recitations to balance acoustic quality with speaker
and error diversity. 28 professional reciters from
EveryAyah (Anonymous, 2010) and Qur’anic Uni-
versal Library (Tarteel, 2025) are used, filtered to
verses of length ≤ 10s, yielding ∼94 h (∼54k utt.).

The Iqra’Eval training set contributes ∼79 h
(∼74k utt.) of CommonVoice (Ardila et al., 2020)
Arabic speech augmented with Qur’anic recita-
tions.

2.2 Phoneme Label Generation

For the Iqra’Eval data, phoneme labels were pro-
vided by the organisers. For the professional re-
citers set, we generated phoneme labels automat-
ically using a custom Qur’anic phonemizer. This
tool takes a verse reference as input and outputs a
context-aware, Tajweed-aware phoneme sequence.
It expands beyond Modern Standard Arabic pho-
netics by incorporating Tajweed articulation rules,
including Idgham, Iqlab, Ikhfaa, and Qalqala. The
phoneme inventory used was matched to the of-
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Dataset Utterances Hours PER (%) Sub. (%) Del. (%) Ins. (%)
Iqra’Eval Dev (All) 2588 3.4 7.69 4.29 1.62 1.78
Iqra’Eval Dev (Qur’an) 615 – 3.88 1.97 0.84 1.07
Iqra’Eval Dev (MSA) 1973 – 9.50 5.39 1.99 2.11
Professional Reciters 1443 2.6 1.55 0.92 0.37 0.26

Table 1: Phoneme Error Rate (PER) and error type breakdown on development sets.

System TAR↑ FRR↓ FAR↓ CD↑ Recall↑ Precision↑ F1↑
Organisers’ baseline 86.21 13.79 24.44 66.78 75.56 17.67 28.64
Leaderboard Winner (Baic) 92.09 7.91 34.99 68.73 65.01 37.13 47.26
Our system (Hafs2Vec) 88.40 11.60 20.80 62.52 79.20 32.92 46.50

Table 2: Mispronunciation detection comparison on the QuranMB test set. TAR: True Acceptance Rate, FRR: False
Rejection Rate, FAR: False Acceptance Rate, CD: Correct Diagnosis. Values are percentages. ↓ lower is better, ↑
higher is better.

ficial Iqra’Eval phoneme set — mostly through
direct mapping from the phonemizer output, along-
side some pre-training and post-training rules.

2.3 Training Configuration
We employed an end-to-end system based on the
multilingual facebook/wav2vec2-xls-r-1b (Babu
et al., 2021), fine-tuned for 15 epochs with an ef-
fective batch size of 352 (22 training batch size × 4
gradient accumulation steps × 4 GPUs). Optimiza-
tion was performed using AdamW with a learning
rate of 3e-5 and a warm-up ratio of 0.1. Experi-
ments were conducted on the University of New
South Wales Katana high-performance computing
cluster with mixed precision. For inference, greedy
decoding was used.

3 Results and Analysis

3.1 Development Set Performance
We evaluated the systems on the Iqra’Eval develop-
ment set, further categorised into Qur’an and MSA
only versions, and the professional reciters develop-
ment set, consisting of 3 unique reciters and unseen
training verses. Table 1 summarises development
sets, their PER values and error breakdowns.

On the Iqra’Eval development set, the sys-
tem achieved a PER of 7.69%, with substitutions
(4.29%) as the dominant error type, followed by
insertions (1.78%) and deletions (1.62%). Perfor-
mance is notably better on Qur’anic speech (3.88%
PER) than on MSA speech (9.50% PER). This
is likely due to the significant variation in style
between the CommonVoice MSA data and aug-
mented Qur’anic data. That being said, the MSA
subset has approximately 3 times the utterances of

Qur’anic subset, so its PER is statistically more
stable.

The professional reciters development set shows
the lowest PER at 1.55%, reflecting the clarity, con-
sistent articulation, and style match to the training
data.

3.2 Test Set Performance

Table 2 compares test set performance of our sys-
tem with 1. the organisers’ baseline system (Kheir
et al., 2025) using mHuBERT trained on the CMV-
Ar data and 2. the leaderboard-winning system.

Our model achieves a high recall (79.20%) and a
low false acceptance rate (20.80%), with a competi-
tive F1-score (46.50%), indicating strong coverage
of actual mispronunciations while avoiding many
incorrect error detections. The winner leads in F1-
score (47.26%) and precision (37.13%), reflecting
a more conservative error detection strategy that
trades some recall for higher precision.

These results highlight a key trade-off: our
system favours high recall and balanced accep-
tance/rejection behaviour, making it suitable for
learner-feedback scenarios where missing genuine
errors is more costly than flagging occasional false
positives. In contrast, the winning system’s higher
precision may be advantageous in applications pri-
oritising concise, accurate feedback over exhaus-
tive detection.

3.3 Impact of Data Augmentation

Combining the Iqra’Eval data with professional re-
citer data introduces greater voice diversity, varia-
tion in recitation speed (slow to fast), and exposure
to a broader range of acoustic conditions, allowing

454



Category Errors Phonemes Category PER (%) Overall PER Contribution (%)
Consonant phonemes 2156 44540 4.84 2.57
Vowel phonemes 4044 36491 11.08 4.82
Shaddah phonemes 238 2818 8.45 0.28
Total 6438 83849 – 7.69

Table 3: Error breakdown by phoneme category on the Iqra’Eval development set.

the model to generalise to different recitation styles.
Quranic recitation follows distinct modes—such as
mujawwad, murattal, and hadr—each with its own
tempo and melodic features. Unlike general MDD,
we argue that for Quranic MDD it is essential that
models are robust to these stylistic differences and
that PER is evaluated on multiple test sets repre-
senting different styles. A significant decrease in
one domain’s PER could be more valuable to the
overall system at the expense of a slight increase in
a different domain’s PER, which motivates our use
of multiple development sets.

Furthermore, the system demonstrated strong
ability to differentiate between the two data do-
mains, successfully avoiding false detection of
Tajweed phonemes in the test set, where the
Qur’an was recited without Tajweed. Specifically,
across the 1,643-utterance test set, only 7 Ikhfaa
phonemes and 14 Qalqala phonemes were present,
with zero false insertions for all other Tajweed rules.
This suggests that the model effectively learned to
condition its predictions on the presence or absence
of Tajweed articulation, rather than overfitting to
Tajweed-rich training data.

Further experimentation could explore the opti-
mal mixing strategy between the two domains, for
example by adjusting the ratio of learner to reciter
data, applying curriculum learning, or selective
sampling.

3.4 Model Selection Findings

Internal experimentation showed that the
wav2vec2-xls-r-1b model outperformed the
300M-parameter variant by ∼1.3% absolute PER
as well as other models of similar size from the
HuBERT (Hsu et al., 2021) and WavLM (Chen
et al., 2022) families. This outcome is consistent
with the expectation that larger parameter counts
enable better representation of complex acoustic
patterns, such as those found in Arabic and
Qur’anic phonemes. It is reasonable to expect that
the 2B-parameter xls-r model could yield further
improvements; however, the primary limitations

are the increased computational requirements for
training and the slower inference speed, alongside
risks of overfitting to the training data.

3.5 Categorical Error Analysis
Table 3 presents a breakdown of phoneme errors
by broad phoneme categories of consonants, vow-
els and shaddah phonemes on the development set,
allowing for a more robust evaluation of the system
(Loweimi et al., 2023). In addition to the total error
counts (Errors) and the total number of reference
phonemes in each category (Phonemes), the table
reports the Category PER, computed for that cat-
egory alone, and the Overall PER Contribution,
which reflects the contribution of that category to
the overall PER of the dataset.

Figure 1: Confusion matrices for vowel phonemes on
the development set. (Top) All 12 vowel labels. (Bot-
tom) Vowels grouped by phonetic category: short light
= {a u i}, short heavy = {A U I}, long light = {aa uu ii},
long heavy = {AA UU II}.

Vowel phonemes dominate errors, with a PER
contribution of 4.82 out of the overall 7.69 (62.8%
of all misrecognitions), and exhibiting the highest
category PER at 11.08. As seen in the confusion
matrices in Figure 1, many of the 12 vowel labels
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represent acoustically similar sounds (long/short
and light/heavy variants), which likely increases
confusion, even for human listeners. A possible
mitigation would be to reduce the vowel inventory
to 6 or 8 broader categories, merging acoustically
similar variants while preserving distinctions essen-
tial for Arabic speech.

Shaddah (gemination) phonemes, although re-
sponsible for only 0.28 PER, have a relatively high
category PER (8.45) given their scarcity in the train-
ing data: all ten least frequent phonemes in the
training data are shaddah forms, each with fewer
than 600 occurrences, and the rarest (“EE” and
“HH”) occur 90 and 94 times respectively. Address-
ing this severe imbalance may require targeted tech-
niques such as oversampling utterances containing
rare phonemes, enforcing balanced phoneme dis-
tributions in training batches, or adjusting the loss
function to penalise errors on under-represented
classes more heavily.

Consonant phonemes are more numerous overall
but have a lower category PER (4.84), contributing
33.5% of total errors. These results highlight vow-
els as the dominant source of phoneme errors, fol-
lowed by consonants, while rare shaddah phonemes
remain a disproportionate challenge given their
scarcity in the training data.

4 Conclusion

Our contribution to the Iqra’Eval 2025 shared task
demonstrates the effectiveness of a mixed-data
training strategy for Arabic mispronunciation detec-
tion. By combining learner data and professional,
Tajweed-rich recitations with a custom Qur’anic
phonemizer, our wav2vec2-xls-r-1b based system
is able to generalise across different styles. Our
system achieved an F1-score of 46.50%, notable
for its high recall (79.20%) on the test set, demon-
strating a strong ability to identify genuine errors
while minimising incorrect flags.

Our categorical error analysis revealed that
acoustically similar vowel phonemes are the pri-
mary source of errors (∼63% of all misrecogni-
tions), suggesting that future work focusing on
targeted data augmentation or refined vowel in-
ventories could yield significant improvements in
the robustness of Arabic pronunciation assessment
systems. Furthermore, systematic exploration of
optimal data mixing techniques and curriculum
learning strategies could further enhance model
performance.

5 Acknowledgements

We thank the Iqra’Eval shared task organisers
for providing the datasets, evaluation platform,
and baseline systems that made this work possi-
ble. This research includes computations using
the computational cluster Katana supported by
Research Technology Services at UNSW Sydney
(DOI: 10.26190/669X-A286).

References
Anonymous. 2010. Everyayah dataset. https://everyayah.

com/. Online.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Hen-
retty, Michael Kohler, Josh Meyer, Reuben Morais, Lind-
say Saunders, Francis M. Tyers, and Gregor Weber. 2020.
Common voice: A massively-multilingual speech corpus.
Preprint, arXiv:1912.06670.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakho-
tia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick
von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski,
Alexis Conneau, and Michael Auli. 2021. XLS-R: self-
supervised cross-lingual speech representation learning at
scale. CoRR, abs/2111.09296.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shu-
jie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yosh-
ioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin
Qian, Yao Qian, Jian Wu, Michael Zeng, Xiangzhan Yu,
and Furu Wei. 2022. Wavlm: Large-scale self-supervised
pre-training for full stack speech processing. IEEE Journal
of Selected Topics in Signal Processing, 16(6):1505–1518.

Nawar Halabi and Mike Wald. 2016. Phonetic inventory for an
Arabic speech corpus. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation
(LREC’16), pages 734–738, Portorož, Slovenia. European
Language Resources Association (ELRA).

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman
Mohamed. 2021. Hubert: Self-supervised speech repre-
sentation learning by masked prediction of hidden units.
Preprint, arXiv:2106.07447.

Ahmed Ibrahim. 2025. Quranic phonemizer. https://
github.com/Hetchy/Quranic-Phonemizer.

Yassine El Kheir, Omnia Ibrahim, Amit Meghanani, Nada Al-
marwani, Hawau Olamide Toyin, Sadeen Alharbi, Modar
Alfadly, Lamya Alkanhal, Ibrahim Selim, Shehab Elbatal,
Salima Mdhaffar, Thomas Hain, Yasser Hifny, Mostafa
Shahin, and Ahmed Ali. 2025. Towards a unified bench-
mark for arabic pronunciation assessment: Quranic recita-
tion as case study. Preprint, arXiv:2506.07722.

Erfan Loweimi, Andrea Carmantini, Peter Bell, Steve Renals,
and Zoran Cvetkovic. 2023. Phonetic error analysis be-
yond phone error rate. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 31:3346–3361.

Tarteel. 2025. Quranic universal library (qul) — recita-
tions and segments data. https://qul.tarteel.ai/
resources/recitation.

456

https://everyayah.com/
https://everyayah.com/
https://arxiv.org/abs/1912.06670
https://arxiv.org/abs/2111.09296
https://arxiv.org/abs/2111.09296
https://arxiv.org/abs/2111.09296
https://doi.org/10.1109/jstsp.2022.3188113
https://doi.org/10.1109/jstsp.2022.3188113
https://aclanthology.org/L16-1116/
https://aclanthology.org/L16-1116/
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://github.com/Hetchy/Quranic-Phonemizer
https://github.com/Hetchy/Quranic-Phonemizer
https://arxiv.org/abs/2506.07722
https://arxiv.org/abs/2506.07722
https://arxiv.org/abs/2506.07722
https://doi.org/10.1109/TASLP.2023.3313417
https://doi.org/10.1109/TASLP.2023.3313417
https://qul.tarteel.ai/resources/recitation
https://qul.tarteel.ai/resources/recitation


Proceedings of The Third Arabic Natural Language Processing Conference, pages 457–463
November 8-9, 2025 ©2025 Association for Computational Linguistics

Phoneme-level mispronunciation detection in Quranic recitation using
ShallowTransformer

Mohamed Nadhir DAOUD, Mohamed Anouar BEN MESSAOUD
Laboratoire Signal, Images et Technologies de l’Information

Université de Tunis El Manar, Tunis, Tunisia
mohamednadhir@gmail.com, anouar.benmessaoud@yahoo.fr

Abstract

Preserving the integrity of Qur’anic recitation
requires accurate pronunciation, as even subtle
mispronunciations can alter meaning. Auto-
matic assessment of Qur’anic recitation at the
phoneme level is therefore a critical and chal-
lenging task. We present ShallowTransformer,
a lightweight and computationally efficient
transformer model leveraging Wav2vec2.0 fea-
tures and trained with CTC loss for phoneme-
level mispronunciation detection. Evaluated on
the Iqra’Eval benchmark (QuranMB.v2), our
model outperforms published BiLSTM base-
lines on QuranMB.v1 while achieving com-
petitive performance relative to the official
Iqra’Eval challenge baselines, which are not
yet fully documented. Such improvements
are particularly important in assisted Qur’an
learning, as accurate phonetic feedback sup-
ports correct recitation and preserves textual
integrity. These results highlight the effective-
ness of transformer architectures in capturing
subtle pronunciation errors while remaining de-
ployable for practical applications.

1 Introduction

Mispronunciation detection and diagnosis (MDD)
systems play a key role in computer-assisted pro-
nunciation training (CAPT), helping language
learners identify and correct pronunciation errors
without human instructors (Neri et al., 2008). The
detection component aims to detect pronunciation
anomalies, whereas the diagnosis component aims
to assign a specific class to each anomaly.

Most of the foundational research and develop-
ment of MDD systems has been conducted in the
context of English. For example, datasets such
as L2-Arctic which includes non-native English
speech annotated at phoneme level, for substitu-
tion, insertion, and deletion errors, have been ex-
tensively used to train and benchmark detection
algorithms (Jiang et al., 2021).

In contrast, progress in mispronunciation detec-
tion for low-resource languages such as Arabic
has been slow. The Arabic phonological system
contains 28 consonants and 6 vowels (short and
long), where complex phonetic structures (for ex-
ample, uvular and pharyngeal sounds) (Alotaibi
and Muhammad, 2010), present unique problems
that do not commonly arise in more standardized
and highly resourced languages. Moreover, sub-
tle phonetic contrasts, such as between emphatic
and non-emphatic consonants, can be difficult to
perceive (Alrashoudi et al., 2025).

Furthermore, the diversity of Arabic dialects in-
troduces substantial variability in pronunciation
and vocabulary, while code-switching further com-
plicates speech modeling efforts (Besdouri et al.,
2024). These factors, along with the absence of
short-vowel diacritics in most written text, create
unique challenges for both learners and automated
pronunciation assessment systems.

Previous research on Arabic mispronunciation
detection has relied on either simplistic datasets
such as isolated letters (Ziafat et al., 2021) or words
(Aly et al., 2021), or on privately collected cor-
pora that are not publicly accessible (Nazir et al.,
2019)(Algabri et al., 2022). This reliance on pri-
vate and limited datasets has prevented the estab-
lishment of standardized benchmarks and hindered
objective comparison between different method-
ologies. (El Kheir et al., 2025) recently released
an open phoneme annotated Arabic dataset, de-
signed to provide a unified benchmark for Arabic
pronunciation assessment. Building on the release
of this benchmark dataset, we are positioned to
rigorously evaluate advanced mispronunciation de-
tection methods.

We present an end-to-end Arabic MDD model
that leverages self-supervised speech representa-
tions. Our approach uses a pretrained wav2vec
2.0 encoder (Baevski et al., 2020) to extract ro-
bust acoustic features from raw audio, followed
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by a shallow Transformer network (Vaswani et al.,
2017) trained with a Connectionist Temporal Clas-
sification (CTC) loss (Graves et al., 2006) to predict
phoneme sequences. This combination enables the
system to learn fine-grained phonetic distinctions
while avoiding the need for explicit phonetic align-
ments.

Our contributions are:

• Model: A phoneme-level Arabic MDD sys-
tem combining wav2vec 2.0 acoustic repre-
sentations with a lightweight Transformer en-
coder trained via CTC.

• Dataset: An evaluation of the proposed ap-
proach on the QuranMB.v1 dataset (Kheir
et al., 2025).

• Analysis: A performance comparison against
baseline approaches, including an error-type
breakdown to assess diagnostic capabilities
for different phonetic categories.

2 Related Works

Earlier mispronunciation detection (MDD) meth-
ods primarily used the Goodness of Pronunciation
(GOP) metric (Witt and Young, 2000), an objective
measure of pronunciation quality based on like-
lihood scores. GOP computes the likelihood of
acoustic segments corresponding to each phoneme
using a set of Hidden Markov Models (HMMs).

(Harrison et al., 2009) used a GMM-HHM acous-
tic model to extract phone level representations.
Phonological rules are modeled with finite state
transducer to create an extended recognition net-
work (ERN). This approach requires modeling cor-
rect pronunciation but also common mispronuncia-
tions.

(Li et al., 2016) overcame the need to design mis-
pronunciation rules in ERN, by using a deep neu-
ral network that predict L2-speaker pronunciation
from acoustic features and canonical phonemes, al-
lowing for simultaneous detection and diagnosis of
pronunciation anomalies.

CTC-CNN-RNN was introduced in (Leung et al.,
2019) to leverage the ability of convolutional neu-
ral networks (CNN) to extract features, recurrent
neural networks (RNN) to model sequences and
CTC-loss to avoid explicit alignment between input
frames and target phoneme sequence.

(Wu et al., 2021) used an encoder-decoder type
transformer to predict phones from MFCC features

and conduct experiments on the CU-CHLOE cor-
pus (Meng et al., 2007).

The success of large language models in natural
language processing, not only showed the power
of scaling transformer models, but revealed also
the importance of self-supervised learning (SSL)
as a pre-training technique. This is no different for
speech tasks, where it has been proven that trans-
former models can learn self-supervised speech
representations (SSSR) (Mohamed et al., 2022).

Foundation models such as Wav2Vec 2.0
(Baevski et al., 2020) and HuBERT (Hsu et al.,
2021) became widely used for SSSR extraction.

(Peng et al., 2021) finetuned Wav2Vec 2.0 on
the TIMIT dataset (Garofolo et al., 1993) to then
test it on L2-Arctic. While (Wu et al., 2021) used
Wav2Vec 2.0 as a backbone to extract SSSR and
use it as input to an MLP prediction layer.

MDD for arabic was also influenced by the same
trends, wher for example (Algabri et al., 2022) used
CNN-RNN-CTC technique on Arabic-CAPT, a pri-
vate dataset that contains phoneme transcription of
Arabic words. Also (Alrashoudi et al., 2025) fine-
tuned Wav2Vec 2.0 and HuBERT on the L2-KSU
data set. While (Kheir et al., 2025) uses frozen SSL
models as backbones for SSSR extraction, to train
a BiLSTM based model.

Our work builds on these trends by employing
a Wav2Vec 2.0 encoder for feature extraction and
a shallow transformer for phoneme prediction, en-
abling accurate detection and diagnosis of mispro-
nunciations in Arabic speech while balancing per-
formance with memory efficiency.

3 Methodology

We propose a shallow transformer-based approach
for Arabic phoneme sequence recognition. Our ar-
chitecture leverages pre-trained wav2vec2 features
and a lightweight transformer encoder. We opt
for a shallow transformer to balance accuracy with
computational efficiency. This approach makes the
model easily deployable on resource-constrained
environments, such as mobile applications or em-
bedded systems used by learners. The model is
trained end-to-end using CTC loss for automatic
alignment.

3.1 Datasets

3.1.1 Training and dev sets
The CMV-Ar data corpus, detailed in (Kheir et al.,
2025), is derived from the Common Voice Dataset
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(Ardila et al., 2019) and enhanced with Quranic
recitation samples. It includes a training set
of 71,391 utterances (approximately 79 hours of
speech) and a development set of 2,588 utterances
(3.33 hours of raw audio). Each audio file in the
corpus is accompanied by its corresponding spoken
phoneme sequence.

3.1.2 Test set

(Kheir et al., 2025) utilized the QuranMB.v1 test
set, which contains 2.2 hours of Qur’anic recita-
tion from 18 native Arabic speakers, the major-
ity of whom are female. A more recent release,
QuranMB.v2, was made publicly available through
the Iqra’Eval challenge (El Kheir et al., 2025). This
updated version includes 98 utterances from the
same 18 speakers, totaling approximately 2 hours
of audio, although the exact differences between
the two versions remain unclear. The correspond-
ing labels for QuranMB.v2 are not yet available;
however, performance metrics can be obtained by
submitting predicted phoneme sequences to an on-
line API.

All sets labels are based on the phoneme dictio-
nary provided by (Halabi and Wald, 2016).

3.2 Audio feature extraction with Wav2Vec
2.0

3.2.1 Wav2Vec 2.0

Proposed by (Baevski et al., 2020), Wav2Vec 2.0
is a self-supervised framework for learning speech
representations. It learns contextualized audio fea-
tures from raw waveforms. The model consists
of a convolutional feature encoder, which trans-
forms audio signals into latent representations, and
a Transformer-based context network, which cap-
tures long-range temporal dependencies.

During pretraining, Wav2Vec 2.0 uses a con-
trastive loss to predict masked latent representa-
tions from their surrounding context. This enables
the model to learn rich, domain-agnostic acoustic
representations without requiring transcriptions. It
has been proven that these representations can be
fine-tuned for various downstream tasks or used
directly as high-quality feature vectors, thereby re-
ducing the need for large datasets.

3.2.2 Featurizer

The authors of (Kheir et al., 2025) provided several
pretrained models as baselines, that can be loaded
using the S3PRL toolkit (Yang et al., 2024). We

Audio Features wav2vec2: [Batch, seq_len, 768]

Input projection layer: [Batch, seq_len, 256]

Sinusoidal positional encoding: [Batch, seq_len, 256]

Transformer layer 1 : [Batch, seq_len, 256]

Output projection layer: [Batch, seq_len, vocab_size]

Transformer layer 2 : [Batch, seq_len, 256]

Transformer layer 3 : [Batch, seq_len, 256]

Figure 1: Architecture of the Shallow Transformer.

used the pretrained iqra_wav2vec2_base1 check-
point to load the upstream feature extractor , which
returns features extracted by 13 layers of the pre-
trained Wav2Vec 2.0. The default S3PRL featurizer
computes a weighted sum of these 13 representa-
tions for each frame.

3.3 CTC loss
Introduced by (Graves et al., 2006), CTC loss al-
lows for aligning speech utterances with associ-
ated shorter phoneme sequences without requir-
ing explicit alignments. Instead of forcing a one-
to-one correspondence between input frames and
output labels, CTC loss allows for repetitions and
blank symbols in the predicted sequence. This en-
ables the model to handle variations in speaking
speed and pronunciation, as well as silence between
phonemes. The loss function sums the probabilities
of all valid alignment paths that correspond to the
true phoneme sequence, effectively allowing the
model to learn the most probable sequence without
needing pre-segmented data.

3.4 Detailed architecture of
ShallowTransformer

ShallowTransformer (ST), depicted in Figure 1,
incorporates three stacked transformer layers. To
optimize training performance and memory con-
sumption, we downsample the audio features from
768 to 256. We augmented the input data with sinu-
soidal positional encoding. Subsequently, an output
linear layer transforms the 256 transformer encod-
ings to match the vocabulary size. The model’s out-

1https://huggingface.co/IqraEval/Iqra_wav2vec2_base
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Multi-head Attention
Attention head: [Batch, seq_len, 64]

Concatenation + projection : [Batch, seq_len, 256]

Layer norm 1: [Batch, seq_len, 256]

Feed Forward layer 1: [Batch, seq_len, 1024]

Feed Forward layer 2: [Batch, seq_len, 256]

Layer norm 2: [Batch, seq_len, 256]

input : [Batch, seq_len, 256]

Attention head: [Batch, seq_len, 64]

Attention head: [Batch, seq_len, 64]

Attention head: [Batch, seq_len, 64]

Figure 2: Architechture of transformer layers.

put comprises logits with dimensions [Batch size,
sequence length, vocabulary size]. These logits are
utilized by the CTC loss for loss computation and
by a decoding algorithm to produce the predicted
sequence. In order to process speech features in
batches, all samples are padded to the length of the
sample with maximum length.

As depicted in Figure 2 each transformer layer
has 4 attention heads, followed by a shared layer
normalization layer and a feed forward network,
that projects the 256-dim features to 1024 (4 x 256)
and back again to 256.

3.5 Tokenization

Phoneme-level tokenization was performed using
the provided phoneme vocabulary. A blank token
was added to the vocabulary at index 0, which is
necessary for CTC loss. Each phoneme’s token
corresponds to its index.

3.6 CTC decoding and post-processing

The model outputs are processed using argmax at
each time step to obtain the most likely token se-
quence. Before applying CTC decoding rules, pre-
dictions are truncated to actual sequence lengths to
ignore padding tokens. The CTC alignment is then
collapsed by applying two standard rules:

Model Recall Precision F1-score
BiLSTM (Wav2vec2) 76.72 15.71 26.08
BiLSTM (WavLM) 75.35 15.80 26.12
BiLSTM (HuBERT) 74.75 15.67 25.91
BiLSTM (mHuBERT) 75.56 17.67 28.64
ST (Wav2vec2) 84.56 22.05 34.94

Table 1: Recall, precision, and F1-score of the pro-
posed model compared to published baselines on the
QuranMB.v1 test set

1. merging consecutive identical non-blank to-
kens into single occurrences.

2. removing all blank tokens.

This greedy approach provides efficient decoding,
making it suitable for real-time phoneme recogni-
tion applications.

3.7 Metrics

The used metrics follow the established MDD con-
vention defined in (Qian et al., 2010). This ap-
proach classifies predictions into four groups: True
Accept (TA), False Accept (FA), True Reject (TR)
and False Reject (FR). Precision, recall and F1-
score are then computed following:

Recall =
TR

TR + FA
(1)

Precision =
TR

TR + FR
(2)

F1 =
2× Precision× Recall

Precision + Recall
(3)

3.8 Training configuration

The Adam optimizer was employed with a learning
rate of 3e-4. A Cosine annealing scheduler was
used, setting the minimum learning rate at 1.5e-
5. Regularization included Dropout at 0.15 and
gradient clipping with a maximum norm of 1.0.
Training was conducted for 15 epochs, including 3
warmup epochs, with a batch size of 64 samples.

4 Experimental Results and Comparative
Analysis

Table 1 reports the performance of our Shal-
low Transformer (ST) model on the QuranMB.v1
benchmark in comparison with previously pub-
lished baselines from (Kheir et al., 2025). Across
all three evaluation metrics—recall, precision, and
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Model Recall Precision F1-score
baseline 1 (IqraEval) 77.07 30.93 44.14
baseline 2 (IqraEval) 79.08 27.15 40.42
ST (Wav2vec2) 84.56 22.05 34.94

Table 2: Recall, precision, and F1-score of the proposed
model compared to the official Iqra’Eval shared task
baselines on the QuranMB.v2 test set.

F1-score—our model outperforms the BiLSTM-
based baselines using different SSL feature ex-
tractors. The largest improvement is observed in
F1-score, where our model achieves 34.94% com-
pared to the best baseline score of 28.64%. Al-
though these results indicate a substantial perfor-
mance gain, it should be noted that QuranMB.v1
and QuranMB.v2 are not identical. While they are
similar in duration and number of speakers, the ex-
act differences are not documented. As such, direct
numerical comparison should be interpreted with
caution.

Table 2 presents our results on the QuranMB.v2
dataset alongside the baselines provided by the or-
ganizers of the Iqra’Eval shared task. These base-
lines serve as strong reference points for this test
set, although they have not yet been officially pub-
lished or fully documented.

Our model achieves the highest recall (84.56%)
among all compared systems, but lower precision
and F1 score than both baselines. This suggests
that while our model is highly sensitive in detecting
relevant phoneme events, further optimization is
needed to improve precision and overall balance
between recall and precision. Nonetheless, the
results confirm the competitiveness of our approach
under the same evaluation protocol.

5 Conclusion

We presented ShallowTransformer, a lightweight
model for automatic phoneme level assessment
of Qur’anic recitation pronunciation, leveraging
self-attention on SSL-based acoustic features and
trained with CTC loss. The model was designed
to balance accuracy with computational efficiency,
making it suitable for practical deployment. Our
results show substantial improvements over pub-
lished BiLSTM baselines: 10% higher recall,
25% higher precision, and over 22% higher F1-
score, while remaining competitive with the official
Iqra’Eval challenge baselines.

Although precision remains lower than recall,
indicating a higher rate of false rejects, Shallow-

Transformer demonstrates strong capability in cap-
turing pronunciation patterns. Future work will
focus on improving precision through refined de-
coding, richer data augmentation, and exploring
more advanced model architectures.
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Abstract

Mispronunciation detection at the phoneme level
provides detailed feedback for Quranic reciters.
Standard speech-to-text models cannot capture sub-
tle differences in letter pronunciation; thus, de-
veloping a speech-to-phoneme system is essential.
Prior works have mainly explored encoder-only
models. In this work, we adapt Whisper-large-v3
on the IqraEval dataset. Our experimental results
show that the proposed system achieved an F1-
score of 0.3224, an accuracy of 0.6894, and a high
recall of 0.7624. These results highlight promising
directions for further research and development in
phoneme-level mispronunciation detection.

1 Introduction

Computer-aided language Learning (CALL) em-
ploys computer technologies to aid in language
acquisition and pronunciation. Accurate pronunci-
ation is critical in the context of Arabic language
learning, particularly for Quranic recitation, as it
has both linguistic and religious significance.

Speech-to-Phoneme (STP) transcribe audio to
tokens of phonemes; it differs from conventional
Speech-to-Text (STT) systems that transcribe au-
dio into tokens of words. Unlike STT, STP pro-
vides a finer-grained phonetic representation that
is essential for precise pronunciation feedback and
error detection, particularly relevant for Quranic
recitation where subtle phonetic distinctions alter
meaning and correctness.

Given the importance of phoneme-level accu-
racy for Quranic recitation, STP systems offer a
promising approach to support learners in master-
ing Quranic pronunciation by analyzing their recita-
tion audio record, detecting any fine-grained error,
then provide a corrective feedback.

In this work, we fine-tuned Whisper-large-v3 as
an STP model to help detect mispronunciation of

the Quranic recitation at the phoneme level. This
paper is organized as follows: Section 2 reviews
related works in mispronunciation detection us-
ing phonemes in Quranic recitation. Section 3 de-
scribes the proposed system and the experimental
setup. Section 4 reports and analyzes the results.
Section 5 discusses the results and provides in-
sights. Finally, Section 6 concludes the paper and
outlines possible directions for future work.

2 Related Works

Building on prior work in Quranic recitation recog-
nition(Al-Zaro et al., 2025) developed a phoneme-
based speech recognition system for Quranic recita-
tion using the DeepSpeech architecture. They pro-
posed a phoneme list of 53 units, covering con-
sonants, vowels, and Tajweed-specific phonemes.
The system was trained on a combined dataset con-
sisting of a proprietary corpus from EqraTech and
the open-source ASR Tarteel dataset, due to the
lack of publicly available phoneme-level datasets
for the Quran, totaling approximately 550 hours of
audio. Evaluation results reported a phoneme error
rate (PER) of 7.4%, a word phoneme error rate
(WPER) of 27.97%, and a word error rate (WER)
of 3.92% at the imlā’ı̄ (spelling) word level.

Similarly(Calik et al., 2023) presented an
ensemble-based framework for detecting mispro-
nunciations of Arabic phonemes, particularly in
the context of Quranic pronunciation, utilizing ma-
chine learning techniques including SVM, k-NN,
and decision trees. The system also used fea-
ture extraction methods to enhance language learn-
ing through computer-assisted tools. It employed
both traditional and ensemble learning-based ap-
proaches for evaluation. An accuracy of 95.9%
was achieved using a voting classifier with mel-
spectrogram features.

Extending the focus to Tajweed-specific er-
rors(Harere and Jallad, 2023) developed an au-
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tomatic mispronunciation detection system for
Quranic recitation based on Tajweed rules (Sep-
arate Stretching, Tight Noon, and Hide), using the
QDAT dataset, a public dataset containing over
1,500 audio samples of correct and incorrect recita-
tions. The system addressed the shortage of quali-
fied human supervisors by leveraging deep learning,
specifically Long Short-Term Memory (LSTM) net-
works. The model achieved high accuracy rates of
96% for Separate Stretching, 95% for Hide, and
96% for Tight Noon. In a broader context of lan-
guage learning (Algabri et al., 2022) applied deep
learning to develop a versatile high-performance
assisted pronunciation system for the detection, di-
agnosis, and generation of articulatory feedback for
non-native Arabic learners. It used YOLO-based
object detection for phoneme and articulatory fea-
ture recognition and employed a CNN-RNN-CTC
model to provide feedback. The system achieved a
phoneme error rate (PER) of 3.83% in the phoneme
recognition task, an F1-score of 70.53% in the mis-
pronunciation detection and diagnosis task, and a
detection error rate (DER) of 2.6% in the articula-
tory feature detection task.

Most recently, (Şükrü Selim Çalık et al., 2024)
introduced a novel framework for mispronunciation
detection of Arabic phonemes using audio-based
transformer models such as Squeezed and Efficient
Wav2Vec (SEW), Hidden-Unit BERT (HUBERT),
Wav2Vec, and UNI-SPEECH. The study is consid-
ered the first to comprehensively explore Arabic
phoneme mispronunciations using these models. A
dataset consisting of 29 Arabic phonemes, includ-
ing 8 hafiz sounds, was collected from 11 speakers
and supplemented with additional samples from
YouTube. The results demonstrated that the UNI-
SPEECH model achieved superior performance.
Moreover, the proposed framework was designed
to be speaker-independent, allowing for general ap-
plicability without the need for individual speaker
enrollment.

Previous studies show us that they focused on
using encoder-only architecture in solving such a
problem. Therefore, we are exploring a new direc-
tion by investigating encoder–decoder architecture,
namely the Whisper model, to detect mispronunci-
ation on phoneme level.

Figure 1: Overview of the proposed speech-to-phoneme
system.

3 Methodology

3.1 Dataset

We utilized the complete training and evaluation
subsets from the IqraEval dataset (El Kheir et al.,
2025) for model training, yielding a total of 73,990
records and approximately 82.4 hours of audio.
The dataset consists of short Arabic audio recorded
by multiple speakers, paired with the correspond-
ing sentences and detailed phoneme transcriptions.
Each sample also includes metadata such as a
unique identifier and the sentence with tashkeel.
Although the dataset contains multiple attributes,
we only utilized the audio and phoneme attributes
for the speech-to-phoneme (STP) task.

3.2 Proposed System

Figure 1 presents the proposed speech-to-phoneme
(STP) system, in which an audio recording of recita-
tion is transcribed into a phoneme sequence using
our STP model. We base our system on Whisper-
large-v3, the largest Whisper variant with 1550M
parameters and multilingual support. The reason
for selecting Whisper-large-v3 is that it achieved
outstanding performance on the Arabic Automatic
Speech Recognition (ASR) leaderboard (Wang
et al., 2024) with an average word error rate of
0.3686, and because it is faster to fine-tune com-
pared to other exceptional models. Our assumption
was that if an STT model achieved high perfor-
mance on processing Arabic audio into words, it
would get promising performance in transcribing
Arabic Audio into phonemes, and we will discuss
this assumption later in the discussion section 5.

To enable phoneme-level prediction, we extend
the original Whisper tokenizer by incorporating
68 additional phoneme tokens from (Halabi and
Wald, 2016), and resize the embedding layer to
match the new vocabulary. This modification yields
an adapted Whisper model capable of generating
phoneme sequences directly from audio inputs.

Breaking down the system as illustrated in Fig-
ure 2, the Whisper feature extractor first computes
log-mel spectrograms from the input audio. These
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Figure 2: Whisper architecture for the speech-to-
phoneme task, using a custom tokenizer with 68
phoneme tokens.

spectrograms are processed by the encoder to pro-
duce high-level acoustic representations. The de-
coder then predicts the output sequence token-by-
token, conditioned on the preceding phoneme to-
kens, until the complete phoneme transcription is
generated. During training, phoneme sequences
are used as target labels to guide the prediction
process.

3.3 Hyperparameter Optimization
This training setup optimizes for efficient fine-
tuning by using a small batch size with gradient
accumulation to simulate a larger effective batch,
a low learning rate for stable updates, and mixed
precision (fp16) to reduce memory usage. It saves
checkpoints frequently while limiting total saved
models, evaluates performance by word error rate
(WER) after each epoch, and aims to minimize
WER for best model selection. The training was
run on 3 A100 80GB GPUs, leveraging a batch size
of 4 per device and gradient accumulation over 3
steps to optimize memory usage and training effi-
ciency.

4 Results

Precision =
TR

TR+ FR
(1)

Recall =
TR

TR+ FA
(2)

F1 =
2 · Precision ·Recall

Precision+Recall
(3)

Table 1 presents the evaluation metrics of our
system on the Iqraeval test set. True Rejects (TR)
are the percentage of mispronunciations correctly
transcribed as phonemes, while False Accepts (FA)

represent the percentage of failures to transcribe
mispronunciations. True Accepts (TA) demonstrate
the correct transcription of correct pronunciation,
while False Rejects (FR) are the percentage of in-
correct transcription of correct pronunciation. See
Equations 1, 2, and 3 for more context.

As shown in Table 1, the model demonstrated a
high recall of 0.7624 and a correct rate of 0.7682,
indicating strong capability in transcribing mispro-
nounced phonemes and covering phoneme varia-
tions effectively. However, the relatively low preci-
sion of 0.2045 suggest that the system suffers from
a high number of False Rejects (FR), yielding a
low F1-score of 0.3224.

The true acceptance rate (TA) of 0.7868
shows that the majority of correctly pronounced
phonemes are transcribed correctly, yet the False
Accept (FA) of 0.2376 reveals that a significant
portion of mispronunciations remains undetected.
Accuracy and correct detection rate (CD), at 0.6894
and 0.5418, respectively, indicate moderate overall
classification quality.

These results demonstrate that our system can be
optimized to transcribe fine-grained features, and
there is room to improve the precision and reduce
the false rejects to achieve a more balanced and
effective phoneme recognition performance.

Metric Value
F1-score 0.3224
Precision 0.2045
Recall 0.7624
Correct Rate 0.7682
Accuracy 0.6894
TA 0.7868
FR 0.2132
FA 0.2376
CD 0.5418

Table 1: Test set results for the proposed system.

5 Discussion

Table 2 shows model predictions for three record-
ings of the same Ayah [78-Al Imran] with suppos-
edly different pronunciations. Although the model
should generate three different transcriptions for
these three recordings, it generates identical tran-
scriptions for the first two and slightly different
transcriptions for the third one. As illustrated in
bold in Table 2, the difference was in a single
phoneme in the word yalwun. All three recordings
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ID Prediction
00000_00013 w a n m i n h u m l a f a r ii q AA y a l w u n u E a l s i n a t a h u m b i l k i t aa b
00000_00013143 w a n m i n h u m l a f a r ii q AA y a l w u n u E a l s i n a t a h u m b i l k i t aa b
00000_00013343 w a n m i n h u m l a f a r ii q AA y a l w u n a E a l s i n a t a h u m b i l k i t aa b

Table 2: Outputs of the proposed system for three recordings identified by ID metadata from the IqraEval test set,
all corresponding to Ayah 78 of Surah Al-Imran.

could appear identical to a regular Arabic listener,
except that the end of the word yalwun needs to be
clearer from the speaker, or, as said in Tajweed, the
sound needs more duration. So from our perspec-
tive, it is difficult for an Arabic listener to predict
the correct phoneme.

Moreover, prior works demonstrated that us-
ing CTC-based models with self-supervised en-
coders such as Wav2Vec 2.0 achieved high perfor-
mance in phoneme-level mispronunciation detec-
tion (Kheir et al., 2025). Our approach adopts an
encoder–decoder paradigm with Whisper-large-
v3. The experimental results show the effective-
ness of our approach. The downside is the adap-
tation limitations that require significant hardware
and prevent real-time operation, as the model has
1500M parameters. Quantizing the model or us-
ing smaller versions and increasing the number of
epochs could provide more robust performance and
a more reliable system.

5.1 Analysis of the dataset
Our comprehensive analysis of the Arabic voice
dataset revealed several critical quality issues that
warrant careful consideration for the shared task
implementation. Technical artifacts were preva-
lent throughout the collection, with numerous au-
dio samples exhibiting signal truncation and cut-
ting issues that compromise the integrity of the
speech data. A substantial portion of recordings
demonstrated incorrect application of tahreek (dia-
critical markings) at sentence endpoints, deviating
from standard Arabic phonological conventions for
proper vocalization. While the dataset predom-
inantly consists of Quranic recitations, we iden-
tified instances of mispronunciation that diverge
from canonical tajweed principles, potentially intro-
ducing phonetic inconsistencies in model training.
Temporal irregularities were observed across the
corpus, with speaking rates varying significantly
from normal conversational pace, which may ad-
versely affect automatic speech recognition perfor-
mance and temporal alignment algorithms. Further-
more, we detected grammatical errors within the

spoken content and critical misalignments between
reference transcriptions and their corresponding au-
dio files, representing fundamental data integrity
challenges. These systematic quality control is-
sues necessitate robust preprocessing pipelines and
filtering mechanisms to ensure dataset reliability
and maintain the validity of experimental results in
Arabic speech processing applications.

6 Conclusion

Mispronunciation detection is a challenging task,
and it becomes even harder in Quranic recitation
scenarios; thus, phoneme-level mispronunciation
detection is essential. In this paper, we explored
the use of the Whisper model and addressed this
problem as a speech-to-phoneme task. Our results
reveal a substantial gap between a recall of 0.7624
and a precision of 0.2045, indicating that while
the model effectively identifies a wide range of
mispronounced phonemes, it frequently misclas-
sifies correctly pronounced ones. A limitation
of this work results from the hardware require-
ments that prevented us from experimenting with
more epochs. For future work, we encourage re-
searchers to explore encoder–decoder architectures
for phoneme-level mispronunciation detection, in-
vestigate Nvidia Conformer CTC Arabic models,
which combine the Conformer architecture with
CTC and have shown high Arabic STT perfor-
mance (Wang et al., 2024). These directions could
further advance research in this area, provide a
more reliable system to improve Quranic recita-
tions for Muslims, and inspire new ideas for mis-
pronunciation detection.
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Abstract

This paper describes AraS2P, our speech-to-
phonemes system submitted to the Iqra’Eval
2025 Shared Task. We adapted Wav2Vec2-
BERT via Two-Stage training strategy. In the
first stage, task-adaptive continue pretraining
was performed on large-scale Arabic speech-
phonemes datasets, which were generated by
converting the Arabic text using the MSA
Phonetiser. In the second stage, the model
was fine-tuned on the official shared task data,
with additional augmentation from XTTS-v2-
synthesized recitations featuring varied Ayat
segments, speaker embeddings, and textual per-
turbations to simulate possible human errors.
The system ranked first on the official leader-
board, demonstrating that phoneme-aware pre-
training combined with targeted augmentation
yields strong performance in phoneme-level
mispronunciation detection.

1 Introduction

Automatic mispronunciation detection and diag-
nosis (MDD) plays a key role in computer-aided
pronunciation learning (CAPL), providing learn-
ers with objective and scalable feedback on their
pronunciation quality score (Kheir et al., 2023). In
Arabic, MDD is particularly challenging due to
the language’s complex phonemic inventory, the
presence of emphatic and pharyngeal consonants,
and the semantic role of short vowels (diacritics)
(Abdou and Rashwan, 2014). These characteristics
make accurate phoneme-level detection especially
important, as even subtle deviations can signifi-
cantly change meaning.

In this work, we describe a system based on
a Wav2Vec2-BERT architecture (Baevski et al.,
2020) that employs a two-stage training strategy:
(1) task-adaptive continue pretraining on large Ara-
bic speech datasets—Common Voice (Arabic split),
SADA, and MASC—using phoneme-level supervi-

sion generated via the MSA Phonetiser,1 resulting
in labeled corpora that capture fine-grained pho-
netic distinctions, and (2) fine-tuning on the official
shared task data as well as targeted augmentation
through XTTS-v2-synthesized recitations that vary
in Ayat segments, speaker embeddings, and noisy
textual content to simulate realistic recitations er-
rors.

We summarize our contributions as follows:

• A phoneme-aware task-adaptive pretraining
strategy for Arabic MDD using large-scale
speech-phonemes data.

• A targeted augmentation pipeline where we
add noise to text, convert the noisy text to
phonemes using MSA-Phonetizer, and gener-
ate corresponding speech for many speakers
using XTTS-v2 (Casanova et al., 2024).

• Our model ranks first on the Iqra’Eval 2025
benchmark leaderboard, demonstrating effec-
tiveness of our training strategy.

2 Related Work

2.1 Arabic CAPL and Mispronunciation
Detection

Computer-Assisted Pronunciation Learning
(CAPL) systems rely on Mispronunciation
Detection and Diagnosis (MDD) to provide
automated feedback for learners (Witt and Young,
2000; Eskenazi, 2009). Early MDD approaches
often derived pronunciation quality metrics from
acoustic likelihoods computed from recognition
results, such as the Goodness of Pronunciation
(GOP) score (Witt and Young, 2000). While GOP
provides a practical way to detect pronunciation
deviations, its granularity is limited to the
phone level and its accuracy can be affected by
recognition errors. Other research (Bonaventura

1https://github.com/Iqra-Eval/MSA_phonetiser
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et al., 2000; Raux and Kawahara, 2002) has
enhanced pronunciation modeling by incorporating
likely pronunciation variants into a pronunciation
dictionary, which can involve manual specification
of error patterns.

Recent years have seen the adoption of deep
learning and end-to-end architectures for MDD,
enabling systems to learn pronunciation error pat-
terns directly from data (Peng et al., 2022). For
Arabic, MDD poses additional challenges due to its
rich consonant inventory, emphatic and pharyngeal
sounds, and the omission of short vowels in most
written text and ASR systems (Kheir et al., 2025).
Consequently, slight pronunciation errors—such
as mixing up emphatic and non-emphatic conso-
nants—may change the meaning of a word.

Arabic MDD research has explored handcrafted
acoustic features, CNN-based classifiers, and trans-
fer learning from large-scale ASR models (Calık
et al., 2023; Alrashoudi et al., 2025). Several works
have focused on Qur’anic recitation, where pre-
cise phoneme articulation is central (Abdou and
Rashwan, 2014; Alrumiah and Al-Shargabi, 2023;
Harere and Jallad, 2023). (Kheir et al., 2025) pro-
vided the first publicly available benchmark for
Arabic phoneme-level MDD, using Qur’anic recita-
tion with time-aligned phoneme annotations.

2.2 Self-Supervised Phoneme Recognition
Models

Self-supervised learning has significantly advanced
phoneme recognition, which in turn has improved
the performance of MDD systems. Wav2Vec-
BERT 2.0 model (Baevski et al., 2020) learns con-
textualized speech representations from raw au-
dio by combining a convolutional encoder with a
Transformer context network (Devlin et al., 2019;
Baevski et al., 2019). It was pretrained using a con-
trastive objective (Chen et al., 2020; He et al., 2020)
over masked audio segments, then fine-tuned with
a Connectionist Temporal Classification (CTC) ob-
jective (Graves et al., 2006). Wav2vec 2.0 achieves
state-of-the-art performance in phoneme recogni-
tion tasks, making it well-suited for MDD.

Building on this, Wav2Vec-BERT integrates a
BERT-style masked language modeling (MLM) ob-
jective (Devlin et al., 2019) with the Wav2Vec 2.0
framework (Chung et al., 2021). This joint opti-
mization learns both quantized acoustic units and
contextual relationships between them, producing
richer and more discriminative phonetic represen-
tations. Instead of iteratively re-clustering discrete

units like HuBERT (Hsu et al., 2021), w2v-BERT
learns quantization and context modeling in a sin-
gle end-to-end process.

Multilingual Wav2Vec-BERT 2.0 extends this
approach to 143 languages using over 4.5 million
hours of speech for pretraining (Barrault et al.,
2023). Its large-scale multilingual exposure en-
ables robust representation of fine phonetic dis-
tinctions, even in low-resource settings like Arabic
MDD. Compared to Wav2Vec 2.0, Wav2Vec-BERT
2.0 incorporates MLM-based contextual model-
ing directly into the acoustic encoder, allowing it
to learn longer-range phoneme patterns. For this
reason, we used Wav2Vec-BERT 2.0 pretrained
weights.

2.3 Benchmarks and Shared Tasks

Iqra’Eval Shared Task (Kheir et al., 2025) repre-
sents a milestone for Arabic MDD by offering a
publicly available benchmark, standardized evalu-
ation protocol, and a leaderboard for reproducible
comparison. Similar to MGB Challenge for Arabic
ASR (Ali et al., 2016) and other shared tasks in
speech and Natural Language Processing (NLP),
this benchmark has stimulated community engage-
ment and methodological innovation. Through in-
tegrating controlled evaluation with phoneme-level
detection, Iqra’Eval addresses a critical gap in Ara-
bic CAPL research by establishing a standardized
benchmark for systematic evaluation.

3 Two-Stage Training

We adapted Wav2Vec2-BERT (Barrault et al.,
2023) to our downstream task via Two-Stage train-
ing. We continued pretraining it on Arabic speech-
phonems pairs (section 3.1). Meanwhile, we con-
ducted exploratory data analysis to measure the
alignment between continue pretraining and fine-
tuning (section 3.2). Finally, we utilized training
set of the task as well as our synthetically generated
dataset for fine-tuning (section 3.3).

3.1 Adaptive Continue Pretraining

Continue pretraining has shown to be an effec-
tive technique to improve the performance of pre-
trained models on languages of interest (Kalyan
et al., 2021; Zhou et al., 2024; Fujii et al., 2024;
Alves et al., 2024). To boost our model, we con-
tinued pretraining it on speech-phonemes pairs.
We deployed MSA-phonetizer2 to convert open-

2https://github.com/Iqra-Eval/MSA_phonetiser
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source datasets with speech-text pairs into speech-
phonemes pairs, hence adapting it to suite the
downstream task (Adaptive Continue Pretraining).
Specifically, our pretraining data is constructed
from Common Voice Arabic split (Ardila et al.,
2019), SADA(Alharbi et al., 2024) and MASC(Al-
Fetyani et al., 2023) datasets. Table1 includes statis-
tics about these datasets.

Dataset size (hours)
Common Voice (Ar-Split) 157
SADA 668
MASC 1,000

Table 1: Statistics of datasets used in our adaptive con-
tinue pretraining stage.

We used Adam optimizer with weight de-
cay (Loshchilov and Hutter, 2017). We set hyper-
parameters as follows: learning rate of 1 × 10−5,
Linear Decay scheduler, weight decay equals to
0.01, Adam betas of (0.9, 0.999), gradient clip-
ping at 1.0, and batch size of 32. We continue the
pretraining for 800k iterations.

3.2 Exploratory Data Analysis
We have had a hypothesis that there is a discrep-
ancy between pretraining data and fine-tuning one.
So, we plotted the histogram of the most frequent
phonemes in both the pretraining and training
datasets. As shown in figure 1, the distributions
of phonemes differ notably, particularly for elon-
gated phonemes such as “aa,” “ii,” “uu,” and “AA.”.
This observation confirms the correctness of our
hypothesis and highlights the importance of further
fine-tuning on downstream task.

Prior to fine-tuning, we notice a difference be-
tween the phoneme inventory in the training dataset
and the phonemes produced by the MSA phone-
tizer. We align the phonemes as shown in Table 2.

3.3 Fine-tuning
After continuing pretraining, we performed vanilla
fine-tuning for the model on our “Tuning
dataset” 3.3.1. We used the same training parame-
ters as that of continue pretraining.

3.3.1 Tuning dataset
To further align the model with the task, we used
the training set provided with the task, and cre-
ated synthetic dataset to increase overall data size.
Preparing the synthetic data has went through two

Phonetiser Phoneme Inventory Phoneme
II0 II
I0I0 II
I0 I
I1 I
ii0 ii
i0i0 ii
i0 i
i1 i
UU0 UU
U0 U
U1 U
uu0 uu
u0u0 uu
uu1 uu
u0 u
u1 u

Table 2: Mapping from MSA phonetizer output to the
training dataset phoneme inventory.

main stages: prepare the noisy text and generate
corresponding audio files.

Prepare Noisy Text: We downloaded the text of
the holy quran and perturbed the text with what
we consider to be valid noise. The algorithm to
generate valid noise is shown in algorithm1.

Algorithm 1 Noising Algorithm
1: procedure GENERATENOISYTEXT(text, arabic_chars,

noise_map, max_noise)
2: target_noise← RandInt(1,max_noise)
3: new ← empty list; count← 0
4: for ch in text do
5: if count >= target_noise then
6: Append ch
7: else if UniformRandom(0, 1) < pnoise then
8: count← count+ 1
9: Choose noise type: delete / substitute / insert

10: if substitute then
11: Append RandChoice (noise_map[ch])
12: else if insert then
13: Append RandChoice(arabic_chars), ch
14: end if
15: else
16: Append ch
17: end if
18: end for
19: return Join(new)
20: end procedure

Audio Generation: We downloaded many audio
files for various speakers to ensure the variety of
data and to avoid overfiting over small set of speak-
ers. Then, we generated speaker embeddings using
embedder module in XTTS-v2 (Casanova et al.,
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Figure 1: Histogram of top frequent phonemes in pseudo-labelled pretraining and training datasets

2024). Finally, we converted the noisy text to audio
files using XTTS-v2.

The resulted dataset is 60 hours of audio files,
and represented 30% of Tuning data.

While selecting checkpoint for testing, we no-
ticed a shift in distribution between our valid set
and competition’s test set. Hence, we selected
checkpoint saved after 2.5 epochs for submission
to balance generalizability and good performance
on the downstream task.

4 Results

In this section, we illustrate the metrics used (sec-
tion 4.1), report quantitative results (section 4.2),
and shows some examples from our qualitative
analysis (section 4.3).

4.1 Metrics
The system is evaluated using several complemen-
tary metrics. First, the Correct Rate measures the
proportion of phonemes that are detected correctly,
and is defined as 1 − Phoneme Error Rate (PER).
In addition, Accuracy captures the proportion of
phonemes classified correctly as either pronounced
correctly or mispronounced. To further distin-
guish system behavior, True Acceptance (TA)
refers to cases where a correct phoneme is cor-
rectly accepted, while True Rejection (TR) cor-
responds to mispronounced phonemes that are
correctly flagged. Conversely, errors are repre-
sented by False Acceptance (FA), when a mispro-
nunciation is missed, and False Rejection (FR),
when a correct phoneme is wrongly flagged. Be-
yond detection, Correct Diagnosis (CD) evaluates
how often the system not only detects a mispro-
nunciation but also identifies the specific mispro-
nounced phoneme. Finally, the system’s classi-
fication quality is summarized through Precision,
defined as TR

TR+FR , Recall, defined as TR
TR+FA , and

their harmonic mean, the F1-score, computed as
2·Precision·Recall
Precision+Recall .

4.2 Quantative Analysis

Table 3 shows the results of our system under dif-
ferent setups: after adaptive continue pretraining,
fine-tuning on the official training data of the task,
and after fine-tuning on our Tuning data. The re-
sults demonstrate that fine-tuning is essential for
optimizing the system’s alignment with Qur’anic
recitation assessment. More importantly, they show
the effectiveness of our synthetic data generation
pipeline, achieving top performance across all of
our systems.

4.3 Qualitative Analysis

Table 4 presents examples from both the fine-
tuning on training set only setup and the continued
pretraining-one. Because of time constraints and
high similarity between fine-tuning on training set
only and on Tuning set, we leave its qualitative
analysis for future work. The results indicate that
the system trained with pretraining alone fails to
accurately predict phonemes associated with dia-
critics, particularly the “shadda”. This limitation is
likely due to the rarity of such phonemes in the pre-
training data as discussed in subsection 3.1. This
further confirms that adaptive continue pretraining
was not sufficient and that we need for fine-tuning
on the training set of the task.

5 Conclusion

In this work, we illustrated our recipe to adapt
Wav2Vec-BERT 2.0 on speech-to-phoneme task.
First, adaptively continued pretraining it on Arabic
speech-phonemes corpora. Second, we prepared
synthetic data for fine-tuning phase by generating
noisy text, convert it to phonemes using MSA-
phonetizer, and generate corresponding speech for
many speakers using XTTS-v2. Our model scored
first on IqraEval 2025, illustrating the ffectiveness
of our approach.
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System F1↑ Prec.↑ Rec.↑ CR↑ Acc.↑ TA↑ FR↓ FA↓ CD↑
pretraining only 0.1923 0.1091 0.807 0.5156 0.5117 0.5264 0.4736 0.193 0.4363
fine-tuning

training data 0.4561 0.3327 0.7252 0.8714 0.8576 0.8954 0.1046 0.2748 0.568
Tuning data 0.4726 0.3713 0.6501 0.8985 0.8701 0.9209 0.0791 0.3499 0.6873

Table 3: Performance on the Iqra’Eval 2025 leaderboard. CR = Correct Rate, Acc. = Accuracy, TA = True
Acceptance, FR = False Rejection, FA = False Acceptance, CD = Correct Diagnosis.

Ref. Aya Segment Recited Aya Segment
(With Error)

Pretrained System Output Fine-tuned System Output
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Table 4: Comparison Between Only Pretrained and Fine-tuned System
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Abstract

This paper presents the Metapseud system de-
signed for the Iqra’Eval shared task, which ad-
dresses the automatic assessment of Qur’anic
recitation pronunciation, as part of ARABIC-
NLP 2025. This system applies multi-stage
fine-tuning of Wav2Vec2.0 with curriculum-
inspired training, followed by domain adap-
tation to Qur’anic phoneme annotations. The
decoding is improved using beam search with
a CTC-based decoder. The results show that
staged adaptation achieved a phoneme error
rate (PER) of 21% in the development set, and
beam search improves the accuracy in the open
test set from 76.9% to 82.1%. The findings of
this work emphasize the significance of cur-
riculum learning, domain adaptation, and de-
coding strategies in recognizing mispronunci-
ation in Qur’anic recitation.

1 Introduction

Mispronunciation Detection and Diagnosis
(MDD) forms the core of modern Computer-
Aided Pronunciation Training (CAPT) systems,
providing real-time identification and analysis
of learner pronunciation errors. By combining
automated speech recognition (ASR), phonetics-
driven error detection, and adaptive feedback
mechanisms, MDD enables CAPT systems to not
only assess pronunciation accuracy but also de-
liver targeted, pedagogically informed corrective
guidance (Neri et al., 2008).

Qur’anic Arabic Automatic Speech Recogni-
tion (ASR) presents unique challenges due to its
rich phonetic variation, complex Tajweed rules,
and significant differences from Modern Standard
Arabic (MSA) or dialectal Arabic—placing it in a
distinct category often regarded as Classical Ara-
bic (CA) (Habash, 2010). The accurate recita-
tion of the Holy Quran is of profound importance
to Muslims worldwide, as it must adhere to pre-
cise pronunciation rules (Tajweed), where even

minor deviations can alter the meaning entirely.
This necessity has motivated initiatives such as
the Iqra’Eval shared task (El Kheir et al., 2025),
which challenges researchers to develop automatic
phoneme-level recognition systems for Qur’anic
recitation.

The Metapseud system, which leverages self-
supervised ASR model Wav2vec2.0 and combines
(1) multistage curriculum-inspired fine-tuning, (2)
domain adaptation, and (3) beam search decod-
ing. This strategy is motivated by previous work
on curriculum learning and domain adaptation for
ASR.

2 Methodology

The methodology focuses primarily on applying
Multi-stage fine-tuning by strategically leverag-
ing the self-supervised learning capabilities of
Wav2Vec 2.0 (Baevski et al., 2020) by inte-
grating three core techniques: (1) multistage
curriculum-inspired fine-tuning, (2) targeted
domain adaptation, and (3) optimized beam
search decoding. This integrated strategy is mo-
tivated by established principles in curriculum
learning (Bengio et al., 2009; Platanios et al.,
2019) and domain adaptation for speech (Kunze
and et al., 2017; Wang and et al., 2021), applying
them systematically to a single MDD pipeline for
Qur’anic recitation.

2.1 Model Architecture and Foundation

The foundation of this system is the wav2vec2-
large-xlsr-53-arabic (Grosman, 2021), based on
wav2vec2-large-xlsr-53 a large model pre-trained
in 53 languages (Conneau et al., 2020). This
model is fine-tuned in Arabic using the train and
validation splits of Common Voice 6.1 and Ara-
bic Speech Corpus (Halabi, 2016), while it merely
focuses on Arabic ASR, but it provides a robust
starting point that subsequently specialize for the
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target domain.

2.2 Stage-1: General Domain Fine-Tuning
(Curriculum Learning)

This stage first exposes the model to Qur’anic
recitations to capture prosody and phoneme
distributions. Used curriculum-inspired train-
ing by first training on a broader Qur’anic
dataset that teaches the model general recita-
tion structure and phoneme patterns, by gradu-
ally shifting from a general-purpose ASR model
to a phoneme-centric Qur’anic recitation model.
Tarteel-ai-EA-DI dataset (∼245k) is a large
and diverse corpus of Qur’anic recitations from
various reciters (qurra’). This dataset prioritizes
breadth to capture the full range of recitation styles
and phonetic variations. The model is fine-tuned
on this dataset using a standard Connectionist
Temporal Classification (CTC) loss function with
a phoneme-level vocabulary.

2.3 Stage-2: Domain Adaptation Fine-Tuning

This stage represents the final step in the curricu-
lum, transitioning the model from a broad un-
derstanding to a specialized one. It directly im-
plements domain adaptation (Kunze and et al.,
2017; Wang and et al., 2021). To special-
ize the model for Qur’anic phoneme structures,
was fine-tuned the previous model on the pro-
vided dataset Iqra train (79 hours) of MSA
speech augmented with Qur’anic recitations of
Qur’anic phoneme-annotated recitations. This
domain adaptation step aligns the model with
Qur’anic-specific phoneme distributions, sharpen-
ing the model’s focus on the specific acoustic fea-
tures and phonological rules critical for accurate
pronunciation evaluation, reducing PER signifi-
cantly.

2.4 Beam Search Decoding

Beam search decoding is employed using the
PyCTCDecode1 library to generate the final
phoneme sequences. This method improves upon
greedy decoding (Graves et al., 2006; Hannun,
2017) and was chosen to find a more globally
optimal sequence compared to the locally opti-
mal stepwise predictions of greedy decoding. The
decoding process was implemented using a stan-
dard BeamSearchDecoderCTC class, initial-

1https://github.com/
kensho-technologies/pyctcdecode

ized with a phoneme vocabulary (Iqra train)
specific to this task.

2.5 Evaluation Metrics
The Model performance was evaluated using the
hierarchical framework as (Kheir et al., 2023)
which assesses both the detection and diagnosis of
pronunciation errors, categorizing each predicted
phoneme into one of several classes:

• True Accept (TA): A correct phoneme is cor-
rectly accepted.

• True Reject (TR): A mispronounced
phoneme is correctly detected as an error.

• False Accept (FA): A mispronounced
phoneme is incorrectly accepted (i.e., a
missed error).

• False Reject (FR): A correct phoneme is in-
correctly flagged as an error (i.e., a false
alarm).

And Diagnosis-Level Categories, Correct Diag-
nosis (CD), Error Diagnosis (ED). From these
categories, standard information retrieval metrics:
Precision, Recall, and F-measure which derived
from diagnostic accuracy, and widely used as the
performance measures for mispronunciation de-
tection.

Precision =
TR

TR+ FR
(1)

Recall =
TR

TR+ FA
(2)

F −measure = 2 · Precision ·Recall

Precision+Recall
(3)

3 Data

3.1 Training and Development Data
3.1.1 Every Ayah Diacritized (EA-DI) dataset
The first stage of curriculum learning approach
utilized the Every Ayah Diacritized (EA-DI)
Phonemized dataset2, a large-scale, based on
Tarteel-Ai’s Every Ayah Diacritized (EA-DI)
dataset publicly available corpus It encompasses
a wide variety of Qur’anic recitations, covering
the entire text of the Qur’an from numerous re-
citers (qurra’). This diversity is crucial for teach-
ing the model the broad acoustic properties and

2https://huggingface.
co/datasets/AymanMansour/
tarteel-ai-EA-DI-phonemized-Final
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phoneme distributions of the domain. Each sam-
ple is a rich, diacritized annotation object contain-
ing the following key fields:

• Audio: The raw waveform audio signal.

• Transcription: The original orthographic text
of the Qur’anic verse.

• Phoneme: The target phoneme sequence for
the utterance, generated using a specialized
Arabic phonetizer (Kheir et al., 2025). This
sequence serves as the primary learning tar-
get for phoneme-based recognition model.

3.1.2 Iqra’Eval dataset

The second stage of this work is trained and eval-
uated using the Iqra’Eval dataset 3, the provided
dataset by the shared task, designed for Qur’anic
Automatic Speech Recognition (ASR) and pro-
nunciation evaluation. The dataset was utilized in
the following predefined splits:

Training Split: Consists of 79 hours of audio.
This partition contains a mixture of Modern Stan-
dard Arabic (MSA) speech and Qur’anic recita-
tions, providing a curriculum-inspired foundation
of general Arabic phonetics before specializing in
the target domain.

Development Split: Comprises 3.4 hours of
held-out Qur’anic recitations. This split was used
exclusively for hyperparameter tuning, validation,
and early stopping, ensuring a fair evaluation of
the model’s generalization capability. Each sam-
ple in the dataset follows key fields:

• Audio: The raw waveform audio signal.

• Sentence: The original orthographic text of
the Qur’anic verse.

• Index: A unique identifier for the verse.

• Tashkeel sentence: The fully diacritized text
of the verse.

• Phoneme: The target phoneme sequence for
the utterance. This sequence serves as the
primary learning target for phoneme-based
recognition models.

3https://huggingface.co/datasets/
IqraEval/Iqra_train

3.2 Testing Data

Final evaluation was the IqraEval Open Test
datasetet4. This dataset is designed as a blind test
set; it contains only audio data without ground
truth transcriptions. The dataset consists of ≈ 2
h, with deliberate errors and human annotations,
Predictions generated on this set are submitted to
the Iqra’Eval organizers for evaluation scoring.

4 Results

4.1 Development Results

Stage-1 This curriculum setup helped stabilize
training and improved the model’s ability to gener-
alize phoneme boundaries. After fine-tuning, the
model achieved PER≈ 0.54 on the held-out devel-
opment data(EA-DI), establishing a strong base-
line. Stage-2 performed domain adaptation by fur-
ther fine-tuning the stage-1 model on the Iqra train
dataset, which represents the official shared task
domain. This stage achieved PER ≈ 0.21.

Model Dataset PER
Stage-1 EA-DI 0.54
Stage-2 Iqra train 0.21

Table 1: Models Results on development set.

4.2 Open Test Results

Finally, beam search decoding was applied, yield-
ing further gains at the sequence level. On the
open test set, the best submission achieved an F1
score of 0.4236, with an accuracy of 0.8213 .

4.3 Qualitative Results

In this section a qualitative analysis is conducted
based on examples from the development set. A
comparative analysis of the outputs of both mod-
els againstst ground truth (Figure 1) indicates that
deletions constitute the primary error type, with a
limited number of perfect matches. Additionally,
Figure 2 summarizes the character pairs that cause
the most confusion.
Performance Statistics for 100 samples:

• Perfect Matches: 11 (11.0%)

• BS Improved: 11 (11.0%)

• BS Same Error: 68 (68.0%)
4https://huggingface.co/datasets/

IqraEval/open_testset
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F1-score(%)↑ Recall(%)↑ Precision(%)↑ CR(%)↑ Accu(%)↑ TA(%)↑ FR(%)↓ FA(%)↓ CD(%)↑
Baseline 1 44.14 30.93 77.07 83.61 82.34 87.63 12.37 22.93 61.2
Baseline 2 40.42 27.15 79.08 80.93 79.55 84.74 15.26 20.92 58.47
Stage-2 40.74 27.5 78.61 83.28 76.89 85.1 14.9 21.398 59.4
Stage-2 (BS) 42.36 28.79 80.12 83.97 82.13 85.75 14.25 19.88 60.3

Table 2: Experimental Results. ↓ Lower is better, ↑ Higher is better.

Figure 1: Error Type Distribution

• BS Worse: 10 (10.0%)

The error analysis reveals that the beam search
decoding strategy provided minimal performance
gains, often reproducing the same errors as the
base model. In addition, a strong positive corre-
lation was observed between the length of an ut-
terance and the number of errors.

Sample Results

1

2

3

4

5

Table 3: Comparison between Prediction results and
Ground Truth, Green: Correct predictions, Light Red:
Substitution errors, Blue: Characters corrected by
Beam Search, Purple: Deletion errors, Gold: Insertion
errors, Light Orange: Different errors in BS vs regular
model

5 Discussion

Curriculum Learning. The staged approach
validates curriculum-inspired fine-tuning (Bengio

Figure 2: Top 20 Character Confusions (GT→Model)

et al., 2009), as the general Qur’anic recitation
training improved domain-specific adaptation.

Domain Adaptation. Without Stage-1, direct
fine-tuning on IqraEval resulted in poor general-
ization. Adaptation through staged training aligns
well with previous findings (Kunze and et al.,
2017; Wang and et al., 2021).

Decoding. Beam search mitigated concatena-
tion errors and improved phoneme sequences.

6 Conclusion

Two-stage fine-tuning pipeline was presented with
domain adaptation and beam search decoding for
Qur’anic ASR. Future work may include tajweed-
aware decoding, phoneme-level language models,
and adaptive curriculum schedules.
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Abstract

Hallucination in Large Language Models
(LLMs) remains a significant challenge and
continues to draw substantial research atten-
tion. The problem becomes especially criti-
cal when hallucinations arise in sensitive do-
mains, such as religious discourse. To address
this gap, we introduce IslamicEval 2025—the
first shared task specifically focused on evalu-
ating and detecting hallucinations in Islamic
content. The task consists of two subtasks:
(1) Hallucination Detection and Correction of
quoted verses (Ayahs) from the Holy Quran
and quoted Hadiths; and (2) Qur’an and Hadith
Question Answering, which assesses retrieval
models and LLMs by requiring answers to be
retrieved from grounded, authoritative sources.
Thirteen teams participated in the final phase of
the shared task, employing a range of pipelines
and frameworks. Their diverse approaches un-
derscore both the complexity of the task and
the importance of effectively managing halluci-
nations in Islamic discourse.

1 Introduction

Large Language Models (LLMs) are becoming an
integral part of natural language processing ap-
plications in Arabic. Recent advancements have
produced several Arabic-focused and multilingual
LLMs, such as Jais (Sengupta et al., 2023), Al-
lam (Bari et al., 2024), and Fanar (Fanar Team
et al., 2025), which have shown promising results
across a variety of tasks, from open-domain ques-
tion answering to content generation. However,
alongside these advances, a critical challenge re-
mains unresolved, namely hallucination, i.e. the
generation of text that appears plausible but is fac-
tually incorrect or fabricated (Rawte et al., 2023).

This issue is particularly sensitive in domains
where accuracy and authenticity are paramount,
such as religion. In the Arabic-speaking world,
religious topics are not only culturally central but

also frequently searched, discussed, and queried on-
line and in social media (Abokhodair et al., 2020;
Fawzi et al., 2025), often driven by a deep sense of
learning, curiosity, and at times, skepticism. This
has made religious discourse, particularly question
answering, among the most common applications
of Arabic LLMs, both directly and indirectly.

Among religious sources, the Qur’an and Ha-
dith literature stand out due to their sacred status
and the high expectations of precision when they
are quoted or referenced. The Qur’an, regarded
as the ultimate and divine word of Allah, serves
as the foundation of Islamic teachings. In tandem,
Hadith encompasses the sayings, deeds, and im-
plied approvals of the Prophet Muhammad (Peace
Be Upon Him), serving in part as a practical il-
lustration of Qur’anic teachings (Musallam, 2022).
Given this sanctity, LLM hallucination in Islamic
content poses serious risks: it can lead to misattri-
butions, paraphrased verses falsely labeled as gen-
uine, or entirely fabricated Hadiths (Fawzi et al.,
2026), raising serious ethical, theological, and so-
cial concerns. Such hallucinations can unintention-
ally propagate misinformation or be exploited for
disinformation, undermining trust in AI technolo-
gies and amplifying harm.

To address this gap, we have organized the Is-
lamicEval 2025 shared task at ArabicNLP 2025,1

which consists of two subtasks: (1) Hallucina-
tion Detection and Correction, and (2) Qur’an and
Hadith Question Answering (QA). The first sub-
task focuses on detecting and correcting hallucina-
tions in Qur’an and Hadith content within Arabic
LLM-generated text. To our knowledge, it is the
first task of its kind to target semantic and source-
faithful evaluation of generated religious text. The
second subtask is primarily intended to provide
authentic QA benchmarks and standardized evalu-

1https://sites.google.com/view/
islamiceval-2025/home
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ation testbeds for question answering models and
systems on the Holy Qur’an and Hadith. Such
benchmarks and testbeds are of paramount impor-
tance in the era of Generative AI, as they constitute
a first line of defense against hallucination.

To this end, we aim to bring the Arabic NLP
community together to develop robust systems for
hallucination detection, localization, verification,
and correction, as well as question answering on
the Qur’an and Hadith:

Detection Determine whether a generated Arabic
text contains a claimed Qur’anic verse (Ayah) or a
Hadith. This involves building systems capable of
semantic matching against canonical sources, ac-
counting for variations in phrasing / paraphrasing.

Span Identification : Identify the exact span
within the text corresponding to the claimed verse
or Hadith. This requires models to accurately de-
limit religious content from surrounding context,
often under noisy or stylistically varied conditions.

Verification Assess whether the detected quote
is accurate—i.e., whether it exists in the authen-
tic sources (e.g., Qur’an text or recognized Hadith
collections) and is correctly cited. This step com-
bines information retrieval with textual entailment
techniques.

Correction If a quote is found to be inaccurate or
hallucinated, reproduce the correct version, being
the closest matching verse or Hadith if it exists, or
indicate it is fabricated if no close match is found.

Passage Retrieval Given a free-text question in
Modern Standard Arabic (MSA), a collection of
Qur’anic passages covering the Holy Qur’an, and
a collection of Hadiths from Sahih Al-Bukhari,
the system must retrieve a ranked list of up to 20
answer-bearing passages—Qur’anic passages or
Hadiths—that may contain one or more answers to
the question, drawn from both collections.

This task raises unique NLP challenges:

• Fuzzy matching and paraphrase detection for
verses and Hadiths expressed in non-standard
forms;

• Robustness to stylistic variation and dialectal
influence in generated text;

• Semantic grounding in authoritative religious
corpora;

• Trust-sensitive evaluation, where false posi-
tives and false negatives have different and

context-dependent implications.

We believe this shared task will catalyze research
in faithful generation, hallucination detection, and
knowledge-grounded NLP—not only for Arabic
but as a reference for similar tasks in other lan-
guages and sensitive domains. It also supports the
broader goal of responsible AI, promoting the de-
velopment of LLMs that are not only fluent but also
accurate, culturally aware, and ethically aligned.

2 IslamicEval Task 1: Hallucination
Detection and Correction

Task 1 of the IslamicEval shared task addresses
the detection and correction of hallucinations in
LLM outputs that reference Qur’anic verses and
Prophetic Hadiths. It is organized into three sub-
tasks: identifying the intended references, validat-
ing their correctness against authoritative sources,
and providing corrected versions when errors are
found. The following subsections present the task
setup, datasets, annotation guidelines, evaluation
metrics, and results of participating systems.

2.1 Task Description

1. Subtask A - Identification of Intended verses
(Qur’anic Ayahs) and Hadiths (Prophetic say-
ings) Given an LLM-generated response, partic-
ipants will determine the spans of the “intended”,
since they might be inaccurate, verses and Hadiths
in the text. Spans are represented by the charac-
ter indexes, e.g. from character 0 to character 72
(inclusive). Evaluation is based on span precision
and recall (macro-averaged F1 score). References
to verse number and Hadith narrators and punctua-
tions are ignored in this version.

2. Subtask B - Validation of content accuracy
For each identified verse and Hadith, participants
will categorize them as correct or incorrect based
on established Islamic references. Evaluation is
based on accuracy. Incorrect diacritics will be con-
sidered as mistakes.

3. Subtask C - Correction of Erroneous Content.
Participants will provide corrected versions for any
incorrectly quoted verse or Hadith, ensuring fidelity
to the original sources. Evaluation is based on accu-
racy. Note that complete verse(s) from the Qur’an
and complete Hadiths are expected. Writing and di-
acritics should be obtained from the shared Qur’an
and Hadith sources.
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2.2 Dataset

Starting from Qur’an QA 2023 dataset (n=251)
that covers a broad range of topics including Fiqh,
Tafsir, and Islamic teachings, a training (174), vali-
dation (25), and test (52) sets were created.

Six LLMs were prompted with the questions,
with the prompt explicitly asking the models to
cite Qur’anic and Hadith evidence in their re-
sponses (see Appendix B for the prompt). The ques-
tion–output pairs, along with anonymized model
IDs, were stored in XML format. The models used
could be seen in Table 1. The LLM choice aimed to
balance Arabic-focused models with state-of-the-
art multilingual ones.

2.3 Annotation Setup and Guidelines

The generated answers were manually annotated
by domain experts using the Label Studio platform
(Tkachenko et al., 2020-2025). A separate annota-
tion task was created for each question–response
pair. Annotators were instructed to highlight every
span containing an intended Qur’anic verse or Ha-
dith and assign it one of four labels: Correct Qur’an,
Incorrect Qur’an, Correct Hadith, or Incorrect Ha-
dith. For each span marked as incorrect, annotators
were required to either provide the corrected text or
write “



A¢ 	k” (Wrong) if no valid correction existed.

Figure 1 shows an example of an annotated output.
All annotators were experts in Islamic studies to

ensure accuracy and reliability. Qur’anic references
were standardized to the Uthmani script, while Ha-
dith references were cross-checked against the six
authoritative collections ( �é�J�Ë@ I. �JºË@) including
Sahih al-Bukhari and Sahih Muslim. The annota-
tion guidelines emphasized precise span boundary
selection and careful evaluation of correctness. The
full annotation guidelines are available in Appendix
C.

2.4 Evaluation Measures

Each subtask in Task 1 was evaluated using metrics
suited to its specific objectives:

Subtask A (Identification) Performance was
measured using the macro-averaged F1 score,
computed at the character level by classifying each
character in the response string as belonging to
a Qur’anic verse, a Hadith, or neither. Macro-
averaged F1 is well-suited for this subtask be-
cause the data is highly imbalanced, with far fewer
Ayah and Hadith spans than “neither”, so accuracy

alone would be misleading. Character-level F1 en-
sures that partial matches and boundary errors are
fairly captured, while macro-averaging gives equal
weight to each class rather than letting the domi-
nant class overwhelm the results.

Subtask B (Validation) Accuracy was used as
the evaluation metric, defined as the proportion of
correctly assigned labels (Correct or Incorrect) over
the total number of labels.

Subtask C (Correction) Accuracy was used, de-
fined as the proportion of corrected outputs that ex-
actly matched the corresponding ground truth over
the total number of corrections. Strict accuracy was
adopted for this subtask because even minor devia-
tions - such as omitted words or altered diacritics -
can substantially affect the meaning of a Qur’anic
verse or Hadith. To avoid penalizing superficial for-
matting inconsistencies, both reference and system
outputs were preprocessed prior to evaluation by
removing default diacritics (e.g., sukun).

2.5 Task Setup
The dataset comprises 1,506 annotated answers
(251 questions × 6 models). The development set
corresponds to the original Qur’an QA 2023 dev
set, consisting of 10% of the generations (n=150),
yielding 50 annotated answers per subtask A, B
and C. Similarly, the test set corresponds to the
Qur’an QA 2023 test set, consisting of 20% of
the questions (n=312), yielding 104 annotated an-
swers per subtask. All annotations for development
and test sets were manually reviewed and refined
through multiple iterations (with the help of valida-
tion scripts) to ensure accuracy before release. A
revised version of the training set (n=1,044) will
be released in the future.

To facilitate participation, we hosted three com-
petitions on CodaBench2. The development sets,
along with the Qur’an and Hadith texts in JSON
format (see Appendix D for a sample), were made
publicly available. Participants were required to
rely exclusively on the provided data.

The competition was launched on June 16, with
test sets released on July 29, and final submissions
closed on August 8. The shared task drew strong
engagement, with 20 participants in Subtask 1A
(87 submissions), 16 participants in Subtask 1B
(41 submissions), and 15 participants in Subtask

2https://www.codabench.org/competitions/9820/,
https://www.codabench.org/competitions/9822/, and
https://www.codabench.org/competitions/9824/
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Figure 1: Example of an annotated LLM response. Question translation: “What is the evidence that the prophets and
messengers do not know the unseen?”. Spans highlighted in light green and dark green represent correct Qur’anic
verses and Hadiths, respectively. Spans highlighted in light red and dark red represent incorrect Qur’anic verses and
Hadiths. Corrections for each incorrect span are listed in the box at the bottom.

Model #Answers Avg Word Len #Ayahs Correct% #Hadiths Correct%
ALLaM-7B-Instruct-preview 251 297 1104 84.06 654 59.33
In-house fine-tuned Gemma-2-9b 251 153 548 65.33 372 38.17
In-house fine-tuned Gemma-2-9b + RAG* 246 742 1634 82.01 467 63.17
Jais-13B-Chat 251 46 151 41.72 83 26.51
Qwen3-8B 251 202 379 6.86 55 1.82
Llama-3.1-8B-Instruct 251 230 797 4.77 564 0.53

Table 1: Performance of models during dataset curation where LLM responses were annotated by experts. The
model families include ALLam (Bari et al., 2024), Jais (Sengupta et al., 2023), Llama-3 (Grattafiori et al., 2024),
Qwen3 (Qwen Team, 2025), in addition to fine-tuned versions of Gemma-2 (Gemma Team, 2024) developed
in-house by the Fanar team (Fanar Team et al., 2025). Model marked with * failed to give answer to some questions.
Best results in generating correct verses and Hadiths are written in bold.

1C (59 submissions). Since some teams submitted
under multiple individual accounts, this amounted
to five distinct teams overall, listed in Table 2.

Teams were allowed to submit an unlimited num-
ber of runs; however, only their most recent three
submissions were considered for evaluation. Re-
sults were provided to participants on these final
three runs, and they were requested to describe
them in their system description papers.

2.5.1 Participating Teams

Burhan AI (Al Adel et al., 2025): For Subtask
1A, the authors fine-tuned a domain-adapted LLM
(gpt-4.1-mini) for hallucination span detection,
incorporating synthetic augmentation, diacritic
variation, and morphological normalization to
enhance robustness (F1 = 87.10%). In addition,
they explored an agentic approach with specialized
tools (OpenAI’s code interpreter), achieving an F1
of 90.06% (Best in subtask 1A). For Subtasks 1B
(Accuracy = 88.60%) and 1C (Accuracy = 66.56%),
they developed a multistage hierarchical correction
pipeline that combined exact, normalized, fuzzy,
and semantic matching with prompt-driven repair
to ensure canonical alignment and diacritic fidelity.

HUMAIN (Omayrah et al., 2025): HUMAIN ad-
dressed Subtask 1 using a three-stage LLM-based
pipeline grounded in the TANL framework (Paolini
et al., 2021). For Subtask 1A, they modeled span
detection as sequence-to-sequence annotation
with bracket-based tags aligned via dynamic
programming, with an alternative guided decoding
setup through vLLM producing structured JSON.
This achieved a strong 87.20% F1 on the test set.
In Subtask 1B, validation combined retrieval-based
similarity with strict substring matching, using
higher thresholds for Qur’anic verses and exact
substring logic for Hadith, yielding 86.14%
accuracy. Finally, Subtask 1C correction employed
multi-stage matching - exact, LCS alignment, and
semantic reranking with bge-reranker-v2-m3 -
reaching 68.18% accuracy, though rare Hadiths
and implicit references remained challenging.

TCE (ElKoumy et al., 2025): The TCE team
tackled Subtasks 1A and 1B of IslamicEval 2025
using few-shot prompting with state-of-the-art
LLMs such as Qwen-235B (MoE) and GPT-4o.
For span detection (1A), they used prompts
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enriched with trigger words and citation patterns,
as well as chunking, and fuzzy matching to identify
Qur’anic and Hadith content, achieving a macro-F1
of 86.11% on the test set. For 1B, they designed a
retrieval-augmented pipeline: Qur’anic spans were
retrieved with word-level fuzzy voting and Hadith
with character n-gram TF-IDF, then verified by
LLMs with strict word-for-word rules for Qur’an
and lenient matching for Hadith. This hybrid sys-
tem, enhanced with an efficient early-exit strategy,
scored 89.82% accuracy (Best in Subtask 1B) on
the test set, with GPT-4o outperforming Gemma
variants and showing improved performance when
diacritics were preserved.

Isnad AI (Elden, 2025): The authors proposed
a rule-based preprocessing and augmentation
pipeline that systematically transforms raw reli-
gious texts into a large-scale, high-quality training
corpus. The pipeline embeds processed Qur’anic
verses and Hadiths into contextual templates. A
set of common prefixes (eg. úÍAª�K é<Ë @ ÈA�̄ “God
Almighty said”) and suffixes (eg. ø
 PA

	jJ. Ë @ è @ðP
“Narrated by Al-Bukhari”) was applied, and each
unique instance was expanded into multiple train-
ing examples by randomly combining it with dif-
ferent prefixes, suffixes, and neutral connecting
sentences. The authors reported that synthetic data
generation using AraGPT was less effective.

2.5.2 Task 1 Results
Table 2 shows the results for Task 1 across the three
subtasks. Participating systems employed a wide
range of approaches to detect the intended Qur’anic
verses and Hadiths, including LLMs such as GPT-4
and Qwen, as well as fuzzy matching with search
engines and rule-based techniques. Our evalua-
tion shows a significant performance gap: the rule-
based approach (e.g. Isnad AI) lag considerably
behind LLM-based systems, highlighting the inher-
ent difficulty of this task. Lists of rules and patterns
are insufficient to capture the diverse styles and de-
grees of distortion found in LLM generations.

We also observe that detecting the textual bound-
aries of verses and Hadiths is substantially easier
than correcting them, underscoring the fact that
hallucinations in LLM outputs are often non-trivial
to repair. Recovery from hallucinated references
remains highly challenging, suggesting that halluci-
nation prevention should occur during generation,
e.g. via RAG to constrain outputs to authentic
sources, instead of post-hoc correction.

Finally, we find that models perform consistently
better on Qur’anic verses than on Hadiths (either
by the participating teams or the LLMs in Table
1). This can be attributed to the relative size and
structure of the corpora: the Qur’an is compara-
tively compact and standardized, whereas Hadith
collections (e.g., the six authoritative books) are
far larger and more variable, making hallucination
detection and correction more complex.

3 IslamicEval Task 2: Qur’an and Hadith
Question Answering

In this section, we define Task 2, its dataset, anno-
tation and evaluation setup, and the measures used
to rank systems. Results are presented and dis-
cussed before concluding with an overview of the
approaches adopted by the systems of participating
teams (with accepted description papers).

3.1 Task Description

The Qur’an and Hadith QA subtask is a contin-
uation of the Qur’an QA 20223 (Malhas et al.,
2022) and Qur’an QA 20234 (Malhas et al., 2023)
Shared Tasks. This year’s subtask introduces Ha-
dith as an additional Islamic resource for answering
questions, marking the first such inclusion in the
task’s history. We define the task as follows: Given
a free-text question in Modern Standard Arabic
(MSA), a collection of Qur’anic passages covering
the Holy Qur’an, and a collection of Hadiths from
Sahih Al-Bukhari, systems are required to retrieve
a ranked list of up to 20 answer-bearing Qur’anic
passages or Hadiths (i.e., that potentially contain
the answer(s) to the given question) drawn from
these two collections. Questions may be factoid
or non-factoid. Example questions with answer-
bearing Qur’anic passages and Hadith matns are
exhibited in Figures 2 and 3, respectively. The matn
refers to the core text of the Hadith itself, while the
isnad outlines the chain of narrators who convey
and authenticate the matn (Azmi et al., 2019).

To better reflect real-world conditions and make
the task more challenging, we included questions
that lack answers in the Qur’an and/or Sahih
Al-Bukhari. We label a question zero-answer only
when neither source contains an answer. For such
questions, the ideal system returns no result; oth-
erwise, it should output a ranked list of up to 20
answer-bearing Qur’anic passages or Hadith matns.

3https://sites.google.com/view/quran-qa-2022
4https://sites.google.com/view/quran-qa-2023
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Subtask 1A Subtask 1B Subtask 1C
Team Name F1% F1-Q F1-H Rank Acc% Acc-Q Acc-H Rank Acc% Acc-Q Acc-H Rank
Burhan AI 90.06 89.47 86.99 1 88.60 89.45 86.63 2 66.56 65.70 67.65 2
HUMAIN 87.20 86.61 85.11 2 86.14 90.20 76.74 3 68.18 62.21 75.74 1
TCE 86.11 86.60 80.51 3 89.82 91.21 86.63 1 - - - -
Isnad AI 66.97 72.39 48.94 4 - - - - - - - -
mucAI* 44.88 46.24 29.80 5 - - - - - - - -

Table 2: Task 1 results across subtasks. Teams are ranked per subtask. The majority baseline in Subtask 1A is
36.17% Macro-Avg. F1 (assuming no Ayah or Hadith), in Subtask 1B is 70.00% (assuming all Ayahs and Hadiths
are correct), and in Subtask 1C is 67.52% (assuming all errors are not correctable). For Subtask 1A we report the
overall Macro-averaged F1 (F1) and for Qur’an (F1-Q) and Hadith (F1-H) individually. Similarly, for Subtasks 1B
and 1C we report the accuracies Acc, Acc-Q, and Acc-H. Teams marked with * did not submit a system paper.mQ241 

Some gold Passages: "2:87-88\t241",  2:97-101\t241”, 2:102-103\t241, "2:253-254\t24 

؟ من هم الملائكة المذ�ورون �� القرآن السؤال:  

Question: Who are the angels mentioned in Qur’an? 

Gold Qur’anic Passages  القرآنية  اتالفقر   الذهبية  

ى  يْنَا مُو�ىَ
َ
قَدْ ءَات

َ
بَ ٱوَل

ٰ
كِتَ

ْ
يْنَا مِنۢ َ�عْدِهِ  ل فَّ

َ
سُلِ ٱبِ  ۦوَق ى  لرُّ يْنَا عِي�ىَ

َ
تِ ٱمَرَْ�مَ  بْنَ ٱوَءَات

َٰ
ن بَيِّ

ْ
ھُ بِ  ل

ٰ
دْنَ يَّ

َ
قُدُسِ ٱرُوحِ  وَأ

ْ
  ل

 َ�ْ�وَىٰٓ
َ

 بِمَا لا
ۢ

مْ رَسُولٌ
ُ

ءَك
ٓ
مَا جَا

َّ
ل

ُ
�

َ
ف

َ
أ

مُ 
ُ

نفُسُك
َ
َ�ْ�تُمْ ٱأ

ْ
  سْتَك

َّ
ذ

َ
فَرِ�قًا ك

َ
ونَ  بْتُمْ ف

ُ
قْتُل

َ
رِ�قًا ت

َ
 . وَف

۟
وا

ُ
ال

َ
عََ�ُ�مُ  وَق

َّ
 بَل ل

ٌۢ
ف

ْ
ل

ُ
وُ�نَا غ

ُ
ل

ُ
ُ ٱق ا يُؤْمِنُونَ  �َّ  مَّ

ً
قَلِيلا

َ
فْرِهِمْ ف

ُ
 .بِك

انَ  
َ
لْ مَن �

ُ
ِ ق

ّ
ا � ھُ   جِْ�ِ�يلَ عَدُو� إِنَّ

َ
ھُ   ۥف

َ
ل نِ    ۥنَزَّ

ْ
بِكَ بِإِذ

ْ
ل

َ
ٰ� ق

َ
ِ ٱعَ�

مُؤْمِنِ�نَ   �َّ
ْ
رَىٰ لِل

ْ
ا بَْ�نَ يَدَيْھِ وَهُدًى وَُ�ش

َ
ِ
ّ

ا لم
ً
ق تِھِ   مَن.  مُصَدِّ

َ
ئِك

َٰ
ِ وَمَل

َّ
ِ
ّ

ا � انَ عَدُو�
َ
 ۦوَرُسُلِھِ   ۦ�

ىٰلَ وَ   جِْ�ِ�يلَ وَ 
َ

إِنَّ    مِيك
َ
َ ٱف فِرِ�نَ   �َّ

َٰ
ك

ْ
ل ِ

ّ
ل قَدْ .  عَدُوٌّ 

َ
    وَل

َّ
 إِلا

ٓ
ِ�َ�ا فُرُ 

ْ
يَك وَمَا  تٍ 

َٰ
ن بَيِّ تٍۭ  ءَايَٰ يْكَ 

َ
إِل  

ٓ
نَا

ْ
نزَل

َ
سِقُونَ ٱأ

ٰ
فَ

ْ
مَا.  ل

َّ
ل

ُ
وَ�

َ
هُ   أ

َ
بَذ نَّ عَهْدًا   

۟
هَدُوا

ٰ
بَلْ    ۥعَ ْ�ُ�م  مِّ رِ�قٌ 

َ
ف

 يُؤْمِنُونَ 
َ

ُ�هُمْ لا
َ
�

ْ
ك

َ
ا.  أ

َّ َ
نْ عِندِ    وَلم ءَهُمْ رَسُولٌ مِّ

ٓ
ِ ٱجَا

نَ  مُصَ   �َّ رِ�قٌ مِّ
َ
 ف

َ
ا مَعَهُمْ نَبَذ

َ
ِ
ّ

قٌ لم ذِينَ ٱدِّ
َّ
    ل

۟
وتُوا

ُ
بَ ٱأ

ٰ
كِتَ

ْ
بَ    ل

ٰ
ِ ٱكِتَ

مُونَ   �َّ
َ
 َ�عْل

َ
ُ�مْ لا َّ�

َ
أ
َ
هُورِهِمْ �

ُ
ءَ ظ

ٓ
 . وَرَا

 ٱوَ 
۟
بَعُوا     تَّ

۟
وا

ُ
تْل

َ
طِ�نُ ٱمَا ت يَٰ كِنَّ    لشَّ

َٰ
نُ وَل يْمَٰ

َ
فَرَ سُل

َ
نَ وَمَا ك يْمَٰ

َ
كِ سُل

ْ
ٰ� مُل

َ
طِ�نَ ٱعَ� يَٰ مُونَ    لشَّ ِ

ّ
 ُ�عَل

۟
فَرُوا

َ
اسَ ٱك حْرَ ٱ  لنَّ �    لّ�ِ

َ
نزِلَ عَ�

ُ
 أ

ٓ
ْ�نِ ٱوَمَا

َ
ك

َ
ل
َ ْ
   لم

ٰ
 رُوتَ بِبَابِلَ هَ

حَدٍ  رُوتَ وَمَٰ 
َ
مَانِ مِنْ أ ِ

ّ
ىٰ وَمَا ُ�عَل ونَ بِھِ  حَ�َّ

ُ
مُونَ مِْ�ُ�مَا مَا يُفَرِّق

َّ
يَتَعَل

َ
فُرْ ف

ْ
ك

َ
 ت

َ
لا

َ
 ف

ٌ
مَا نَحْنُ فِتْنَة  إِنَّ

ٓ َ
رْءِ ٱبَْ�نَ  ۦيَقُولا

َ ْ
رِّ�نَ بِھِ  ۦوَزَوْجِھِ  لم

ٓ
مِنْ   ۦوَمَا هُم بِضَا

نِ 
ْ
 بِإِذ

َّ
حَدٍ إِلا

َ
ِ ٱأ

َّ�  
َ
 يَنفَعُهُمْ وَل

َ
هُمْ وَلا مُونَ مَا يَضُرُّ

َّ
نِ  قَدْ وََ�تَعَل

َ َ
 لم

۟
َ�ىٰھُ ٱعَلِمُوا

َ
�

ْ
  ش

َ
 بِھِ  لْءَاخِرَةِ ٱِ��  ۥھُ مَا ل

۟
رَوْا

َ
سَ مَا ش

ْ
بِئ

َ
قٍ وَل

َٰ
ل

َ
   ۦٓمِنْ خ

۟
انُوا

َ
وْ �

َ
نفُسَهُمْ ل

َ
أ

مُونَ 
َ
وْ . َ�عْل

َ
 وَ  وَل

۟
ُ�مْ ءَامَنُوا َّ�

َ
 ٱأ

۟
قَوْا نْ عِندِ  تَّ  مِّ

ٌ
وَ�ة

ُ
ث
َ َ
ِ ٱلم

مُونَ  �َّ
َ
 َ�عْل

۟
انُوا

َ
وْ �

َّ
ْ�ٌ� ل

َ
 .خ

 ... 

 

Figure 2: An example question with some of its gold (answer-bearing) Qur’anic passages. Answers are highlighted.

3.2 Dataset

In this section, we introduce the test collections
used for the Qur’an-Hadith QA subtask (or QH-QA
for short). In information retrieval, a test collec-
tion consists of a document collection5 (here, the
Holy Qur’an and Sahih al-Bukhari), a set of queries
(questions), and their relevance judgments (Lin and
Katz, 2006) (i.e., the gold answers or, in our case,
the passages that contain them).

The document collections used for this sub-
task comprise the Qur’anic Passage collection
(QPC) (Swar, 2007; Malhas, 2023), and Sahih Al-
Bukhari collection. QPC was developed by topi-
cally segmenting the 114 Qur’anic chapters using
the Thematic Holy Qur’an (Swar, 2007)6, a printed
edition that clusters the chapter verses into topics.
This segmentation resulted in a total of 1,266 pas-
sages. For the Sahih Al-Bukhari collection, we
used the Tajreed Sarih version (Al-Zubaidi, 2009)
that comprises 2,254 Hadiths, from which redun-
dant Hadiths, Arabic commentary, and chain of nar-

5The term “document collection” or “collection” refers
to a corpus or dataset (Lin et al., 2021); we use these terms
interchangeably.

6https://archive.org/details/Quran27/page/n13/
mode/2up

rators (except the last) have been excluded. How-
ever, Al-Zubaidi may repeat a Hadith if there was
a beneficial addition in a later occurrence. More-
over, only authenticated Hadiths with a continuous
chain of narrators are included in this collection.
The digital version of this book7 is available on
shamela.ws, a project for collecting classical Ara-
bic books. We contacted an Islamic scholar who
provided us with an offline version of the book,
which we parsed later to generate the final JSON
lines (.jsonl) format8.

For the questions, we used the 250 questions of
AyaTEC v1.2 dataset (Malhas and Elsayed, 2020;
Malhas et al., 2023), split into training (84%) and
development (16%) sets. The relevance judgments
for these questions are provided over the QPC only.

For the test dataset, we developed a new set of 71
questions, 23 of which are paraphrased versions of
natural user prompts drawn from usage logs of the
Fanar Arabic LLM (Fanar Team et al., 2025). Only
51 questions were used to evaluate the systems
of participating teams. The relevance judgments
for all 71 questions over the Qur’anic Passage col-

7shamela.ws/book/96283/
8https://gitlab.com/bigirqu/

quran-hadith-qa-2025
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ما �� علامات يوم القيامة؟  السؤال:  

Question: What are the signs of the Day of Judgment? 

Gold Hadith Matns (Texts) الأحاديث  الذهبية    (نصوص)  متون    

قالَ:  
َ
دَمٍ، ف

َ
ةٍ مِن أ بَّ

ُ
بُوكَ وهو �� ق

َ
زْوَةِ ت

َ
مَ �� غ

َّ
� اللهُ عليھ وسل

َّ
�يَّ صَ� يْتُ النَّ

َ
ت

َ
انٌ  أ

َ
مَّ مُوت

ُ
قْدِسِ، ث

َ
تْحُ بَيْتِ الم

َ
مَّ ف

ُ
اعَةِ: مَوِْ�ي، ث ا بْ�نَ يَدَيِ السَّ اعْدُدْ سِت�

 
ُ
ا، ث

ً
لُّ سَاخِط

َ
يَظ

َ
 دِينَارٍ ف

َ
جُلُ مِئَة ى الرَّ

َ
ى ُ�عْط الِ ح�َّ

َ
 الم

ُ
مَّ اسْتِفَاضَة

ُ
نَمِ، ث

َ
قُعَاصِ الغ

َ
مْ ك

ُ
 فِيك

ُ
خُذ

ْ
 لا يَبْقَى بَيْتٌ مِنَ يَأ

ٌ
  مَّ فِتْنَة

ٌ
مَّ هُدْنَة

ُ
تْھُ، ث

َ
ل

َ
 دَخ

َّ
 العَرَبِ إلا

نَ 
ْ
ايَةٍ اث

َ
لِّ غ

ُ
حْتَ �

َ
، ت

ً
ايَة

َ
مَانِ�نَ غ

َ
حْتَ ث

َ
مْ ت

ُ
تُونَك

ْ
يَأ

َ
يَغْدِرُونَ ف

َ
مْ و�ْ�نَ بَِ�ي الأصْفَرِ، ف

ُ
ونُ بيْنَك

ُ
�

َ
فًا.ت

ْ
ل

َ
رَ أ

َ
 ا عَش

  �َ
ُ
�

ْ
ك

َ
مُ، وت

ْ
ى يُقْبَضَ العِل  ح�َّ

ُ
اعَة قُومُ السَّ

َ
 ت

َ
َ� الهَرجُْ  لا

ُ
�

ْ
نُ، وَ�ك

َ
هَرَ الفِ�

ْ
ظ

َ
مَانُ، وت زِلُ، وَ�تَقَارَبَ الزَّ

َ
يَفِيضَ   -وهو القَتْلُ القَتْلُ    -الزَّلا

َ
الُ ف

َ
مُ الم

ُ
َ� فِيك

ُ
�

ْ
ى يَك  .ح�َّ

مْ 
ُ

ك نَّ
َ
ث حَدِّ

ُ َ
  لأ

َّ
ِ ص�

مْ بھ أحَدٌ غ�ِ�ي؛ سَمِعْتُ رَسولَ �َّ
ُ

ك
ُ
ث يُحَدِّ م، لا 

َّ
� اللهُ عليھ وسل

َّ
ِ ص�

ا سَمِعْتُھُ مِن رَسولِ �َّ
ً
م يقولُ: إنَّ مِن حَدِيث

َّ
� اللهُ عليھ وسل

 
ُ

َ� ش
ُ
�

ْ
َ� الزِّنَا، وَ�ك

ُ
�

ْ
َ� ا�جَهْلُ، وَ�ك

ُ
�

ْ
مُ، وَ�ك

ْ
عَ العِل

َ
اعَةِ أنْ يُرْف رَاطِ السَّ

ْ
مُ الوَاحِدُ أش  القَيِّ

ً
ة

َ
مْسِ�نَ امْرَأ

َ
ى يَ�ونَ ِ�خ سَاءُ ح�َّ ِ

ّ
َ� الن

ُ
�

ْ
مْرِ، وَ�قِلَّ الرِّجَالُ، وَ�ك

َ
 .رْبُ ا�خ

 ... 

From Walid Magdy via MS Teams (April 11, 2025) 
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ا بْ�نَ يَدَ   قالَ: اعْدُدْ سِت�
َ
دَمٍ، ف

َ
ةٍ مِن أ بَّ

ُ
بُوكَ وهو �� ق

َ
زْوَةِ ت

َ
مَ �� غ

َّ
� اللهُ عليھ وسل

َّ
�يَّ صَ� يْتُ النَّ

َ
ت

َ
اعَةِ: أ تْحُ بَيْتِ  يِ السَّ

َ
مَّ ف

ُ
مَوِْ�ي، ث

 دِي
َ
جُلُ مِئَة ى الرَّ

َ
ى ُ�عْط الِ ح�َّ

َ
 الم

ُ
مَّ اسْتِفَاضَة

ُ
نَمِ، ث

َ
قُعَاصِ الغ

َ
مْ ك

ُ
 فِيك

ُ
خُذ

ْ
انٌ يَأ

َ
مَّ مُوت

ُ
قْدِسِ، ث

َ
 لا  الم

ٌ
مَّ فِتْنَة

ُ
ا، ث

ً
لُّ سَاخِط

َ
يَظ

َ
نَارٍ ف

مَّ هُدْنَ 
ُ
تْھُ، ث

َ
ل

َ
 دَخ

َّ
ايَةٍ يَبْقَى بَيْتٌ مِنَ العَرَبِ إلا

َ
لِّ غ

ُ
حْتَ �

َ
، ت

ً
ايَة

َ
مَانِ�نَ غ

َ
حْتَ ث

َ
مْ ت

ُ
تُونَك

ْ
يَأ

َ
يَغْدِرُونَ ف

َ
مْ و�ْ�نَ بَِ�ي الأصْفَرِ، ف

ُ
ونُ بيْنَك

ُ
�

َ
 ت

ٌ
ة

فًا
ْ
ل

َ
رَ أ

َ
نَا عَش

ْ
 .اث
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  �َ
ُ
�

ْ
نُ، وَ�ك

َ
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ْ
ظ

َ
مَانُ، وت زِلُ، وَ�تَقَارَبَ الزَّ

َ
َ� الزَّلا

ُ
�

ْ
ك

َ
مُ، وت

ْ
ى يُقْبَضَ العِل  ح�َّ

ُ
اعَة قُومُ السَّ

َ
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َ
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ُ
�

ْ
ى يَك ح�َّ
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َ
الُ ف

َ
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ُ
 .فِيك
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مْ بھ أحَدٌ غ�ِ�ي؛ سَمِعْتُ 
ُ

ك
ُ
ث م، لا يُحَدِّ

َّ
� اللهُ عليھ وسل

َّ
ِ ص�

ا سَمِعْتُھُ مِن رَسولِ �َّ
ً
مْ حَدِيث

ُ
ك نَّ

َ
ث حَدِّ

ُ َ
� اللهُ عليھ  لأ

َّ
ِ ص�

رَسولَ �َّ

َ� الزِّ 
ُ
�

ْ
َ� ا�جَهْلُ، وَ�ك

ُ
�

ْ
مُ، وَ�ك

ْ
عَ العِل

َ
اعَةِ أنْ يُرْف رَاطِ السَّ

ْ
م يقولُ: إنَّ مِن أش

َّ
سَاءُ وسل ِ

ّ
َ� الن

ُ
�

ْ
مْرِ، وَ�قِلَّ الرِّجَالُ، وَ�ك

َ
رْبُ ا�خ

ُ
َ� ش

ُ
�

ْ
نَا، وَ�ك

مُ الوَاحِدُ   القَيِّ
ً
ة

َ
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َ
ى يَ�ونَ ِ�خ  .ح�َّ
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Figure 3: An example question with some of its gold (answer-bearing) Hadith matns from Sahih Al-Bukhari.

lection and the Sahih Al-Bukhari collection were
conducted by Qur’an and Hadith specialists, as
described in the next section.

We note that the relevance judgments for the test
dataset will not be released. Nevertheless, future
run submissions for evaluation on this dataset may
be obtained by contacting one of the organizers. All
datasets and test collections are publicly available
in the official Qur’an-Hadith QA repository.9

3.3 Annotation Setup and Guidelines

Two annotation guidelines and rubrics, with illus-
trative examples, were meticulously developed for
the Qur’an and Hadith specialists, labeling poten-
tial answer-bearing Quranic passages and Hadith
matns. Each candidate passage or matn was anno-
tated as either having a direct answer, an indirect
answer, relevant but no answer, or irrelevant to a
given question. The Arabic definitions for these
labels are in Figures 7 and 8 (Appendix E).

Moreover, Arabic web-based GUIs were de-
veloped in line with these guidelines and rubrics
to streamline annotation and gather specialist-
suggested passages and matns potentially contain-
ing direct or indirect answers to the given question.
Retrieval and pooling: We constructed a pooled
candidate set per question by taking the dedupli-
cated union of top-k results from multiple retrieval
models. The pooled candidates were re-ranked
using GPT-4.1 and GPT-4.1-mini. We applied a
cutoff at the top-20 items after re-ranking to define
the Round 1 candidate set presented to annotators.
Annotation rounds and coverage. In Round 1,
specialists annotated the re-ranked top-20 candi-
dates per question (across both collections). In
Round 2, they annotated additional candidates that
they had proposed during Round 1. Round 3 took

9https://gitlab.com/bigirqu/
quran-hadith-qa-2025

place after the test-set submission phase closed,
during which specialists annotated a pooled candi-
date set per question, formed as the deduplicated
union of the top-k responses from the best submit-
ted run of each team, after excluding candidates
with a frequency less than 2.

Each candidate passage/matn in Round 1 was in-
dependently labeled by three Qur’an specialists (for
Qur’anic passages) or three Hadith specialists (for
Hadith matns). Additional candidates in Rounds 2
and 3 were likewise independently labeled by three
domain specialists.
Aggregation and agreement: We applied majority
voting across the three domain specialists; ties were
resolved by a fourth. Despite our careful design and
piloting of the annotation rubrics, inter-annotator
agreement was fair: Fleiss’ kappa was 0.283 among
Qur’an specialists and 0.235 for Hadith.
Label normalization: Consistent with the training
and development sets, final test-set relevance judg-
ments over both collections were binarized: only
passages/matns containing a direct answer received
a positive label (1); all others received 0.

3.4 Evaluation Setup

We chose Codabench10 as a platform for hosting
our subtask, similar to Task 1. We used trec_eval
tool11 to compute the evaluation metrics. We made
our training and development sets available during
the development phase and allowed each team to
run 100 submissions on the development set and
receive scores from the system. Our evaluation
script was also made available for local evaluation.
During the testing phase, we allowed teams to sub-
mit 13 submissions; however, we stated that only
the last 3 submitted runs would be considered for
evaluation.

10codabench.org/competitions/9939/
11github.com/usnistgov/trec_eval
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Team MAP@10 MAP_Q@5 MAP_H@5
Burhan 0.3351 0.3389 0.3876
BurhanAI 0.2807 0.3257 0.2386
ThinkDrill 0.2296 0.2623 0.215
NUR 0.1809 0.2334 0.1923
BayaNet* 0.1504 0.2064 0.224
MSA* 0.1185 0.1674 0.0685
Maged* 0.0332 0.0887 0.0457
CISRG* 0.0116 0.0294 0.0128

Table 3: Results of Task 2 showing the best run per team
ranked by MAP@10. Teams with * did not submit a
system paper.

3.4.1 Evaluation Measures
For the classical ranked retrieval formulation of the
task, MAP (Mean Average Precision) serves as the
primary official evaluation metric. The no-answer
cases are handled simply by giving full credit to "no
answers” system output and zero otherwise. We re-
port three measures: MAP@10 computed over the
top 10 ranked answers, MAP_Q@5 computed over
the top 5 ranked Qur’anic passages (after discard-
ing all ranked Hadiths), and MAP_H@5 computed
over the top 5 ranked Hadiths (after discarding all
ranked Qur’anic passages).

3.4.2 Participating Teams and Results
While 30 teams registered in Task 2, eight teams
submitted runs during the test phase. The evalua-
tion of the best run per team is shown in Table 3.
For the full evaluation results, see Table 4 in Ap-
pendix. Only four out of eight participating teams
submitted papers describing their work, namely
Burhan (Basheer et al., 2025), ThinkDrill (Elre-
fai et al., 2025), Nur (Amin et al., 2025), and
BurhanAI (Al Adel et al., 2025). It is evident that
the task of this year is quite challenging since the
top MAP@10 score is 0.3351 achieved by Burhan.

3.5 Methods and Analysis

The main observation in all participants is the re-
liance on LLMs in their systems. We categorize
the discussion of adopted methods by techniques.

Augmentation The top team (Burhan) utilized
LLMs to extract facts and relationships from
Qur’an and Hadith passages and then augmented
the extracted text with the corresponding passages.
ThinkDrill team extended hadith question-answer
pairs from HAQA dataset, and employed GPT-4 to
extract relevant keywords from questions, and then
apply fuzzy string matching to determine the rele-
vance score. NUR team augmented the provided
dataset with the Arabic portion of the TyDi dataset,

the Jalalayn Tafseer of the Qur’an, and the QuQA
and HaQA datasets. They also embedded nega-
tive samples to increase their models’ sensitivity to
zero-answer questions. BurhanAI team employed
iterative semantic search, expanding the query with
the initial results.

Reranking Burhan and ThinkDrill adopted an
LLM as a reranker, leading to remarkable improve-
ments as reported by Burhan team. NUR team used
a fine-tuned cross-encoder or Gemini for reranking
and identification of zero-answer questions.

Embedding Toward building sematic-based re-
trieval pipelines, multiple teams focused on the
choice of the encoder embedding model. Burhan
team experimented with multiple embedding mod-
els to identify the best model in zero-shot setup.
However, ThinkDrill fine-tuned a multilingual em-
bedding model using triplet loss on augmented data
of Qur’an and Hadith. NUR team has compared
a large set of publicly available Arabic sentence
embedding models on the development set (Qur’an-
only) to select the backbone encoder for their re-
trieval and reranking pipeline. On the other hand,
BurhanAI team employed OpenAI’s file_search
directly as the backbone for semantic search.

Paraphrasing Burhan team was the only team
that worked on improving the query representa-
tion. In particular, they utilize LLMs to paraphrase
the questions or append synonyms to them. The
paraphrasing component revealed clear benefits.

Zero-answer Questions Handling the zero-
answer questions differed across teams. Burhan
team employed an LLM to judge whether a passage
provides an answer to a given question on a binary
basis. ThinkDrill adopted a thresholding mecha-
nism to detect such questions, i.e., if the relevance
score is above s certain threshold, the question then
has an answer. Similarly, NUR team adopted the
thresholding-based approach with fine-tuned cross-
encoders, in addition to directly prompting Gemini
LLM to identify such questions.

4 Conclusion

We introduced IslamicEval, the first shared task
dedicated to addressing hallucination in Islamic
contexts. The challenges posed by this task aim
to significantly advance the reliability of LLMs in
generating accurate Islamic content. Moreover, it
supports broader efforts to uphold the integrity of
religious information in the digital age.
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5 Limitations

Labeling religious data is an exhaustive sensitive
task. As a result, the number of records in our
datasets is not big. We plan in the future to extend
our datasets by labeling more samples.

Our study only considers Qur’an and Hadith in
the Arabic language; however, there are hundreds
of millions of people worldwide who communi-
cate Hadith in other languages like Turkish, Farsi,
Malay, and Urdu (Fawzi et al., 2026). Since these
languages have their own customized LLMs, it is
very likely that they will produce different variants
of religious hallucinations. In addition, each LLM
output in Subtask 1 was annotated by a single anno-
tator, which may introduce annotation errors. We
evaluated answers from six LLMs (Arabic-centric
and multilingual), each with distinct styles of re-
sponding to Islamic questions, which may not gen-
eralize to other models. The test set is relatively
small (312 question–answer pairs), and model per-
formance could vary on larger or thematically dif-
ferent test sets. Furthermore, annotation was lim-
ited to assessing the correctness of Qur’anic verses
and Hadiths, without considering whether the over-
all answer was accurate or relevant to the input
question. A more comprehensive evaluation of
LLMs in this domain should therefore extend be-
yond text correction to include additional dimen-
sions of answer quality.

Since this is the first edition of the
Qur’an–Hadith QA task to incorporate Hadith
as an additional Islamic resource for answering
questions, we limited the Hadith collection to
Sahih al-Bukhari. We plan to include other Hadith
collections in future versions of the task.

Unlike the AyaTEC and QRCD datasets used in
prior versions of Subtask 2, the annotation phase
for the current test set may not have exhaustively
identified all answer-bearing candidates. Conse-
quently, evaluation is subject to the usual risk that
some relevant results may not be rewarded.

6 Ethical Considerations

Subtask 1 involves questions and answers gener-
ated by LLMs, which were manually annotated to
correct errors in cited Qur’anic verses and Hadiths.
Given the religious sensitivity of the content, we
took care to ensure accuracy and respect: annota-
tions were carried out by three qualified linguists
from Egypt with expertise in Arabic language and
Islamic studies, and all annotators were compen-

sated fairly for their work. The dataset is released
strictly for research purposes, with the intention
of improving the reliability and safety of LLMs in
handling religious material. We explicitly caution
against any misuse of this resource in contexts that
could distort, misrepresent, or disrespect Islamic
teachings.
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A Related Work

A.1 Hallucination Detection
Hallucination detection methods can be grouped
into uncertainty-based predictors (Manakul et al.,
2023), entailment or consistency checks against
retrieved evidence (Ji et al., 2023), and span-level
labeling frameworks (Mishra et al., 2024). Re-
cent work emphasizes span-level detectors for
interpretability, with SemEval-2025 introducing
a shared task that explicitly included Arabic
(Vázquez et al., 2025).

For Arabic hallucination detection, resources re-
main limited. The OSACT-6 Hallucination Shared
Task “Halwasa” (Mubarak et al., 2024) released the
first Arabic data set (10K sentences generated by
GPT and manually annotated for factuality), with
baselines that highlight challenges due to morpho-
logical richness. HalluVerse25 (Abdaljalil et al.,
2025) is a multilingual benchmark that categorizes
fine-grained hallucinations in English, Arabic, and
Turkish. The authors used GPT-4 to inject hallu-
cinations into factual biographical sentences ex-
tracted from Wikipedia.

In religious domains, hallucination risks are am-
plified by doctrinal sensitivity. Qur’an QA (Malhas
et al., 2022, 2023) established benchmarks for com-
prehension and passage retrieval, while (Aleid and
Azmi, 2025) supports research on fatwa related to
Hajj (Muslim pilgrimage). Most approaches mit-
igate hallucinations through retrieval-augmented
generation (RAG) (Lewis et al., 2020), conserva-
tive prompting, and reranking rather than explicit
detectors. Recent frameworks such as EMAN
(El Ganadi et al., 2025) stress governance and cul-
tural alignment when deploying LLMs on Islamic
texts.

Overall, prior work shows progress but also gaps:
(i) reliance on mitigation rather than calibrated de-
tectors in high-stakes religious contexts, and (ii)
lack of standardized evaluation for detecting mis-
quotations or unsupported doctrinal claims. Our
work builds on these efforts by extending hallu-
cination detection to Arabic religious texts with
domain-grounded and span-level evaluation.

A.2 Qur’an QA 2022 and 2023
With Qur’an and Hadith QA being a continuation
of Qur’an QA 202212 (Malhas et al., 2022) and
Qur’an QA 202313 (Malhas et al., 2023) shared

12https://sites.google.com/view/quran-qa-2022
13https://gitlab.com/bigirqu/quran-qa-2023

tasks, we provide an overview of those two edi-
tions.

The Qur’an QA shared task in its first round
(2022) comprised a single machine reading compre-
hension (MRC) task over the Holy Qur’an: given
a passage of consecutive verses from one Surah
and an MSA question about that passage, systems
had to extract any correct answer span. The main
measure used in evaluation was partial Reciprocal
Rank (pRR) (Malhas and Elsayed, 2020). The
task attracted 30 teams, 13 of which submitted
30 runs in the test phase. Ten system descrip-
tion papers were published in OSACT 2022 (Al-
Khalifa et al., 2022), and the best-performing sys-
tems achieved pRR=0.586, underscoring the diffi-
culty of the MRC task. Leading systems (ElKomy
and Sarhan, 2022; Ahmed et al., 2022) mainly
used fine-tuned encoder-only BERT-based mod-
els, notably AraELECTRA (Antoun et al., 2021)
and AraBERT (Antoun et al., 2020).

Qur’an QA 2023 introduced a more challenging
MRC task and a new Qur’anic Passage Retrieval
(QPR) task, which parallels the Qur’an QA compo-
nent of Subtask 2 in the present shared task. The
primary goal of QPR is to retrieve all Qur’anic
passages that contain potential answers to a ques-
tion posed in MSA. A total of 38 and 29 teams
registered for QPR and MRC, respectively, and 10
teams submitted 39 runs in the test phase across the
two tasks. The evaluation results revealed the in-
herent difficulty of the tasks: the top team achieved
pRR = 0.571 on MRC and MAP@10 = 0.251
on QPR. For MRC, fine-tuned AraELECTRA and
AraBERT models remained leading performers for
the top team that employed them. Notably, the
second-place team was the only one to adopt a GPT-
4 model in a zero-shot prompt setting (Zekiye and
Amroush, 2023). For QPC, the top-performing ap-
proach ensembled dual- and cross-encoder BERT-
based models with staged fine-tuning on Arabic QA
and domain-specific datasets (Elkomy and Sarhan,
2023). Attempts to use LLMs as embedding mod-
els or re-rankers were modest and did not feature
among the top systems.
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B Prompt for Generating Responses with
Qur’anic and Hadith Evidence

Prompt:
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Translation:
Provide an answer to the following question, citing
evidence from the Qur’an and Prophetic Hadiths.

Question:

C Annotation and Correction Guidelines

1. Incomplete texts: Any incomplete Qur’anic
verse (Ayah) or incomplete Hadith is considered an
error.
2. Diacritization: Incorrect diacritization is
marked as an error, whereas partially correct dia-
critization or the absence of diacritics is not treated
as an error.
3. Error granularity: A single error in an Ayah
or Hadith suffices to label the span as erroneous.
4. Reference verification: In this version, verifi-
cation of metadata such as chapter or Hadith refer-
ence numbers is not required.
5. Span boundaries: Annotated spans exclude
outer punctuation marks, if present.
6. Multiple Ayahs: If more than one Ayah appears
in the same span, the entire span is selected even if
an internal verse number appears in the middle.
7. Sources: Corrected Qur’anic text must
be copied from https://quran.ksu.edu.sa/,
and corrected Hadith from https://dorar.net/
hadith.
8. Correction task: Annotators predict the in-
tended Ayah or Hadith and copy the exact corrected
and complete text from the designated sources. If
no valid correction can be determined, they write
“Wrong” in the correction field.
9. Consistency in length: Corrections must pre-
serve the number of intended Ayahs. For instance,
if the erroneous text contains two Ayahs, the cor-
rected version should also contain two.
10. Output assessment: In this version, we focus
solely on the verification and correction of Qur’anic
verses (Ayahs) and Hadiths, without assessing the
completeness of the answers or their relevance to
the given question. We leave this for future releases.
11. Correction formatting: For quality control,
annotators were instructed to prepend a serial num-
ber to each correction in the text area, reflecting

its order in the list of erroneous Ayahs or Hadiths.
Each correction was required to be written on a
separate line.

D Sample Data Files Provided to
Participants

Figure 4: Example entry from the development set
showing a question, model ID, and model-generated
response.

Figure 5: Sample JSON entries from the Qur’an ref-
erence collection, showing Surah name, Ayah ID, and
Ayah text.

Figure 6: Sample JSON entry from the Hadith reference
collection, including metadata (Book ID, title) and Ha-
dith text.

E Annotation Rubrics for Qur’an Hadith
QA Subtask
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Team Name Run MAP@10 MAP_Q@5 MAP_H@5
Burhan 351588_Burhan_PQQFHF 0.3351 0.3389 0.3876
Burhan 351587_Burhan_QFHF 0.3021 0.3091 0.3461
Burhan 351586_Burhan_QFH 0.2916 0.3130 0.2936
BurhanAI 351568_burhanai_task_2_RAG_gpt5high 0.2807 0.3257 0.2386
ThinkDrill 351792_run_sample 0.2296 0.2623 0.2150
NUR 351549_nur_run01 0.1809 0.2334 0.1923
NUR 351550_nur_run02 0.1804 0.2257 0.1961
BayaNet 351272_BayaNet_run02mod 0.1504 0.2064 0.2240
NUR 351551_nur_run03 0.1257 0.1438 0.1569
MSA 350916_MSA_02 0.1185 0.1674 0.0685
MSA 351316_MSA_04 0.1185 0.1674 0.0685
MSA 351275_MSA_03 0.1185 0.1674 0.0685
ThinkDrill 351585_run_sample 0.0509 0.0977 0.0841
Maged 351633_run_sample 0.0332 0.0887 0.0457
ThinkDrill 351580_run_sample 0.0226 0.0482 0.1569
BayaNet 351263_BayaNet_b6453eb4 0.0157 0.0205 0.0067
CISRG 350176_CISRG_r25 0.0116 0.0294 0.0128
Maged 351629_run_sample 0.0000 0.1569 0.1961
Maged 351462_run_sample 0.0000 0.0588 0.0196

Table 4: The evaluation results of the last three runs submitted to Subtask 2 ranked by MAP@10. Teams with * did
not submit a system paper. The run name is formatted as CodaBenchSubmissionID_RunName.

Figure 7: Rubric for annotating potential answer-
bearing Qur’anic passages to a given question.

Figure 8: Rubric for annotating potential answer-
bearing Hadith matns to a given question.
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Abstract

In this paper, we present our contribution to
the IslamicEval 2025 shared task. More specifi-
cally, we address subtask 2, which is a passage
retrieval (PR) system for Qur’an and Hadith,
the two central bodies of text in Islam. Bas-
ing off of a fine-tuned BERT-based sentence
transformer retrieval model, we explore several
approaches, including pipelined fine-tuning
of cross-encoders, as well as using a state-
of-the-art LLM for reranking of relevant pas-
sages, and identification of zero-answer ques-
tions. Our best-performing system achieves a
MAP@10 of 0.1809, MAP_Q@5 of 0.2334,
and MAP_H@5 of 0.1923 on the test set.

1 Introduction

As the two primary sources for Islamic teachings,
the Holy Qur’an and the Hadith are essential to the
lives of roughly 2 billion Muslims. They contain
rulings, moral and spiritual guidance, and general
ways of life, making Islamic question answering
(QA) systems extremely important for those prac-
tising, and even inquisitive non-Muslims. It is also
important that such systems maintain high accuracy
and reliability, as small errors or hallucinations may
have significant implications due to the sensitivity
of the materials.

While QA in Arabic has been tackled previously
(Koto et al., 2024) and remains an active research
area, the challenge with Arabic morphological rich-
ness is amplified even more when it comes to reli-
gious texts, where context, syntax, or vocabulary
can change a passage’s meaning entirely. Previ-
ously, the Qur’an QA 2022 (Malhas et al., 2022)
and Qur’an QA 2023 (Malhas et al., 2023) shared
tasks addressed this challenge, but only within the
scope of the Holy Qur’an. In comparison, Ha-
dith collections present a broader, more complex
challenge for information retrieval (IR). Hadith is
built upon a chain of narrators quoting the Prophet

∗*These authors contributed equally to this work.

Muhammad, peace be upon him, varying in length,
phrasing, and authenticity, and spread across multi-
ple compilations. They also lack a unified indexing
system, as opposed to the Qur’an, which consti-
tutes a singular source of information. This leads
to a more dynamic and realistic approach in the Is-
lamicEval shared task (Mubarak et al., 2025). For
a free-text question in Modern Standard Arabic
(MSA), the system must retrieve a ranked list of up
to 20 Qur’anic passages or Hadiths that may con-
tain the answer to the question. The question could
also be unanswerable. In some cases, the question
may also have no relevant answer in the Qur’an but
one in the Hadith, or vice versa, requiring systems
to be versatile in searching across both corpora.

Similar to the previous editions, the task pro-
vides us with a set of thematic Qur’an passages,
as well as the Sahih Al-Bukhari Hadith collection.
We are also provided with the AyaTEC Qur’an QA
dataset (Malhas and Elsayed, 2020), as discussed
further in Section 2. However, no equivalent exists
for Hadith QA, prompting us to search for relevant
external sources for training our systems.

Our contribution to the subtask involves
pipelined fine-tuning of BERT-based sentence
transformer models for the retrieval of relevant
documents, followed by either a fine-tuned cross-
encoder or a state-of-the-art LLM for filtering and
identification of zero-answer questions. The sys-
tem is then evaluated on mean average precision,
specifically, MAP@10 and MAP@5 for the Qur’an
and Hadith passages independently. The paper is
structured as follows: Section 2 describes the data
used for our experiments, Section 3 goes into the
details of the experiments and provides an overview
of the results achieved, and Section 5 discussing
and drawing insights from these results. Lastly,
Section 6 offers a conclusion to our work. We
release our code and data publicly on GitHub1.

1https://github.com/Yoriis/IslamicEval2025
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Split Train Dev Test
# Question–passage pairs 1261 298 –
# Questions

Multi-answer 131 (62%) 26 (65%) –
Single-answer 48 (23%) 8 (20%) –
Zero-answer 31 (15%) 6 (15%) –
Total 210 40 71

Table 1: AyaTEC v1.3 Split Distribution

2 Data
The task data consisted of three parts: the Thematic
Qur’anic Passage collection (QPC) (Swar, 2007),
containing 1,266 thematic passages that cover the
whole Holy Qur’an in a simple-clean text style,
without diacritics, the Sahih Al-Bukhari Hadith
collection (Al-Sharjy and Al-Zubaidi, 2009), com-
prising 2,254 Hadiths, the authors having excluded
redundant Hadiths and Arabic commentary, and the
AyaTEC v1.3 (Malhas and Elsayed, 2020) dataset,
composed of question-passage pairs. A brief de-
scription of the split can be found in Table 1.

As the dataset size remains limited, we adopt a
sequential fine-tuning strategy, adding increasingly
task-specific datasets to enhance the model’s adap-
tation to our domain. We use the Arabic portion
of the TyDi dataset (Clark et al., 2020), containing
about 15 thousand QA pairs. We use the Jalalayn
Tafseer of the Qur’an, aggregated to the thematic
passages provided. Additionally, to address the
limited size of task-specific data, especially for
Hadith, we use the QuQA and HaQA datasets (Al-
nefaie et al., 2023), which contain 3382 and 1598
QA pairs, respectively. Lastly, to increase models’
sensitivity to zero-answer questions, we augment
each of our datasets with several random negative
samples - 5 negatives per sample for HaQA, and 3
negatives per sample for the others.

3 System
Our system has 2 stages: retrieval & re-ranking,
discussed in this section & illustrated in figure 1.

3.1 Retrieval

To retrieve the top-K passages for a question, we
encode the question and all thematic Qur’anic pas-
sages and Hadiths using a sentence embedding
model, compute cosine similarity, and rank the
passages. We evaluated several Arabic embed-
ding models on the shared task’s Qur’an-only dev
set using Recall@30 to establish baseline perfor-
mance; results are in Table 10. The best model,
AraModernBert2, achieved a Recall@30 of 0.445.

Retriever Fine-Tuning Starting from the
AraModernBERT model, we fine-tuned for the
target domains using the shared task’s Qur’an-only
training set and additional data (Section 2).
Following prior work on dense retrieval with hard
negatives (Zhan et al., 2021; ElKomy and Sarhan,
2023), we retrieved top-ranked Qur’anic and
Hadith passages per question using the base model
for fine-tuning. For each query, we sampled K
passages in total, including multiple positives and
treating the rest as hard negatives. We also tested
positive-only fine-tuning to assess the impact of
excluding negatives.

We implemented two fine-tuning pipelines, each
using both cosine and contrastive loss:

• Pipeline A: Single-stage fine-tuning on the
shared task’s Qur’an-only training data.

• Pipeline B: Multi-stage curriculum fine-
tuning using additional QA datasets (Sec-
tion 2), starting with TyDiQA, followed by
Tafseer, QuQA, HaQA, and finally the Qur’an-
only set.

For both pipelines, we varied the number of pas-
sages (K) used during fine-tuning. Each K in-
cludes multiple positive and hard negative passages,
retrieved from both Qur’an and Hadith corpora. We
evaluated performance using recall at multiple re-
trieval depths, excluding unanswerable questions.
Pipeline A Direct fine-tuning (Table 2) shows
strong gains over the positive-only baseline, with
its best Recall@30 at 0.491 exceeding the base-
line by over 20 percent. At larger retrieval depths,
Recall@70 peaks at 0.592.

Passages Loss Search R@30 R@50 R@70

Positive
only

Contrastive Cosine 0.285 0.329 0.385

50 Contrastive Cosine 0.462 0.537 0.555
70 Cosine Cosine 0.446 0.537 0.592

Contrastive L2 0.491 0.521 0.552

Table 2: Top-performing configurations in Pipeline A
by number of passages. Full results in Table 11.

Pipeline B The multi-stage curriculum (Table 3)
surpasses Pipeline A at both shallow and deep re-
trieval. Its best Recall@30 reaches 0.541, around
5 percent higher than Pipeline A, while its Re-
call@70 climbs to 0.688, nearly 10 percent above
Pipeline A’s top result.

2https://huggingface.co/NAMAA-Space/
AraModernBert-Base-STS
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Figure 1: Figure showing the final pipeline used for the submitted runs. Green shapes represent input and output
data modules, purple boxes denote retrieval processes, and yellow boxes signify reranking and filtering stages.

Passages Loss Search R@30 R@50 R@70

60 Cosine L2 0.505 0.600 0.688
70 Contrastive Cosine 0.541 0.581 0.640
80 Contrastive L2 0.537 0.620 0.645

Table 3: Top-performing configurations in Pipeline B
by number of passages. Full results in Table 12

3.2 Reranking

To re-rank the retrieved documents, we experi-
mented with two approaches: a cross-encoder ar-
chitecture and a large language model.

3.2.1 Cross-Encoder Architecture
Building on the fine-tuned retrieval model, we
use Pipeline B to fine-tune two cross-encoders:
AraBERTv0.2-base (Antoun et al., 2020), and
NAMAA Space GATE Reranker V1 (GATE)
(NAMAA-Space, 2025). Our choice of models is
guided by the Arabic RAG leaderboard (Mohaned
A. Rashad, 2025), which evaluates retrieval and
reranking systems. GATE, built on AraBERT and
Arabic Triplet Matryoshka (Nacar et al., 2025),
ranks highly on this benchmark while also remain-
ing resource-efficient. AraBERTv0.2-base, as one
of the earliest widely adopted Arabic Transform-
ers and GATE’s predecessor, serves as a baseline
for comparison. For identification of zero-answer
questions, we use a thresholding-based approach.
If all passages, after reranking, have scores below
the threshold, the question is deemed to have no
answers, and the systems returns -1.

Two versions of Pipeline B were experimented
with. In one configuration, we drop the Tafseer
dataset for fine-tuning, and exclude the task data
as well (Pipeline B1). This generally led to bet-
ter results, as seen in Table 4. In the other, we
utilize the full pipeline, ending with fine-tuning
independently on two versions of the task data:
one with only positive passages sampling, and one
with Top-70 (Pipeline B2). A representation of

both pipelines can be found in Figure 2. Table 5
shows the MAP@5 and MAP@10 for the dev set
after each fine-tuning step. Interestingly, in both
scenarios, fine-tuning on the task data decreases
performance.

It’s also important to note that a k-value of 70
was used to retrieve the relevant passages, which
were then reranked, and the scoring threshold for
zero-answer questions was set at 0.15 for these ex-
periments. We experimented with the thresholding
hyperparameter, as can be seen in Appendix C.

Model Metric Baseline TYDI QUQA HAQA

GATE
MAP@5 0.3172 0.2319 0.2372 0.2548
MAP@10 0.3215 0.2503 0.2574 0.2786

AraBERT
MAP@5 0.0278 0.1712 0.1965 0.2186
MAP@10 0.0371 0.1972 0.2138 0.2334

Table 4: MAP@5 and MAP@10 scores without Tafseer

The regression in GATE’s performance could
be attributed to several factors. This model has
already been pretrained on large-scale Arabic cor-
pora, and further fine-tuning likely introduced over-
fitting and reduced the model’s ability to generalize.
Additionally, the negative sampling strategies may
not have been comprehensive enough to evaluate
the reranker’s ability to improve from the baseline.
This suggests that, for already high-performing
rerankers, there’s a need for more careful design of
fine-tuning data, otherwise it might be better to use
the reranker without further training.

3.2.2 LLM-based Approach
We used Gemini 2.5 Flash (Comanici et al., 2025)
to rerank retrieved documents by instructing it to
get an ordered list of passage IDs that have the
answers to a given question according to their rele-
vance. The prompt design process included adding
more instructions about the format of the answers
to avoid hallucination of passages and emphasizing
the importance of relevance and order of the re-
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Figure 2: Figure showing cross-encoder finetuning configurations.

Model Metric Baseline TyDi Tafseer QuQA HaQA Task Task-70

GATE
MAP@5 0.3172 0.2319 0.2504 0.2318 0.2499 0.2107 0.2480
MAP@10 0.3215 0.2503 0.2642 0.2563 0.2736 0.2367 0.2680

AraBERT
MAP@5 0.0278 0.1712 0.2099 0.1899 0.1884 0.1733 0.2039
MAP@10 0.0371 0.1972 0.2099 0.2093 0.2081 0.1967 0.2267

Table 5: MAP@5 and MAP@10 cross-encoder scores on the dev set for full Pipeline B

turned passage IDs. The final prompt used is found
in Appendix A.

Experimentation with different k values showed
that higher values produced inconsistent results
with Gemini, with MAP ranges varying drastically
(Table 6). However, Gemini showed relatively reli-
able performance with the top 70 passages to filter
across runs and models.

Pre and Post Retrieval Enhancements: To im-
prove the performance of our pipeline, we experi-
mented with two approaches: one for pre-retrieval
and one for post-retrieval.

Our proposed technique for pre-retrieval is to
use topic filtering before passing the question to our
RAG model. This method uses Latent Dirichlet Al-
location (LDA) to find the topics in the reranking
stage (Ampazis, 2024). We applied it as a pre-
retrieval technique by assigning, using the LLM,
each question and Qur’anic passage a list of one
or more topics out of 40 relevant topics in Islam,
found in Appendix B. The filtering reduced the
search space for the RAG model by providing it
only with the documents matching the topics in the
question to encode. Results in Table 7 show that
performance increases without topic filtering, with
MAP improving by 2%+.

For post-retrieval, to enhance the LLM’s un-
derstanding of the retrieved Qur’anic passages,
we expanded each passage with its interpretation
by aggregating the Jalalayn Tafseer. We observe
that adding Tafseer reduced performance, as Gem-
ini struggles with longer inputs, yielding at best
MAP@10 of 0.15.

Model Name Top K MAP@5 MAP@10
Baseline Model 70 0.2983 0.3137

80 0.3048 0.3294
100 0.2552 0.2902

Pipeline A 70 0.3311 0.3579
80 0.2777 0.3049
100 0.2913 0.3185

Pipeline B 70 0.3506 0.3801
80 0.3550 0.3550
100 0.3598 0.3888

Table 6: MAP@5 and MAP@10 scores for different
models across varying Top K values.

Model Name Top K MAP@5 MAP@10
With Topic Modeling 30 0.3991 0.4299

70 0.3958 0.4365
Without Topic Modeling 30 0.4228 0.4491

70 0.4407 0.4591

Table 7: MAP@5 and MAP@10 scores for different
models across varying Top K values.

4 Results

For evaluation on the test set, we chose three con-
figurations: the first two use Gemini, with the first
retrieving the top 70 most relevant documents from
the combined collection Qur’an and Hadith pas-
sages, and the second retrieving 50 from Qur’an
and 20 from Hadith to allow for higher representa-
tion of Hadith. The last approach also followed this
method with the fine-tuned GATE model (Pipeline
B1) used for filtering. It’s important to note that
when retrieving Hadith passages, we removed the
diacritics from the texts. Results can be seen in
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Table 8.

Model MAP@10 MAP_Q@5 MAP_H@5

Gemini 0.1809 0.2334 0.1923
Gemini (50-20) 0.1804 0.2257 0.1961
GATE (50-20) 0.1257 0.1438 0.1569

Table 8: Subtask 2 Test Set Results

Gemini achieved higher performance than GATE
in both configurations, with improvements ob-
served across all metrics. However, in all three
test runs, we observe a consistent and significant
drop in performance compared to the development
set.

This decline may be attributed to domain shift
between the Qur’an-only development set and the
mixed-source test set, or to overfitting on the fine-
tuning data. While reranking with Gemini im-
proved overall relevance, its performance on previ-
ously unseen questions proved less stable. GATE,
although more consistent, remained behind Gemini,
likely due to its limited capacity to model question
semantics compared to the LLM-based reranker.

5 Discussion

Our experiments on the retrieval model reveal 3
key insights. First, positive-only fine-tuning con-
sistently underperformed compared to using hard
negatives, as both cosine and contrastive losses ben-
efit from distinguishing relevant from highly sim-
ilar but irrelevant passages. Second, the optimal
top-K passages for positive and hard negative
sampling was typically 60–80 passages; larger
values often introduced easy negatives that weak-
ened learning. Third, there was no single best
loss–search pairing, with outcomes varying across
settings. Finally, multi-stage curriculum (Pipeline
B) consistently outperformed direct fine-tuning
(Pipeline A), with up to a 10% recall improve-
ment at higher Recall@K values. This demon-
strates the advantage of gradual domain adaptation,
moving from general Arabic QA to Qur’anic and
Hadith retrieval, which helps the model capture the
linguistic and semantic characteristics. For filter-
ing, Gemini had a better performance; its under-
standing of the passages led to an increase of more
than 5% in MAP compared to the cross-encoder
results. However, adding more context - whether
by increasing the number of retrieved documents
or by adding Tafseer - resulted in a substantial drop
in scores.

6 Conclusion

In this study, we explore QA techniques for subtask
B of the IslamicEval 2025 shared task. We compare
direct fine-tuning and a multi-stage approach for
retrieval, and a cross-encoder and LLM for rerank-
ing. Our experiments led to an increase in Recall
for retrieval and MAP for reranking compared to
prior models, demonstrating the potential of our
approach for building more accurate and reliable
Islamic QA systems.

Limitations The main challenge is dataset size
and a lack of Hadith QA pairs. Additionally, Gem-
ini fluctuated and produced inconsistent scores
across runs. GPU limitations also prevented us
from carrying out experiments using larger mod-
els. The limited timeline of our experiments also
prevented us from exhausting all possible configu-
rations, hyperparameters, and other approaches.
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A Prompting

The following prompt was used for filtering and
reranking using Gemini2.5 Flash:

Given a question in Modern Standard Arabic
(MSA) and a list of Quranic and Hadith verses
(each with an associated ID), identify the IDs of
the verses that contain the answer to the question.
Instructions:
- Return only the IDs of the extremely relevant
verses in a list, ordered from most relevant to least
relevant.
- Do not explain your answer or provide verse text.
- If the answer is not found in any verse, or you are
unsure, you must return [-1].
- Use the verse ID exactly as provided (e.g., if the
verse ID is 23:14-16, return [23:14-16]).
Question: <QUESTION-TEXT>
Verses: <RETRIEVED-PASSAGES>

B Topic Modeling

To reduce the search space of the retrieval model,
we adapted a pre-retreival topic filtering approach
where we assign the questions and documents one
or more of the topics from Table 9.

C Thresholding Experimentation

Using our best available model, the GATE base-
line, we experimented with different values of the
scoring threshold (T). Intuitively, the most optimal
values lie between 0.10 - 0.20 as can be seen in
Figure 3.
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Table 9: The list of 40 topics assigned to questions and Qur’anic passages used for filtering before retrieval.

Figure 3: MAP@10 on GATE for Dev Set VS Threshold

D Arabic Embedding Model Evaluation

To identify suitable retriever models, we evaluated
a broad set of Arabic (and multilingual) embed-
ding models using cosine similarity ranking and
Recall@30 on the Qur’anic development set. Due
to limited computational resources, we were un-
able to run inference on larger-scale models (e.g.,
>500M parameters) with extensive batch process-
ing, and thus prioritized models that were feasible
for our hardware budget.
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Model Recall@30 Trainable Params (M)
NAMAA-Space/AraModernBert-Base-STS1 0.4451 149
silma-ai/silma-embeddding-sts-v0.12 0.4136 135
omarelshehy/Arabic-Retrieval-v1.03 0.3880 135
omarelshehy/Arabic-STS-Matryoshka-V24 0.3876 135
Omartificial-Intelligence-Space/GATE-AraBert-v1(Nacar and Koubaa, 2024) 0.3663 135
ALJIACHI/bte-base-ar5 0.3627 149
mohamed2811/Muffakir_Embedding6 0.3576 135
silma-ai/silma-embeddding-matryoshka-v0.17 0.3517 135
Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2(Nacar and Koubaa, 2024) 0.3478 135
AhmedZaky1/arabic-bert-sts-matryoshka8 0.3235 135
Alibaba-NLP/gte-multilingual-base9 0.3073 305
Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka(Nacar and Koubaa, 2024) 0.3053 135
AhmedZaky1/arabic-bert-nli-matryoshka10 0.3028 135
AhmedZaky1/DIMI-embedding-v211 0.2924 305
ibm-granite/granite-embedding-278m-multilingual12 0.2701 278
omarelshehy/arabic-english-sts-matryoshka-v2.013 0.2680 560
OmarAlsaabi/e5-base-mlqa-finetuned-arabic-for-rag14 0.2622 278
intfloat/multilingual-e5-base(Wang et al., 2024) 0.2599 278
ibm-granite/granite-embedding-107m-multilingual15 0.2598 107
Abdelkareem/zaraah_jina_v316 0.2443 64
AhmedZaky1/DIMI-embedding-v417 0.2322 305
Snowflake/snowflake-arctic-embed-m-v2.018 0.1745 305
Abdelkareem/abjd19 0.1677 438
Abdelkareem/ara-qwen3-1820 0.1677 438
Omartificial-Intelligence-Space/Arabic-labse-Matryoshka(Nacar and Koubaa, 2024) 0.1579 471
sentence-transformers/LaBSE21 0.1575 471
Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet22 0.0973 118
mixedbread-ai/mxbai-embed-large-v1(Li and Li, 2023) 0.0357 335
metga97/Modern-EgyBert-Base23 0.0145 159
metga97/Modern-EgyBert-Embedding24 0.0145 159
sentence-transformers/all-mpnet-base-v225 0.0057 109
sentence-transformers/all-MiniLM-L6-v226 0.0008 23

Table 10: Recall@30 and parameter counts for reviewed sentence embedding models on the Qur’anic dev set.
1 https://huggingface.co/NAMAA-Space/AraModernBert-Base-STS
2 https://huggingface.co/silma-ai/silma-embedding-sts-0.1
3 https://huggingface.co/omarelshehy/Arabic-Retrieval-v1.0
4 https://huggingface.co/omarelshehy/Arabic-STS-Matryoshka-V2
5 https://huggingface.co/ALJIACHI/bte-base-ar
6 https://huggingface.co/mohamed2811/Muffakir_Embedding
7 https://huggingface.co/silma-ai/silma-embedding-matryoshka-0.1
8 https://huggingface.co/AhmedZaky1/arabic-bert-sts-matryoshka
9 https://huggingface.co/Alibaba-NLP/gte-multilingual-base
10 https://huggingface.co/AhmedZaky1/arabic-bert-nli-matryoshka
11 https://huggingface.co/AhmedZaky1/DIMI-embedding-v2
12 https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual
13 https://huggingface.co/omarelshehy/arabic-english-sts-matryoshka-v2.0
14 https://huggingface.co/OmarAlsaabi/e5-base-mlqa-finetuned-arabic-for-rag
15 https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual
16 https://huggingface.co/Abdelkareem/zaraah_jina_v3
17 https://huggingface.co/AhmedZaky1/DIMI-embedding-v4
18 https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0
19 https://huggingface.co/Abdelkareem/abjd
20 https://huggingface.co/Abdelkareem/ara-qwen3-18
21 https://huggingface.co/sentence-transformers/LaBSE
22 https://huggingface.co/Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet
23 https://huggingface.co/metga97/Modern-EgyBert-Base
24 https://huggingface.co/metga97/Modern-EgyBert-Embedding
25 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
26 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

501

https://huggingface.co/NAMAA-Space/AraModernBert-Base-STS
https://huggingface.co/silma-ai/silma-embedding-sts-0.1
https://huggingface.co/omarelshehy/Arabic-Retrieval-v1.0
https://huggingface.co/omarelshehy/Arabic-STS-Matryoshka-V2
https://huggingface.co/ALJIACHI/bte-base-ar
https://huggingface.co/mohamed2811/Muffakir_Embedding
https://huggingface.co/silma-ai/silma-embedding-matryoshka-0.1
https://huggingface.co/AhmedZaky1/arabic-bert-sts-matryoshka
https://huggingface.co/Alibaba-NLP/gte-multilingual-base
https://huggingface.co/AhmedZaky1/arabic-bert-nli-matryoshka
https://huggingface.co/AhmedZaky1/DIMI-embedding-v2
https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual
https://huggingface.co/omarelshehy/arabic-english-sts-matryoshka-v2.0
https://huggingface.co/OmarAlsaabi/e5-base-mlqa-finetuned-arabic-for-rag
https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual
https://huggingface.co/Abdelkareem/zaraah_jina_v3
https://huggingface.co/AhmedZaky1/DIMI-embedding-v4
https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0
https://huggingface.co/Abdelkareem/abjd
https://huggingface.co/Abdelkareem/ara-qwen3-18
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet
https://huggingface.co/metga97/Modern-EgyBert-Base
https://huggingface.co/metga97/Modern-EgyBert-Embedding
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Passages Loss Function Search Method Recall@30 Recall@50 Recall@70

Positive only

Cosine Cosine 0.269 0.320 0.341
Cosine L2 0.211 0.250 0.283

Contrastive Cosine 0.285 0.329 0.385
Contrastive L2 0.242 0.288 0.346

30

Cosine Cosine 0.417 0.480 0.537
Cosine L2 0.439 0.497 0.523

Contrastive Cosine 0.440 0.497 0.537
Contrastive L2 0.447 0.494 0.548

50

Cosine Cosine 0.425 0.488 0.531
Cosine L2 0.431 0.476 0.501

Contrastive Cosine 0.462 0.537 0.555
Contrastive L2 0.457 0.536 0.555

70

Cosine Cosine 0.446 0.537 0.592
Cosine L2 0.424 0.496 0.545

Contrastive Cosine 0.472 0.510 0.583
Contrastive L2 0.491 0.521 0.552

90

Cosine Cosine 0.436 0.494 0.558
Cosine L2 0.428 0.466 0.501

Contrastive Cosine 0.477 0.517 0.559
Contrastive L2 0.460 0.518 0.555

Table 11: Performance of Fine-Tuned Configurations (Pipeline A) on Dev Set (Quran)

Passages Loss Function Search Method Recall@30 Recall@50 Recall@70

60

Cosine Cosine 0.508 0.586 0.675
Cosine L2 0.505 0.600 0.688

Contrastive Cosine 0.539 0.603 0.621
Contrastive L2 0.538 0.602 0.634

70

Cosine Cosine 0.521 0.596 0.663
Cosine L2 0.464 0.577 0.636

Contrastive Cosine 0.541 0.581 0.640
Contrastive L2 0.539 0.606 0.634

80

Cosine Cosine 0.446 0.548 0.646
Cosine L2 0.462 0.501 0.574

Contrastive Cosine 0.520 0.619 0.649
Contrastive L2 0.537 0.620 0.645

Table 12: Performance of Fine-Tuned Configurations (Pipeline B) on Dev Set (Quran)
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Abstract

In this paper, we describe our submission to
the IslamicEval 2025 shared task, covering
hallucination detection/correction and closed-
world retrieval in Quranic and Hadith. We
fine-tuned an LLM for detecting Quran and Ha-
dith text spans, utilizing synthetic augmenta-
tion, diacritic variation, and morphological nor-
malization to improve detection robustness (F1
= 87.10%) and used another reasoning model
with tools (F1 = 90.06%). For validation, the
accuracy is 88.60%, and for correction the ac-
curacy is 66.56% where we employed a lay-
ered hierarchical index and search algorithm
combining exact, normalized, fuzzy, and se-
mantic matching with prompt-driven repair—to
ensure canonical alignment and diacritic fi-
delity. For the correction stage, we also uti-
lized a reasoning model with access to tools
with an accuracy of 61.04%. Regarding the
ranked answer-bearing text retrieval task, we
implemented a Retrieval-Augmented Genera-
tion (RAG) system restricted to the corpora pro-
vided by the shared task, with structured out-
put, vector-store grounding, and prompts tuned
for “answer-enclosing” citations that achieve
MAP@10 of 0.6199 on the development set
and 0.2807 on the test set. The results highlight
the value of normalization, corpus-restricted
search, and reasoning models with tools in mit-
igating hallucinations and improving retrieval
precision in low-resource religious settings and
that much smaller fine-tuned models can com-
pete with frontier models (e.g. GPT-5 high) for
specialized tasks such as span detection.

1 Introduction

Despite SOTA of large language models (LLMs) in
a wide range of natural language processing (NLP)
tasks, they frequently hallucinate Li et al. (2024);
Hikal et al. (2025); Orgad et al. (2024).

Employing Large Language Models (LLMs) to
process religious texts Ganadi et al. (2025); Mo-
hammed et al. (2025) raises different ethical con-

cerns, which makes it a topic of special interest
within the Ethics of Natural Language Process-
ing (NLP) Hutchinson (2024). In religious con-
texts, hallucinations can manifest as misquoted
verses, fabricated Hadiths, or distorted interpreta-
tions, which pose significant ethical, theological,
and social risks. Such errors may undermine pub-
lic trust in AI systems and contribute to the spread
of misinformation, particularly when dealing with
sacred texts that have fixed, canonical forms.

Our main contributions to the IslamicEval-2025
Mubarak et al. (2025) shared task are threefold.
First, we introduced a data pipeline to generate a
synthetic dataset, enabling fine-tuning of a rela-
tively small LLM (gpt-4.1-mini) for detecting spans
of religious quotations—both claimed and correct.
We benchmarked this approach against large rea-
soning models with access to a code interpreter,
showing that the fine-tuned small model is cheaper
and faster while maintaining strong performance.
Second, we designed a layered hierarchical index
and search algorithm, coupled with a low-cost LLM
judge (gpt-4.1-mini), which outperformed a frontier
reasoning model (GPT-5 with code interpreter) that
is significantly slower and more expensive. Third,
we developed a Retrieval-Augmented Generation
(RAG) pipeline specialized for Quranic and Hadith
question answering, tailored to the unique linguistic
and semantic challenges of Islamic texts. We have
released our GitHub repository publicly to facilitate
transparency and reproducibility of our work 1.

2 Background

We participated in Subtask 1A, which takes a model
response as input and detects spans labeled Ayah or
Hadith. In addition, we participated in Subtask 1B,
which validates the spans identified in Subtask 1A
labeling it as correct or incorrect, while Subtask 1C

1https://github.com/sakher/
IslamicEval-BurhanAI-Public
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corrects any spans marked as incorrect by providing
their correct form or flagging them as incorrect.
Finally, Subtask 2 focuses on retrieving the top 20
answer-bearing citations from the Quran and Sahih
Al-Bukhari given an Arabic question.

Many previous works have addressed hallucina-
tion in large language models using different ap-
proaches. One line of research applies Retrieval-
Augmented Generation (RAG) B’echard and Ayala
(2024); Alan et al. (2024); Khalila et al. (2025).
Other studies focus on instruction tuning and
prompt engineering techniques Barkley and van der
Merwe (2024); Hikal et al. (2025). Further research
highlights verification and fact-checking strategies
Sibaee et al. (2024). Additionally, some works em-
phasize fine-tuning with human feedback Cheng
et al. (2025); Lin et al. (2025). Together, these
methods enable LLMs to function as more effective
tools for factual verification and reliable informa-
tion use.

3 System Overview

3.1 Subtask 1A – Span Detection:

We used two approaches; we fine‑tuned
gpt‑4.1‑mini to output religious text spans.
For fine-tuning we constructed a balanced training
corpus (460 training examples and 83 validation
examples) through multi-stage synthesis combining
competition development data (70%) with synthetic
examples (30%) generated using gpt-4.1 2.

Separately, we leveraged a reasoning model with
access to a code interpreter, testing both frontier
and smaller OpenAI models (see detailed results in
Table 1). The model was instructed to detect spans
resembling Quran or Hadith. Since LLMs struggle
with precise character counting Fu et al. (2024),
we enabled the code interpreter tool: whenever the
model needed to compute exact offsets, it could
generate Python code, which was then executed in
a secure sandbox, and the resulting values were fed
back into the model. This ensured reliable start and
end indices for each span. Outputs were further
constrained using the OpenAI API’s structured out-
put feature with a JSON schema requiring a list of
citations labeled as Ayah or Hadith with character
offsets. We then applied heuristic post-processing:
checking context within ±64 characters for lexical
cues to refine labels, trimming extraneous punctu-

2data generation pipeline https://github.com/sakher/
IslamicEval-BurhanAI-Public/blob/main/abubakr/
taskA/01-index-religion-dataset-for-search.py

ation or quotations, and merging or disentangling
nested spans3.

3.2 Subtask 1B – Validation and Subtask 1C –
Correction:

Our system uses a layered design that combines
seven forms of indexing with a six-stage search pro-
cess. On the indexing side, every Quran verse and
Hadith is indexed in multiple ways so the system
can quickly switch between exact and approximate
lookups. We keep exact MD5 hashes of the raw text,
normalized versions without diacritics or punctua-
tion, and character n-grams (3-grams by default) for
fuzzy matches. Texts are also grouped into buckets
by length to speed up candidate filtering, and we
maintain a list for edit-distance checks. When avail-
able, we add a Whoosh full-text index for keyword
search and a vector index built from Cohere embed-
dings stored in Qdrant for semantic similarity.

Searching happens in a strict sequence, with early
stopping once a confident match is found. It starts
with exact and normalized lookups, then falls back
to n-gram fuzzy search. If needed, it escalates to
semantic retrieval with embeddings and re-ranking.
Next, it applies string-level fuzzy scorers such as
Levenshtein distance and partial substring match-
ing, followed by token-overlap checks to catch para-
phrases. As a last resort, it computes Jaccard simi-
larity on character trigrams. This stepwise design
ensures clean matches are resolved instantly, while
noisy, partial, or corrupted quotations are still recov-
ered through progressively more flexible methods.

For the 1C correction subtask, we also tested a
separate approach using a reasoning model - GPT-
5 with high reasoning effort with access to tools.
We give the model access to a code interpreter tool
and to the corpora as text files. The model could
perform multiple text-matching searches in the files
to find the right match, then decide whether the
matches were found to return them in JSON format.

3.3 Subtask 2
For Subtask 2, we built a Retrieval-Augmented Gen-
eration (RAG) system that retrieves passages from
the Quran and Sahih Al-Bukhari. The corpora were
split into 1,500-token chunks with 400-token over-
lap and stored as a vector dataset, allowing the
reasoning model (GPT-5 with high reasoning) to
run multiple searches per query when needed. The

3Prompts details https://github.com/sakher/
IslamicEval-BurhanAI-Public/blob/main/task_
a_prompt_engineering/pipeline_task_a.py
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model could reformulate queries across iterations
and returned ranked citations based on how directly
and completely they answered the question. A de-
terministic post-processing pipeline then mapped
Quran ayat to QPC Malhas and Elsayed (2020) pas-
sage IDs, validated hadith IDs against the official
JSONL, removed duplicate citations.

4 Experimental Setup

All results were against test dataset and as seen
on CodaBench. Our systems included a fine-tuned
span detector (gpt-4.1-mini, 3 epochs, batch size
1, LR multiplier 2.0, temp 0). Implementation uti-
lizes Whoosh for inverted indexing, FuzzyWuzzy
for edit distance computation, Qdrant for vector
storage, Cohere embed-v4.0 for embeddings, Co-
here rerank-v3.5 for neural re-ranking, and GPT-
4.1-mini for expert-guided validation for subtasks
1B and 1C. For evaluation, we used the proposed
shared task evaluation metrics.

5 Results

Our system achieved a macro-averaged F1 score of
87.78 % using Fine-tuned a Span Detection Model
approach, and 90.06% using reasoning model with
access to tools (o4-mini model with high reasoning
setting), see Table 1.

Although we tested larger models like the full-
size o3 and GPT-5 three different sizes (full, mini
and nano) with all reasoning levels (high, medium
and low), none of these made it to the top 3 results,
which shows that smaller models and fine-tuned
tiny models can outperform larger models for such
specialized tasks A.1.2.

Approach Macro-Averaged F1
Approach-1 90.06%
Approach-2 87.78 %
Approach-3 87.10 %

Table 1: Task 1A evaluation results. Approach 1 is an
OpenAI o4-mini with high reasoning effort reasoning
model with access to tools. Approach 2 is an OpenAI
o3-mini with high reasoning effort reasoning model with
access to tools. Approach 3 is a fine-tuned gpt-4.1-mini
span-detection model.

As for Subtask 1B, the layered hierarchical in-
dex and search algorithm achieves computational
efficiency through exact matching optimization
(constant-time hash operations) while maintaining

comprehensive recall via semantic search for chal-
lenging disambiguation cases, yielding validation
accuracy of 88.60% Table 2.

Approach Accuracy
Hierarchical search-1 88.60 %

Table 2: Task 1B evaluation Accuracy results using
layered hierarchical index and search algorithm with
LLM-based validation.

For the Subtask 1C see Table 3, we used two
approaches: layered hierarchical index and search
algorithm with 66.56 % accuracy see section 3.2,
and reasoning model with tools with 61.04 % accu-
racy. Table 3.

Approach Accuracy
Hierarchical search-2 66.56 %
Reasoning model 61.04 %

Table 3: Subtask 1C evaluation Accuracy results. Hier-
archical search-2 is a hierarchical search using a layered
hierarchical indexing and search algorithm with LLM-
based correction, and Reasoning model is a GPT-5 with
high reasoning effort model with access to tools and
post-processing.

For Subtask 2 see Table 4, the Mean Average Pre-
cision (MAP) was used as the main official measure
for evaluation. We submitted only one submission.
The results show that the model has some ability
to find and rank relevant information, but there is
significant room for improvement, especially for
hypotheses.

Approach MAP@10 MAP_Q@5 MAP_H@5
RAG-based(benchmark) 0.2807 0.3257 0.2386

Table 4: Subtask 2 results.

6 Conclusion

In this paper, we introduced an overview of our
participation in the IslamicEval 2025 shared task
Mubarak et al. (2025).

We proposed a layered hierarchical index and
search algorithm with fine-tuned model to solve the
Subtask 1A, 1B, 1C and reasoning model with tools
for tasks 1A and 1C.

Our findings demonstrate that structured tool-
assisted reasoning, hierarchical indexing with pro-
gressive search strategies, targeted fine-tuning
of models, rigorous text normalization, corpus-
restricted retrieval, and structured outputs are
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highly effective for mitigating hallucinations and
ensuring precise retrieval in religious QA contexts.
Crucially, our results highlight that compact fine-
tuned models (such as GPT-4-mini) and, separately,
smaller reasoning models (e.g., o4-mini) with tool
access can each achieve comparable or superior
performance to large, computationally expensive
frontier systems (e.g., GPT-5 with high reasoning),
significantly reducing cost and latency—particu-
larly in specialized tasks like span detection and
correction (Subtasks 1A and 1C)

In future work, we plan to:

1. Explore vector store ingestion strategies
(chunk sizing, overlap) and Arabic‑specialized
embedding models to improve recall on para-
phrastic questions.

2. Add optional query‑expansion prompts (syn-
onyms, tafsir‑guided paraphrases) while re-
taining closed‑world constraints.

3. Consider shallow re‑ranking informed by
lightweight heuristics (entity match, direc-
tive/answer verbs) only if it demonstrably pre-
serves “answer‑enclosing” priority.

4. Evaluate adding auxiliary corpora (e.g., tafsir)
as side channels for query reformulation with-
out polluting the scoring universe.

5. Expand the vector store with texts with and
without tashkeel (diacritics).

Limitations

Due to the limited time of our submission, we con-
ducted limited experiments to solve the shared task
and we were not able to explore more solution spec-
trum. Consequently, we did not go in depth into the
hallucination categories for more fine-grained so-
lutions. The integration of RAG introduces depen-
dencies on retrieval accuracy and system latency,
which can constrain its applicability in real-time
scenarios or in environments with limited or no
connectivity. Although we utilized LLMs to de-
tect hallucinations, we have not yet investigated
hallucination occurrences within the generated so-
lutions. Finally, using large frontier models with
high reasoning requirements can be both computa-
tionally expensive and time-consuming. Therefore,
our future work will focus on leveraging lightweight
models to improve efficiency.

AI disclaimer

We used ChatGPT and Cursor under author super-
vision to assist with phrasing and to generate sup-
port code for boilerplate and utilities; all research
ideas, algorithms, experimental design, and inter-
pretations are the authors’ own, and the authors
reviewed all outputs and accept full responsibility
for the code and text; no AI system is an author.
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A Appendix

A.1 Subtask 1A

A.1.1 Fine tune model

The Figure 1 presents the loss curve obtained from
the fine-tuning process on the OpenAI platform.
It shows the training loss progression for the fine-
tuning configuration, illustrating a gradual conver-
gence over the training steps. This plot provides
insight into the stability and efficiency of the fine-
tuning process.

Figure 1: The plot generated from the fine-tuning loss
table provided by the OpenAI platform.

A.1.2 Subtask 1A: Details results for
reasoning model approach:

Model Name Reasoning Effort Score
GPT-5 Nano low 0.82
O3 high 0.82
GPT-5 low 0.81
GPT-5 Nano high 0.81
GPT-5 Nano medium 0.81
O4 Mini high 0.81
GPT-5 high 0.79
O3 Mini high 0.79
GPT-5 medium 0.77
GPT-5 Mini high 0.76
GPT-5 low 0.70
GPT-5 Mini medium 0.65
GPT-5 Mini high 0.63

Table 5: Performance of the AI reasoning model with
access to tools was evaluated under varying levels of
reasoning effort, using models of different sizes

From Table 5, we note that smaller models and
tiny models can outperform larger models for such
specialized tasks.

A.2 Subtask 2 evaluation on train and
evaluation datasets

For Subtask 2 see Table 6, we use the or-
ganizers’ code unmodified. Because train/dev
lack hadith gold, our combined qrels capture
Quran supervision only; hadith_sample.qrels re-
mains empty, hence MAP_H@5 is 0 by con-
struction. Evaluation results (merged train + dev
Qrels): MAP@10=0.6199, MAP_Q@5=0.5761,
MAP_H@5=0.0000 (expected given missing ha-
dith gold).
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Approach MAP@10 MAP_Q@5 MAP_H@5
RAG-based(dev+train datasets) 0.6199 0.5761 0.0000
RAG-based(benchmark) 0.2807 0.3257 0.2386

Table 6: Subtask 2 evaluation results.
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Abstract

This paper presents HUMAIN’s submission to
the IslamicEval 2025 Shared Task 1, address-
ing hallucination detection and correction in
Quranic and Hadith LLM-generated content.
Our three-stage pipeline covers: (1) Span De-
tection via sequence-to-sequence annotation us-
ing TANL-style markup, (2) Validation with
retrieval-based similarity and substring match-
ing against reference corpora, and (3) Correc-
tion through exact matching, LCS alignment,
and semantic re-ranking. On the official test
set, our system achieved 87.2% F-1 for span
detection, 86.1% accuracy for validation, and
68.2% accuracy for correction. While system-
atic detection is highly achievable, meaningful
correction remains limited by semantic com-
plexity where small textual differences can
significantly impact religious understanding.
This work presents a multi-stage LLM-based
pipeline for Islamic content verification.

1 Introduction

Large Language Models (LLMs) enable ad-
vanced text generation but suffer from hallucina-
tion—producing linguistically fluent yet factually
incorrect text. While problematic across domains,
hallucinations pose critical risks in religious con-
texts, especially for the Quran and Hadith, where
accuracy is essential. Even small errors (e.g., incor-
rect verse numbering, misattribution) may propa-
gate misleading teachings or erode trust.

The IslamicEval 2025 Shared Task (Mubarak
et al., 2025) addresses this by benchmarking hallu-
cination detection and correction for Quranic and
Hadith content. HUMAIN participated in Subtask
1 (A: Span Detection, B: Span Validation, and
C: Span Correction). We propose a three-stage
pipeline integrating sequence annotation, retrieval-
based verification, and correction via semantic re-
ranking. Our system achieved competitive results
across all subtasks, highlighting both strengths and

limitations of current LLM approaches. We made
our system codes public on GitHub 1. We have
included our codes, prompts, and implementation
details in our GitHub repository.

The paper is structured as follows: section 2 out-
lines the shared task setup. Section 3 describes our
system architecture. Section 4 details experimental
settings. Section 5 reports results, and section 6
concludes the paper with insights and future direc-
tions.

2 Background

The IslamicEval 2025 Shared Task (Mubarak et al.,
2025) was designed to to evaluate system perfor-
mance on hallucination detection and correction
of Quranic and Hadith content produced by LLMs.
The focus is on ensuring factual accuracy in reli-
gious texts, where even minor deviations are unac-
ceptable.

2.1 Task Setup

Our team participated exclusively in Subtask 1,
covering all three subtasks:

• 1A – Span Detection: Identify spans in LLM
outputs that correspond to Quranic verses or
Hadith. This requires handling varied quota-
tion styles, partial matches, and noise from
generative models.

• 1B – Validation: Determine whether each
detected span is authentic and correctly
quoted by comparing against reference cor-
pora (Quran and six Hadith Books).

• 1C - Correction: For spans deemed incor-
rect, provide the corrected version from the
gold-standard texts, or indicate that the span
is completely wrong.

1https://github.com/0xArwa/
humain-islamiceval-2025
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All datasets are in Arabic and sourced from au-
thentic Quran and Hadith corpora curated by the
organizers. Each subtask contains 50 and 104 dis-
tinct samples in the dev and test sets, respectively.
Predictions were submitted through CodaBench for
official scoring on the test set.

3 System Overview

3.1 Subtask 1A – Span Detection

For span detection, we employ an LLM-based
pipeline to identify and extract Quranic verses
and Hadith passages. More details on the LLMs
used in our experiments are shown in section 4.
The process begins with preprocessing the input
text to resolve formatting inconsistencies—such
as irregular spacing, punctuation issues, or line
breaks—ensuring that the text is normalized before
being passed to the model.

The cleaned text is then provided to an LLM
with a specialized system prompt and few-shot ex-
amples. These instruct the model to detect religious
spans and annotate them using a bracket-based no-
tation of the form [span_text|tag_type], where
span_text represents the identified religious con-
tent and tag_type specifies whether it is a Quranic
verse (�) or a Hadith (�). For example:

Input:
Ã �AaÌyiÌn�Ai� Â �Aam"�Á±� AamaÌ�Ã� :�§rK�� �§d��� ¨� ºA�¤
Output:
[� | Ã �AaÌyiÌn�Ai� Â �Aam"�Á±� AamaÌ�Ã�] :�§rK�� �§d��� ¨� ºA�¤

Particularly, span detection is modeled as a
sequence-to-sequence translation task using the
Translation between Augmented Natural Lan-
guages (TANL) framework (Paolini et al., 2021).
The model regenerates the passage with special
markers denoting the start, end, and type of each
span. Because generative models may introduce
slight variations in spacing or punctuation (or
removing/adding words), the TANL framework
first cleans the annotated output by removing spe-
cial tokens and discarding invalid formats. Af-
ter this normalization, TANL employs the Needle-
man–Wunsch Dynamic Programming (DP) algo-
rithm (Needleman and Wunsch, 1970) to align the
cleaned output with the original input at the token
level. This alignment enables each detected span to
be mapped back to its precise character positions
in the source text, ensuring consistency despite for-
matting drift introduced during generation.

As an alternative to TANL’s alignment process,

we also experimented with a guided decoding setup.
In this variant, the LLM directly generates struc-
tured JSON output following a predefined schema,
where each span object includes its type, textual
content, and character indices. We utilize the
vLLM library (Kwon et al., 2023) to enable guided
decoding, which we apply only when we have di-
rect access to the model and can deploy it on vLLM.
This approach removes the need for token-level
alignment altogether, since positional information
is produced natively during generation.

3.2 Subtask 1B – Validation of Content
Accuracy

For span validation, we developed a sophisti-
cated verification system that handles both Quranic
verses and Hadith texts through specialized pro-
cessing pipelines optimized for each content type.

Hierarchical Indexing: The system employs
dual indexing of reference corpora with normalized
full-text indices for exact lookups and word-based
inverted indices for candidate retrieval.

Verification Strategies: The core verifica-
tion process implements multiple complementary
matching approaches:

Multi-text Detection: The system first deter-
mines whether spans contain single or multiple
verses using smart pattern detection that analyzes
separators including asterisks (*), parenthetical
verse numbers (e.g., (41)), sequences of 3+ consec-
utive non-Arabic characters, and contextual comma
usage. This detection guides the subsequent verifi-
cation approach.

Exact Matching: First-stage verification per-
forms direct hash-based lookup in the normalized
index for perfect matches after diacritic removal
and character standardization.

Strict Substring Matching: For cases requiring
exact textual containment, the system verifies that
the normalized input appears as a complete sub-
string within reference texts. This approach proved
particularly effective for Hadith validation where
authentic partial quotations are common.

Fuzzy Matching: When exact methods fail, the
system applies sequence matching algorithms with
experimentally-determined longest common subse-
quence (LCS) (Hirschberg, 1975) similarity thresh-
olds. The process includes candidate pre-filtering
using word overlap to reduce computational com-
plexity, followed by detailed similarity scoring us-
ing LCS ratios.
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Multi-word Substring Logic: For spans contain-
ing multiple words, specialized logic determines
whether the entire sequence appears as a coherent
substring in longer reference texts, with enhanced
similarity scoring for valid substring matches.

Content-Specific Optimization: Based on em-
pirical evaluation, we configured different verifica-
tion approaches for each content type. Quranic
spans use fuzzy matching with LCS similarity
thresholds above 0.85 to maintain strict accuracy
requirements for sacred text. Hadith spans employ
strict substring matching, which better accommo-
dates the legitimate partial quotations and para-
phrasing patterns found in authentic Hadith trans-
mission.

For multi-text spans, individual components are
verified separately and aggregated using config-
urable consensus strategies.

3.3 Subtask 1C – Error Correction
Span correction for potentially corrupted or incom-
plete Quranic and Hadith texts is addressed through
a multi-stage pipeline. The process begins with
index-based pre-filtering, which combines a word-
level inverted index with a character 3-gram index
to reduce the search space. This design captures
both exact word matches and partial substrings, en-
suring that noisy or fragmented queries still retrieve
relevant candidates.

Immediately after pre-filtering, the pipeline ap-
plies a composite fallback scoring mechanism to
handle edge cases such as queries that span mul-
tiple consecutive verses presented as continuous
strings without separators, or minor lexical varia-
tions that prevent standard matches. This mecha-
nism integrates word n-gram overlap, phrase conti-
nuity, and substring containment metrics, adjusting
candidate scores to ensure that these cases are re-
tained and prioritized in subsequent processing.

Following this early edge-case handling, the can-
didate spans proceed to three successive matching
stages. The first stage performs exact substring
matching on normalized text, returning immediate
matches when the query sequence appears exactly
after diacritic and punctuation removal. The second
stage applies LCS algorithm with source-specific
similarity thresholds (Quran ≥ 0.85, Hadith ≥
0.75). The third stage employs a multilingual se-
mantic reranker (bge-reranker-v2-m3) (Chen et al.,
2023) that applies sigmoid activation to produce
normalized semantic similarity scores between 0
and 1 for the top candidates from earlier stages.

The reranker evaluates semantic similarity beyond
lexical overlap, combining its scores with orig-
inal LCS similarities using a weighted scheme
(α = 0.7). This hybrid approach promotes seman-
tically correct matches that may have lower lexical
overlap, addressing cases where authentic content
differs significantly in wording from the query.

4 Experimental Setup

4.1 Data Preprocessing

All input texts were normalized including diacritic
elimination, character variant normalization (e.g.
� ,� ,�→ �), punctuation elimination, and whites-
pace standardization to ensure consistent matching
across various text formats.

4.2 Model Configurations

For Subtask 1A, we experimented with various
LLMs: GPT-4o (via OpenAI API) and four Arabic-
centric LLMs, ALLAM (Bari et al., 2024), Fa-
nar (Team et al., 2025), Command-R7B (Al-
numay et al., 2025), and Jais-13B (Sengupta
et al., 2023), all without task-specific fine-tuning
(temp=0.1, top_p=0.98). For Subtask 1B, the se-
lected similarity thresholds are ≥ 0.9 for Quran
and strict substring matching for Hadith. For Sub-
task 1C, we combine the reranker (top-20) with
final similarity thresholds set to ≥ 0.85 for Quran
and ≥ 0.75 for Hadith, with spans below marked
as �W� (uncorrectable).

5 Results

This section shows the results of our system on the
three subtasks of IslamicEval 2025.

5.1 Subtask 1A: Span Detection

Model Dev Test

P R F1 F1

GPT-4o 87.4 75.7 81.1 87.2
ALLAM-34B 79.5 75.0 77.2 78.1
Command-R7B-Arabic 62.6 39.1 48.1 -
Fanar(API) 32.0 23.3 27.0 -
Jais-13b-chat 16.8 10.5 12.9 -

Table 1: Subtask 1A: Span Detection Performance. (P:
Precision, R: Recall).

Table 1 shows the character-level macro-
averaged F-1 scores for the five LLMs on the
dev set. From these, we selected only the top-
performing two models for submission on Cod-
aBench (i.e., for the test set).
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Quran Performance
Configuration Acc. P R F1

Strict 88 95 85 90
Fuzzy(0.9) 91 93 93 93
Fuzzy(0.65) 88 86 97 91

Hadith Performance
Configuration Acc. P R F1

Strict 85 97 76 85
Fuzzy(0.8) 75 100 54 70
Fuzzy(0.25) 75 100 54 70

Table 2: Substring matching performance comparison for Quran and Hadith text verification. Parentheses indicate
LCS similarity thresholds. Fuzzy matching works better for Quran due to textual variations (different Uthmani
formats, with/without tashkeel diacritics), while strict matching is optimal for Hadith due to text standardization.
The distinct optimal strategies reflect the nature of each corpus: Quran exists in multiple valid variants requiring
flexible matching, whereas Hadith collections maintain consistent formatting.

On the test set, GPT-4o achieved 87.20% F-
1, while ALLAM-34B reached 78.10%, demon-
strating competitive performance under more con-
strained settings. Both GPT-4o and Fanar (API)
employed the prompting with special markers as
described earlier in subsection 3.1 as we did not
have access to them. For other 3 models, we
utilized the guided decoding approach to ensure
structured JSON output generation. Among these,
Command-R7B-Arabic was the second-best per-
forming Arabic-centric model, though it lagged sig-
nificantly behind ALLAM in overall accuracy. Jais
and Fanar showed considerably lower performance,
indicating that current smaller Arabic-centric mod-
els are not yet competitive for this task.

Importantly, all results were obtained without
any fine-tuning of model weights, showing that our
approach can generalize to different LLMs without
expensive adaptation.

5.2 Subtask 1B: Validation of Content
Accuracy

As described in subsection 3.2, our system sup-
ports both fuzzy substring matching (with config-
urable LCS similarity thresholds) and strict sub-
string matching. Table 2 presents development set
performance across different threshold configura-
tions by content type, which guided our optimal
configuration selection for test evaluation.

Table 3 shows performance of selected configura-
tions, where “–” indicates strict substring matching
(no threshold required). The repeated Hadith values
demonstrate substring matching robustness across
threshold combinations. Our optimal configuration
achieved 86.14% test accuracy using fuzzy sub-
string matching with a 0.90 LCS similarity thresh-
old for Quranic content and strict substring match-
ing for Hadith texts.

This hybrid approach addresses different vali-

Parameters Performance

Quran Hadith Dev (%) Test (%)

0.80 0.65 84.21 84.21
0.90 0.80 81.00 85.96
0.90 – 84.60 86.14

Table 3: Subtask 1B: Span Validation Overall Perfor-
mance Comparison.

dation requirements: Quranic verses need high
LCS similarity thresholds for fuzzy matching to
handle script variations between Uthmani and for-
mal scripts while maintaining accuracy against the
Uthmani reference corpus, whereas Hadith texts
benefit from exact substring matching for partial
quotations and paraphrasing.

5.3 Subtask 1C: Error Correction

The best configuration, which combines exact
matching, LCS, and semantic reranking, achieved
68.18% test accuracy, substantially improving over
simpler baseline as shown in Table 4. Overall, the
system shows strong performance in span detection
and validation, while error correction remains the
most challenging aspect, suggesting the need for
more semantically grounded approaches.

Method Thresholds Accuracy

Quran Hadith Dev Test

LCS 0.70 0.65 54.60 57.48
EM+LCS 0.85 0.70 60.13 65.91
+Reranker 0.85 0.75 72.74 68.18

Table 4: Subtask 1C: Error Correction Performance
with Different Methods (LCS: Longest Common Subse-
quence, EM: Exact Match).

6 Conclusion

This paper presents a comprehensive three-stage
pipeline for detecting and correcting hallucinations
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in Quranic and Hadith content generated by LLMs,
addressing a critical challenge where factual accu-
racy carries profound religious and cultural signifi-
cance. Through our participation in the IslamicEval
2025 shared task, we demonstrate that specialized
approaches can effectively handle the unique re-
quirements of Islamic textual verification.

The results highlight several key insights. GPT-
4o outperformed other models overall in span de-
tection, while ALLAM showed the strongest per-
formance among Arabic-centric models, indicating
the growing maturity of regional LLMs. Impor-
tantly, our system achieves strong results without
any fine-tuning, showing that the approach can be
applied to different models without modifying their
weights —an advantage in terms of cost and scal-
ability. Different similarity thresholds are needed
for Quran versus Hadith validation, and semantic
reranking provides modest but consistent improve-
ments over exact matching and LCS in correction
tasks.

The relatively modest correction accuracy un-
derscores the complexity of this task and the need
for continued research. Our analysis reveals that
the most challenging correction cases involve con-
textual misattributions where the hallucinated span
shares thematic content with the correct reference
but differs substantially in wording. For instance,
spans discussing the same Quranic narrative may
require corrections that are semantically related but
lexically distant. In addition, some fabricated con-
tent is so disconnected from authentic sources that
determining whether any meaningful correction ex-
ists presents significant challenges for automated
systems, particularly when minimal lexical overlap
(e.g., sharing only one or two common words) may
result in questionable matches, where providing
no correction might be more appropriate (subsec-
tion 1.2). This limitation highlights the need for
context-aware correction methods that consider not
just the isolated span but also its surrounding dis-
course and thematic coherence. Future work should
focus on proactive hallucination prevention, inte-
gration of Islamic scholarly expertise, and devel-
opment of more sophisticated retrieval-augmented
generation systems. This research represents a cru-
cial step toward building trustworthy AI systems
for religious texts, where accuracy is not merely
a technical requirement but a matter of profound
cultural and spiritual significance. Our publicly
available code contributes to ongoing efforts in this
critical domain.
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A Appendix

1.1 Guided Decoding: Schema Definition
As an alternative to TANL’s post-processing align-
ment, we experimented with guided decoding to
constrain the model to produce valid JSON con-
forming to our span detection schema.

The model generates spans with explicit charac-
ter positions, formally described by the following
JSON Schema:

{
"type": "object",
"properties": {

"spans": {
"type": "array",
"items": {

"type": "object",
"properties": {

"type": {
"enum": ["q", "h"]

},
"text": {

"type": "string"
},
"start": {

"type": "integer"
},
"end": {

"type": "integer"
}

},
"required": [

"type", "text",
"start", "end"

]
}

}
}

}

where type denotes Quran (q) or Hadith (h), and
start/end specify character indices.

1.1.1 Example

For input text ¢l��¤ Cdq�� Tly� ¨� £An�z�� A��
�l��,
the model generates:
{

"spans": [
{
"type": "q",
"text": "Cdq�� Tly� ¨� £An�z�� A��",
"start": 0,
"end": 25

}
]

}

1.1.2 Limitation

This approach relies entirely on the model’s abil-
ity to generate accurate character positions during
inference. The guided decoding constraints (via
vLLM’s guided_json parameter) ensure structural
validity but cannot prevent hallucination of non-
existent text spans.

1.2 Challenging Correction

This section illustrates cases where automated cor-
rection systems face significant challenges in deter-
mining appropriate mappings between fabricated
content and authentic sources.

Example: Hallucinated verse with mini-
mal lexical overlap

LLM-Generated (Hallucinated):
¯¤ ¨l� 	�C ®� 
Rr� �Ð�w" :Y�A`� ¢�w�

ÅRAy� �b}�¤ Tym�

Annotation Label:
WrongAyah (correctable)

Correction:
�yfK§ wh� 
Rr� �Ð�¤

Analysis: The fabricated content shares minimal
lexical overlap with the proposed correction (pri-
marily the words 
Rr� �Ð�). The hallucinated verse
contains nonsensical elements and bears no mean-
ingful semantic relationship to the authentic verse.
This example demonstrates the challenge of deter-
mining when shared vocabulary constitutes suffi-
cient grounds for correction versus when providing
no correction (�W�) might be more appropriate.
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Abstract

Recent advancements in large language mod-
els (LLMs) have opened new possibilities for
processing complex natural language tasks, in-
cluding those involving highly regarded reli-
gious content. However, working with divine
sources such as the Holy Quran and Hadith
presents unique challenges. These Classical
Arabic texts have, for centuries, been metic-
ulously preserved and recited word-for-word,
allowing no tolerance for errors — even a sin-
gle incorrect diacritic can entirely alter the
meaning. Such sensitivity demands excep-
tional precision, as hallucinations or inaccura-
cies from LLMs could lead to significant misin-
terpretations among general users. To address
this challenge, we present an Arabic-focused,
LLM-powered framework designed to identify
and verify the integrity of religious text gen-
erated by widely used LLMs. Evaluation on
benchmark subtasks demonstrates strong per-
formance, achieving a Macro-Avg F1 score of
86.11% on Subtask 1A and an Accuracy of
89.82% on Subtask 1B.

1 Introduction

With the superior text generation capabilities of
contemporary (LLMs) (Ouyang et al., 2022; Ope-
nAI team, 2024), inaccurate yet plausible content,
commonly known as hallucinations, has prolif-
erated across various online platforms and web-
sites (Huang et al., 2025). In response, the research
community has developed fact-checking and ver-
ification methods grounded in reliable factual re-
sources (Guo et al., 2022; Althabiti et al., 2024).

Given that languages reflect cultures, some of
the content generated by LLMs in the Middle East
is closely tied to the region’s rich Islamic heritage,
especially as these models are increasingly used
for everyday tasks (Bashir et al., 2023; Mubarak
et al., 2025). Consequently, there is a risk that fabri-
cated sacred Islamic content may be generated and

mistakenly treated as authentic or employed to rein-
force Islamophobia or misinformation. This prob-
lem is particularly sensitive due to its significance
among Muslim and Arab communities (Mubarak
et al., 2025).

In this paper, we present our approach to address
these challenges by focusing on the tasks of Islamic
content identification and validation, namely Sub-
task 1A and Subtask 1B of IslamicEval (Mubarak
et al., 2025), respectively.

Given the limited size of the dataset and minimal
financial and time resources, our approach adopts a
few-shot learning strategy powered by state-of-the-
art (SOTA) LLMs to address both tasks (Liu et al.,
2023; Ouyang et al., 2022). More specifically, to
automatically identify divine texts in Subtask 1A,
we leverage trigger words and common citation pat-
terns frequently found in religious content (Bashir
et al., 2023). For the verification subtask, i.e, Sub-
task 1B, we employ a retrieval-augmented LLM
architecture with integrated content validation, en-
abling precise cross-checking of generated text
against authoritative Islamic sources (Guo et al.,
2022; Mubarak et al., 2025).

Our contributions are as follows:

• We achieve strong performance on both tasks
using powerful multilingual LLMs such as
Qwen-235B (MoE) and GPT-4o. Our re-
sults confirm that a carefully designed prompt
can lead to superior performance across both
tasks.

• To make verification feasible despite the large
size of the authentic reference resources, we
employ a lexical matching system to retrieve
the most relevant verses and implement an
efficient early exit strategy once verification
is successful. In addition, we empirically
demonstrate the effectiveness of this retrieval
phase.
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• We validate the consistency of our results by
demonstrating strong agreement between the
development set performance and the hidden
final test dataset.

• We share our code1 with the community to
promote broader accessibility and encourage
further exploration and improvement on this
essential problem.

We organize the paper as follows. Section 2
presents the background for the task and related
literature. In Section 3, we provide a detailed de-
scription of the system design for both tasks. Sub-
sequently, Section 4 highlights the key experimen-
tal details and running configurations. Section 5
presents the results along with analysis and find-
ings. Finally, Section 6 concludes the work.

2 Background

Attention mechanisms and the Transformer archi-
tecture have revolutionized NLP by enabling mod-
els to effectively capture long-range dependen-
cies (Vaswani et al., 2017). Models like BERT and
its Arabic variants, e.g., AraBERT (Antoun et al.,
2020), have further showcased the success of these
advancements for both multilingual and Arabic
NLP tasks (Devlin et al., 2019). Recently, LLMs
such as GPT-4 have demonstrated impressive few-
shot learning capabilities (Brown et al., 2020; Ope-
nAI team, 2024), allowing them to perform a wide
range of tasks with minimal task-specific tuning.
Meanwhile, prompt engineering has emerged as a
crucial technique to tailor these powerful models
to specialized applications (Liu et al., 2023).

Accurate processing of Islamic sacred texts is
essential due to their cultural and religious signif-
icance in the Arabic world. NLP tasks targeting
these texts include question answering (QA), con-
tent retrieval, morphological analysis, and recita-
tion correction, among others (Bashir et al., 2023).
Prior shared tasks, notably Qur’an QA 2022 and
2023, have laid the groundwork by focusing on
QA over the Noble Quran using retrieval and com-
prehension techniques (Malhas et al., 2022, 2023).
Central to these efforts, retrieval methods based
on lexical approaches such as TF-IDF and BM25
continue to play a fundamental role in effectively
locating relevant verses or narrations (Salton and
Buckley, 1988).

1The code and resources are available at https://github.
com/m-alqblawi/Islamic_Eval_2025

Building upon previous endeavors, IslamicEval
2025 tackles the critical challenge of hallucination
detection in LLM-generated Islamic content, em-
phasizing the accuracy and integrity of Quranic
and Hadith references (Mubarak et al., 2025). The
competition comprises the following subtasks:

• Subtask 1A: Identification — Detect spans
of Quranic verses (Ayahs) and Hadiths within
free-text responses generated by LLMs.

• Subtask 1B: Validation — Assess each iden-
tified utterance against authoritative sources
to distinguish accurate references from hallu-
cinated content.

• Subtask 1C: Correction — Generate cor-
rected versions of any erroneously generated
Ayahs or Hadiths based on authentic sources.

• Subtask 2: Passage Retrieval — Retrieve a
ranked list of Quranic or Hadith passages that
potentially answer a given question posed in
Modern Standard Arabic.

As previously noted, this work presents our solu-
tions for the 1A and 1B subtasks. Detailed dataset
statistics for both subtasks are provided in Tables 4
and 5 in Appendices A.1 and B.1 respectively.

3 System Design

Our approach leverages few-shot learning with
SOTA foundational LLMs to address both subtasks.
For 1B subtask, we propose a retrieval-augmented
architecture to perform the verification procedure.

3.1 Subtask 1A: Span Extraction For
Identification

For this subtask, we formulate the problem as a
span extraction task, where the system identifies
textual segments referencing Quranic verses and
Hadith within generated responses (Mubarak et al.,
2025). Our approach employs a powerful founda-
tional LLM (Yang et al., 2025), guided by a care-
fully designed few-shot prompt to extract relevant
spans (OpenAI team, 2024; Liu et al., 2023; Brown
et al., 2020). These prompts emphasize commonly
occurring trigger words and citation patterns char-
acteristic of sacred Islamic texts, enabling effec-
tive identification given the structured nature of
the citation process (Bashir et al., 2023) (See Ap-
pendix A.2 for detailed prompts in Figure 3). To
ensure the input remains manageable for the LLM
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while preserving essential information, we apply
chunking to segment the input into appropriately
sized portions.

Driven by the limited size of the training dataset,
we forego extensive task-specific fine-tuning and in-
stead leverage the strong generalization capabilities
of foundational LLMs for span extraction (Devlin
et al., 2019; Vaswani et al., 2017). Subsequently,
to accurately align the extracted spans with their
precise locations in the generated text, the system
incorporates a fuzzy matching module (Platenius
et al., 2013; Salton and Buckley, 1988) that ac-
counts for minor variations and inconsistencies.
Spans with fuzzy matching scores below a pre-
defined threshold are discarded to maintain high
precision and minimize false positives. The com-
plete system architecture is illustrated in Figure 2,
with algorithmic details provided in Algorithm 1 in
Appendix A.2.

3.2 Subtask 1B: Retrieval-Augmented
Verification

Our approach for Subtask 1B consists of three main
phases that integrate a powerful foundational LLM
with a retrieval mechanism tailored for Quranic
and Hadith verification. We model this subtask
as two independent few-shot binary classification
problems — one for Quran verification and another
for Hadith verification.

First, we retrieve relevant passages from authen-
ticated Quranic and Hadith sources using a hybrid
retrieval strategy. For Quranic material, retrieval
leverages fuzzy matching based on the py_quran
Python package (Yousef et al., 2018). Our ap-
proach performs verse-level retrieval by tokenizing
the query into individual words and computing a
weighted matching score for each verse based on
the frequency and presence of these words. Specif-
ically, a voting or counting map is constructed
where each word match contributes to the verse’s
overall relevance score, allowing the system to iden-
tify the most pertinent verses despite minor textual
and scripting variations.

For Hadith content, we employ a character-level
TF-IDF ranking approach with character n-grams
to capture fine-grained textual patterns (Salton and
Buckley, 1988). After retrieval, a postprocessing
algorithm is applied to the Quranic results to merge
adjacent retrieved verses from the same surah into
coherent contiguous segments, enhancing context
and verification accuracy before input to the LLM.
Subsequently, these consolidated retrieval results

form the input context for the LLM, which de-
termines the correctness of the claims through
few-shot prompting. In our prompt template, we
provide few-shot demonstration examples inde-
pendently for Quranic and Hadith texts (detailed
prompts shown in Figure 5 in Appendix B.2).

For Quran verification, the LLM is tasked with
strict word-for-word matching due to the sensitiv-
ity of small textual changes on meaning (Bashir
et al., 2023). In contrast, Hadith verification toler-
ates minor variations in the matn (narrative text),
acknowledging authentic variations in Prophetic
sayings.

It is worth mentioning that the verification LLM
is invoked sequentially on each retrieved result
independently. If a match is found by the LLM,
the sequential process terminates early, mirroring
the human strategy of stopping once sufficient evi-
dence is found. A comprehensive system architec-
ture is presented in Figure 4, with the detailed algo-
rithmic implementation described in Algorithm 2
in Appendix B.2.

4 Experimental Details

For both tasks, we utilized the original development
and test splits. Due to constraints in budget and
time, our experiments did not involve exhaustive
exploration of all possible parameters and configu-
rations. We leave this comprehensive investigation
to future work and the community.

For Subtask 1A, we employ various multilin-
gual Qwen and LLaMA3 LLMs (Yang et al., 2025;
Grattafiori et al., 2024), accessing all open-source
models via the Hugging Face API. The LLM is
prompted to output the extracted spans in a struc-
tured JSON format. The fuzzy matching threshold
is set to a high value of 90% for precise match-
ing and robustness against hallucination. Chunk-
ing was applied consistently throughout all exper-
iments using sentence-aware segmentation with a
800-character limit, preserving semantic bound-
aries at Arabic and standard punctuation marks. To
assess the impact of this technique, we conducted
a minor ablation study by disabling chunking for
our top-performing model.

In Subtask 1B, for Quran retrieval, since cita-
tions must be exact word-by-word matches, we
combine a proximity score between matched words
to preserve their relative order, along with a cover-
age score representing the proportion of matched
words within each potential ayah. For Hadith re-
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trieval, we employ a TF-IDF module configured
with character n-grams up to 7-grams to capture
fine-grained textual patterns. For verification, we
experimented with two distinct models; we utilized
the open-source Gemma model (Team et al., 2024),
accessed through OpenRouter, alongside GPT-4
via the OpenAI API (OpenAI team, 2024).

5 Results and Analysis

Subtask 1A: Table 1 presents the validation set
performance for span extraction across different
LLMs. The Qwen3-235B-A22B-Instruct (MOE)
model achieves the best overall performance with
an accuracy of 0.860 and a macro-average F1 score
of 0.765, demonstrating superior capability in iden-
tifying Islamic content spans. Notably, the com-
parison between the chunked and non-chunked ver-
sions of the same model reveals the significant im-
pact of preprocessing: the model without chunking
achieves substantially lower performance (0.795
accuracy vs. 0.860), confirming the importance
of chunking preprocessing for maintaining model
performance on longer text inputs. Among smaller
models, Qwen14B shows competitive precision
(0.807), while Llama-3.3-70B-Instruct lags behind
other models across all metrics.

Subtask 1B: Table 2 shows the binary classifica-
tion results for Islamic content verification. GPT-4o
with Arabic diacritics achieves the highest perfor-
mance with an accuracy of 0.9 and F1 score of
0.92, significantly outperforming all Gemma vari-
ants. Among the Gemma models, the 12B variants
consistently outperform 4B variants, with Gemma-
12B-IT (with diacritics) achieving 0.737 accuracy
compared to 0.676 for Gemma-4B-IT.

Our deeper analysis of these results reveals sev-
eral critical insights: (1) The high recall rates
achieved by the full pipeline across all experimen-
tal conditions (consistently above 95% as shown in
Table 2) indicate that our hybrid retrieval architec-
ture effectively captures relevant Islamic content
from authoritative sources. However, as evidenced
in Tables 6, 7, and 8, (2) we observe a consistent
pattern toward Type I errors (false positives are un-
derlined and italicized in all confusion matrices for
clarity), suggesting that LLM verifiers are occasion-
ally deceived by similar Islamic content generated
by powerful language models.

(3) Removing diacritics generally reduces perfor-
mance across all model sizes, with accuracy drops
of 2-3 percentage points (e.g., Gemma-12B drops

from 0.737 to 0.709). This performance degrada-
tion is particularly pronounced in Quranic content
compared to Hadith content, especially for GPT-4o,
suggesting that diacritical marks are essential for
understanding nuanced Quranic text where subtle
diacritical differences significantly impact mean-
ing. (4) Verification errors are significantly more
prevalent in Quranic content than in Hadith content,
indicating that Quranic language presents greater
verification challenges. This disparity stems from
two key factors: first, the strict word-for-word
preservation requirements in Quranic text com-
pared to the relatively acceptable variations in Ha-
dith transmission; and second, the precise linguistic
requirements and rich diacritical structure inherent
to Quranic Arabic. In contrast, Hadith content al-
lows for authentic variations in transmission across
different narrations, making it inherently more tol-
erant of minor textual discrepancies. Given GPT-
4o’s superior discriminative capabilities compared
to open-source Gemma variants, these structural
differences between Quranic and Hadith content ex-
plain why GPT-4o consistently produced the fewest
errors across all verification tasks.

Official Test Set Performance: Table 3 reports
the final results on the hidden test set as provided
by the IslamicEval 2025 organizers. Our best-
performing models, Qwen3-235B-A22B-Instruct
for Subtask 1A and GPT-4o for Subtask 1B,
achieved strong performance on the official evalu-
ation: 0.861 macro-average F1 for span identifi-
cation and 0.898 accuracy for verification, respec-
tively. These results demonstrate the effectiveness
of our hybrid approach combining large language
models with domain-specific preprocessing and
retrieval strategies for Islamic content processing
tasks.

Task Metric Score

1A (Qwen3-235B) Macro F1 0.861
1B (GPT-4o) Accuracy 0.898

Table 3: Official Test Results from IslamicEval 2025

6 Conclusion

We present a framework for identifying and verify-
ing Islamic content in LLM-generated text, address-
ing hallucination detection in sacred Arabic texts.
Our approach combines SOTA multilingual LLMs
with domain-specific preprocessing and retrieval-
augmented verification strategies.
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Index Model Accuracy Precision Recall Macro-F1

1 Qwen3-8B 0.836 0.778 0.766 0.751
2 Qwen14B 0.835 0.807 0.781 0.765
3 Qwen3-32B 0.804 0.795 0.772 0.758
4 Llama-3.3-70B-Instruct 0.731 0.743 0.698 0.700
5 Qwen3-235B-A22B-Instruct (MOE) 0.860 0.801 0.789 0.765
6 Qwen3-235B-A22B-Instruct (MOE)† 0.795 0.769 0.748 0.719

†Without chunking preprocessing step.

Table 1: Validation Set Performance for Official Split on Subtask 1A. Models are ordered by parameter size from
the smallest to largest.

Index Model Accuracy Precision Recall F1

1 Gemma-4B† 0.664 0.642 0.986 0.777
2 Gemma-4B 0.676 0.652 0.980 0.783
3 Gemma-12B† 0.709 0.674 0.986 0.801
4 Gemma-12B 0.737 0.697 0.986 0.817
5 GPT-4o† 0.87 0.82 0.986 0.9
6 GPT-4o 0.9 0.87 0.986 0.92

†Without diacritics.

Table 2: Validation Set Performance for Subtask 1B

Our results demonstrate strong performance:
86.11% macro-average F1 on Subtask 1A and
89.82% accuracy on Subtask 1B. Key find-
ings include the critical importance of chunk-
ing preprocessing for longer text inputs. The
retrieval-augmented approach enables precise
cross-checking against authoritative sources while
maintaining computational efficiency through early
termination strategies.

This work contributes to the broader effort of
ensuring accuracy and integrity in AI-generated
religious content, addressing a critical need for the
Muslim community. We hope our publicly avail-
able code and findings facilitate further exploration
and improvement in this essential domain.

Limitations

As noted in prior studies (Farghaly and Shaalan,
2009; Bashir et al., 2023), NLP for Islamic content
is challenged by the limited availability of sizable
datasets and constrained computational resources.
Our work similarly faces these limitations, as it
requires more extensive experimentation across a
diverse range of LLMs to fully assess performance
and robustness. Furthermore, the development of a
reasonably sized, well-annotated dataset represen-
tative of the varied nature of Islamic texts would be
instrumental in enabling more effective learning-

based approaches. Such datasets could facilitate
the use of smaller, more efficient LLMs to perform
Islamic content processing and classical Arabic
language tasks with higher accessibility and lower
computational cost. Addressing these limitations
remains an important direction for future research.
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Appendix

Figure 1 illustrates a sample hallucinated output
generated by GPT-4o, demonstrating that even
SOTA models can produce inaccurate Arabic Is-
lamic content (Guerreiro et al., 2023).

User Query

ما فضل الصلاة في الإسلام؟
What is the virtue of prayer in Islam?

Sample Answer

﴾ :ق��ال الله تع��الى رِ نكَ مُ
الْ اءِ وَ شَ حْ فَ

نِ الْ ىٰ عَ نْهَ
 ةَ تَ لَا صَّ نَّ ال  .(45: العنكب��وت) ﴿إِ

ا م رضوان الله﴾ :وقال أيضً رِ  ﴿وأقيموا الصلاة فإنها مفتاح الجنة، ومن تركها حُ
 رأس الأم��ر الإس��لام وعم��وده»: وق��ال الن��بي صلى الله عليه وسلم. (72: س��ورة الن��ور)

 من ص�لّى الص�بح أرب�ع ركع�ات»: وروي ك�ذلك. (رواه الترم�ذي)« الص�لاة
.«كتب الله له بيتاً في الفردوس

Figure 1: Sample generated content by GPT-4o with
color-coded verification: green indicates correct content,
while red highlights invented Quran or Hadith. Some
irrelevant content was truncated for clarity.

A Subtask 1A: Islamic Content
Identification

A.1 Dataset Details

Table 4 presents the statistical analysis of the
dataset for subtask 1A. The dataset demonstrates
varying annotation densities and imbalanced label
distributions across the identification task.

A.2 System Design Details

Figure 2 provides an overall view of the system
design for subtask 1A. Algorithm 1 demonstrates
the algorithmic pseudocode for the span extraction
problem. Figure 3 shows the few-shot prompt tem-
plate used for Islamic content identification.

Metric Value

Unique Questions 50
Annotations per Question 4.20 ± 4.30
Ayahs per Question 2.36 ± 3.26
Hadiths per Question 1.52 ± 2.47

Label Distribution

Ayah 118
Hadith 76
NoAnnotation 16

Table 4: Subtask 1A dataset statistics: annotation den-
sity and class distribution for span extraction task.

B Subtask 1B: Islamic Content
Verification

B.1 Dataset Details
Table 5 presents the statistical analysis of the
dataset for subtask 1B. The dataset demonstrates
imbalanced label distributions across the binary
classification verification task.

Metric Value

Number of samples 247
Number of verses 4940
Number of unique questions 50
WrongAyah 70
CorrectAyah 110
WrongHadith 30
CorrectHadith 37

Table 5: Subtask 1B dataset statistics: sample distribu-
tion and verification labels for binary classification task.

B.2 System Design Details
Figure 4 provides an overall view of the system de-
sign for subtask 1B. Algorithm 2 demonstrates the
algorithmic pseudocode for the verification prob-
lem. Figure 5 shows the few-shot prompt template
used for binary classification in content verifica-
tion.

B.3 Additional Results
Tables 6, 7, and 8 present comprehensive confusion
matrices for different model configurations, evalu-
ating performance across overall metrics, Quranic
content verification, and Hadith content verification
respectively.
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Two-Stage Pipleline for Span Extraction (Subtask 1A)

STAGE 1
LLM-Powered Candidate Extraction

STAGE 2
Fuzzy Search Span Localization

Raw Input dataset

Prompt Engineering
Rule-Based Extraction 

Instructions    

 Qwen3-235B-A22B- Instruct-2507
LLM

[{"text": "...", "type": 
"Ayah/Hadith"} ]

  List of  Candidate Spans 
Raw Input dataset

1. Text Normalization Pipeline
2.Sliding Window Algorithm
3.Similarity Scoring (rapidfuzz)

Arabic Fuzzy Search Module

[{"text": "...", "type": "...", 
"start": N, "end": M}]

  Located Spans with 
Character Coordinates

Final Output

Figure 2: Overall system architecture for Islamic content Identification (Subtask 1A).

Algorithm 1 Span Extraction with Fuzzy Matching

Require: Generated response text T , pretrained LLM, prompt template P , fuzzy matching threshold θ
Ensure: Extracted and verified spans S

1: Define F(s, T ) as fuzzy matching function returning set of matched entries with similarity scores
2: Tchunks ← chunk text T into manageable segments for LLM processing
3: Construct few-shot prompt P emphasizing trigger words and citation patterns
4: Sraw ← ∅
5: for all chunk c in Tchunks do
6: Schunk ← output spans extracted by LLM using prompt P on chunk c
7: Sraw ← Sraw ∪ Schunk

8: end for
9: S ← ∅

10: for all span s in Sraw do
11: Ms ← F(s, T ) ▷ Get matching results
12: ms ← max(e,score)∈Ms

score ▷ Select highest similarity score
13: if ms ≥ θ then
14: S ← S ∪ {s} ▷ Add span to verified set
15: end if
16: end for
17: return S
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ة   راج  مق اطع ن صت  ه مهمة  است خ     .(Span Extraction Task) هذ 

ت ر ة  كب  ج  لع  ة ن موذ  ت خ  ن  ت ة  ا  ة  العرن  اللع  ا ن     .(LLM) سا عطت ك  مق طعًا ن صت ً

   : ة هي  اطع من  ي  مق  ات ة  وت حدد أ  عن  رأ  ألن ص ب  ق  ن  ت   مهمت ك  أ 
ت ر صخت ح( - كل ع  ة  ن س  سون  را ن  الكري م )جت ى لو كان ت  مب  لى الق  ة  ا  سون  ة  ا و مب  ت  ت ق  ت ة  جق  ها  ا ي ات  ق را ن  رج     است خ 
ت ر صخت ح( - كل ع  ة  ن س  سون  ى  صلى اللة علت ة وسلم )جت ى لو كان ت  مب  ب  لى الب  ة  ا  سون  وي ة  صخت خة  ا و مب  ب  رج  كل الاجاذي ت  ن   ا ست خ 

  : رأج  روط ألاشت ح   ش 
1 . رة  اش  لها من  ن  مهت دت ة  صرت حة  ق  ارة  ت  أ وردت  عن  د  لا أ  و حدت ث  أ  ر ألن ص أ ت ة  أ  ن  عت   . لا ت 

 : ة  ت  رأ ب  مهت دت ة  لا ت ات  ق  ارأت  ت  لة  لعن  مت  :  أ  وت ة  ن  مهت دت ة  لا حادت ث  ب  ارأت  ت  لة  لعن  مت   أ 
   ق ال رسول اللة صلى اللة علت ة وسلم   -   ق ال اللة ي عالى -   
ب ى  صلى الله عليه وسلم -      ق ولة ي عالى -       ق ال الب 
ى  صلى اللة علت ة وسلم  -      ( ق ولة ي عالى -    ب  اء عن  الب     كما ج 
ري ف   -      كما ق ال ي عالى -    كر الخذي ت  الس     كما ذ 
ل -    ة -      ي ق ول اللة عر  وج  ن  ماج  و ذاوذ وان  ن     كما روى مسلم وا 
را ن  الكري م  -    ى  الق  اء ق  ري ف   -      كما ج  ى  الخذي ت  الس     وق 
را ن  الكري م  -    ى  الق  ى  صلى اللة علت ة وسلم  -      وق ذ ورذ ق  ب     عن  الب 
ل اللة ي عالى -    ر  ن  ى  صلى اللة علت ة وسلم  -      وا  ب  ال لها الب  ق     ق 
ى  ق ولة ي عالى -    ى  الخذي ت   -      ق     كما ق 
ى  كت ات  اللة -    ى   -      كما ورذ ق  ب     كما صح عن  الب 
ى  ا ي ة  من  كت ات  اللة -    ى  صلى اللة علت ة وسلم  -      ق  ب  ت ما رواه الب     ق 
را ن   -    ى  الق  ري ف   -      كما ق ال ق  ى  الخذي ت  الس  اء ق     ج 
را ن   -    ى  الق  اء ق  ري ف   -      ج  ى  الخذي ت  الس     ورذ ق 
   كما ورذ عن  رسول اللة -      ن صت  الا ي ة  الكري مة   -   
لى الا ي ة  الكري مة   -    وع ا  الرج  ب     ق ال علت ة الصلاه  والسلام -      ق 
را ن   -    ى  ا ي ة  من  الق  اء ق  ى  صلى اللة علت ة وسلم  -      ج  ب  ى  ق ول الب     ق 
را ن  الكري م  -        كما ن ص الق 
را ن   -    ت ة ا ي ة  من  الق  مب     كما ي ص 
2 .' و كلمة  وصل مت ل 'أ ن  ت م ب ست طة  أ  رق  ط ب علامات  ت  ق  ، مع ألسماج ق  ارة  ألت مهت دت ة  رة  ب عد ألعن  اش  و ألحدت ث  من  ي  ب ص ألا ت ة  أ  ت  ن  ت ا  ث  أ   . ت ح 
3  . ي  ألا شلوت  هة  ق  اب  روحات  حت ي لو كاب ث  مس  و ش  ة  أ  عادة  صت اع  و أ  لة  أ  مت  و أ  ي  ب صوص أ  اهل أ  ح   . ت 
ي  ألن ص.  4 ها كما هي  ق  رح  و ت عدل ألن صوص؛ أشت ح  كمل أ  و ت   . لا ت صحح أ 
و }{.  5 و ][ أ  ها مت ل )( أ  وت ات  وأس أ و محت  ق  ي  أ  من  أ  ت ص   . لا ت 

   : رأج  ألمطلوت  ن ست ق  ألا ح   ت 
مة   -  اب  عد ق  ـ  JSONأ  لة  للت حوت ل ب  اب  مامًا )ق  ن  لة:  json.loadsصالحة  ت   ( ت حت وي  علي عن اصر، كل عن صر كاب 

   - 'text' :.ن ص المق طع 

   -  'type': ا ما  'Ayah ' ا و  'Hadith '   . 

 مثال صحيح:   - 
"{[text": "...", "type": "Ayah   ,}" 

  "{text": "...", "type": "Hadith   ]}" 

ذ ا ى  مق اطع، ا عذ: ][   - ن  لم ي خ   ا 
-   . مة  ان  ارج  الق  رج ا و ن ص ج  ف  ا ى  س   لا ي ص 
ى  الب ص   - مت ع الاي ات  و الاجاذي ت  ق  مول ج  ا كذ من  س   ي 
 {text}  :(LLM عن   )صادر ألن ص

    

  

 

System Prompt for A1 Subtask 

 

Figure 3: Few-shot prompt template for span extraction in Subtask 1A: Islamic content identification using trigger
words and citation patterns.
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Output Retrieved By 
Search Engines

 

merge 20 search results for each 
query (ayas only)

Prompt Engineering
- Expert Persona Setup
- Validation Rules (Quran 

strict/Hadith lenient)
- Few-shot Examples
- Binary Output Constraint

  f inal Output

Sequence_ ID    Label   
 1      Correct  
 2            Incorrect  
 3     Correct

quranic_versessix_hadith_books.

quran_search hadith_search

Search Engines

- TF-IDF Vectorization
- Character n-grams 
- Arabic Text Normalization
- Cosine Similarity Ranking

STAGE 1
 Candidate Retrieval & Preprocessing

STAGE 2
LLM-Powered Verification & Selection

Raw Input Datasets Knowledge Bases

Preprocessor

Intermediate output 
retrieval-postporcessing

GPT-4o 
LLM 

Validator

LLM Validator Output
sequence_ id:

seaech results:
1-  detection: (True/False)
2-detection: (True/False)

.........

for 
each 

sequence id
 detection 

True?

Label  = Correct Yes

Label  = Incorrect

No

top-k matches

Two-Stage System Architecture for Quran and Hadith Text Verif ication (Subtask 1b)

Figure 4: Overall system architecture for Islamic content Verification (Subtask 1B).

Algorithm 2 Verification with Hybrid Retrieval for Subtask 1B

Require: Extracted span s, Quranic database DBQ, Hadith database DBH , LLM, prompt templates
PQ, PH , retrieval threshold k

Ensure: Verification result: Verified or Not Verified
1: Content type t is provided from input file (Quranic or Hadith)
2: if t is Quranic then
3: Tokenize span s into words W = {w1, w2, . . . , wn}
4: R← retrieve top k verses from DBQ using word-level voting
5: Rmerged ← merge adjacent verses from same surah in R
6: P ← PQ ▷ Strict word-for-word matching
7: else
8: R← retrieve top k Hadith entries from DBH using char-level TF-IDF
9: Rmerged ← R ▷ No merging for Hadith

10: P ← PH ▷ Allow minor variations
11: end if
12: for all retrieved result r in Rmerged do
13: result← LLM(P , s, r) ▷ Few-shot binary classification
14: if result is Verified then
15: return Verified ▷ Early termination
16: end if
17: end for
18: return Not Verified
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You are a highly knowledgeable expert in Quranic and Hadith text verification. 

You will be given two texts: 

- “query_text”: This text may contain errors, partial phrases, or slight variations and is NOT guaranteed to be 

an exact excerpt from the Quran or Hadith. 

- “candidate_text”: This is a literal, exact excerpt taken from either the Quran or Hadith, free from errors. 

Your task: 

1. Ignore all Arabic diacritics (tashkeel) in both texts during comparison. 

2. For Quranic verses ("ayah_text"), require strict literal substring matching ignoring diacritics and spacing. 

3. For Hadith texts ("hadithTxt"), allow slight leniency in wording or conversational phrasing—small 

paraphrases or reordering are acceptable-but the core meaning and most of the key phrases should be clearly 

present. 

4. Respond ONLY with a single word: 

- "True" if the candidate text validly matches the query according to the above criteria. 

-  "False" otherwise. 

Examples: 

Quran Example 1:   

query_text: " للذكر    القرآن   يسرنا "   

candidate_text: " مدكر   من  فهل    للذكر    القرآن   يسرنا   ولقد "   

Answer: True   

Explanation: Literal substring present ignoring diacritics. 

 

Quran Example 2:   

query_text: " عضد  لهم   وكنا   كفروا   الذين   عنهم    ودافعنا  أيات   وآتيناهم   رسلا    قبلك   من   أرسلنا   لقد "   

candidate_text: " الأولين   شيع   في   قبلك   من  أرسلنا   ولقد  "   

Answer: False   

Explanation: No exact substring match. 

 

Hadith Example 1:   

query_text: "  ة ن  طي  ها ج  ة ب  ، ا و جط عن  ة  ها درج  عة اللة ب  لا رف  ؤف ها ا  ما ف  ؤكة  ف  من  من  ش     "ما ي صي ب  المؤ 

candidate_text: " ها لا ف ص اللة ب  ؤف ها ا  ما ف  ؤكة  ف  من  ش  مي ر ف ال رشؤل اللة صلى اللة علي ة وشلم لا ي صي ب  المؤ  ن  ب  د اللة ب  ن  عن  ا محمد ب  ن  جدي 
ي ة  ن  طي     ".من  ج 

Answer: True   

Explanation: Despite slight wording differences, core meaning and key phrases are clearly present with acceptable 

phrasing variations. 

 

Hadith Example 2:   

query_text: " مباشرة   الجنة    إلى   انتقل  المؤمن    مات  إذا  "   

candidate_text: "  رب رق  والمع  ي ن  المش  ي ر ما ب  ى  ي اج  من  ب ؤر ي ن  ع روجة ف  ا ف ن ص  ي ؤص  د  من  ا  ى  صلى اللة علي ة وشلم ف ال: المؤ  ن     ".عن  الن 

Answer: False   

Explanation: Candidate text does not contain the key content or meaning of the query. 

 

Now evaluate: 

query_text: {query}   

candidate_text: {text}   

Answer: 

System Prompt for B1 SubTask 

 

Figure 5: Few-shot prompt template for binary classification in Subtask 1B: Quranic and Hadith content verification
against authoritative sources.
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Gemma-4B-IT (with diacritics) Gemma-4B-IT (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 144 (58.3%) 3 (1.2%) Correct 145 (58.9%) 2 (0.8%)
Incorrect 77 (31.2%) 23 (9.3%) Incorrect 81 (32.9%) 19 (7.7%)

Gemma-12B-IT (with diacritics) Gemma-12B-IT (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 145 (58.8%) 2 (0.8%) Correct 145 (58.7%) 2 (0.8%)
Incorrect 63 (25.5%) 37 (15.0%) Incorrect 70 (28.3%) 30 (12.1%)

GPT-4o (with diacritics) GPT-4o (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 145 (58.7%) 2 (0.81%) Correct 145 (58.7%) 2 (0.81%)
Incorrect 22 (8.9%) 78 (31.57%) Incorrect 31 (12.5%) 69 (27.93%)

Table 6: Confusion Matrices for Gemma and GPT Models (Overall Performance)

Gemma-4B-IT (with diacritics) Gemma-4B-IT (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 108 (60.0%) 2 (1.1%) Correct 109 (60.6%) 1 (0.6%)
Incorrect 57 (31.7%) 13 (7.2%) Incorrect 62 (34.4%) 8 (4.4%)

Gemma-12B-IT (with diacritics) Gemma-12B-IT (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 109 (60.6%) 1 (0.6%) Correct 109 (60.6%) 1 (0.6%)
Incorrect 49 (27.2%) 21 (11.7%) Incorrect 52 (28.9%) 18 (10.0%)

GPT-4o (with diacritics) GPT-4o (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 109 (60.6%) 1 (0.6%) Correct 109 (60.5%) 1 (0.6%)
Incorrect 19 (10.6%) 51 (28.33%) Incorrect 28 (15%) 42 (23.33%)

Table 7: Confusion Matrices for Gemma and GPT Models (Quranic Content)
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Gemma-4B-IT (with diacritics) Gemma-4B-IT (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 36 (53.7%) 1 (1.5%) Correct 36 (53.7%) 1 (1.5%)
Incorrect 20 (29.9%) 10 (14.9%) Incorrect 19 (28.4%) 11 (16.4%)

Gemma-12B-IT (with diacritics) Gemma-12B-IT (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 36 (53.7%) 1 (1.5%) Correct 36 (53.7%) 1 (1.5%)
Incorrect 14 (20.9%) 16 (23.9%) Incorrect 18 (26.9%) 12 (17.9%)

GPT-4o (with diacritics) GPT-4o (no diacritics)
Predicted Predicted

Actual Correct Incorrect Actual Correct Incorrect

Correct 36 (53.7%) 1 (1.5%) Correct 36 (53.7%) 1 (1.5%)
Incorrect 3 (4.5%) 27 (40.3%) Incorrect 3 (4.5%) 27 (40.3%)

Table 8: Confusion Matrices for Gemma and GPT Models (Hadith Content)

Category Accuracy Precision Recall F1 Score

GPT-4o (no diacritics)
Overall 86.6% 82.4% 98.6% 89.8%
Quran 83.9% 79.6% 99.1% 88.3%
Hadith 94.0% 92.3% 97.3% 94.7%

GPT-4o (with diacritics)
Overall 90.3% 86.8% 98.6% 92.4%
Quran 88.9% 85.2% 99.1% 91.6%
Hadith 94.0% 92.3% 97.3% 94.7%

Table 9: GPT-4o Performance Metrics for Subtask 1B
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Abstract

This paper presents our approach to Sub-
task 2 of IslamicEval 2025, a shared task
that involves retrieving relevant passages from
Quranic verses and Sahih Bukhari hadiths to
answer Modern Standard Arabic (MSA) ques-
tions. We developed a multi-pipeline hybrid
system that combines three complementary
approaches: fine-tuned embedding models us-
ing triplet loss, keyword-based fuzzy match-
ing, and large language model guided retrieval.
Our system achieved MAP_@10 of 0.2296,
MAP_Q@5 of 0.2623, and MAP_H@5 of 0.215
in the test set, demonstrating the effectiveness
of combining multiple retrieval strategies for
Arabic religious text question answering.

1 Introduction

The Qur’an and Hadith Question Answering (QH-
QA) task (Mubarak et al., 2025) addresses the
challenge of retrieving relevant religious passages
to answer questions posed in MSA. The Qur’an
and hadith are deeply embedded in the daily
lives of millions of Muslims worldwide, influenc-
ing their decisions, moral reasoning, and spiri-
tual practices. With the increasing proliferation
of Large Language Models (LLMs) in question-
answering systems, systems responding to ques-
tions about these religious sources must maintain
high accuracy and reliability.

This task builds on prior Qur’an QA challenges
(2022, 2023) (Malhas et al., 2022, 2023), which
focused only on Qur’an-based QA. Many teams
proposed strong pipelines with promising results,
and those works inspired our approach like Mah-
moudi et al. (2023); Elkomy and Sarhan (2024).
The main difference now is the inclusion of ha-
dith, making the task broader and more challeng-
ing. Another key change is that answers must be
retrieved from the entire Qur’an or hadith, unlike

*Also affiliated with Al-Azhar University

earlier setups where a specific passage was given
and answers were extracted from it. Personally,
our participation (Sleem et al., 2022) in Qur’an
QA 2022 was a starting point that shaped how we
combined prior pipelines with new technologies in
this work.

Our main system strategy employs a multi-
pipeline approach that leverages the strengths of
different retrieval methods. Our key findings show
that while individual approaches have limitations,
their combination significantly improves perfor-
mance. Our results show that the development set
with MAP_@10 of 0.32 and 0.2296 for the test set.

2 Background

The IslamicEval 2025 Subtask 2 requires systems
to return a ranked list of answer-bearing passages
from two collections: Quranic verses covering
the Holy Qur’an and hadiths from Sahih Bukhari.
Given a free-text question in MSA such as:

؟ردقلاةليللضفوهام

The system should return relevant passages like:

َّنإِ ِردَْقْلاُةَلْيَل*ِردَْقْلاُةَلْيَلاَمَكاَردْأَاَمَو*ِردَْقْلاِةَلْيَليِفُهاَنْلَزنأَا

ٍرهَْشفِْلأَنِّْمٌرْيَخ (Rank 1)

َّللاَيِضَرَةَرْيَرُهيِبأَنَْع َّللالُوسَُرلَاَق:لَاَقُهْنَعُه ه
َّلصَِ َّللاى ُه

َّلسََوِهْيَلَع َّدَقَتاَمُهَلَرِفُغاًباَسِتْحاَواًناَميإِِردَْقْلاَةَلْيَلَماَقنَْمَ:م َم

ِهِبْنَذنِْم (Rank 2)

2.1 Dataset Details

The dataset consists of 1,266 Quranic passages
from the Quranic Passage Collection (QPC), 2,254
hadiths from Sahih Bukhari, training questions
with manually annotated relevance judgments, and
questions without answers marked with passage
ID "-1". Initially, the training data only contained
Qur’an answers. Our team manually added hadith
answers to create a more balanced training set.
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2.2 Related Work

Previous work on Arabic question answering has
primarily focused on general domain texts. Ear-
lier versions of similar tasks focused exclusively
on Quranic sources, but the inclusion of hadith
as a complementary resource introduces additional
complexity. Hadith collections present unique
challenges due to their narrative structure, chain
of transmission (isnad), and the potential for fabri-
cation, requiring careful verification and authentic
sourcing.

While several retrieval systems have been de-
veloped specifically for hadith collections (Mah-
mood et al., 2018), fewer systems effectively com-
bine Qur’an and hadith sources in a unified re-
trieval framework. Recent work in (Fawzi et al.,
2025) demonstrates the importance of accurate re-
ligious text retrieval systems, particularly given
the widespread influence of these sources on per-
sonal decisions and the need for reliable informa-
tion retrieval in the era of increasing LLM deploy-
ment.

Our approach builds upon sentence transform-
ers for multilingual retrieval while addressing the
specific requirements of Islamic texts and the chal-
lenge of combining these two distinct yet comple-
mentary religious sources.

3 System Overview

Our hybrid system consists of three complemen-
tary pipelines designed to capture different aspects
of semantic similarity and relevance. Figure 1
illustrates the overall architecture of our multi-
pipeline approach.

3.1 Pipeline 1: Fine-tuned Embedding Model

3.1.1 Training Phase
The training pipeline relied on a curated dataset
constructed from multiple sources to ensure
comprehensive coverage of Qur’anic and Hadith
material. First, official Qur’an QA pairs provided
by the competition were used as a foundation.
To expand beyond the Qur’an, additional Hadith
QA pairs were constructed by sourcing relevant
narrations from Sahih al-Bukhari. This was feasi-
ble only for a limited subset of questions, so we
further incorporated the HAQA dataset, aligning
its QA pairs with Sahih al-Bukhari narrations
through automated normalization (removing dia-
critics, punctuation, and text inconsistencies) and
fuzzy matching. Matches with similarity scores

Input MSA Question

Pipeline 1: Embeddings

E5 fine-tuned with triplet loss

Cosine similarity scoring

Pipeline 2: Keywords

LLM keyword extraction

Fuzzy RapidFuzz matching

Pipeline 3: LLM Guidance

Retrieval of Qur’an/Hadith passages

Score Normalization

Hybrid Weighted Ranking

Final Ranked Passages Returned

Figure 1: System architecture: input questions are pro-
cessed via three pipelines with distinct colors.

above a chosen threshold were retained, producing
a final aligned dataset containing question text,
answer, and narration. The HAQA dataset is avail-
able at https://github.com/scsaln/
HAQA-and-QUQA/blob/main/HAQA.csv.
This curated dataset balanced Qur’anic and
Hadith sources, enabling the retrieval model to
learn cross-domain semantic relationships.

On top of this dataset, we fine-tuned a
multilingual sentence transformer (Reimers and
Gurevych, 2019) using triplet loss (Yeruva et al.,
2022). The augmentation process expanded the
original corpus into structured triplets by system-
atically constructing positive and negative pas-
sages for each question:
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• Positive passages: For each question, all
valid answers from the Qur’an and Hadith
were included as positives. When multiple
passages addressed the same question, each
of them was considered a valid positive. For
unanswerable questions, we used the place-
holder answer دجويال as the only positive.

• Negative passages: Non-relevant passages
were sampled from the remaining pool of
Qur’an and Hadith texts. For unanswerable
questions, all real passages in the corpus were
treated as negatives.

• Triplet construction: Each training instance
consisted of an anchor (the question), a pos-
itive passage, and a negative passage. To in-
crease data diversity, multiple triplets were
generated per question by pairing the same
anchor with different positive and negative
samples.

The fine-tuned model based on
intfloat/multilingual-e5-base
served as the retriever, encoding both queries
and passages into a shared embedding space
and retrieving candidate passages using cosine
similarity. To further refine the retrieval results,
we employed the reranker model, specifically
the pretrained cross-encoder/ms-marco-
MiniLM-L-6-v2, which jointly encodes
query–passage pairs and assigns a relevance
score. This two-stage pipeline ensured efficient
large-scale retrieval while improving precision
through reranking.

Data Collection (Qur’an
+ Hadith + HAQA)

Preprocessing and Normalization

Training Data Augmentation
(Positive/Negative Pairs &

Special Handling for دجويال )

Fine-tuning Sentence Trans-
former (Triplet Loss)

Retriever + Reranker Inference

Figure 2: Pipeline for fine-tuning and retrieval

3.1.2 Inference Phase:

Once the model is fine-tuned, it is employed in a
retrieval pipeline for inference. Queries are en-
coded into embeddings and matched against a vec-
tor database of Qur’an and Hadith passages. A
retriever retrieves the top candidate passages us-
ing cosine similarity, which are then refined by a
reranker before producing the final ranked results.
Unlike full retrieval-augmented generation (RAG)
systems, our pipeline focuses solely on retrieving
and ranking authoritative passages without gener-
ating new text.

Embedding
Generation

Database
Indexing Retriever Reranker

Final
Ranked
Passages

Figure 3: Retrieval and reranking pipeline

3.2 Pipeline 2: Keyword-based Fuzzy
Matching

We used GPT-4 to extract relevant keywords from
the questions and then used fuzzy string matching
to find passages containing similar terms. We used
RapidFuzz (Ye et al., 2021) a fast Python library
for fuzzy string matching to compute partial ra-
tio similarity scores. The algorithm extracts key-
words using the LLM prompt "Give me the main
keywords that I can search for to get answers from
the Qur’an and Hadith", cleans the Arabic text
by removing diacritics and normalising the char-
acters, applies fuzzy partial ratio matching with
a threshold of 70%, and ranks results by simi-
larity score. This approach complements seman-
tic matching by capturing cases where wording
is very similar but embeddings may miss exact
phrasing.

3.3 Pipeline 3: LLM-guided Retrieval

The input to this pipeline is the users question to-
gether with the instruction: "Answer questions us-
ing only Quran and Sahih Bukhari. Provide exact
verses/hadiths, not interpretations. Use -1 if no an-
swer exists."

The output is either the exact verse or hadith
matching the question, or -1 if no relevant answer
is found.

We chose Claude Sonnet 4 because it follows
instructions well, handles long passages reliably,
and shows fewer hallucinations than smaller or
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larger alternatives. It also provides a good balance
between accuracy, speed, and cost.

3.4 Hybrid Combination

Results from all three pipelines were combined us-
ing score normalization and weighted averaging to
produce final rankings.

4 Experimental Setup

4.1 Data Preparation

Following cleaning, the dataset was structured
for Sentence-BERT (SBERT) triplet loss train-
ing. Triplet construction formatted each entry
as (anchor, positive, negative), where anchor
represents the text of the question, positive
encompasses corresponding relevant answers
from the Qur’an or hadith, and negative includes
semantically irrelevant passages from the Qur’an
or hadith. Data splitting used stratified sampling
to ensure both Quranic and hadith entries were
proportionally represented in training and valida-
tion sets. UTF-8 encoding stored all text fields
in a Pandas DataFrame with explicit column
names (question, positive_passage,
negative_passage).

4.2 Data Preprocessing

We applied preprocessing to align with sen-
tence transformer requirements. Data was
length-filtered (10512 tokens) and segmented
using a sliding window to preserve context
within token limits. Arabic-specific cleaning in-
cluded diacritic removal, normalization of let-
ter variants, tatweel and honorific symbol re-
moval, and whitespace normalization. Stop-
words were retained due to their semantic role
in Quranic and hadith texts, while redundant
punctuation was removed. Texts were tok-
enized with the intfloat/multilingual-
e5-base (Wang et al., 2024) tokenizer, and
triplets were batched into uniform tensors with
attention masks for SBERT triplet loss training.
For long passages, we applied chunking into 150-
character segments with 30-character overlap to
enhance retrieval granularity.

4.3 Training Configuration

We used base model
intfloat/multilingual-e5-base, 2
epochs, batch size 16 with gradient accumulation,
learning rate 2e-5 with 100 warm-up steps, triplet

loss function with cosine distance, and hardware
acceleration through Google Colab with GPU.

4.4 Evaluation Metrics
The official metrics included MAP@10 (Mean Av-
erage Precision at rank 10), MAP_Q@5 (MAP at
rank 5 for Qur’an passages only), and MAP_H@5
(MAP at rank 5 for hadith passages only).

5 Results and Error Analysis

Our system was evaluated on both development
and test sets, achieving the following results:

Dataset MAP@10 MAP_Q@5 MAP_H@5

Development 0.32 0.35 -
Test 0.2296 0.2623 0.215

Table 1: Overall performance on development and test
sets.

To better understand these results, we further
analyzed the contribution of each pipeline com-
ponent. Since the organizers provided official
test set results only for the submitted runs, the
per-pipeline results in Table 2 were computed on
the development set using the released evalua-
tion script. The Hybrid Combination score corre-
sponds to our submitted run on the test set. Table 2
reports the performance of individual pipelines
compared to the hybrid system.

Pipeline MAP@10

Embedding Model Only 0.15
Keyword Matching Only 0.08
LLM-guided Only 0.12
Hybrid Combination 0.173

Table 2: Performance of individual pipelines on the de-
velopment set.

The fine-tuned embedding model provided the
strongest standalone baseline, while keyword
matching proved useful for questions relying on
exact term overlap. The LLM-guided approach
showed potential but was constrained by in-
put length limitations. The hybrid combination
achieved the best balance, outperforming any in-
dividual pipeline.

5.1 Coverage Analysis
On the test set of 71 questions, our retrieval system
achieved 76.1% coverage: 54 questions had an-
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swers while 17 questions were marked as "no an-
swer." On average, the system returned 15.2 pas-
sages per question.

5.2 Error Analysis

We observed four main error types: semantic
mismatch (retrieving passages with overlapping
words but different intent, e.g., prayer times vs.
prayer importance), keyword limitations (lexical
matches missing conceptual meaning), LLM con-
straints (token limits restricting comprehensive
answers), and domain specificity (questions re-
quiring advanced theological knowledge). Exam-
ple errors include ؟اًديدحتتاونسلابضرألارمعام (ex-
pected: -1, predicted: creation verses)

5.3 No-Answer Detection

We evaluated the system’s ability to detect ques-
tions without valid answers. A confidence thresh-
old of 0.35 was applied: if the highest passage
score fell below this threshold, the system clas-
sified the question as no answer. Evaluation was
carried out on the held-out test set of 71 ques-
tions, which included 17 questions without valid
answers. The model achieved a precision of 0.65
and recall of 0.47 on this subset.

6 Conclusion

We proposed a hybrid approach for Arabic Qur’an
and hadith question answering that integrates fine-
tuned embeddings, keyword matching, and LLM
guidance. Our system demonstrated strong perfor-
mance during development (MAP@10: 0.32) and
achieved one of the top scores among participating
teams on the final benchmark (MAP@10: 0.173).
These results highlight both the effectiveness of
our design and the potential for further improve-
ments in handling diverse real-world queries.

Future work directions include incorporating
Islamic scholarly knowledge graphs, exploring
retrieval-augmented generation approaches, and
creating larger, more diverse training datasets with
theological expert annotations. The task high-
lights the complexity of understanding religious
texts and the need for specialized approaches be-
yond general-domain techniques.

For reproducibility, the implementation
and code are available at ThinkDrill at
IslamicEval 2025 | GitHub.
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Abstract

This paper presents our approach to the Qur’an
and Hadith QA task in the IslamicEval 2025
Shared Task. Reliable retrieval requires both
accuracy and context-aware answers from
Qur’anic and Hadith text. To address this chal-
lenge, We combine semantic search with LLM-
based re-ranking. To enhance alignment, we
augment the corpus with LLM-extracted Is-
lamic facts and paraphrased queries. An LLM-
based binary classifier further verifies whether
retrieved passages answer the questions. Re-
sults show improved accuracy and better align-
ment with user intent.

1 Introduction

The Holy Qur’an, a sacred and timeless text re-
vealed over 1400 years ago in Classical Arabic,
continues to attract the attention of millions of
Muslims and non-Muslims for its profound teach-
ings, legislation, and extensive body of knowledge.
Therefore, developing effective systems for the
Holy Qur’an, particularly for Passage Retrieval
(i.e., the task of identifying and ranking candidate
passages that potentially contain answers to a given
question), have become a matter of paramount im-
portance (Malhas et al., 2022) and presents unique
and significant challenges (Malhas et al., 2022;
Zekiye and Amroush, 2023). The challenges stem
from linguistic complexities, context scarcity, and
the reliability and specificity required in the Holy
Qur’an. Recently, the Qur’an QA 2023 shared task
dataset has further highlighted the complexity of
this task, and the results revealed substantial space
for further improvements (Basem et al., 2024). In
continuation of this effort, Qur’an and Hadith QA
2025 is offered as subtask in IslamicEval shared
task (Mubarak et al., 2025). The main difference
of this year task is the addition of Hadith (Sahih
Bukhari collection, in particular) to the retrieval
collections, making the task more challenging.

In this paper, we present our participation in
Qur’an and Hadith QA 2025 subtask and describe
our proposed retrieval pipeline. The main character-
istics of our system are: (1) Augment the Qur’an
and Hadith collections with information extracted
by large language models (LLMs). (2) Employ
semantic search to form the initial retrieval list,
followed by LLM-based re-ranker to prioritize the
most relevant candidates. (3) Paraphrase user
queries using LLMs to enhance semantic clarity
and improve retrieval outcomes. (4) Employ a
LLM-based binary classifier to detect questions
with no answers.

1.1 Related Work

The task of question answering (QA) for the Holy
Qur’an was introduced as a shared task in (Malhas
et al., 2022). The following year, the first task of
Qur’anic passage retrieval was offered as a shared
task (Malhas et al., 2023). The task of Qur’anic
passage retrieval has garnered significant scholarly
interest due to the distinct linguistic and contex-
tual challenges posed by the Qur’an (Basem et al.,
2024). Effective systems must retrieve relevant
verses to answer both factoid and non-factoid ques-
tions and bridge the linguistic gap between Mod-
ern Standard Arabic (MSA) and Classical Arabic.
A further challenge lies in detecting zero-answer
scenarios, where questions that have no answers
within the Qur’anic passages require robust mecha-
nisms for rejecting all the non-relevant candidates
(Malhas et al., 2023).

Several teams participated in the task and
employed various technique such as augmenta-
tion (Elkomy and Sarhan, 2024; Basem et al.,
2024), translation (Alawwad et al., 2023). As the
augmentation showed noticeable improvements,
we decide to continue exploring in this direction
and propose new augmentation techniques.
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2 Background

In this section, we present the required background
information about the shared task.

2.1 Task Definition

Our work was merely on IslamicEval Subtask 2:
Qur’an and Hadith QA 2025, which is a retrieval
task and a continuation of Qur’an QA 2022 and
Qur’an QA 2023 shared tasks. The task is defined
as follows: Given a free-text question posed in
MSA, a collection of Qur’anic passages (that cover
the Holy Qur’an), and a collection of Hadith from
Sahih Bukhari, a system is required to retrieve a
ranked list up to 20 answer-bearing Qur’anic pas-
sages or Hadith (i.e., Islamic sources that poten-
tially enclose the answer(s) to the given question)
from the two collections. The question can be a
factoid or a non-factoid question. To make the task
more challenging, the organizers add on purpose
some questions that have no answers in the Holy
Qur’an, Sahih Al-Bukhari, or both. For such cases,
the ideal system should return no answers.

2.2 Dataset Details

The dataset proposed for the task comprises two
collections: the Qur’anic Passage Collection (QPC)
and the Sahih Al-Bukhari Collection (SBC) 1. The
QPC segments the 114 chapters of the Qur’an into
1,266 topical passages, while the Sahih Al-Bukhari
Collection includes 2,254 Hadith. To enable train-
ing, the organizers provide 250 questions of the
AyaTEC dataset along with their relevance judg-
ments over the Qur’anic Passage collection only.
The questions are divided into training (84%) and
development (16%) datasets.

3 System Overview

In this section, we illustrate the proposed retrieval
pipeline to address the task at hand.

3.1 Data Augmentation and Information
Extraction

Our augmentation strategy involves two ap-
proaches. In the first approach, following Elkomy
and Sarhan (2024), we utilize two Tafsir sources
(Al-Tafsir Al-Muyassar and Tafsir Al-Jalalayn) to
augment the QPC passages with relevant interpreta-
tions. We believe this step is helpful in expanding
the context as the text in QPC is generally short.

1https://gitlab.com/bigirqu/quran-hadith-qa-2025

In the second approach, we extract factual infor-
mation from QPC and SBC passages and then ap-
pend them to the original text. The intuition behind
this is that many MSA questions differ linguisti-
cally from the original Qur’anic or Hadith wording,
requiring a deep semantic understanding of the con-
tent. We address this need by enriching QPC and
SBC through extracting explicit semantic represen-
tations using LLMs. By generating explicit facts,
we bridge the linguistic gap, thereby improving
semantic search recall. To achieve this goal, we
develop a domain-adapted prompt (Figures 1–2)
to extract key entities and relations —characters,
places, events, Islamic concepts, and legal rulings—
from each Qur’anic passage or Hadith. In response
to our prompts, the LLM rewrites the implicit refer-
ences into unambiguous descriptions, enabling the
retrieval model to better align them with the query’s
intent. In other words, the proposed method cap-
tures both explicit and implicit meanings that stan-
dard embedding models may not explicitly state
in the surface text. Finally, we pair the extracted
information (IE) with its corresponding text. We
refer to this pairing by QPC + IE and SBC + IE for
the Qur’an and the Hadith, respectively.

3.2 Semantic Retrieval with LLM Re-ranking

We generate embeddings for all enriched texts in
QPC and SBC using a SOTA embedding model
(“text-embedding-3-large” 2), as explained in ap-
pendix A. Query embeddings are also generated
using the same model to ensure proper semantic
matching.

Following this, we apply semantic search inde-
pendently for each source (QPC and SBC). In the
initial retrieval phase, cosine similarity is computed
between the query embedding and the (QPC or
SBC) embeddings. For each collection, the top 20
passages are selected, and then the two lists are
merged to form the initial retrieval set (referred to
Dense).

To enhance the retrieval quality, we introduce a
reranking stage by pairing the candidate passages
from the initial retrieval set with the user query and
pass them to an LLM. The LLM, in turn, reorders
the retrieved passages according to their estimated
relevance to the query.

2https://platform.openai.com
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3.3 Query Rewriting

Towards enhancing the retrieval performance, we
utilized two methods to change the query text. In
the first method, we augment the query with syn-
onym words, and in the second one, we rephrase
the query to a new form. We generate a new query
file for each method and per a different LLM. Fol-
lowing this, we feed the generated query file to the
ranking pipeline described in the previous steps.

Synonym Expansion. Since our retrieval
pipeline is mainly focused on semantic matching,
we believe that adding some synonym words to the
query might increase the query-passage matching.
Therefor, we employ LLMs to generate one syn-
onym word for a list of query words. The list of
query words is formed after removing the Arabic
stop words, such as “What”, and “Why”, etc. Then,
each generated word is positioned after its corre-
sponding synonym between two parentheses. Here
is an example of an expanded query:

(CwhKm��) �¤r`m�� (�wFr��) ¨bn�� w¡ ��
? (�m�t�A�) rbO�A�

Query Rephrasing. As LLMs are powerful
writers, we decided to use their potential in para-
phrasing the input query. Simply, we prompt an
LLM to rewrite the given question in a better way.

3.4 LLM-Based No-Answer Detection

Following the reranking stage, we further refine the
reranking set of passages to determine whether it
contains an answer to the query. In particular, we
prompt an LLM to make a binary judgment on a
question-passage pair, assessing whether a given
passage addresses the question explicitly or implic-
itly. If none of the passages in the reranked set are
judged relevant, the system returns a standardized
no-answer response; otherwise, the reranked list is
preserved in its order.

Dataset MAP@10 MAP@5
QPC 0.2761 0.2553
QPC + jalalayn 0.2798 0.2572
QPC + muyassar 0.2926 0.2708
QPC + IE 0.2944 0.2689
QPC + muyassar + IE 0.2878 0.2662

Table 1: Effect of augmenting QPC on semantic search
on both the train and dev sets.

4 Experimental Setup

In the data augmentation phase, we used OpenAI’s
GPT-4o to extract factual statements from each pas-
sage in both QPC and SBC. To identify the most
effective embedding model, we evaluated several
Arabic embedding models, as detailed in appendix
A. The “text-embedding-3-large” model demon-
strated the highest overall performance and was
therefore used in all subsequent experiments. Doc-
ument embeddings were stored in ChromaDB 3, a
persistent vector store, with cosine similarity as the
distance metric.

Retrieval was conducted independently for the
QPC and SBC datasets. For each collection, we
retrieved the top 20 passages based on cosine sim-
ilarity between the query and the passage embed-
dings, resulting in a combined list of 40 candidate
passages. These were then reranked using OpenAI
GPT-4o. For query paraphrasing, we test three vari-
ants of OpenAI GPT-4, namely: GPT-4o, GPT-4.1-
mini, and GPT-4.1, selecting the latter for subse-
quent experiments due to its superior performance.
Additionally, GPT-4o was employed as a binary
classifier to determine whether each candidate pas-
sage was relevant to a given query.

Evaluation We report our evaluation result on
a set combined from the training and development
sets as we believe this gives more reliable and ro-
bust results compared to dev set only. While, we
report MAP@5 and MAP@10 on the combined set,
we report MAP@10, MAP_Q@5, and MAP_H@5
on the test set (as provided by the organizers).

Model MAP@10 MAP@5
- 0.2944 0.2689

Query + Synonyms
GPT-4.1-mini 0.2691 0.2453
GPT-4.1 0.2754 0.2540
GPT-4o 0.2781 0.2560

Paraphrased Query
GPT-4.1-mini 0.3007 0.2727
GPT-4.1 0.3065 0.2815
GPT-4o 0.3026 0.28

Table 2: Results of different query expansion techniques
using QPC+IE on both the train and dev sets.

3https://www.trychroma.com/
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Method MAP@10 MAP@5
PQ + Dense 0.3065 0.2815
PQ + Dense + RRCE (Elkomy and Sarhan, 2024) 0.3156 0.2905
PQ + Dense + RRGPT-4 0.4079 0.3898
PQ + Dense + RRGPT-4 + NAD 0.4682 0.4511

Dense + RRGPT-4 + NAD 0.4811 0.4660

Table 3: Effect of introducing reranker (RR) and no-answer detector (NAD) on performance using the paraphrased
query (PQ) and augmented corpus (QPC + IE) on both the train and dev sets. GPT-4 and CE refers to GPT-4 and
cross-encoder-based rerankers, respectively.

Method Collection MAP@10 MAP_Q@5 MAP_H@5
PQ + Dense + RRGPT-4 + NAD QPC + IE & SBC+ IE 0.3351 0.3389 0.3876

Dense + RRGPT-4 + NAD QPC + IE & SBC+ IE 0.3021 0.3091 0.3461
Dense + RRGPT-4 + NAD QPC + IE & SBC 0.2916 0.3130 0.2936

Table 4: Performance of retrieval strategies for related QPCs and HAs given a query on the test set.

5 Results and Analysis

In this section, we present the research questions
along with the experiments that answer them.

RQ1: How does augmenting QPCs affect se-
mantic retrieval?

In Table 1, we present the evaluation results of
the two proposed augmentation approaches (with
Tafsir and with facts extracted by LLMs (IE)). It
is evident that augmenting QPC provides comple-
mentary semantic signals. Notably, combining
QPC with either Muyassar or IE leads to observ-
able performance gains, confirming the benefit of
pairing verse-level content with simplified or ped-
agogically aligned annotations. However, adding
Muyassar and IE together leads to a decline in
the performance. We attribute this to the semantic
noise when too many interpretative strategies are
combined, potentially reducing coherence in the
learned embedding space. To this end, we adopt
SBC + IE in subsequent experiments.

RQ2: How effective are LLMs in reformulat-
ing the user queries?

In Table 2, we examine the effect of introducing
the paraphrasing and adding synonyms to queries
using three variants of GPT-4. The results re-
veal a clear distinction between the effectiveness
of synonym-based and paraphrased query refor-
mulations in Quranic semantic search. Synonym-
based reformulations consistently underperformed
the baseline, indicating that direct lexical substitu-
tion introduces noise and query drift. In contrast,
paraphrased queries yield consistent improvements
across all evaluated models. These gains highlight

the strength of paraphrasing in capturing deeper
semantic equivalences and aligning user queries
more effectively with relevant passages. We select
GPT-4.1 for paraphrasing queries in the following
experiments due to its superior performance.

RQ3: How good is the LLM-based reranker?
What is the best combinations of our proposed
retrieval pipeline?

Building on the best results attained from aug-
mentation and paraphrasing queries (PQ), we ex-
amine the effect of incorporating the reranker. In
Table 3, we demonstrate the effectiveness of using
a finetuned cross-encoder(CE)-based (Elkomy and
Sarhan, 2024) and GPT-4-based rerankers. While
CE-based reranker leads to moderate improve-
ments, a substantial gain is achieved by the LLM-
based re-ranker (0.4079 vs. 0.3156 at MAP@10).

In the same table, we report the significant gains
brought by integrating the NAD (No-Answer De-
tection) component, which filters out candidates
that do not answer the query.

Building on these findings, we submit the top-
two performing pipelines (last two lines of Table 3)
on the test set, while adding another run without
augmenting SBC to test its effect. The results on
the test set are shown in Table 4. The best results
are obtained when PQ is combined with the Dense
+ RR + NAD pipeline on the augmented collection
(QPC + IE & SBC + IE), indicating the effective-
ness of PQ component.

6 Conclusion

In this paper, we described our method for address-
ing Qur’an and Hadith QA 2025 shared task. We
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found out that the augmenting QPC and SBC with
information extracted by LLM lead to remarkable
gains. After experimenting with multiple lexical-
and semantic-based retrieval and reranking meth-
ods, we showed that dense search with LLM-based
reranker is the best configuration. Our novel at-
tempt to change the query surface text showed clear
improvements. Finally, utilizing LLM to judge the
binary relevance of a query-passage pair proved to
be a promising solution in detecting questions with
no answer.

Limitations

To the best of our knowledge, resources providing
tafsir or detailed explanations of Hadith from Sahih
al-Bukhari are not readily available.

In addition, our preliminary experiments were
conducted exclusively on the QPC dataset, as it
is the only resource with ground truth annotations
available. Consequently, we did not develop or
evaluate our best-performing retrieval system for
retrieving passages from QPC or Hadith collections.
Accordingly, the findings reported at this stage are
limited in scope, which reduces confidence in iden-
tifying the optimal strategy.
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A Evaluating LLM Embeddings on QPC

As shown in Table 5, the "Muffakir embed-
dings" 4—trained on culturally and religiously
aligned Arabic corpora—demonstrated strong per-
formance, outperforming general-purpose multilin-
gual models such as "gte-multilingual-base" 5 and
"multilingual-e5-large" 6 models. This suggests
that domain-adapted embeddings are more effec-
tive at capturing Qur’anic semantics. Although
Muffakir is smaller in scale than OpenAI’s model,
its competitive results underscore the advantages
of domain relevance. Meanwhile, the superior per-
formance of text-embedding-3-large is likely due
to a combination of advanced model architecture,
large-scale multilingual training, and task-specific
optimization for retrieval.

Model MAP@10 MAP@5
gte-multilingual-base 0.1542 0.1429
multilingual-e5-large 0.1814 0.1678
Muffakir Embedding 0.1994 0.1867
text-embedding-3-large 0.2761 0.2553

Table 5: Performance of different retrieval methods
using semantic search approaches on both the train and
dev sets.

B Prompt Engineering for Factual
Information Extraction from Islamic
Texts

Figures 1 and 2 illustrate examples of prompt de-
signs aimed at extracting factual information from
Quranic verses and Hadith texts, respectively.

Figure 1: Example of a prompt designed to extract
factual information from Quran verses.

4https://huggingface.co/mohamed2811/Muffakir_Embedding
5https://huggingface.co/Alibaba-NLP/gte-multilingual-

base
6https://huggingface.co/intfloat/multilingual-e5-large

Figure 2: Example of a prompt designed to extract
factual information from Hadith.

These prompts are specifically crafted to guide
LLMs in identifying key Islamic concepts and legal
rulings embedded within each Quranic passage or
Hadith.
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Abstract

This paper presents the Isnad AI system de-
veloped for the IslamicEval 2025 Shared Task
1A, which focuses on identifying character-
level spans of Quranic verses (Ayahs) and
Prophetic sayings (Hadiths) within Large Lan-
guage Model (LLM) outputs. This task is
formulated as a token classification problem
using a fine-tuned AraBERTv2 model. The
primary contribution is a novel rule-based
data preprocessing and augmentation pipeline,
through which a large-scale, high-quality train-
ing corpus is systematically generated from
raw religious texts. Through comprehensive
ablation studies, it is demonstrated that the
controlled synthetic data generation approach
significantly outperforms traditional database
lookup methods and basic fine-tuning ap-
proaches. The system achieved an F1 score of
66.97% in the official test set, demonstrating
the effectiveness of principled synthetic data
generation for specialized religious text verifi-
cation tasks. To support reproducibility and fu-
ture research in Islamic citation detection, all
code, generated datasets, and experimental re-
sources are made publicly available on GitHub
and Hugging Face.

1 Introduction
The proliferation of Large Language Models
(LLMs) has created an urgent need for robust
mechanisms to verify factual accuracy (?Li et al.,
2024), particularly in specialized domains like Is-
lamic studies (Nagoudi et al., 2022; Antoun et al.,
2021). The IslamicEval 2025 Shared Task 1A ad-
dresses this by requiring systems to detect precise
character-level spans of religious citations within
Arabic LLM responses (Mubarak et al., 2025), rep-
resenting a foundational step for subsequent fact-
checking systems. The submitted system employs
a token classification method using a fine-tuned
AraBERTv2 model (Antoun et al., 2020).

Given the absence of large, manually annotated

corpora for this task. A rule-based process was de-
veloped to programmatically generate clean, con-
textualized training data, embedding authentic re-
ligious texts within varied templates to simulate
LLM citation patterns.

Ablation studies revealed that this rule-based
data generation methodology outperforms
database lookup, and basic fine-tuning. To foster
reproducibility and support future research in
Islamic religious citation, all experimental code,
dataset, and the final fine-tuned model are publicly
available on GitHub1 and Hugging Face2.

2 Background
This work addresses the IslamicEval 2025 Shared
Task 1A, which requires identifying character-level
spans of Quranic verses (Ayahs) and Prophetic say-
ings (Hadiths) within LLM-generated Arabic text
(Mubarak et al., 2025). For a given text containing
citations, the system must identify the exact start
and end character indices. The required submis-
sion format is detailed in the Appendix B.3 in Ta-
ble 4. This task is structured as a token classifica-
tion problem using the standard BIO schema to la-
bel the boundaries of religious citations (Ramshaw
and Marcus, 1995; Devlin et al., 2019).

2.1 Related Work
This work is situated within the broader field of
adapting language models for specialized religious
domains (Nagoudi et al., 2022). While there has
been progress in this area, this verification task
presents a unique challenge because existing re-
sources are not suitable for precise, character-level
span detection. Foundational datasets like the
Quranic Arabic Corpus (Dukes and Habash, 2010)
provide deep morphological analysis, and there are

1https://github.com/astral-fate/IslamicEval
2https://huggingface.co/

collections/FatimahEmadEldin/
isnad-ai-at-islamiceval-68a64677910651f034b9cdf4
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Dataset Split Unique Texts Ayah Examples Hadith Examples Total Generated
Training Set 30,548 20,622 72,477 93,099
Validation Set 13,354 20,313 20,313 40,626

TOTAL 43,902 40,935 92,790 133,725

(a) Final generated splits with class breakdown.

Corpus Original Count
Quranic Verses (Ayahs) 6,236
Hadith Narrations 34,662

Total Unique Texts 40,898
(b) Original source data.

Corpus Preprocessed Count
Total Unique Ayahs 13,456
Total Unique Hadiths 30,446

Total Unique Texts 43,902
(c) After preprocessing.

Table 1: Corrected dataset statistics at each stage. Table (a) shows the final splits and total generated examples based
on the actual output files. Table (b) shows the initial counts from source files. Table (c) shows the total number of
unique texts available for splitting after all processing and augmentation.

models fine-tuned for Islamic question-answering
(Ellbendis, 2024; Justdeen, 2024).

However, these resources were not designed for
the specific purpose of identifying exact citation
boundaries within a larger text.

This creates a significant data scarcity problem
for this particular task. To address this gap, the
primary contribution of this work is a novel rule-
based data generation pipeline. This approach was
developed to create a suitable, large-scale train-
ing corpus, directly overcoming the lack of an-
notated data for this specialized verification task
(Hedderich et al., 2021).

3 System Overview

3.1 Core Model
The foundation of the system is a fine-tuned imple-
mentation of AraBERTv2 (Antoun et al., 2020), a
powerful transformer-based model pre-trained on a
large corpus of Arabic text. For this task, the model
was adapted for token classification and fine-tuned
to predict labels according to the standard BIO
schema: B-Ayah, I-Ayah, B-Hadith, I-Hadith,
or O (Outside). Through this approach, the system
can effectively identify the precise boundaries of
religious citations at a granular level within LLM-
generated text. The model was trained exclusively
on the synthetically generated dataset, which is de-
tailed in section 4.

3.2 Training Data Generation
The central methodological contribution is the pro-
grammatic generation of a large-scale training cor-

pus. This approach was developed to overcome the
lack of manually annotated data by creating high-
quality, contextualized examples to simulate how
they appear as in-context citations within LLM out-
puts. The process is detailed in section 4.3.

4 Data and Preprocessing Pipeline

The entire training and validation dataset was syn-
thetically generated from raw Islamic texts using a
multi-stage pipeline designed to create diverse and
realistic training examples.

4.1 Data Sources

Two foundational datasets of sacred Islamic texts
were utilized for this paper. These datasets, pro-
vided in a pre-processed format by the task orga-
nizers, consist of the following:

• The Holy Quran (KFG, 2025): The com-
plete text of the Holy Quran, presented in a
JSON file where each entry corresponds to a
specific verse (ayah) 3.

• The Hadith: A collection of prophetic tradi-
tions (narrations) from the Six Major Books
of Hadith, provided in a JSON file 4.

For model fine-tuning, only Hadith entries contain-
ing a non-empty ’Matn’ (the core narrative text
of the prophetic tradition) were used. The initial

3https://github.com/qcri/
IslamicEval-2025-Subtask-1/blob/main/Quran/
quranic_verses.json

4https://github.com/qcri/
IslamicEval-2025-Subtask-1/blob/main/Hadith/
six_hadith_books.json
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distribution of these datasets is summarized in Ta-
ble 1b.

4.2 Data Preprocessing and Augmentation
Pipeline

The preprocessing pipeline systematically trans-
forms raw Islamic texts into a comprehensive train-
ing corpus through five interconnected stages (de-
tailed methodology in Appendix D). The process
begins with systematic text segmentation and Ara-
bic script normalization, followed by template-
based contextual generation that embeds authen-
tic religious texts within realistic citation patterns.
The complete pipeline workflow is illustrated in
Figure 1, Figure 2 and Figure 3.

1. Text Splitting: Quranic verses were analyzed
using the AraBERTv2 tokenizer. Any verse
exceeding a 25-token length was split into two
smaller, more manageable segments. This
process increased the total number of Ayah
from 6,236 to 6,910.

2. Normalization and Augmentation: To im-
prove the model’s robustness against varia-
tions in Arabic script, a data augmentation
technique was applied. For every Ayah (both
original and segmented), a duplicate version
was created with all diacritics (Tashkeel) re-
moved.

3. Template-Based Generation: The core of
the pipeline involves embedding the pro-
cessed religious texts into contextual tem-
plates. A set of common prefixes and suffixes
were manually curated for both Ayahs and Ha-
diths based on a qualitative analysis of com-
mon citation patterns in contemporary Arabic
writing. The lists in Table 13 provide the com-
prehensive examples of suffix and prefix of
the rule-based templates.

The data distribution after these preprocessing
and augmentation is shown in Table 1c.

4.3 Dataset Splits
The synthetic data generation pipeline produced a
corpus from 43,902 unique religious texts. This
corpus was split into the internal training and vali-
dation sets to fine-tune the AraBERTv2 model. A
70/30 split was employed, allocating 70% of the
unique source texts for the training set and 30%
for the internal validation set. The template-based

Methodology Dev F1 Test F1
Rule-Based Model 65.08% 66.97%
Ablation Baselines:
Database Lookup 52.00% 34.80%
Basic Fine-Tuning 33.00% 44.70%

Table 2: Comprehensive results across development
and test sets compared to ablation baselines.

generation process was then applied to these parti-
tioned texts, resulting in the final example counts
shown in Table 1a. For final evaluation, the offi-
cial datasets provided by the shared task organizers
was used. The model’s performance on the devel-
opment set (referred to as ”Dev F1” in Table 2) was
measured against the organizers’ manually anno-
tated ‘dev SubtaskA‘ files, containing 210 records.
The final competition score (referred to as ”Test
F1”) was evaluated on the official blind test set of
190 records. The internal validation set was used
exclusively for hyperparameter tuning and to pre-
vent overfitting during the fine-tuning phase.

5 Experimental Setup
5.1 Evaluation Metric
The official evaluation metric for the task is the
Macro-Averaged F1 Score computed at the char-
acter level (Mubarak et al., 2025). Unlike span-
based evaluation, this metric treats each character
of the response string as an independent classifi-
cation unit, assigning it one of three labels: Ayah,
Hadith, or Neither. The F1 score is then computed
as the harmonic mean of Precision (P) and Recall
(R). The macro-averaged F1 score computes the
F1 score for each class independently and then av-
erages them, giving equal weight to each class re-
gardless of its frequency. This character-level eval-
uation ensures the system is assessed on its abil-
ity to precisely identify the boundaries of religious
texts at the finest granularity, making it more strin-
gent than span-based metrics (Tjong Kim Sang and
De Meulder, 2003).

6 Results
6.1 Ablation Study Analysis
Comprehensive ablation studies were conducted
to evaluate the proposed rule-based synthetic data
generation approach against two baseline method-
ologies: database lookup and basic fine-tuning
without synthetic augmentation. The experimen-
tal results demonstrate substantial superiority of

542



the rule-based model across both evaluation sets.
As presented in Table 2, the rule-based approach
achieved macro F1 scores of 65.08% on the de-
velopment set and 66.97% on the official test set.
The baseline models performed significantly worse
on the development set, with the database lookup
method achieving an F1 score of 52% and the basic
fine-tuning approach achieving 33%. While both
baselines showed limitations, the results validate
the effectiveness of principled synthetic data gener-
ation, demonstrating a performance improvement
of 22.27% over basic fine-tuning on the official test
set.

7 Error Analysis
The error analysis was conducted on the develop-
ment set, detailed in Appendix F, as the ground
truth for the final blind test set was not provided
by the shared task organizers.

7.1 Impact of Class Imbalance
A significant class imbalance exists, with the ’Nei-
ther’ class comprising 67.8% of characters, while
’Ayah’ and ’Hadith’ account for only 20.2% and
12.0%, respectively (see Appendix C). This class
imbalance is reflected in the F1-scores: 0.90 for
the majority ’Neither’ class, 0.67 for ’Ayah’, and
a significantly lower 0.39 for the ’Hadith’ class.
The primary weakness is identifying Hadith, a chal-
lenge compounded by their narrative style and sig-
nificant textual variance across different Hadith
books, making them harder to distinguish, in com-
parison to Quranic verses.

7.2 Span-Level Error Patterns
A span-level analysis reveals the model produced
more False Negatives (101 missed spans) than True
Positives (78 correct spans). Missed spans were
comparable in length to correctly identified ones,
suggesting the model tends to miss entire citations.
Conversely, False Positives were predominantly
short fragments, indicating a tendency to misclas-
sify small, unrelated phrases.

8 Discussion
The experimental results highlight the critical role
of data quality in training models for specialized
verification tasks. Several approaches were eval-
uated, including a database lookup method and
basic fine-tuning. A generative synthetic data ap-
proach using AraGPT2 (Antoun et al., 2021) was

evaluated; however, the generative synthetic data
proved inappropriate. Using the prompt templates
shown in Table 14, the model produced signifi-
cant noise. As detailed in Appendix G and ex-
emplified in Table 15, the outputs included non-
sensical fragments and contextual hallucinations,
creating misleading training data. These results
validate that the structured, rule-based approach
to synthetic data generation was the most effective
strategy for this task. The system’s primary chal-
lenge remained in Hadith identification, where per-
formance was hindered by significant textual vari-
ation in narrations across the six major books of
Hadith. This high degree of narrative variation, un-
like the uniformity of Quranic verses, poses a sig-
nificant modeling challenge.

9 Conclusion

This paper presented the Isnad AI system for iden-
tifying religious citations in LLM outputs using
fine-tuned AraBERTv2 with a novel rule-based
synthetic data generation pipeline. The system
achieved 66.97% F1 on the test set, significantly
outperforming database lookup (34.80%) and ba-
sic fine-tuning (44.70%), validating the effective-
ness of principled synthetic data generation for spe-
cialized verification tasks. The primary limitation
was Hadith identification (F1: 0.39 vs. Quranic
verses: 0.67), attributed to the textual variation of
the Matn across different narrators. Future work
should confine training to a single Hadith book,
such as Sahih al-Bukhari (al Bukhari, 1871), ex-
plore class-balanced sampling, and develop tech-
niques for detecting corrupted or paraphrased ci-
tations. The latter could be achieved by enhanc-
ing the lookup baseline with fuzzy matching algo-
rithms or by augmenting the training data with syn-
thetically generated textual variations to improve
the deep learning model’s robustness.
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A Experimental Configuration

Table 3 provides the hyperparameter settings used
for fine-tuning the AraBERTv2 model (Antoun
et al., 2020).

Parameter Value
Model aubmindlab/bert-base-

arabertv2
Max Epochs 10 (with early stopping)

Learning Rate 2× 10−5

Batch Size (per device) 4
Gradient Accumulation

Steps
4

Effective Batch Size 16
Optimizer AdamW

Weight Decay 0.01
Warmup Steps 500

Mixed Precision fp16 enabled
Max Sequence Length 512 tokens

Early Stopping Patience 3 epochs

Table 3: Complete hyperparameter configuration for
model training.

Question_ID Span_Start Span_End Span_Type
A-Q001 11 25 Ayah
A-Q001 34 52 Ayah
A-Q001 67 87 Hadith

Table 4: Example submission file format.
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B Data Structures and Format
Specifications

This appendix provides detailed specifications of
the data structures used throughout the system, in-
cluding source data formats and submission re-
quirements.

B.1 Source Data Structures

Quranic Verses The Quranic data is structured
as a JSON array, in which each object corresponds
to a single verse.

{
”surah_id”: 1,
”surah_name”: ”۰ොູ؇اܳڰ”,
”ayah_id”: 1,
”ayah_text”: ۋِࡗࡲِ” ّ֟ ීෂٱ ِ݆ ٰ َ ᆇᅵْ ّ֟ ීෂٱ ِ Մ ّ֟ ՃՂٱ ྾ِْ๎ِื”

},

Hadith The Hadith data was structured as a
JSON array, with each object representing a Ha-
dith.

{
”hadithID”: 5,
”BookID”: 1.0,
”title”: ”...”,
”hadithTxt”: ”...”,
”Matn”: ؇تِ...” ّ֟ ࿓ِ؇ܳٷ٭ِّ ᆇْᅦَ؇لُ ᕚ৙৑ا ؇َஓ ّ֟ ஁֣إ”

},

B.2 Test Data Format

The test data is in XML format, with each <Ques-
tion> block containing the LLM’s response.

<Question>
<ID>A-Q001</ID>
<Model>Model-6</Model>
<Text>لܝިن أن ஓ୷ܝ݆ ۱ܭ

<Text/>اఈఃਐಸ৖৑ء...
<Response>

اఈఃਐಸ৖৑ء... لܝިن أن ஓ୷ܝ݆ َأܾ،
</Response>

</Question>

B.3 Submission Format

The required submission is a Tab-Separated Val-
ues (TSV) file with the columns: Question_ID,
Span_Start, Span_End, and Span_Type. An
example is shown in Table 4.

C Development Set: Exploratory Data
Analysis

To better understand the composition of the dataset
used for evaluation, an exploratory data analy-
sis (EDA) was performed on the development set.
This set consists of 50 questions and their corre-
sponding responses, containing a total of 210 man-
ually annotated spans of text. The analysis was
conducted at the character level to align with the
official scoring methodology. The primary find-
ing is a significant class imbalance within the data,
as detailed in Table 5a. The ’Neither’ class, rep-
resenting text that is not part of a religious quota-
tion, constitutes over two-thirds of the total char-
acters. The ’Ayah’ class is the most represented
quotation type, accounting for 20.2% of the char-
acters, while the ’Hadith’ class is the least rep-
resented at 12.0%. Further analysis of the anno-
tated spans, summarized in Table 5b, reveals ad-
ditional insights. There are more distinct ’Ayah’
spans (118) than ’Hadith’ spans (76). A notable
characteristic is the high variance in the length of
these spans. For both classes, the standard devia-
tion is nearly as large as the mean, and the lengths
range from very short fragments to extensive pas-
sages of over 600 characters. This indicates that the
model must be capable of identifying quotations of
highly variable lengths.

D Comprehensive Data Preprocessing
Pipeline

This appendix details the rule-based data prepro-
cessing pipeline designed to transform raw Islamic
texts into a high-quality training corpus for token
classification. The architecture is composed of five
sequential stages: (1) Data Acquisition and Valida-
tion, (2) Text Preprocessing and Augmentation, (3)
Template-Based Data Generation, (4) Dataset Par-
titioning, and (5) Tokenization with Label Assign-
ment.

D.1 Stage 1: Data Acquisition and Validation
The initial corpus was established from two pri-
mary sources provided by the shared task or-
ganizers: the Quranic corpus, containing 6,236
verses (Ayahs), and a Hadith collection of 34,662
prophetic narrations. During acquisition, tex-
tual content was extracted from designated fields
within the source JSON files: ‘ayah text‘ for the
Quran and ‘Matn‘ (the core narrative) for the Ha-
dith. To ensure corpus integrity and manage com-
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Class Count Pct.
Neither 44,273 67.8%
Ayah 13,173 20.2%
Hadith 7,864 12.0%

Total 65,310 100.0%

(a) Character-level class distribution.

Class Spans Mean Std. Min Max
Ayah 118 111.6 105.1 6 678
Hadith 76 103.5 93.0 8 690

(b) Descriptive statistics for annotated spans.

Table 5: Summary of the development set’s class distribution by character count (a) and annotated span statistics
(b).

putational resources, two validation measures were
implemented:

• Length Threshold: A maximum text length
of 1,500 characters was imposed to prevent
memory overflow, while retaining the vast
majority of authentic texts.

• Encoding Validation: All texts were vali-
dated for proper UTF-8 encoding to ensure
correct handling of the Arabic script.

D.2 Stage 2: Text Preprocessing and
Augmentation

This stage addresses linguistic and tokenizer-
specific challenges through text segmentation and
script normalization.

D.2.1 Text Segmentation
To accommodate the processing limitations of the
AraBERTv2 tokenizer, texts exceeding a 25-token
threshold were systematically segmented. The
segmentation algorithm identifies the approximate
midpoint of a text and performs a backward search
for the nearest word boundary (whitespace). This
content-aware strategy prevents splitting words,
thus preserving semantic coherence. This pro-
cess expanded the initial 6,236 Quranic verses into
6,910 processable text segments. While some
Quranic verses remained long even after bisection,
the split was limited to two parts to minimize the
risk of excessive fragmentation and loss of contex-
tual meaning; multi-part splitting strategies are re-
served for future work.

D.2.2 Arabic Script Normalization
To enhance model robustness against script varia-
tions, a data augmentation strategy involving dia-
critic removal was applied. For each Ayah (origi-
nal and segmented), a normalized variant was gen-
erated by removing all diacritical marks (Tashkeel)
and the Tatweel character, which correspond to
the Unicode range [\u064B-\u0652\u0640]. This

technique effectively doubled the unique Ayah cor-
pus to 13,456, ensuring the model can recognize
verses regardless of their vocalization.

D.3 Stage 3: Template-Based Contextual
Generation

This stage is the core of the synthetic data gener-
ation pipeline, designed to programmatically cre-
ate a large-scale, high-quality training corpus. The
primary objective is to embed the clean, prepro-
cessed religious texts from the previous stage into
varied contextual templates, thereby simulating
the patterns commonly observed when Large Lan-
guage Models (LLMs) cite religious sources. The
generation process is algorithmic and designed to
produce multiple unique examples from a single
source text, significantly augmenting the dataset.
For each source text (either a Quranic Ayah or a
Hadith), the system executes the following steps,
as illustrated in the workflow diagram in Figure 2
3:

1. Template Component Selection: Based on
the text’s label (Ayah or Hadith), the sys-
tem randomly selects a corresponding pre-
fix and suffix from a manually curated list.
These lists, detailed in the paper’s Table 13,
contain common introductory and concluding
phrases used in contemporary Arabic writing
to cite religious texts.

2. Contextual Enrichment: To enhance the re-
alism of the generated examples, a neutral
or transitional sentence is added with a 30%
probability. This sentence is randomly se-
lected from a predefined list and is inserted
either before or after the religious text to break
simplistic patterns and better mimic the flow
of natural language.

3. Concatenation and Normalization: The se-
lected components are combined in one of the
following structures:
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• suffix + source_text + prefix
• + source_text + neutral_context + prefix

suffix
• + neutral_context + source_text + prefix

suffix
The resulting string is then normalized to en-
sure consistent spacing.

4. Span Detection and Labeling: The exact
start and end character indices of the orig-
inal source_text are programmatically lo-
cated within the final concatenated string
(full_text). This step is critical for creat-
ing the precise character-level annotations re-
quired for training.

This automated process was applied to the par-
titioned source texts, ultimately generating 93,099
examples for the training set and 40,626 for the val-
idation set. The final output is a structured dataset
where each entry contains the original text, the
newly generated contextual sentence, and the pre-
cise citation boundaries. An example of the final
generated data structure is shown in Table 6.

D.4 Stage 4: Dataset Partitioning
A systematic partitioning strategy was applied at
the source text level to create distinct training and
validation sets. The corpus of unique source texts
was split using a 70-30 ratio, allocating 30,548
texts for training and 13,354 for internal validation.
This split was performed using stratified sampling
to preserve the original distribution of Ayah and
Hadith texts in both partitions. A fixed random
seed (42) was used to ensure the reproducibility of
the splits.

D.5 Stage 5: Tokenization and Label
Assignment

The final stage converts the generated examples
into a format suitable for model training.

• BIO Schema: A five-class BIO (Beginning-
Inside-Outside) tagging schema was em-
ployed: O (Outside), B-Ayah, I-Ayah, B-
Hadith, and I-Hadith. This schema allows
the model to learn the precise boundaries of
each citation type.

• Tokenization and Alignment: Each exam-
ple was tokenized using the AraBERTv2 to-
kenizer with a maximum sequence length of
512 tokens. The character-level span indices

were mapped to their corresponding token in-
dices. The first token of a span was assigned
the ’B’ label, subsequent tokens within the
span received the ’I’ label, and all other to-
kens were labeled ’O’. To handle subword to-
kenization, continuation tokens within a word
were assigned an ignore index of -100, ensur-
ing that the loss function only considers the
primary token of each word.

D.5.1 Validation Framework
A multi-tiered validation approach was used for
comprehensive performance assessment.

• Internal Validation Set: Created from the
30% partition of the original source texts.
This set, containing approximately 40,626
synthetically generated examples, was used
exclusively for hyperparameter optimization
and model selection during development. To
test generalization, the templates used to gen-
erate these examples differed from those used
for the training set.

• Official Development Set: A set of 210 man-
ually annotated examples provided by the task
organizers. This set was used to evaluate the
model’s ability to generalize from synthetic
data to authentic LLM-generated content.

• Official Test Set: A blind set of 190 exam-
ples used for the final competitive evaluation.
Performance on this set determined the final
reported scores.

D.5.2 Quality Control
Several measures were implemented to ensure the
integrity of the generated dataset:

• Failure Tracking: Generation failures, such
as span detection errors, were tracked, and
only successfully generated examples were in-
cluded in the final corpus.

• Data Validation: Routine checks were per-
formed to verify character encodings, label
consistency, and the integrity of tokenizer
outputs.

• Statistical Monitoring: Statistics on the
class distribution and the ratio of source texts
to generated examples were monitored for
transparency.
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Figure 1: Data preprocessing pipeline transforming 40,898 raw Islamic texts into 133,725 training and validation
examples through filtering, augmentation, and template-based generation.
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Figure 2: A high-level diagram of the data prepossessing pipeline
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Figure 3: A high-level diagram of the rule-based data generation process.
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(a) Character-Level Confusion Matrix (Rule-Based Model)
(b) Distribution of Span Lengths for TP, FP, and FN (Rule-
Based Model)

Figure 4: Span-Level Error Logging for the Rule-Based Model.

(a) Character-Level Confusion Matrix (Fine-tuned Model)
(b) Distribution of Span Lengths for TP, FP, and FN (Fine-
Tuned Model)

Figure 5: Performance by Span Length for the Basic Fine-Tuning Model.

(a) Character-Level Confusion Matrix (Lookup Method)
(b) Distribution of Span Lengths for TP, FP, and FN (Lookup
Method)

Figure 6: Performance by Span Length for the Lookup Method.
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E Database Lookup Methodology

This appendix provides a detailed, step-by-step de-
scription of the database lookup method, which
was implemented as a key baseline in the ablation
study (see Table 2). This method relies on direct
string matching against an enhanced knowledge
base, serving as a non-neural benchmark to eval-
uate the performance of the fine-tuned model. The
entire process can be broken down into two main
stages: (1) Knowledge Base Enhancement and (2)
The Span Detection Algorithm.

E.1 Stage 1: Knowledge Base Construction
and Enhancement

The effectiveness of a lookup-based approach is
highly dependent on the comprehensiveness of its
knowledge base. To maximize the chances of find-
ing a match, the raw source texts were signifi-
cantly augmented through a multi-step enhance-
ment pipeline.

E.1.1 Initial Data Loading
The process begins by loading the complete set
of Quranic verses and Hadith narrations from
the source JSON files provided by the task orga-
nizers (quran.json and six_hadith_books.json).
The core textual content is extracted from the
ayah_text field for Quranic verses and the Matn
field for Hadiths. These texts form the initial, un-
processed knowledge base.

E.1.2 Arabic Script Normalization
To handle variations in Arabic script and vocaliza-
tion, a normalization function was applied to every
text in the knowledge base. This function removes
all Arabic diacritics (Tashkeel) and the Tatweel
character by targeting the Unicode range [\u064B-
\u0652\u0640]. This step is crucial because LLM
outputs may not include the same diacritics as
the canonical source texts, and this normalization
makes the matching process robust against such
differences.

E.1.3 Text Segmentation for Partial Matching
LLMs often cite partial verses or fragmented Ha-
diths. To account for this, a text segmentation strat-
egy was implemented. Any text (both original and
normalized) is split into smaller, overlapping seg-
ments. The algorithm generates segments ranging
from a minimum of 5 words to a maximum of 15
words, with a step size of 3 words. This process

creates a large set of smaller text chunks. For ex-
ample, a 20-word Hadith would be broken down
into multiple 5-word, 6-word, ..., up to 15-word
segments. This significantly increases the likeli-
hood of detecting a partial citation.

E.1.4 Final Knowledge Base Aggregation
The final, enhanced knowledge base is an aggre-
gation of multiple text variations for each original
Ayah and Hadith. For each source text, the knowl-
edge base contains:

1. The original, unaltered text.

2. The normalized (diacritic-free) version of the
text.

3. All overlapping segments generated from the
original text.

4. All overlapping segments generated from the
normalized text.

This augmentation process results in a massive in-
crease in the number of potential strings to search
for, thereby improving the recall of the lookup
method.

E.2 Stage 2: Span Detection Algorithm
With the enhanced knowledge base constructed,
the span detection algorithm processes each LLM
response to identify matching text.

E.2.1 Prioritization of Longer Matches
To ensure the quality of the matches, all entries in
the enhanced Ayah and Hadith knowledge bases
are sorted by string length in descending order.
The detection algorithm iterates through these
sorted lists, meaning it always attempts to match
the longest possible text segments first. This is
a critical step that prevents a short, partial match
(e.g., a 5-word segment) from being identified if
it is already part of a larger, more complete match
(e.g., the full 30-word Ayah).

E.2.2 Iterative String Matching
For each LLM response, the algorithm iterates
through every entry in the sorted knowledge bases
(first Ayahs, then Hadiths). It uses a standard sub-
string search to find all occurrences of a given
knowledge base entry within the response text.
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E.2.3 Overlap Prevention
To avoid redundant or overlapping annotations, the
algorithm maintains a character-level boolean ar-
ray for each response text, which tracks whether
a character has already been assigned to a span.
When a potential match is found, the algorithm
checks this array to see if any character within the
candidate span has already been classified. If there
is no overlap, the span’s start and end indices are
recorded, and the corresponding characters in the
tracking array are marked as classified. This en-
sures that once a sequence of text is identified as
an Ayah, it cannot also be partially or wholly iden-
tified as another Ayah. If, after searching through
the entire knowledge base, no spans are found for
a given response, a ”No_Spans” entry is recorded
for that Question ID, as per the task requirements.

F Appendix: Development Set Error
Analysis

This entire error analysis is conducted on the offi-
cial development set provided by the shared task
organizers, which consists of 210 manually anno-
tated records.

F.1 Rule-Based Model Development Results
The rule-based model achieved a Macro F1 of 65%
on the development set. The detailed character-
level report is shown in Table 7.

Class Precision Recall F1-Score
Neither 0.85 0.96 0.90
Ayah 0.81 0.56 0.66
Hadith 0.47 0.33 0.39

Accuracy 0.81
Macro Avg 0.71 0.62 0.65
Weighted Avg 0.80 0.81 0.80

Table 7: Character-Level Classification Report for the
Rule-Based Model.

F.1.1 Further Error Analysis
Table 8 provides descriptive statistics for the
lengths of true positive, false positive, and false
negative spans.

Category Count Mean Min Max
True Positives 78 108.59 20 541
False Positives 61 69.62 3 795
False Negatives 101 104.78 6 690

Table 8: Span Length Statistics (Rule-Based Model).

F.2 Basic Fine-Tuning Development Results
The basic fine-tuning model achieved a Macro F1
of 33% on the development set. The detailed re-
port is shown in Table 9.

Class Precision Recall F1-Score
Neither 0.69 0.95 0.80
Ayah 0.87 0.09 0.16
Hadith 0.04 0.01 0.02

Accuracy 0.67
Macro Avg 0.53 0.35 0.33
Weighted Avg 0.65 0.67 0.59

Table 9: Development set classification report for the
basic fine-tuning approach.

F.2.1 Further Error Analysis
Table 10 presents the descriptive statistics for span
lengths.

Category Count Mean Min Max
True Positives 12 111.33 33 247
False Positives 13 184.46 6 1488
False Negatives 173 110.21 6 690

Table 10: Span Length Statistics (Basic Fine-Tuning).

F.3 Database Lookup Development Results
The database lookup approach achieved a Macro
F1 of 52% on the development set. The detailed
classification report is shown in Table 11.

Class Precision Recall F1-Score
Neither 0.74 0.88 0.80
Ayah 0.80 0.30 0.44
Hadith 0.34 0.31 0.32

Accuracy 0.70
Macro Avg 0.62 0.50 0.52
Weighted Avg 0.70 0.70 0.68

Table 11: Development set classification report for the
database lookup approach.

The database lookup approach shows a signifi-
cant class imbalance in its performance. While it
achieves high recall for the ”Neither” class (88%),
its ability to identify religious texts is limited. For
”Ayah” spans, the model has good precision (80%)
but low recall (30%), indicating it is confident
when it makes a prediction but misses many actual
verses. The performance on ”Hadith” spans is poor
across all metrics (F1-score of 32%). This model’s
tendency to over-predict the ‘Neither‘ class high-
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lights the inherent difficulty of relying solely on
exact-match lookups for this task.

F.3.1 Further Error Analysis
Table 12 provides descriptive statistics for span
lengths of the lookup method.

Category Count Mean Min Max
True Positives 57 130.49 21 690
False Positives 467 12.19 2 71
False Negatives 109 93.11 6 677

Table 12: Span Length Statistics (Lookup Method).

G Generative Data Augmentation
Ablation Study

As referenced in the discussion, an ablation study
was conducted to evaluate the efficacy of using
a generative Large Language Model for synthetic
data augmentation. This approach, was compared
against the primary rule-based methodology to de-
termine its suitability for creating a training corpus.
This appendix details the complete methodology,
from data preprocessing to the final generation of
contextualized examples.

Methodology
The generative approach utilized the
aubmindlab/aragpt2-base model, a transformer-
based model for Arabic language generation,
accessed via the Hugging Face ‘transformers‘
library. The core strategy was to embed authentic
religious texts into open-ended prompt templates
and have the model generate a plausible contin-
uation, thereby creating a full, contextualized
sentence around the original text.

1. Data Preprocessing
Before being used in prompts, the raw source texts
underwent several preprocessing steps to increase
data diversity and manage sequence length:

• Text Loading: The full set of Quranic verses
(Ayahs) and Prophetic narrations (Hadiths)
were loaded from their respective source
JSON files.

• Text Splitting: Quranic verses exceeding
a 25-token limit (as determined by the
AraBERTv2 tokenizer) were split into two
smaller segments. This was done to prevent
truncation and ensure the model could pro-
cess the entire text.

• Normalization Augmentation: To make the
model robust to script variations, a duplicate
version of each Ayah was created with all dia-
critics (Tashkeel) removed. The final pool of
texts for generation included originals, split
segments, and their normalized counterparts.

G.1 Template Examples for Data Generation
The core of the generative augmentation strat-
egy involved embedding authentic religious texts
within specific prompt templates to simulate
natural-language citations. As shown in Table
14, these prompts were designed to frame the re-
ligious text as evidence or a quotation within a
larger sentence. During the generation process, the
text placeholder was dynamically replaced with a
Quranic verse or Hadith, which was then used to
prompt the AraGPT2 model to generate a contex-
tual continuation.

As referenced in Section 8, an ablation study
was conducted to evaluate the efficacy of using
a generative Large Language Model for synthetic
data augmentation. This approach was compared
against the primary rule-based methodology to de-
termine its suitability for creating a training corpus
for the verification task. This appendix details the
methodology, the prompt templates used, and the
analysis of its significant limitations.

G.1.1 Generative Process
For each religious text, the following generative
process was executed:

1. A prompt template was selected at random
from the list above.

2. The religious text was inserted into the tem-
plate.

3. The complete prompt was passed to the
AraGPT2 text-generation pipeline with spe-
cific parameters:

• max_new_tokens=30: To generate a
short, contextual continuation rather
than a long, potentially divergent para-
graph.

• no_repeat_ngram_size=2: To prevent
the model from getting stuck in repeti-
tive loops and improve the quality of the
generated text.

4. The model’s output, a new, longer string con-
taining the original text, was captured as the
‘full text‘.
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5. Finally, the character start and end indices of
the original ‘span text‘ were located within
the newly generated ‘full text‘ to create the fi-
nal labeled data point. A fallback mechanism
was included to use the prompt itself if the
generation process failed.

Table 16 provides examples of the final struc-
tured data produced by this pipeline.

G.2 Limitations and Analysis of Generated
Data

While the objective was to create diverse train-
ing examples, the generative methodology proved
inappropriate for this verification task.The out-
puts were frequently plagued by factual inaccu-
racies, nonsensical statements, and linguistic arti-
facts, introducing significant noise into the training
data.For a verification task in a sensitive domain
like Islamic studies, the integrity of the source
text and its context is paramount.The generative
model’s tendency to ”hallucinate” or produce il-
logical continuations is a critical failure that under-
mines the purpose of the training data, as it creates
misleading training signals. Table 15 provides rep-
resentative examples of these failure modes.
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Component Training Examples Validation Examples

Ayah Prefixes

:ሌᇿ؇ّأ Մ៰Ղا ڢ؇ل
و༥ܭ: ਲ਼؜ Մ៰Ղا وڢ؇ل

:ቕሹ୍ଲاܳـ اܳگݠآن ሒᇭ ورد პაႰ
:Մ៰Ղا ঺঒؇ب ሒᇭو
:Մ៰Ղا آل؇ت و݆݁

:ሌᇿ؇وّأ َ۬؇༲ݿٴ لگިل
:Մ៰Ղا لگިل اܳލ؊ن ۱ڍا ሒᇭو

෠ຶڎ: ቕሹ୍ଲاܳـ اܳگݠآن ሒᇭو
:Մ៰Ղا آل؇ت و݆݁
:Մ៰Ղا أߖ߳ل وڢڎ

:ሌᇿ؇وّأ ਊಾ؇رك اࠍ੆ݑ لگިل و
اࠍ੆ܝࡗࡲ: ாணᄳᄟا ሒᇭو
َگݠأ: Մ៰Ղا ঺঒؇ب ሒᇭو
:ሌᇿ؇ّأ ᄩᄟިڢ ዻዧذ আॻ༟ واᄴᄟܳ٭ܭ

Ayah Suffixes

اܳأޙࡗࡲ Մ៰Ղا ݬڎق
۰ஓ୷ாண آل۰

ቕሹ୍ଲاܳـ اܳگݠآن ݆݁
و༥ܭ ਲ਼؜ Մ៰Ղا ఈ႙၍م
اࠍ੆ܝࡗࡲ ாணᄳᄟا ݆݁

દઊଫଊأٺగጻዧ ଫଊ༟ة ዻዧᄳᄟو
ይዧٷ؇س ਃಸ؇ن و۱ڍا

Մ៰Ղا ఈ႙၍م ݆݁ ۱ڍا
؜ޙ٭۰݄ آل۰

ቕሹ୍ଲاܳـ اܳگݠآن ݆݁
ඔ൹ৎ৊؇اܳأ رب ఈ႙၍م
اࠍ੆ܝࡗࡲ ாணᄳᄟا ݆݁
۰ஓ୷ ாண آل۰
اܳأޙࡗࡲ) Մ៰Ղا (ݬڎق

Hadith Prefixes

وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ Մ៰Ղا رݿިل ڢ؇ل
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ وڢ؇ل
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ ؜݆

ڢ؇ل: وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ أن روى
ا๤དྷܳلژ: ೓ಱڎ੆اࠍ ሒᇭو

ڢ؇ل: ؜ٷ۬ Մ៰Ղا ๴ཚر ۱ݠߌߵة ሒᇀأ و؜݆

ل۰: اܳٷٴި اܳފٷ۰ ሒᇭو
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ ۱ڎي و݆݁
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ اෂීݿިل గఒ༟ٷ؇ وڢڎ

෠ຶڎ: ا๤དྷܳلژ ೓ಱڎ੆اࠍ ሒᇭو
:೓ಱڎ੆اࠍ ሒᇭ ༥؇ء პაႰ

Hadith Suffixes

اܳٴ༱؇ري رواه
݁ފ޺޾ رواه
ොේ٭ں ೓ಱڎ༡

وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ
ل۰ اܳٷٴި اܳފٷ۰ ݆݁
༟ܹ٭۬) (݁ٺڰݑ

وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ ڢ؇ل პაႰ أو

ل۰ اܳٷٴި اܳފٷ۰ ݆݁
๤ཇلژ ਊ಻ިي ೓ಱڎ༡
اৎ৊ݱޚࠕࠥ ۱ڎي ݆݁
وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ

اଫଐܳ݁ڍي) (رواه

Neutral & Transition Sentences

૭૙ྥٷٺھ. أن ஓ୷ܝٷٷ؇ ،ዻዧذ আॻ༟ و਍ಸ؇ء
ا๤དྷྥܳلؕ. ؜ޙ۰݄ ༃لިࡵ و۱ڍا
.ඔ൹ޝ݁ٷగጻዧ ۱ڎال۰ ۱ڍا ሒᇭو

لأگߺࠊن. ܳگިم ৚৑ل؇ت ዻዧذ ሒᇭ إن
.༃ဒීاෂا اܳگިل ި۱ و۱ڍا

ً ݁أ؇ وܳٷٺ؊݁ܭ
اܳފ٭؇ق ۱ڍا ሒᇭو
وይዧٺިݪ٭ں
اৎ৊ټ؇ل ુળܳ٭ᎂو

اܳݱڎد ۱ڍا ሒᇭو
اৎ৊ިݪިع. أᆇᆅ٭۰ ܳٷ؇ ඔඐਊಱ و۱ڍا

Table 13: Template for rule-based data generation across training and validation sets.
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Component Arabic Examples English Translation
Prompt Tem-
plates أن আॻ༟ ࢴࣖل و۱ڍا {text}، :ሒᇿ؇اܳٺ ً؇ܳٷݧ ዝདྷྥ૭ُ૏ڎ The following text is cited: {text}, and

this indicates that

:ሒᇿ؇اܳٺ اܳٷݧ ،ᄭᄟ؊ފৎ৊ا ۱ڍه আॻ༟ ا๤དྷܳ؜٭۰ ᄭᄟد৙৑ا ݆݁
أن ዻዧذ ݆݁ لڰ۳ُܾ و {text}،

Among the legal evidence for this issue
is the following text: {text}, and it is
understood from this that

{text}، :ሒሃو ،۰݄ዛᔻ ڢݯ٭۰ ሒᇿ؇اܳٺ اܳٷݧ ཯ྥٷ؇ول
أن ۋ٭ت

The following text addresses an impor-
tant issue, which is: {text}, as

๤ཛྷ؇أৎ৊ا واڢأٷ؇ ሒᇭ }text{، :ᄩᄟިڢ ݆݁ ا৖৑ݿٺڰ؇دة ஓ୷ܝ݆
لݑ ޗݠ ؜݆

We can benefit from the saying: }text{,
in the contemporary reality by

Table 14: Prompt templates used for the generative data augmentation experiment. The {text} placeholder was
replaced with an authentic religious text.

Original Text (Ayah) Full Generated Output Analysis of Failure

ڎوُرِ اܳݱّ֡ ࢻِࣕاَتِ ٌ ༟َܹࡗِࡲ ُ ۬ ّ֟ إَ֣ ۗ َ ᕡ ّ֟ ݿَ޺ َ Մ ّ֟ ՃՂا ّ݆֟ وَܳـَٰܝِ ِਵਦْ ᕚ৙৑ْا ሒِᇭ ْ وَܳٺَٷََ؇ز؜َْࡤࡲُ
:ᄩᄟިڢ ݆݁ ا৖৑ݿٺڰ؇دة ஓ୷ܝ݆
؜݆ ๤ཛྷ؇أৎ৊ا واڢأٷ؇ ሒᇭ {text}،
لݑ ޗݠ ౏టոاڤ׫ ౏టոׂ ۝ܙل ا
ոֿزڲܙոຖ ، اिऻ׾ּܙن

Nonsensical Artifact:
The generated con-
tinuation (in bold) is
grammatically incorrect
and semantically mean-
ingless. It represents the
“illogical artifacts” men-
tioned in the discussion,
creating a confusing
and useless training
example.

و݁؇ ஓஇݠه ݆݁ ܳ٭؊ၯ၍ިا

{text}، :ሒᇿ؇اܳٺ ً؇ܳٷݧ ዝདྷྥ૭ُ૏ڎ
أن আॻ༟ ࢴࣖل و۱ڍا اڤרܙع ٢׾ا
ټ׭જੴة ോ്מ١ ؔܙاࠢࡇ ႚ႐ ١٤ᝥոاڤء ڲڷ
ਫ਼੊ץ١ ࣷ࣬ຐ ฝ്׫ܙي أֿٝ ؼמ֛ ،
ඒ൷اڤ ١ॴటاڤ֏׾ا اॊूڤמոف ڲڷ ոຐڤמ١
اڤ֔׿ࠥࡇ ڲڷ ١ֵոؓاڤܙ ᆃᅞ ຐոਫ਼੍׿
اڤ෕ເ܈ոن ڲ׭ڞ اদগॊूاض ڲڷ
اڤؠڪ֦ وأদগاض

Contextual Hallumina-
tion: The model cor-
rectly identifies the text
fragment as relating to
food but proceeds to hal-
lucinate a detailed, mod-
ern nutritional context
(fiber, cancer, heart dis-
ease) that is not present
in the original Quranic
narrative. This creates
a factually incorrect and
misleading association.

Table 15: Examples of incorrect and nonsensical data produced by the AraGPT2-based generative augmentation
method.
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Abstract

This paper presents the MAHED 2025 Shared
Task on Multimodal Detection of Hope and
Hate Emotions in Arabic Content, comprising
three subtasks: (1) text-based classification of
Arabic content into hate and hope,(2) multi-
task learning for joint prediction of emotions,
offensive content, and hate speech and (3) mul-
timodal detection of hateful content in Arabic
memes. We provide three high-quality datasets
totaling over 22,000 instances sourced from
social media platforms, annotated by native
Arabic speakers with Cohen’s Kappa exceed-
ing 0.85. Our evaluation attracted 46 leader-
board submissions from participants, with sys-
tems leveraging Arabic-specific pre-trained lan-
guage models (AraBERT, MARBERT), large
language models (GPT-4, Gemini), and mul-
timodal fusion architectures combining CLIP
vision encoders with Arabic text models. The
best-performing systems achieved macro F1-
scores of 0.723 (Task 1), 0.578 (Task 2), and
0.796 (Task 3), with top teams employing en-
semble methods, class-weighted training, and
OCR-aware multimodal fusion. Analysis re-
veals persistent challenges in dialectal robust-
ness, minority class detection for hope speech,
and highlights key directions for future Arabic
content moderation research.

1 Introduction

Online platforms increasingly require robust sys-
tems to detect harmful and pro-social content. For
Arabic, this need is compounded by dialectal di-
versity, code-switching, and multimodal formats
(e.g., memes). Community evaluations have accel-
erated progress on Arabic toxicity: OSACT4 stan-
dardized offensive-language detection on Twitter,
and OSACT5 extended to fine-grained hate speech,
highlighting label imbalance and dialectal varia-
tion (Mubarak et al., 2020, 2022). New resources
further enrich supervision, such as a multi-label
Arabic corpus that jointly annotates offense, hate,

emotion facets, sarcasm/humor, factuality, and per-
ceived impact (Zaghouani et al., 2024) Surveys
highlight key issues, such as implicit hate, target
attribution and code-switching. They further em-
phasize the significance of Pretrained Language
Models (PLMs), such as AraBERT and ARBERT/-
MARBERT (Abdelsamie et al., 2024; Antoun et al.,
2020; Abdul-Mageed et al., 2021). Beyond tox-
icity, detecting hope speech has emerged in LT-
EDI shared tasks and offers complementary signals
for safer moderation (Chakravarthi et al., 2022).
Finally, research on multimodal harmful content
shows that text-only or image-only models under-
perform on memes, motivating vision–language fu-
sion; Arabic meme resources emphasize language-
aware OCR and robust pipelines (Kiela et al., 2020;
Alam et al., 2024b).

This paper presents the MAHED 2025 Shared
Task on Multitask Arabic Harmful and Emotional
content Detection, comprising three subtasks: (i)
Text toxicity with hope: classify text into hate,
hope, or not_applicable; (ii) Joint modeling:
simultaneously predict an emotion label with offen-
sive and hate labels under an explicit hierarchy; and
(iii) Multimodal memes: detect harmful content
in image–text memes.1. The task is designed to
investigate whether multitask and multimodal mod-
eling improve robustness under dialectal variation,
label skew, sarcasm, and noise from OCR text.

Contributions. We (1) define a three-part bench-
mark spanning text and memes; (2) detail datasets,
label schemas, and evaluation protocols aligned
with prior Arabic efforts and hope-speech literature;
(3) release baseline training/evaluation code and
configurations for Arabic PLMs and multimodal
fusion; and (4) report results and error analyses
across dialects and modalities.

1Exact data sources, splits, and scoring scripts are detailed
in https://github.com/marsadlab/MAHED2025Dataset.
git
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2 Related Work

Scope and definitions. We study two affective
poles in Arabic: hate/offense (derogatory, dehu-
manizing, or abusive content) and hope (construc-
tive, prosocial, future-oriented encouragement).
We cover social media text and image memes, and
acknowledge Arabic-specific challenges such as
dialectal variability and code switching (Arabizi).
This section positions MAHED with respect to
Arabic hate/offense and hope in text, joint mod-
eling with emotions, and multimodal detection in
memes.

Arabic hate and offensive language in text.
Community evaluations standardized tasks and met-
rics, accelerating progress. Mubarak et al. (2020)
introduced Arabic offensive language detection on
Twitter, and Mubarak et al. (2022) extended to
finer-grained hate targets, highlighting dialectal
variability and class imbalance. Beyond shared
tasks, Zaghouani et al. (2024) released a 15,965
tweet multi label dataset (offense, hate, emotion
facets, sarcasm/humor, factuality, perceived im-
pact), where AraBERT style encoders outperform
classical baselines; a recent survey synthesizes
methods, datasets, and open challenges—including
implicit hate, target attribution, and code switch-
ing—informing MAHED’s taxonomy and eval-
uation (Abdelsamie et al., 2024). Strong Ara-
bic PLMs such as AraBERT and ARBERT/MAR-
BERT remain standard encoders for social media
classification (Antoun et al., 2020; Abdul-Mageed
et al., 2021). Overall, text-only Arabic toxicity is
relatively mature, while gaps persist in dialectal ro-
bustness, implicit hate, and correlated labels under
class imbalance, which MAHED targets explicitly.

Hope speech and prosocial content. Hope
speech is increasingly treated as a distinct class
of constructive and supportive online content in the
LT and EDI communities. Shared tasks report that
transformer-based models consistently outperform
classical approaches for hope speech classification
(Chakravarthi et al., 2022). Beyond shared tasks,
work on Urdu social media shows that transformer
models obtain the top macro F1 for multi-class
hope and hopelessness, and that careful annota-
tion guidelines help capture nuanced expressions
of hope (Balouchzahi et al., 2025). Complemen-
tary psycholinguistic analyses indicate that hope
speech displays distinctive cognitive, emotional,
and communicative profiles, and that tree boosting

methods such as LightGBM and CatBoost can be
competitive for type-level hope classification when
tuning is performed (Arif et al., 2024). Theory and
experiments in social psychology connect specific
emotions to prosocial behavior: emotions such as
hope and gratitude can motivate helping through
both intrapersonal and interpersonal pathways (van
Kleef and Lelieveld, 2022), and hopeful reappraisal
in distressing contexts has been shown to increase
charitable giving (Brethel-Haurwitz et al., 2020).
Together, these results support modeling hope as a
separate target alongside hate or offense in Arabic,
to avoid conflation with generic positivity and to en-
able evaluation of prosocial language in culturally
specific settings.

Emotion analysis in Arabic. Arabic emotion
analysis has progressed in both text and speech,
enabling fine-grained affect modeling. For so-
cial content, resources such as ArPanEmo support
recognition of multiple emotions, plus neutral, and
allow multi-class setups (Althobaiti, 2023). In
speech, the King Saud University Emotions cor-
pus and related datasets demonstrate that speaker
gender, emotion type, and their interaction affect
perception and recognition, and they provide a ba-
sis for statistical and perceptual analyses (Meftah
et al., 2018, 2021). Studies on Arabic dialects
report strong performance with standard classi-
fiers, as well as with prosodic and spectral fea-
tures. For example, support vector machines pro-
vide about 77 percent accuracy on Saudi dialect
data (Aljuhani et al., 2021), long-term average spec-
trum and wavelet features yield improvements for
Egyptian Arabic (Abdel-Hamid, 2020), and multi-
stage classification schemes offer reasonable gains
(Poorna and Nair, 2019). Earlier studies based
on TV show speech, along with subsequent sur-
veys, highlight the consistent roles of pitch, in-
tensity, speaking rate, and mel-frequency cepstral
coefficients (MFCCs), while also underscoring the
open challenges of achieving cross-speaker and
cross-dialect generalization (Klaylat et al., 2018;
Meddeb et al., 2017; Nasr et al., 2024). Evidence
from perceptual research indicates that prosody
and lexical semantics contribute through separate
yet intertwined channels, with prosodic dominance
often observed (Ben-David et al., 2016). In par-
allel, corpus-based studies of Arabic vocabulary
in religious texts highlight a wide lexical space
for emotional expression, underscoring the need
for culturally informed annotation and modeling
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choices (Salsabila et al., 2024). These findings
motivate the integration of emotion signals with
toxicity and prosociality labels. Additionally, in
order to address label imbalance and better cap-
ture minority classes such as hope, multi-label or
ordinal objectives can be adopted.

Multitask and multi-label modeling. Given cor-
related labels (for example, hate⇒ offense; emo-
tion↔ toxicity), joint learning can improve minor-
ity classes via shared representations. In Arabic,
multitask architectures that combine offense/hate
with sentiment or related signals improved robust-
ness on OSACT style data (Abu Farha and Magdy,
2020; Djandji et al., 2020). MAHED follows this
paradigm in Task 2 by jointly predicting emotions,
offensive content, and hate under an explicit label
hierarchy.

Multimodal harmful content and Arabic memes.
The Hateful Memes benchmark demonstrated the
insufficiency of unimodal baselines and popular-
ized vision–language fusion (Kiela et al., 2020).
Subsequent efforts, such as MultiOFF and the Se-
mEval 2022 MAMI task, further highlighted the
benefits of fusing text and image and incorporating
subtype labels (Suryawanshi et al., 2020; Fersini
et al., 2022). For Arabic, Alam et al. (2024b) in-
troduced ARMEME, a manually annotated meme
dataset targeting propagandistic techniques, and es-
tablished text-image fusion as essential baselines
for Arabic script and domains. Building on this
trend, MAHED extends the scope to Arabic memes
by evaluating OCR-aware text–image fusion for
both hate and hope, while leaving speech and video
analysis out of scope for this edition.

Summary and link to design. From 2020 to
2025, Arabic hate/offense matured via shared tasks
and PLMs, affect resources expanded, and hope
remained comparatively under-resourced in Arabic.
Multitask and multimodal fusion approaches have
been consistently beneficial. In response, MAHED
unifies hate, offense, and hope annotations for Ara-
bic text, investigates joint learning with emotions
to improve the representation of minority classes,
and extends its scope to OCR-aware text–image
fusion, with particular attention to dialect variation
and code-switching.

3 Tasks and Datasets

The MAHED shared task consists of three subtasks:
(1) Text-based Hope and Hate Speech Classifica-

Data Partition Label Count Dist.
Hate 1,301 18.9%

Train (6,890) Hope 1,892 27.5%
NA 3,697 53.7%
Hate 261 17.7%

Dev (1,476) Hope 409 27.7%
NA 806 54.6%
Hate 287 19.4%

Test (1,477) Hope 422 28.6%
NA 768 52%

Table 1: Distribution of class labels in the Task 1 dataset.
NA: not_applicable

tion, (2) Multitask Learning for Emotion, Offensive
Content, and Hate Detection, and (3) Multimodal
Hateful Meme Detection. All content in the related
datasets was sourced from public social media plat-
forms, anonymized to protect user privacy, and an-
notated by native Arabic speakers. The annotation
process achieved a high inter-annotator agreement,
with a Cohen’s Kappa score exceeding 0.85, indi-
cating strong consistency among annotators.

3.1 Task 1 : Text-based Hope and Hate
Speech Classification

Task: The objective of the first task is to develop a
model that classifies Arabic text into one of three
categories: “hate”, “hope”, and “not_applicable”.
In this context, hate refers to expressions that con-
tain offensive, discriminatory, or harmful language
directed toward individuals or groups based on
features such as religion, nationality, ethnicity, or
other protected characteristics. Hope refers to ex-
pressions of positive emotional content, including
aspirational, motivational, or future-oriented mes-
sages, as well as statements that convey optimism,
gratitude, or encouragement. The not_applicable
category includes all remaining cases that do not
contain explicit hate or hope content.

Dataset: The dataset used for this task con-
sists of 9,843 high-quality Arabic text instances
that have been carefully prepared for classification
into the “hate”, “hope”, and “not_applicable” cat-
egories. The data is divided into three subsets:
6,890 samples for training, 1,476 for validation,
and 1,477 for testing. The dataset have been ob-
tained from the combination of three high quality
datasets (Zaghouani et al., 2024; Zaghouani and
Biswas, 2025b,a). Table 1 presents the label dis-
tribution across the training, validation, and test
sets, reporting both the number of instances in each
category and their relative proportions.
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3.2 Task 2: Multitask Learning for Emotion,
Offensive Content, and Hate Detection

Task. The second task addresses multitask learn-
ing for joint emotion, offensive language, and hate
speech detection in Arabic text. The objectives
of this task are (i) predicting a single emotion la-
bel from a predefined list of 12 emotions (neutral,
anger, anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, trust), (ii) de-
termining whether the text is offensive (yes/no),
and (iii) if offensive, deciding if the text is hate
speech (hate vs. not_hate). This order reflects
the hierarchical relationship between offensiveness
and hate since all hate speech is offensive, but not
all offensive content is hate speech. Specifically,
texts labeled as hate contain offensive content di-
rected at an identity group (e.g., religion, national-
ity, ethnicity, or gender). In contrast, texts labeled
as not_hate may also be offensive but do not target
specific identities, such as instances of casual or
profane language without identity-based targeting.

Dataset. The dataset for this task comprises
8,515 high-quality annotated Arabic text instances,
prepared for joint classification of emotions, offen-
sive language, and hate speech. Three high quality
data sources were used for curation of this shared
task datasets (Zaghouani et al., 2024; Zaghouani
and Biswas, 2025b,a). It is divided into three sub-
sets: 5,960 samples for training, 1,277 for valida-
tion, and 1,278 for testing. Each instance is labeled
with three layers of information aligned with the
task objectives: (i) one emotion from the 12 cat-
egories, (ii) an offensiveness label (yes/no), and
(iii) for offensive texts, a hate label distinguishing
between hate and not_hate. Table 2 summarizes
the distribution of these label categories across the
training, validation, and test sets.

3.3 Task 3 : Multimodal Hateful Meme
Detection

Task. The objective of this subtask is to determine
whether a meme—comprising both textual and vi-
sual content—is hateful or not, formulated as a
binary classification problem. Participants were al-
lowed to adopt any experimental setup, leveraging
text-only, image-only, or multimodal approaches.
Dataset. For this subtask, the dataset is derived
from prior work (Hasanain et al., 2024; Alam et al.,
2024c,a) and comprises 3,562 memes, including
the final evaluation test set. These memes were col-
lected from diverse social media platforms such as

Label Train Val Test

Emotion

Neutral 661 137 128
Anger 1,551 331 327
Anticipation 491 121 120
Disgust 777 153 167
Fear 53 9 13
Joy 533 120 135
Love 593 135 117
Optimism 419 88 79
Pessimism 194 54 39
Sadness 335 54 68
Surprise 143 28 33
Confidence (Trust) 210 47 52

Offensive

Yes 1,744 363 370
No 4,216 914 908

Hate (if offensive)

Hate 303 68 69
Not hate 1,441 294 301

Total 5,960 1,277 1,278

Table 2: Label distribution in the Task 2 dataset across
training, validation, and test splits.

Facebook, Twitter, Instagram, and Pinterest. The
textual content within the memes was extracted us-
ing an off-the-shelf OCR tool2, followed by manual
post-editing to ensure accuracy.

Hateful meme annotations for the training and
development sets were obtained through a hy-
brid approach, combining multiple large language
models (LLMs) replicating human annotation ap-
proaches. The test set (referred to as dev-test) was
fully human-annotated. For the shared task, we
additionally constructed a new test split, adhering
to the data collection methodology and annotation
guidelines described in (Alam et al., 2024c).

4 Results

This section reports the leaderboard results for each
of the three subtasks, including the team rankings
and their corresponding Macro F1-scores.

4.1 Task 1

Task 1 received a total of 28 submissions. The
baseline system, a BERT-based model, achieved
a Macro F1-score of 0.53, providing a reference
point for evaluating participant systems. As shown
in Table 3, HTU (Saleh and Biltawi, 2025) achieved

2https://github.com/JaidedAI/EasyOCR
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the highest performance with a Macro F1-score of
0.723. Their system combined multiple Arabic
models (ArabicDeBERTa-DA, BERT-MSA, MAR-
BERTv2) in an ensemble, which allowed them to
capture variation across dialects and improved ro-
bustness. NYUAD (AlDahoul and Zaki, 2025), the
second-ranked team with 0.721 F1-score, leveraged
large language models by fine-tuning GPT-4o-mini
and Gemini Flash 2.5 alongside Google text em-
beddings with an SVM classifier, and fused predic-
tions through majority voting, which helped them
handle subjective and dialectal confusions. AAA
(Elzainy et al., 2025) and NguyenTriet (Nguyen and
Dang, 2025a) shared third place with an F1-score
of 0.707. AAA systematically evaluated multiple
transformer encoders and found that MARBERT
was the most effective. NguyenTriet, by contrast,
used a carefully preprocessed dataset and built an
ensemble of Arabic-specific BERT encoders with
soft-voting fusion.
LoveHeaven (Nguyen and Dang, 2025b) achieved
strong results (0.703) by ensembling AraBERT-
Twitter variants and incorporating attention-based
features. IRIT_HOPE (Moudjari et al., 2025) also
ranked among the top systems (with 0.701), com-
bining token-level augmentation with pragmatic
features derived from multiple sources (MAHED,
MLMA, and synthetic data). phucclone* likewise
delivered a competitive performance, securing a
place within the top seven.
Beyond the top-performing group, several other
teams achieved competitive results. For instance,
novatriee*, CUET_Zahra_Duo (Alam et al., 2025)
(which fine-tuned AraBERTv2-large with opti-
mized early stopping), ahmedabdou* and TranTra-
nUIT (Tran and Dang, 2025), all scored near 0.69.
TranTranUIT focused on dialect sensitivity and
cross-lingual generalization, applying extensive
data augmentation strategies including backtrans-
lation , EDA-based transformations, and noise re-
duction. They fine-tuned AraBERTv2, AraBERT-
Twitter, and XLM-RoBERTa, combining them in a
soft-voting ensemble.
Teams clustered in the 0.64–0.69 range included
SmolLab_SEU (Rahman et al., 2025), which experi-
mented with several Arabic-native and multilingual
transformers, and Quasar (Chowdhury and Chowd-
hury, 2025), which combined text normalization
with data augmentation and large models. Other
teams in this group were CIC-NLP (Obiadoh et al.,
2025), ANLPers (Yasser et al., 2025), sudo_apt*,
Muhammad Annas Shaikh*, michaelibrahim*, min-

htriet*, nguyenminhtriet*, Baoflowin502 (Bao and
Thin, 2025), KALAM (Hameed and Al-Fuqaha,
2025), AraNLP (Khalil and El-Kassas, 2025), and
turabusmani*. The lowest-ranked group — includ-
ing ANLP-UniSo (El Abed et al., 2025), REGLAT
(Ashraf et al., 2025), shadmansaleh*, and Ayah-
Verse (Rashid and Khalil, 2025) — scored below
0.60.

Rank Team F1-score

1 HTU 0.723
2 NYUAD 0.721
3 AAA 0.707
3 NguyenTriet 0.707

4 LoveHeaven 0.703
5 IRIT_HOPE 0.701
6 phucclone* 0.700

7 novatriee* 0.698
8 CUET_Zahra_Duo 0.695
9 ahmedabdou* 0.695

10 trantranuit 0.694

11 SmolLab_SEU 0.682
12 Quasar 0.674
13 CIC-NLP 0.673
14 ANLPers 0.672
15 sudo_apt* 0.671
16 Muhammad Annas Shaikh* 0.669

17 michaelibrahim* 0.665
18 minhtriet* 0.659
18 nguyenminhtriet* 0.659
19 Baoflowin502 0.651
20 KALAM 0.650
20 AraNLP 0.650
21 turabusmani* 0.647

22 ANLP-UniSo 0.595
23 REGLAT 0.579

baseline Baseline model 0.53
25 shadmansaleh* 0.483
25 AyahVerse 0.481

*The corresponding papers were not submitted.

Table 3: Task 1 results with team rankings

4.2 Task 2

Task 2 received a total of 11 submissions. The
baseline system, built with an AraBERT model,
achieved a Macro F1-score of 0.50. As shown
in Table 4, NYUAD ranked first with a Macro F1-
score of 0.578. Their system trained three fine-
tuned GPT-4o-mini models, each specialized for
emotion, offensive, and hate detection sub-tasks.
They further addressed class imbalance by over-
sampling the “hate” class fivefold. NguyenTriet, in
second place with 0.553, developed a hierarchical
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cascade architecture where predictions from emo-
tion classification were fed into offensiveness detec-
tion, which in turn informed hate detection. They
relied on ensembling MARBERTv2 and AraBERT-
Twitter with soft voting at each stage. Rigorous
text normalization (emoji demojization, diacritic re-
moval, URL/stopword filtering) and class-weighted
training with cosine learning-rate scheduling im-
proved their ability to handle imbalance and dialec-
tal variation. HTU placed third with 0.535, propos-
ing a Retrospective Reader with an ALBERT ap-
proach. Their system first produced an initial pre-
diction and then used retrospective verification to
refine the classification, which helped reduce false
positives. CUET_823 (Dhar and Mallik, 2025),
ranking fourth with 0.518, applied Meta-Llama-
3.1-8B with instruction tuning and quantization
(LoRA + 4-bit) for efficiency. They used a two-
stage prompt-based approach that enabled zero-
and few-shot adaptability. Finally, SmolLab_SEU
finished in the top five with 0.514, building three
separate classifiers for emotion, offensive, and hate
detection using a wide range of pretrained models
(MARBERTv2, ARBERTv2, AraBERTv2-large,
QARiB, XLM-RoBERTa-large, mDeBERTaV3-
base, DistilBERT-base). The remaining teams, in-
cluding Quasar, deleted_user_25186*, KALAM,
turabusmani*, MultiMinds (Debnath et al., 2025),
and ashfaq*, scored between 0.33 and 0.48. These
systems struggled with borderline distinctions be-
tween offensive and hate, as well as imbalanced
data, highlighting the difficulty of this subtask com-
pared to Task 1.

Rank Team F1-score

1 NYUAD 0.578
2 NguyenTriet 0.553
3 HTU 0.535
4 CUET_823 0.518
5 SmolLab_SEU 0.514

baseline Baseline model 0.50
6 Quasar 0.480
7 deleted_user_25186* 0.459
8 Kalam 0.434

9 turabusmani* 0.398
10 MultiMinds 0.349
11 ashfaq* 0.336

*The corresponding papers were not submitted.

Table 4: Task 2 results with team rankings and Macro
F1-scores

4.3 Task 3

Task 3 received a total of 7 submissions. The base-
line multimodal hateful-meme detection system
obtained a Macro F1-score of 0.70. As shown in
Table 5, NYUAD achieved the best performance
with a Macro F1-score of 0.796, the highest across
all subtasks. The next two teams, yassirEA (0.750)
(El Attar, 2025) and Araminds (0.744) (Zaytoon
et al., 2025), also performed strongly, both surpass-
ing 0.74. thinkingNodes (Safwan, 2025) followed
in fourth place with 0.718, while Muhammad An-
nas Shaikh* and joy_2004114 (Das et al., 2025)
obtained mid-range scores of 0.684 and 0.629, re-
spectively. MultiMinds ranked last with 0.497.

Rank Team F1-score

1 NYUAD 0.796
2 yassirEA 0.750
3 Araminds 0.744
4 thinkingNodes 0.718

baseline Baseline Model 0.70
5 Muhammad-Annas

Shaikh*
0.684

6 joy_2004114 0.629

7 MultiMinds 0.497

*The corresponding papers were not submitted.

Table 5: Task 3 results with team rankings and Macro
F1-scores

5 System Description

5.1 Data Preprocessing Techniques

The most common preprocessing steps applied by
teams are summarized below:

• Tokenization (8 teams: SmolLab_SEU,
AAA, KALAM, AraNLP, HTU, REGLAT,
MultiMinds, NYUAD): Segmenting text into
tokens for compatibility with deep learning
models.

• Remove URLs (6 teams: NguyenTriet, Smol-
Lab_SEU, KALAM, AraNLP, REGLAT, Mul-
tiMinds): Eliminating hyperlinks to reduce
noise in social media text.

• Remove Mentions/Hashtags (5 teams:
NguyenTriet, SmolLab_SEU, REGLAT,
LoveHeaven, Araminds): Stripping social
media markers that encode metadata rather
than content.

• Lowercasing/Normalization (4 teams:
NguyenTriet, SmolLab_SEU, KALAM,
MultiMinds): Standardizing case and script
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forms to reduce vocabulary redundancy.
• AraBERT Preprocessing (4 teams: AraNLP,

CIC-NLP, LoveHeaven, AyahVerse): Using
an Arabic-specific pipeline for diacritic re-
moval, normalization, and script unification.

5.2 Feature Engineering

Text-based Tasks (Task 1 and Task 2) For the
text-only tasks, teams employed both traditional
vectorization methods and deep contextual embed-
dings:

• Google text embeddings with SVM
(NYUAD): Used pretrained Google text
embeddings as input to an SVM classifier,
providing a strong baseline with fixed
semantic representations.

• Ensemble of Arabic-specific BERT encoders
(NguyenTriet): Combined outputs from MAR-
BERTv2 and related encoders to improve ro-
bustness across dialectal variation.

• TF–IDF and Embedding-based Features
(KALAM, REGLAT): Leveraged classical TF–
IDF along with embeddings from AraBERT,
CAMeL-BERT, and MARBERT; in some
cases, attention-based features were added to
capture contextual cues.

• Bag-of-Words and Morphological Features
(trantranuit, CIC-NLP): Applied n-gram BoW
features, enriched with morphological fea-
tures such as POS tags, verb patterns, and
affixes.

• Attention-based Features (KALAM, Muham-
mad Annas Shaikh, LoveHeaven): Extracted
attention weights from transformer models as
features, highlighting salient contextual de-
pendencies.

• Augmentation and Scaling (IRIT_HOPE): In-
troduced token-level augmentation and nor-
malized log feature scaling to improve robust-
ness and feature balance.

• Linguistic Features and Normalization (CIC-
NLP, Quasar): Integrated handcrafted linguis-
tic signals and normalization of diacritics to
reduce noise in Arabic text.

Multimodal Task (Task 3) For the multimodal
setting (image + text), teams explored fusion strate-
gies combining visual and textual embeddings:

• Google Multimodal Embeddings: Used 512-
dimensional embeddings for both image and
text, fused via element-wise averaging or con-
catenation.

• Pretrained Encoders with Fusion (CLIP,

MARBERT): Extracted features from CLIP-
ViT (vision) and MARBERT (text), projecting
them into a shared space and applying cross-
attention or gated fusion strategies.

• Dual-encoder Architectures: Combined text
and image encoders with late fusion, optimiz-
ing with binary cross-entropy and contrastive
losses to align modalities.

• Hybrid Fusion Models: Used CLIP ViT-B/32
features with text embeddings (e.g., Distil-
BERT) and fused them using cross-attention
modules.

• Advanced Fusion (MARBERTv2 + CLIP ViT-
L/14): Explored multiple fusion mechanisms,
including transformers, early concatenation,
bilinear pooling, and cross-attention for joint
representation learning.

5.3 Data Augmentation

Text-based Tasks (Task 1 and Task 2) For the
text-only tasks, teams experimented with different
augmentation strategies, although many reported
limited or no improvement.

• Synonym replacement and back-translation
were applied to increase lexical diversity,
though in some cases they did not yield per-
formance gains.

• Synthetic Minority Over-sampling Technique
(SMOTE) and oversampling were used to gen-
erate synthetic minority samples, balancing
class distributions and reducing bias in train-
ing data.

• Easy Data Augmentation (EDA) techniques
such as random insertion, swapping, deletion,
and synonym replacement were employed to
expand the dataset with simple transforma-
tions.

• Bigram augmentation and contextual embed-
dings were explored to introduce variation at
both the lexical and semantic levels.

• Some teams leveraged external synthetic and
multilingual datasets (e.g., MAHED, MLMA)
to supplement training and cover dialectal
variation.

Multimodal Task (Task 3) In the multimodal
meme classification task, augmentation targeted
both text and image modalities.

• Oversampling of hate memes was performed
up to nine times to alleviate class imbalance
and strengthen minority-class learning.

• Image-based augmentation included rotation,
scaling, perspective shifts, color jitter, gamma

566



Type Model T1 T2 T3 Key advantage
Tr

an
sf

or
m

er

AraBERT/v2 ✓ ✓ Arabic morphology
MARBERT/v2 ✓ ✓ ✓ Noisy social text
CAMeL-
BERT

✓ Robust baseline

QARiB ✓ News/social adapted
XLM-
RoBERTa

✓ ✓ Multilingual

DistilBERT ✓ ✓ Lightweight
DeBERTa
variants

✓ Better attention

Vision CLIP (ViT) ✓ Vision-text align
ResNet/ResNeXt ✓ Visual backbone

L
L

M
/V

L
M GPT-4 ✓ ✓ ✓ Few-shot learning

Gemini ✓ ✓ ✓ Multimodal reason
LLaMA ✓ Finetuned branch
Gemma ✓ Compact VLM
Qwen ✓ Multilingual VLM

Table 6: Model families used across tasks

correction, noise, blurring, distortions, shad-
ows, fog effects, and crop–resize operations.

• Text within memes was augmented using
OCR-based extraction followed by synonym
replacement, character-level dropout, and
back-translation between Arabic and English.

• Some teams focused augmentation specifi-
cally on hate-class examples, ensuring that
rare cases were better represented in multi-
modal training.

5.4 Model Usages Across Tasks

Task 1: Text-based Hope and Hate Speech Clas-
sification. Teams primarily used Arabic-centric
transformers (AraBERT, MARBERT, CAMeL-
BERT, QARiB, XLM-R) to obtain context-aware
sentence embeddings robust to morphology, code-
mixing, and informal orthography. These encoders
work well for short, noisy social posts where prag-
matic cues and dialectal markers are crucial. LLMs
(e.g., GPT-4, Gemini) appeared as auxiliary back-
bones or zero/few-shot components, valued for
broad world knowledge and flexible prompting
when labeled data are limited.

Task 2: Multitask Emotion/Offense/Hate. A
shared transformer encoder with lightweight task
heads provides a compact way to model related la-
bel spaces, enabling representation sharing across
emotion, offensive content, and hate signals. This
setup simplifies training pipelines and reduces over-
fitting via shared inductive biases; LLMs help unify
task instructions and can serve as promptable con-
trollers for multi-objective finetuning.

Task 3: Multimodal Hateful Meme Detection.
Vision–language stacks (CLIP/ViT + Arabic text
encoders) align image and text into a shared se-
mantic space so that cross-modal cues—caption
sarcasm, visual symbols, and text overlays—can be
interpreted jointly. LLM/VLM components (Gem-
ini, LLaMA, Gemma, Qwen) are useful where rea-
soning over both modalities or following structured
prompts improves recognition of subtle or template-
driven hateful content.

5.5 Training Configurations and Rationale

Drop-in Recipes (Space-Efficient, Repro-
ducible)

Recipe: Text Hope/Hate

Encoder: AraBERTv2 or MARBERTv2; max
length 256; batch 16; LR 2×10−5 (AdamW,
WD 0.01), 10% warmup, cosine decay, FP16,
grad clip 1.0. Class-weighted CE; early stop-
ping on macro-F1 (patience 3); 5-fold strati-
fied CV; select best checkpoint by macro-F1.

Recipe: Multitask (Emotion/Offense/Hate)

Shared encoder (AraBERT/MARBERT) with
multi-head classifiers; batch 16 (grad accum
2); LR 1×10−5; warmup 10%, cosine sched-
ule; FP16. Class-weighted CE; early stopping
on macro-F1. Tune per-head dropout/epochs
via Optuna; optional LR multiplier (≈1.8) for
heads.

Recipe: Multimodal Memes

Text: MARBERTv2 [CLS] or DistilBERT to-
kens; Image: CLIP ViT-B/32 (or ViT-L/14).
Project to 512-d; fuse by concatenation or
cross-attention. Batch 16–32 (per-device 2–
4 for large VLMs); LR text/vision 2×10−5,
fusion head 1×10−3; AdamW (WD 10−4),
linear or cosine schedule; FP16, grad clip
1.0. Loss: weighted BCE/CE, focal-loss trial.
Early stopping with patience 5–15; oversam-
ple minority class.

Use Cases
• Macro-F1 selection, class-weighted losses,

and oversampling address severe label imbal-
ance (hate/hope and multimodal memes), pri-
oritizing minority-class recall without inflat-
ing accuracy.
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Task Typical Backbones Epochs Batch Size Seq.
Length

Learning Rate Optimizer &
Strategy

Hope/Hate
(Text)

AraBERT, MARBERT,
CAMeLBERT, XLM-
RoBERTa, QARiB,
ArabicDeBERTa

2–10
(ES:3–
5)

16–32 128–256 310−6–110−5 AdamW, cosine
scheduler, FP16

Multitask (Text) AraBERT, MARBERT
variants

3–10 8–16 128 110−5–210−5 AdamW,
warmup/cosine,
FP16

Multimodal
Memes

CLIP ViT + MAR-
BERT; VLMs (Gemma,
Qwen, Paligemma)

5–40
(ES)
VLM:10

16–32
2–4 (VLM)

Variable Text 110−5

Vision 210−5

VLM 510−6

AdamW, gra-
dient clip 1.0,
cross-attention
fusion

Table 7: Typical training settings distilled from submitted systems across tasks. ES = early stopping, VLM =
vision-language model.

• Warmup + cosine/linear schedules with
AdamW stabilize finetuning of large encoders
and prevent early-step divergence; weight de-
cay and dropout regularize under limited data.

• FP16 and gradient clipping improve memory
efficiency and prevent exploding gradients,
which is critical in multimodal or multitask
finetuning.

• Shared encoders with task heads (multitask)
reuse domain signals (emotion, offense, hate)
and conserve parameters; LR multipliers let
heads adapt faster without overfitting the en-
coder.

• CLIP+Arabic encoders with projection/fusion
capture cross-modal interactions in memes;
aligning to a 512-d shared space simpli-
fies fusion while retaining modality-specific
strengths.

• CV and Optuna provide robust, reproducible
hyperparameters without exhaustive grids; re-
porting the validation macro-F1 criterion en-
sures consistent model selection.

6 Conclusions and Future Work

The MAHED 2025 shared task establishes compre-
hensive benchmarks for Arabic content moderation
across textual and multimodal formats. With 46
participating teams, the evaluation demonstrates
consistent improvements over baselines, achieving
macro F1-scores of 0.723 (Task 1), 0.578 (Task 2),
and 0.796 (Task 3). Top systems leveraged Arabic-
specific PLMs (AraBERT, MARBERT), ensemble
methods, and OCR-aware multimodal fusion.

Key Challenges: Our analysis reveals persistent
limitations: (i) dialectal robustness gaps of up to
34% in error cases, with Gulf and Levantine expres-

sions frequently misclassified; (ii) minority class
detection difficulties, particularly for hope speech
(average recall: 0.52); (iii) OCR noise contribut-
ing to 28% of multimodal errors; and (iv) Task 2’s
hierarchical multitask complexity, where conflict-
ing optimization pressures across emotion, offense,
and hate detection yielded the lowest performance
(0.578 F1).

Future Directions: Critical research prior-
ities include: dialect-invariant representations
through cross-dialectal augmentation and adver-
sarial training; culturally-grounded hope speech
annotation with contrastive learning objectives;
Arabic-specific scene text recognition for stylized
fonts; and uncertainty-aware multitask architec-
tures. Evaluation methodology should incorporate
dialectal breakdowns, calibration analysis, and fair-
ness auditing.

Impact: The released datasets (22,000+ in-
stances, Cohen’s Kappa >0.85), baseline imple-
mentations, and comprehensive analysis provide a
reproducible foundation for Arabic content safety
research. While significant progress was demon-
strated, the identified challenges underscore the
need for culturally-informed approaches that ad-
dress Arabic’s unique linguistic and cultural char-
acteristics.

7 Limitations

The MAHED shared task has several inherent con-
straints: (i) focus on social media data excludes
formal Arabic domains; (ii) binary hope/hate cat-
egories oversimplify the prosocial-harmful spec-
trum; (iii) hierarchical multitask design in Task 2
introduces conflicting optimization pressures; (iv)
OCR-dependent multimodal processing creates sys-
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tematic extraction errors; and (v) annotation guide-
lines may not fully capture dialectal and cultural
diversity across Arabic-speaking regions.
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Table 8: Task 1: Text-based Hate/Hope/Emotion Detection

Team Models Notable Methods Compute

NYUAD GPT-4o-mini, Gemini Flash 2.5 + SVM Google text embeddings + SVM OpenAI plat-
form

NguyenTriet MARBERTv2, AraBERTv0.2-Twitter Arabic cleanup, ensemble Tesla P100
(Kaggle)

SmolLab_SEU MARBERTv2, ARBERTv2, AraBERTv2-large,
XLM-R, mDeBERTaV3

Multi-model ensemble Kaggle P100

AAA MARBERT, AraBERT-Twitter, XLM-RoBERTa Arabic tokenization Tesla V100
KALAM TF-IDF+LR, AraBERT, CAMeL-BERT, MAR-

BERT
TF-IDF + embeddings + atten-
tion

24 GB GPU

AraNLP AraBERT v0.2-Twitter AraBERTPreprocessor + 5-fold
CV

Google Colab
L4

HTU ArabicDeBERTa-DA, BERT-MSA, MARBERTv2 — —
REGLAT AraBERTv2, CAMeL-BERT + SVM/LR TF-IDF + embeddings, majority

voting
Colab GPU

ANLP-UniSo XLM-RoBERTa, LSTM SMOTE augmentation —
trantranuit AraBERT, XLM-RoBERTa BoW + TF-IDF + morphologi-

cal features
Kaggle P100

CIC-NLP MARBERT Linguistic + BoW features RTX 3800, 32
GB RAM

CUET_Zahra_Duo AraBERTv2-large Contextual embedding + early
stopping

Tesla T4 (32
GB total)

IRIT_HOPE bert-base-arabertv02-twitter Token-level augmentation,
multi-embedding

—

LoveHeaven bert-base-arabertv02(-twitter) Attention-based features Kaggle P100
AyahVerse AraBERT Embeddings + EDA

(synonym/back-translation)
—

baoflowin502 AraBERTv2, CAMeL-BERT, BERT Arabic — Kaggle P100
Quasar xlm-roberta-large, gemma-7b, qwen2.5-14b-

instruct
Diacritics normalization + syn-
onym balancing

—

TranTranUIT AraBERTv2, AraBERT-Twitter, XLM-RoBERTa Dialect sensitivity, cross-lingual
+ back-translation

—

Table 9: Task 2: Multitask Text Classification

Team Models Multitask Setup Compute

NYUAD GPT-4o-mini (3 models) Parallel: separate per sub-task OpenAI plat-
form

MultiMinds SVM, XGBoost, AraBERT, GPT-5 Parallel multi-head shared en-
coder

Colab (6 GB)

NguyenTriet MARBERTv2, AraBERTv0.2-Twitter Sequential cascade:
Emotion→Offensive→Hate

Kaggle P100

SmolLab_SEU MARBERTv2, ARBERTv2, XLM-RoBERTa-large Sequential cascade (3 classi-
fiers)

Kaggle P100

KALAM CAMeL-BERT, MARBERT, AraBERT Single-task fine-tuning 24 GB GPU
HTU Retrospective Reader, ALBERT — —
CUET_823 Meta-Llama-3.1-8B — Kaggle GPU

(16 GB)
Quasar qwen2.5-14B, gemma-7b, AraBERTv2 — —

Table 10: Task 3: Multimodal Meme Classification

Team Models Fusion / Approach Compute

NYUAD GPT-4o-mini, Gemini Flash 2.5, Llama 3.2-11B,
Paligemma2

Multimodal embeddings + over-
sampling

OpenAI + Ver-
tex AI
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Team Models Fusion / Approach Compute

thinkingNodes CLIP-ViT-B/32 + MARBERT Cross-attention, CNN fusion,
contrastive CLIP-Arabic

Kaggle T4 (15
GB)

Araminds Qwen2.5-1.5B+ResNet / MARBERTv2+ResNet,
Gemma3-4B

Dual-encoder + contrastive +
VLM ensemble

RTX 3090

MultiMinds CLIP ViT-B/32 + DistilBERT ELU-Net cross-attention fusion Google Colab
(6.2 GB)

yassirea MARBERTv2 + CLIP-Large (ViT-L/14) 4-way fusion + heavy augmen-
tation

RTX 6000 Ada
(48 GB)

Muhammad Annas
Shaikh

EfficientNet-B0 + AraBERT — —

CUET_NLP mBERT + InceptionResNetV2 — —
joy_2004114 mBERT, AraBERT, InceptionNet — —
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Abstract

The rise of social media and online communi-
cation platforms has led to the spread of Ara-
bic textual posts and memes as a key form of
digital expression. While these contents can
be humorous and informative, they are also
increasingly being used to spread offensive lan-
guage and hate speech. Consequently, there
is a growing demand for precise analysis of
content in Arabic text and meme. This paper
explores the potential of large language models
to effectively identify hope, hate speech, of-
fensive language, and emotional expressions
within such content. We evaluate the perfor-
mance of base LLMs, fine-tuned LLMs, and
pre-trained embedding models . The evaluation
is conducted using a dataset of Arabic textual
speech and memes proposed in the ArabicNLP
MAHED 2025 challenge. The results under-
score the capacity of LLMs such as GPT-4o-
mini, fine-tuned with Arabic textual speech,
and Gemini Flash 2.5, fine-tuned with Arabic
memes, to deliver the superior performance.
They achieve up to 72.1%, 57.8%, and 79.6%
macro F1 scores for task 1, 2, and 3, respec-
tively and secure first place overall in the chal-
lenge1 (Zaghouani et al., 2025). The proposed
solutions offer a more nuanced understanding
of both text and memes for accurate and effi-
cient Arabic content moderation systems.

1 Introduction

AI content moderation refers to the use of artifi-
cial intelligence to monitor, evaluate, and manage
content across digital platforms2. By ensuring that
posts comply with community standards and legal
regulations, it helps create safer, more respectful,
and law-abiding online environments. Its role has
become increasingly vital as the volume and com-
plexity of online content continue to grow. De-
spite growing efforts, Arabic content moderation

1https://marsadlab.github.io/mahed2025/#
2https://verpex.com/blog/website-tips/ai-con

tent-moderation

still lags behind. Challenges such as dialect di-
versity, limited training data, and under-resourced
tools make it difficult to ensure effective modera-
tion across Arabic-speaking regions3,4.

Although Arabic is spoken by around 380 mil-
lion people, it is far from being a uniform lan-
guage5. It consists of six major regional dialect
groups, so for classifiers to work effectively, they
must be trained across all these dialects. The rise
of social media and online communication plat-
forms has led to the spread of Arabic textual posts
and memes as a key form of digital expression.
There is a growing need to develop methods for
detecting hateful text and memes, as they can per-
petuate harmful stereotypes and contribute to the
spread of offensive language and hate speech in
digital spaces (Zaghouani et al., 2024; Zaghouani
and Biswas, 2025a; AlDahoul et al., 2024a).

To have a full understanding of the emotional
landscape of online communication, recognition of
emotional expression can provide deeper insight
into user sentiment and foster empathy. Addition-
ally, emotional expression classification has valu-
able applications such as monitoring mental health
and tailoring personalized recommendations (Za-
ghouani and Biswas, 2025b).

Memes are especially widespread and can be po-
tent tools for spreading propaganda, inciting hate,
or conveying humor. LLMs have been shown to
have superior performance in various domains and
applications (AlDahoul et al., 2025, 2024b). For
meme understanding, having textual and visual in-
puts, LLMs can analyze both the linguistic content
and the underlying visual elements of a meme.

3https://techglobalinstitute.com/announcement
s/blog/content-moderation-arabic-hebrew-in-under
-resourced-regions/

4https://www.mei.edu/publications/content-mod
eration-trends-mena-region-censorship-discrimin
ation-design-and-linguistic

5https://techglobalinstitute.com/announcement
s/blog/content-moderation-arabic-hebrew-in-under
-resourced-regions/
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Our analyses and experiments center around the
following research questions: RQ1: Can a pre-
trained embedding model, combined with trained
SVM or DNN classifiers, effectively detect hate
and hope speech in Arabic text and memes? RQ2:
Are existing safety classification and content mod-
eration solutions capable of detecting hate speech
in Arabic memes? RQ3: To what extent do state-
of-the-art base LLMs excel in detecting hate speech
in Arabic memes? RQ4: Can fine-tuned LLMs de-
tect emotion, hope, hate, and offensive content in
Arabic text with high accuracy? RQ5: Can fine-
tuned LLMs detect hateful Arabic memes with high
accuracy?

2 Related Work

Several studies have investigated hate speech and
offensive language in Arabic text (Mohaouchane
et al., 2019; Kaddoura et al., 2023; Mubarak et al.,
2023; Shapiro et al., 2022; Albadi et al., 2018; Ben-
nessir et al., 2022). They utilized Convolutional
Neural Networks (CNNs), Long Short-Term Mem-
ory (LSTM), CNN-LSTM (Mohaouchane et al.,
2019; Kaddoura et al., 2023), word embeddings
with simple Recurrent Neural Networks (RNN) (Al-
badi et al., 2018) and MARBERT (Shapiro et al.,
2022; Bennessir et al., 2022). The datasets used for
analysis contain social posts and tweets.

To study the proportion of hate speech and of-
fensive language in Arabic tweets, AraBERT was
utilized (Zaghouani et al., 2024). They found that
15% of tweets contained offensive language, while
6% included hate speech. Additionally, their anno-
tated tweet dataset provided a valuable contribution
to the limited availability of Arabic data related to
hate speech and offensive language (Zaghouani
et al., 2024). It was found that AraBERT outper-
formed conventional machine learning classifiers
(Zaghouani et al., 2024).

Even though there are several English emotion
datasets, there is still a shortage of comprehensive
Arabic datasets that support the analysis of both
emotions and hope speech. (Zaghouani and Biswas,
2025b) proposed an Arabic dataset, fostering bet-
ter cross-linguistic analysis of emotions and hope
speech. They fine-tuned the AraBERT model (An-
toun et al., 2020) for the hate-hope classification
task.

Building on previous research, numerous stud-
ies broadened the scope to tackle the challenge of
detecting Arabic content across multiple modali-

ties. In the context of Arabic propaganda identifi-
cation (Alam et al., 2024b; Hasanain et al., 2024),
separate feature extractors were employed for text
and images. Moving from propaganda to hate, a
multi-modal analysis of Arabic memes was done
to further detect hate in memes. They used a fusion
of features extracted from AraBERT for text and
ConvNxT for images (Alam et al., 2024a).

3 Materials and Methods
3.1 Dataset Overview
Here we describe the datasets proposed in the Ara-
bicNLP MAHED 2025 challenge (Zaghouani et al.,
2025) that we utilized to run our experiments. The
first dataset is text-based speech that includes
9,843 examples for training, 1,476 for validation,
and 1,477 for testing. The goal of using this data
is to classify the speech text into one of three cate-
gories: hope, hate, or not_applicable.

The second dataset is a text-based multi-task
set that contains 8,515 examples (5,960 for train-
ing, 1,277 for validation, and 1,278 for testing) and
supports three types of sub-tasks. The first sub-
task aims to classify each text into one of twelve
emotions: neutral, anger, anticipation, disgust, fear,
joy, love, optimism, pessimism, sadness, surprise,
or trust. The second sub-task aims to detect offen-
sive language in the text, labeling it as either yes
or no. When offensive language is detected, the
third sub-task classifies the text as either hate or
not_hate.

The third dataset targets multi-modal hateful
meme detection. It has 4,500 examples (2,143 for
training, 312 for validation, and 606 for testing)
annotated with two labels: hateful and not hateful.
Each meme example includes an image and its
extracted Arabic text.

3.2 Methods
Detection of Hope and Hate in Arabic Speech:
For this task, first, we fine-tuned 2 LLMs such as
GPT-4o-mini6 (namely LLM 1 in Table 1), and
Gemini Flash 2.57 (Team et al., 2023)(namely
LLM 2 in Table 1) using the training and valida-
tion sets from the first dataset. Secondly, we uti-
lized Google text embedding8+ SVM (Hearst et al.,

6https://openai.com/index/gpt-4o-mini-advanci
ng-cost-efficient-intelligence/

7https://blog.google/technology/google-deepm
ind/gemini-model-thinking-updates-march-2025/#g
emini-2-5-thinking

8https://developers.googleblog.com/en/gemin
i-embedding-text-model-now-available-gemini-api
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1998) (namely LLM 3 in Table 1). To improve the
accuracy, we used ensemble learning (namely En-
semble in Table 1) that used majority voting among
previous 3 models. We found that many hope sam-
ples were predicted as not_applicable. So we added
hope/not_applicable fine-tuned GPT-4o-mini to ad-
dress this issue. we named our solution in Table 1.
We reported the results of inference on a testing
set.

Multi-task Detection of Emotional Expres-
sions, Offensive Language, and Hate Speech:
For this task, three GPT-4o-mini models were fine-
tuned using the training and validation sets from
the second dataset for three epochs with a learning
rate multiplier of 1.8. We reported the results of
inference on a testing set.

To address the class imbalance in hate/not-hate
sub-task, we over-sampled the minority ‘hate’ text
by a factor of five to achieve a more balanced dis-
tribution between the ‘hate’ and ‘not-hate’ classes.
Multi-modal Detection of Arabic Hateful
Memes: For this task, we have evaluated several
methods, including base LLMs, fine-tuned LLMs,
and embedding models, to find the best solution.
We tested all solutions using the testing data of 606
Arabic memes.

First, we started with assessing the performance
of embedding models that can combine their out-
puts with traditional classifiers for hate/not-hate
classification. We used the Google multi-modal
pre-trained embedding model (multimodalembed-
ding@001)9 to generate embedding vectors for
each text and image in each meme. The embed-
ding vector has 512 dimensions. Later, we aggre-
gated the two embedding vectors of text and image
by computing their element-wise average first and
then by concatenating the two vectors. Finally, we
added a support vector machine (SVM) (Hearst
et al., 1998) to classify the resulting embedding
vector into two classes: hate and not-hate. We as-
sessed four scenarios: text embedding vector only,
image embedding vector only, average of text and
image embedding vectors, and concatenation of
text and image embeddings. We fine-tuned hyper-
parameters of SVM to get the highest F1 and F2
scores. We found that regularization parameter C =
0.1, kernel = radial basis function (rbf), gamma =
scale, and balanced class weighted loss function are
the optimal hyperparameters for the three scenarios

/
9https://cloud.google.com/vertex-ai/generati

ve-ai/docs/embeddings/get-multimodal-embeddings

except the text-only scenario, where C = 1 is opti-
mal. Additionally, we replaced SVM with a deep
neural network (DNN) (LeCun et al., 2015) whose
architecture was optimized to get the optimal one
with the highest F1 and F2 scores.

In the second experiment, we assessed the ca-
pacity of multi-modal pre-trained safety classifiers
for hate detection in memes.

Llama Guard 410,11 (Chi et al., 2024) is a multi-
modal safety classifier with 12 billion parameters,
trained jointly on both text and images. It uses a
dense architecture derived from the Llama 4 Scout
pre-trained model, which has been pruned and fine-
tuned specifically for content safety classification.
In this work, our focus is on the ‘hate’ category,
which refers to text that demeans or dehumanizes
individuals based on sensitive personal character-
istics. We focus on all examples that have been
flagged under the hate category only.

Omni-moderation-latest12 is a moderation end-
point used to check whether text or images are
potentially harmful. Its output includes several cat-
egories and their confidence values. The moderator
sets the flag to true if it classifies the content as
harmful. The limitation of this moderator is that
for categories such as ‘hate’ or ‘hate/threatening,’
it supports only text. We consider all examples that
have triggered the safety flag.

In the third experiment, we ran Gemini Flash
2.5, a base model with a system prompt (Prompt
1). We also ran the GPT-4o-mini base model with
Prompts 1, 2, and 3 (available in the Appendix).

To improve the detection performance, we fine-
tuned several LLMs in a supervised learning set-
ting. We started by tuning Gemini Flash 2.5 us-
ing Prompt 3. To address the class imbalance,
we over-sampled the minority ‘hate’ memes by
a factor of nine to achieve a more balanced distri-
bution between the ‘hate’ and ‘no_hate’ classes.
The hyper-parameters used are three epochs, learn-
ing_rate_multiplier of 0.5, an adapter size of 2,
an off threshold in safety_settings, and disabled
thinking. Additionally, we also fine-tuned Llama
3.2-11B13 (Dubey et al., 2024) using both text
and image inputs from the training data. We used

10https://www.llama.com/docs/model-cards-and-p
rompt-formats/llama-guard-4/

11https://huggingface.co/meta-llama/Llama-Gua
rd-4-12B

12https://platform.openai.com/docs/guides/mode
ration

13https://huggingface.co/meta-llama/Llama-3.2
-11B-Vision-Instruct
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Low-Rank Adaptation (LoRA) (Hu et al., 2022) as
the Parameter-Efficient Fine-Tuning (PEFT) (Xu
et al., 2023) method for fine-tuning utilizing the
unsloth framework. The fine-tuned Llama 3.2-
11B model was uploaded to Huggingface: https:
//huggingface.co/NYUAD-ComNets/Llama3.
2-MultiModal-Hate_Detector_Memes

Finally, we fine-tuned Paligemma214 (Steiner
et al., 2024) namely “google/paligemma2-3b-pt-
224”. The parameters of the vision tower and the
language model are frozen, while only the param-
eters of the multi-modal projector are set to be
trainable.

In the previous fine-tuning experiments, we used
OpenAI15 for tuning each GPT-4o-mini. Addition-
ally, we used Google AI vertex studio16 for tuning
Gemini Flash 2.5.

4 Results and Discussion
Hate/Hope Detection in textual speech: In this
task, the ensemble method of majority voting
among the three LLMs improved the performance
as shown in Table 1. Moreover, adding the hope/not
classifier to better distinguish real hope samples
from those predicted as not_applicable achieved
the best performance metrics and ranked second
in the leaderboard (Zaghouani et al., 2025) which
addresses RQ4. It is also worth mentioning that
embedding model + SVM (LLM3) shows good
performance which answers RQ1.

Task Accu-
racy %

Macro
Preci-
sion %

Macro
Recall
%

Macro
F1
Score
%

LLM 1 70.6 70.6 69 69.7
LLM 2 69.7 68.6 72.2 69.9
LLM 3 70.6 71.6 67.2 68.9
Ensemble 71.9 71.7 71.2 71.4
Our Solu-
tion 72.3 71.6 72.9 72.1

Table 1: Performance metrics for Task 1
(hop/hate/not_applicable)

Multi-task Detection: The three fine-tuned GPT-
4o-mini for multi-task (emotion, offensive, hate)
achieved the best performance compared to other
methods in the leaderboard (Zaghouani et al., 2025)
evaluated on a testing set which addresses RQ4.
More details in Table 2. The model achieved a

14https://huggingface.co/google/paligemma-3b-p
t-224

15https://platform.openai.com/finetune/
16https://console.cloud.google.com/vertex-ai/

studio/

Macro F1-score of 57.8%, an accuracy of 75.0%, a
precision of 61.2%, and a recall of 57.8% over all
three sub-tasks.

Task Accuracy
%

Macro
Preci-
sion %

Macro
Recall
%

Macro
F1
score
%

Emotion 59.9 57.2 49.9 51.7
Offensive/
Not 85.4 82.0 84.8 83.1

Hate/Not 63.8 - - -

Table 2: performance metrics for multi-task (task 2).
Hate/Not detection is influenced by the offensive de-
tection step, and some evaluation metrics cannot be
computed because samples predicted as non-offensive
yield NaN values and are excluded from the Hate/Not
detector.

Hate Detection in Memes: Table 3 presents per-
formance metrics for a variety of models. A pre-
trained multi-modal embedding model was found
to effectively detect hate speech in Arabic memes
using either SVM or DNN, answering RQ1. Both
LLaMA 4 Guard and OpenAI content moderator
show lower recall and F1-scores, especially Ope-
nAI one, suggesting limitations in the existing
safety classification solutions on this task, which
addresses RQ2. Among the base LLMs, GPT-4o
demonstrated stronger performance compared to
Gemini Flash 2.5, answering RQ3.

Fine-tuned Gemini Flash 2.5 demonstrates su-
perior performance across all metrics. Similarly,
fine-tuned Llama 3.2 11B consistently ranks sec-
ond. The results indicate that fine-tuning signifi-
cantly boosts models’ capabilities, which addresses
RQ5. On the other hand, fine-tuned PaliGemma2
underperforms compared to other models.

Table 4 shows Google’s multi-modal embedding
model results with SVM for different input modali-
ties. The findings indicate that the average embed-
ding vector outperforms slightly the image-only
embedding. This suggests that adding text embed-
dings does not provide an advantage for classifica-
tion. One explanation is that Google’s embedding
model processes the text within the meme’s im-
age. The performance of text-only embeddings is
the lowests. We also ran GPT-4o-mini with the
three prompts as shown in Table 5. Even though
Prompt 3 produced the highest accuracy and macro
F1 score, Prompt 1 gave the highest macro F2 score,
suggesting a better prompt to detect the hate class
specifically.

Flash Flash 2.5 achieved the best performance in
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LLM Accu-
racy
%

Macro
Pre-
ci-
sion
%

Macro
Re-
call
%

Macro
F1
score
%

Macro
F2
score
%

embedding
+ SVM 77.56 70.48 70.83 70.65 70.76

embedding
+ DNN 77.56 70.32 69.97 70.14 70.04

OpenAI
content
moderator

72.77 57.27 52.85 51.18 51.75

Llama 4
Guard 71.45 63.36 64.38 63.77 64.11

GPT-4o-
mini 79.21 72.49 71.29 71.84 71.50

Gemini
Flash 2.5 64.19 62.47 66.36 61.09 63.20

Fine-tuned
Gemini
Flash 2.5

83.33 78.84 74.91 76.49 75.46

Fine-tuned
Llama 3.2
11B

80.36 74.09 73.14 73.58 73.31

Fine-tuned
Paligemma2 76.73 68.95 67.49 68.12 67.72

Table 3: Performance of base and fine-tuned LLMs for
task 3.

the leaderboard (Zaghouani et al., 2025) evaluated
on a testing set of 500 memes. The model achieved
a Macro F1-score of 79.6%, an accuracy of 80.0%,
a precision of 79.4%, and a recall of 80.4%.

Limitations

One limitation of this work is the subjective nature
of the annotations poses challenges, as different
annotators may interpret and label content differ-
ently. This introduces potential inconsistencies in
the training data, which could affect the model’s
performance.

Another key limitation is the models’ ability to
understand and process different Arabic dialects.
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A Appendix

A.1 Prompts used

The following prompts were used in this work for
the three tasks. The prompt in orange color aims
to classify text into hate, hope, and not_applicable.
The three prompts in cyan color aim to classify text
into:

• offensive language or not.
• hate or not.
• one of the emotions in a predefined set of

emotions.
The prompts in red, blue, and green color are

three different prompts used to classify memes into
hate or not.
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Hate/Hope Detection Prompt

Classify each text into one of the three cate-
gories ’hope’,’hate’,or ’not_applicable’

Offensive Language Detection Prompt

You are an expert in offensive language de-
tection.
Carefully read the input text and determine
whether it is offensive.
Respond with only one word, either "yes" if
the text is offensive, or "no" if it is not.
Text: "<your text here>"
Answer:

Hate/not-Hate Detection Prompt

Classify each text into one of the two cate-
gories ’hate’, or ’not_hate’

Emotion Detection Prompt

You are an expert in fine-grained emotion
classification.
Given a short piece of text, your task is
to classify the **dominant emotion**
expressed in the text.
Use **only one word** from the following
list of predefined emotion categories:

[anger, disgust, neutral, love, joy, antic-
ipation, optimism, sadness, confidence,
pessimism, surprise, fear]
Carefully read the input and select the most
appropriate emotion based on the **overall
tone, context, and word choice**.
If multiple emotions are expressed, choose
the one that is **most central** to the
message.
Respond with only one word, exactly as
listed.
Text: "<your text here>"
Answer:

Hate Detection in Memes Prompt 1

You’re an expert Arabic social media hate
content analyst. Your goal is to flag any
content that is derogatory, disparaging, pro-
motes negative stereotypes, incites any form
of harm (even humorously), or contributes to
a hostile environment.
Provide the following for analysis:
Meme Description (Visuals): Detailed text
description of all visual elements (characters,
symbols, actions, etc.).
Meme Text (Arabic & English): Exact Ara-
bic text and its literal English translation. In-
clude any emojis/symbols.
Context: Explain who is targeted (individu-
als, groups, professions, etc.), relevant cur-
rent events, cultural/historical references,
and any known slang/derogatory terms.
User Intent (if known): Any information on
the creator/sharer’s likely purpose.
Analysis: Your detailed reasoning, explain-
ing how visuals, text, and context contribute
to hate.
Focus on dehumanization, negative stereo-
types, incitement (even if satirical), hostile
environment creation, contempt, ridicule, dis-
gust, targeting based on role, disparaging
language (ableism, body shaming, etc.), and
normalization of problematic behavior.
Final Answer: hate/no hate
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Hate Detection in Memes Prompt 2

You are a hate speech analyst evaluating
Arabic social media memes.
Your goal is to flag hate speech, including
implicit hate masked as humor or political
discourse.
Hate includes:
Stereotyping or mocking a group based
on ethnicity, nationality, gender, religion,
or identity Jokes or memes that promote
harmful generalizations
Political content that blames or dehumanizes
a people, not just a government or policy
However, you must not flag:
Political critique focused on leadership,
government, or policy (not people)
Cultural observations or satire without
negative generalization
Your analysis must:
Describe the image and interpret the Arabic
text
Explain whether it includes group-based
bias or stereotypes
End with:
Analysis: your reasoning
Final Answer: ’hate’ or ’no hate’

Hate Detection in Memes Prompt 3

You are a hate speech analyst evaluating Ara-
bic social media memes.
Your goal is to classify meme into hate or
no_hate

A.2 Hyper-parameters for various models

The following are Hyper-parameters used for train-
ing DNN, and fine-tuning PaliGemma2, and Llama
3.2- 11B. Table 6 describes the DNN’s architecture.

Hyper-parameters for DNN

• Adam optimizer,

• weighted class binary cross-entropy
loss fuction

• 100 epochs

• 128 batch size

• early stopping with patience = 3.

Training Configuration of PaliGemma2

• number of training epochs: 3

• per-device training batch size: 2

• gradient accumulation steps: 8

• warm-up steps: 2

• learning rate: 2e-5

• weight decay: 1e-6

• Adam optimizer beta2 value: 0.999

• optimizer type: Adamw_hf

• early stopping callback with pa-
tience=2.

Fine-tuning Configurations of Llama 3.2-
11B

• the training batch size per device is set
to 4.

• gradients are accumulated over 4 steps.

• the learning rate warm-up lasts for 5
steps.

• the total number of training steps is 150.

• the learning rate is set to 0.0002.

• the optimizer used is 8-bit AdamW

• weight decay is set to 0.01.

• a linear learning rate scheduler is used.

Layer Type Output Shape Activation Description
Input Layer (512,) – Input vector representing image embedding
Dense Layer (256,) ReLU Fully connected layer on image input

Dropout (256,) Dropout 0.5 Regularization
Dense Layer (128,) ReLU Further transformation of image embedding

Dropout (128,) Dropout 0.5 Regularization
Dense Layer (64,) ReLU Compressed feature representation

Dropout (64,) Dropout 0.5 Regularization
Input Layer (512,) – Input vector representing text embedding
Dense Layer (256,) ReLU Fully connected layer on text input

Dropout (256,) Dropout 0.5 Regularization
Dense Layer (128,) ReLU Intermediate transformation

Dropout (128,) Dropout 0.5 Regularization
Dense Layer (64,) ReLU Compressed feature representation

Dropout (64,) Dropout 0.5 Regularization
Concatenate (128,) – Merge image and text features (64 + 64)
Dense Layer (128,) ReLU Combined representation processing

Dropout (128,) Dropout 0.5 Regularization
Dense Layer (1024,) ReLU High-capacity layer for rich interaction

Dropout (1024,) Dropout 0.5 Regularization
Dense Layer (1,) Sigmoid Final prediction for binary classification

Table 6: Architecture of the dual-branch DNN
model for image and text fusion.
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A.3 Confusion matrices for various models
The following are confusion matrices presenting
the models’ performance in terms of False Posi-
tives, False Negatives, True Positives, and True
Negatives.

Figure 1: Confusion matrix of testing set in task 1 for
hope/hate/not_applicable classification in text using en-
semble of 3 fine-tuned LLMs (gpt-4o-mini, Gemini
Flash 2.5, and Google text embedding + SVM) + fine-
tuned gpt-4o-mini for hope/not

Figure 2: Confusion matrix of testing set in task 2 for
emotion classification in text using Fine-tuned GPT-4o-
mini. class 0: Anger, class 1: Anticipation, class 2:
Confidence, class 3: Disgust, class 4: Fear, class 5: Joy,
class 6: Love, class 7: Neutral, class 8: Optimism, class
9: Pessimism, class 10: Sadness , class 11: Surprise

Figure 3: Confusion matrix of testing set in task 2 for
offensive detection in text using Fine-tuned GPT-4o-
mini.

Figure 4: Confusion matrix of testing set for hate detec-
tion in memes using Fine-tuned Gemini Flash 2.5

Figure 5: Confusion matrix of validation set for hate
detection in memes using GPT-4o-mini with Prompt 1
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Figure 6: Confusion matrix of validation set for hate
detection in memes using GPT-4o-mini with Prompt 2

Figure 7: Confusion matrix of validation set for hate
detection in memes using GPT-4o-mini with Prompt 3

Figure 8: Confusion matrix of validation set for hate
detection in memes using average embeddings of image
and text + SVM

Figure 9: Confusion matrix of validation set for hate
detection in memes using average embeddings of image
and text + DNN

Figure 10: Confusion matrix of validation set for hate
detection in memes using Fine-tuned Gemini Flash 2.5

Figure 11: Confusion matrix of validation set for hate
detection in memes using Fine-tuned Llama 3.2 11B
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Abstract
We present the NguyenTriet system for the MA-
HED 2025 shared task on multimodal detec-
tion of hope and hate emotions in Arabic con-
tent (Zaghouani et al., 2025). The challenge
was divided into three subtasks: text-based hate
and hope speech classification in Arabic text;
multitask emotion, offensive language, and hate
detection in Arabic text with a hierarchical
structure; and detecting hateful memes from
multimodal text-image pairs. Our participation
focused on Subtasks 1 and 2. For Subtask 1, we
employed an ensemble of Arabic BERT mod-
els for multi-class classification. In Subtask
2, we implemented a hierarchical classification
framework utilizing a similar ensemble method-
ology, where emotion predictions are leveraged
through a cascaded pipeline architecture to in-
form downstream hate and offensive detection
tasks. Our approach achieved macro-F1 scores
of 0.707 (3rd place) on Subtask 1 and 0.553
(2nd place) on Subtask 2.

1 Introduction

The detection of hope and hate emotions in mul-
timodal Arabic content has become increasingly
critical in the era of social media, where memes
and text-based posts can rapidly disseminate po-
larizing messages (Zaghouani et al., 2024a; Alam
et al., 2024b). The MAHED 2025 Shared Task
addresses this challenge through three subtasks:
(1) text-based hate and hope speech classification
in Arabic text, (2) multitask emotion, offensive,
and hate detection in Arabic text with a hierarchi-
cal structure encompassing emotion classification,
offensiveness detection, and hate speech identifica-
tion, and (3) multimodal hateful meme detection
combining Arabic text and images. This task is
particularly important for Arabic, a language with
diverse dialects and cultural nuances, where au-
tomated detection can aid in moderating harmful
content while promoting positive discourse (Za-
ghouani et al., 2025).

Our system employs transformer-based mod-
els fine-tuned on the provided datasets, leverag-
ing ensemble techniques and emotion-aware inputs
to handle the hierarchical nature of the subtasks.
For Subtask 1, we focus on multi-class classifica-
tion of memes into hate, hope, or not_applicable
categories using soft voting ensembles of Arabic-
specific BERT variants. For Subtask 2, we adopt a
cascaded pipeline that first predicts emotions, then
incorporates these predictions into offensiveness
and hate detection models. Key findings include
the effectiveness of emotion integration in improv-
ing downstream tasks and the robustness of ensem-
bles in handling class imbalances. Experiments
demonstrate that our ensemble approach enhances
performance on imbalanced datasets, with final
scores of 0.707 (ranking 3rd) on Subtask 1 and
0.553 (ranking 2nd) on Subtask 2. Our approach
achieved competitive rankings, highlighting chal-
lenges such as label imbalance, dialectal variations,
disambiguating subtle emotions like pessimism due
to limited examples, and dialectal ambiguity.

2 Background

2.1 Data

The dataset of MAHED 2025 includes Modern
Standard Arabic (MSA) and various dialects, with
genres primarily from social media content such as
tweets and memes. All content was collected from
public social media, anonymized, and annotated
by native speakers. The task setup involves three
subtasks:

Subtask 1 (Text-based Hate and Hope Speech
Classification): Classifying Arabic text into three
categories: ’hate’ (content propagating hostil-
ity or prejudice), ’hope’ (content inspiring posi-
tivity or optimism), or ’not_applicable’ (neutral
or unrelated content). The dataset (Zaghouani
et al., 2024b; Zaghouani and Biswas, 2025b) con-
tains 9,843 instances with notable class imbalance:
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’not_applicable’ dominates at 53.36%, followed by
’hope’ (27.65%) and ’hate’ (18.97%).

Subtask 2 (Emotion, Offensive, and Hate De-
tection - Multitask): Hierarchical classification
framework with three sequential stages: (1) emo-
tion classification among 12 categories (neutral,
anger, anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, trust), (2) bi-
nary offensiveness detection, and (3) conditional
hate classification applied only to offensive con-
tent. The dataset (Zaghouani et al., 2024b; Za-
ghouani and Biswas, 2025a) comprises 8,515 in-
stances with significant imbalances across all lev-
els: ’anger’ dominates emotions (25.94%) while
’fear’ represents only 0.91%; offensiveness skews
toward ’no’ (70.79%); hate labels favor ’not_hate’
(82.40% among offensive samples).

Subtask 3 (Multimodal Hateful Meme Detec-
tion): Binary classification of Arabic memes requir-
ing analysis of both visual content and embedded
Arabic text to determine ’hateful’ or ’non-hateful’
labels. The dataset (Alam et al., 2024b) contains
3,561 instances with class imbalance favoring ’non-
hateful’ memes (75.31%).

2.2 Related Work
Related work encompasses several key efforts in
Arabic NLP for hate speech, emotion detection,
and multimodal analysis.

Prior studies have explored multi-label classi-
fication of hate speech from social media tweets
and focused analyses of harmful content, provid-
ing baselines for binary or multi-class detection
(Zaghouani et al., 2024a; Biswas and Zaghouani,
2025a).

Bilingual approaches to emotions and hope
speech have advanced positive discourse identifi-
cation through paired language modeling (Biswas
and Zaghouani, 2025b).

In the multimodal domain, investigations into
propagandistic content in Arabic memes have es-
tablished baselines for detecting harmful visual-
textual combinations (Alam et al., 2024b), with
extensions employing multi-agent large language
models for nuanced propaganda analysis (Alam
et al., 2024a).

Furthermore, propaganda span annotation
has utilized large language models for fine-
grained identification in news articles and memes
(Hasanain et al., 2024a,b), demonstrating the effi-
cacy of LLMs in capturing subtle spans while often
neglecting hierarchical emotion integration.

Participating in subtask 1 and 2, our contribu-
tion’s novelty lies in combining soft-voting en-
sembles of Arabic-specific BERT models with a
cascaded emotion-integrated pipeline for hierarchi-
cal detection. This approach enhances robustness
against class imbalances and dialectal variations,
outperforming prior single-model methods or non-
cascaded ensembles by explicitly leveraging pre-
dicted emotions to inform offensiveness and hate
predictions in a structured manner.

3 System Overview

3.1 Approach
Our system comprises key components, including
text preprocessing, classifiers formed through soft
voting ensembles of Arabic-specific BERT models,
and a hierarchical structure designed for Subtask 2
to address the task’s inherent hierarchical nature.

3.2 Text Preprocessing
A critical component of our system is the text pre-
processing pipeline, which addresses challenges
such as dialectal variations, noisy social media con-
tent (e.g., emojis, URLs, and mentions), and or-
thographic inconsistencies in Arabic script. The
preprocessing function is implemented as follows:

• Demojize emojis to their Arabic descriptions
using the emoji library.

• Strip tashkeel (diacritics), tatweel (elon-
gation), and normalize ligatures with
pyarabic.araby.

• Normalize alef maksura and teh marbuta using
camel_tools.utils.normalize.

• Remove URLs, mentions, hashtags, and non-
alphanumeric characters (except punctuation
like !?.) via regular expressions.

• Remove Arabic stopwords from NLTK’s Ara-
bic stopwords list.

This pipeline reduces text length and noise, im-
proving model focus on semantic content.

3.3 Pre-trained Models
We employed two Arabic-specific BERT models,
both pre-trained on extensive Arabic social media
corpora, to capitalize on their robust understand-
ing of dialectal variations and informal language
patterns characteristic of tweets and social media
content:
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• MARBERTv2 (Abdul-Mageed et al., 2021):
A comprehensive model designed to han-
dle both Dialectal Arabic (DA) and Modern
Standard Arabic (MSA). Pre-trained using
masked language modeling (MLM) on a sub-
stantial corpus of approximately 1 billion Ara-
bic tweets, this model demonstrates excep-
tional performance on social media-related
NLP tasks across diverse Arabic linguistic va-
rieties and regional dialects.

• AraBERTv0.2-Twitter (Antoun et al.): A
specialized variant optimized specifically for
Arabic dialectal content and Twitter-style
communications, built upon the BERT-Base
architecture. Through continued pre-training
via MLM on approximately 60 million cu-
rated Arabic tweets, this model incorporates
an extensive vocabulary of dialectal expres-
sions and colloquialisms, making it exception-
ally well-suited for processing noisy, abbrevi-
ated social media text with informal linguistic
structures.

3.4 Systems Details

The systems for Subtasks 1 and 2 are built upon
classifiers structured as follows.

Subtask 1: The architecture consists of a single
multi-class classifier that receives processed text
and performs classification into three labels: hate,
hope, or not_applicable.

Subtask 2: The architecture employs a hierar-
chical structure comprising three classifiers: (1) an
emotion classifier for 12 emotion categories, (2) a
binary offensiveness classifier that incorporates the
predicted emotion as additional context, and (3) a
binary hate classifier applied only to samples pre-
dicted as offensive, similarly augmented with the
emotion label. In the training phase, the three clas-
sifiers are trained sequentially: first the emotion
classifier, followed by the offensiveness classifier,
and finally the hate classifier. In this process, the
predicted emotion from the emotion classifier is
replaced with the true emotion label to ensure ac-
curate context augmentation for the downstream
offensiveness and hate classifiers.

A classifier comprises two models ( MAR-
BERTv2 and AraBERTv0.2-Twitter) that perform
tokenization and prediction independently. We ap-
plied the simple soft voting technique to merge the
predictions of the two models, in which we sum
up the probability output of the two classifiers and

choose the sentiment class with the highest proba-
bility as the final prediction.

The hierarchical architecture for Subtask 2 and
a classifier architecture are illustrated in Figure 1.

4 Experimental Setup

Data split usage: We utilized the provided train,
validation, and test sets for both subtasks. The
training set was used exclusively for model training,
the validation set for hyperparameter tuning and
evaluation during development, and the test set for
final evaluation. No data augmentation or splitting
was applied beyond the provided sets.

Configuration Settings: All experiments were
conducted using a P100 GPU on the Kaggle plat-
form. For both subtasks, the hyperparameters se-
lected to train the two models included a learning
rate of 3e-5, weight decay of 0.1, batch size of 32
for MARBERTv2 and 16 for arabert-twitter, over
2 epochs. The loss function employed was a class-
weighted CrossEntropyLoss to effectively handle
class imbalances during training. Optimization was
performed using AdamW with a cosine annealing
learning rate scheduler.

Evaluation Metrics: Task evaluation metrics
are summarized as macro-averaged F1-score for all
subtasks, as per the official guidelines, emphasizing
balanced performance across imbalanced classes.

External Tools and Libraries: transformers
(v4.20.0), torch (v2.0.0), pandas (v2.0.0), numpy
(v1.24.0), scikit-learn (v1.2.0), pyarabic (v0.6.14),
emoji (v2.0.0), camel_tools (v1.2.0), nltk (v3.8.0),
and scipy (v1.10.0).

5 Results

5.1 Official Results
The official evaluation was conducted on the test
set using macro-averaged F1-score. Our ensemble
system achieved a macro-F1 of 0.707, ranking 3rd
on Subtask 1. For Subtask 2, the system obtained
a macro-F1 of 0.553, ranking 2nd. These results
represent the official submission scores. The top 3
teams’ results in subtask 1 and 2 are demonstrated
in Table 1 and 2.

Ranking Team Macro-F1
Top 1 HTU 0.723
Top 2 NYUAD 0.721

Top 3 (Ours) NguyenTriet 0.707

Table 1: Top 3 rankings for Subtask 1 on the test set.
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Figure 1: Hierarchical architecture for Subtask 2 (left) and a classifier architecture (right).

Ranking Team Macro-F1
Top 1 NYUAD 0.578

Top 2 (Ours) NguyenTriet 0.553
Top 3 HTU 0.535

Table 2: Top 3 rankings for Subtask 2 on the test set.

5.2 Analysis
We first compare performance across different set-
tings on the test set for Subtask 1, including in-
dividual models (MARBERTv2, AraBERTv0.2-
Twitter) and the ensemble setting (combining
MARBERTv2, AraBERTv0.2-Twitter using soft-
voting). Table 3 summarizes the performance for
Subtask 1.

Configuration Macro-F1
MARBERTv2 0.692
AraBERTv0.2-Twitter 0.698
Ensemble 0.707

Table 3: Performance comparison for Subtask 1 across
configurations on test set.

Next, for Subtask 2, we compare settings on the
test set, distinguishing multiclass (non-hierarchical)
and hierarchical configurations for individual mod-
els (multiclass MARBERTv2, multiclass arabert-
twitter-large, hierarchical MARBERTv2, hierarchi-
cal arabert-twitter-large) and ensembles (multiclass
Ensemble, hierarchical Ensemble). Table 4 sum-
marizes the performance for Subtask 2.

These comparisons demonstrate the effective-
ness of the ensemble architecture, which consis-
tently outperforms individual models by 1-2%
across both subtasks on test set, highlighting its role

Configuration Macro-F1
Multiclass MARBERTv2 0.483
Multiclass AraBERTv0.2-Twitter 0.490
Multiclass Ensemble 0.510
Hierarchical MARBERTv2 0.538
Hierarchical AraBERTv0.2-Twitter 0.547
Hierarchical Ensemble 0.553

Table 4: Performance comparison for Subtask 2 across
configurations on test set.

in enhancing robustness and reducing variance. Ad-
ditionally, the hierarchical (cascaded) structure in
Subtask 2 proves superior to multiclass approaches,
improving macro-F1 by 4-5%, as it better captures
dependencies between emotion, offensiveness, and
hate predictions through contextual augmentation.

6 Conclusion

In this paper, we presented our system for the MA-
HED 2025 Shared Task, which leverages Arabic-
specific BERT ensembles with soft voting and a hi-
erarchical cascaded pipeline for Subtask 2 to detect
hope and hate emotions in Arabic content. Our ap-
proach achieved competitive results, demonstrating
the effectiveness of ensemble methods and emo-
tion augmentation in handling class imbalances and
hierarchical dependencies.

Several promising directions emerge for en-
hancing system performance: implementing tar-
geted data augmentation strategies for underrepre-
sented classes, incorporating large language mod-
els (LLMs) to leverage their contextual understand-
ing capabilities to more effectively address class
imbalances.

588



References
Muhammad Abdul-Mageed, AbdelRahim Elmadany,

and El Moatez Billah Nagoudi. 2021. ARBERT &
MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7088–7105, Online. Association for Computational
Linguistics.

Firoj Alam, Md Rafiul Biswas, Uzair Shah, Wajdi Za-
ghouani, and Georgios Mikros. 2024a. Propaganda
to hate: A multimodal analysis of arabic memes with
multi-agent llms. In International Conference on
Web Information Systems Engineering, pages 380–
390. Springer.

Firoj Alam, Abul Hasnat, Fatema Ahmad, Md. Arid
Hasan, and Maram Hasanain. 2024b. ArMeme: Pro-
pagandistic content in Arabic memes. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 21071–21090,
Miami, Florida, USA. Association for Computational
Linguistics.

Wissam Antoun, Fady Baly, and Hazem Hajj. Arabert:
Transformer-based model for arabic language under-
standing. In LREC 2020 Workshop Language Re-
sources and Evaluation Conference 11–16 May 2020,
page 9.

Md. Rafiul Biswas and Wajdi Zaghouani. 2025a. An
annotated corpus of arabic tweets for hate speech
analysis. CoRR, abs/2505.11969.

Md. Rafiul Biswas and Wajdi Zaghouani. 2025b. Emo-
hopespeech: An annotated dataset of emotions
and hope speech in english and arabic. CoRR,
abs/2505.11959.

Maram Hasanain, Fatema Ahmad, and Firoj Alam.
2024a. Large language models for propaganda span
annotation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 14522–
14532, Miami, Florida, USA. Association for Com-
putational Linguistics.

Maram Hasanain, Fatema Ahmed, and Firoj Alam.
2024b. Can gpt-4 identify propaganda? annotation
and detection of propaganda spans in news articles.
In Proceedings of the 2024 Joint International Con-
ference On Computational Linguistics, Language
Resources And Evaluation, LREC-COLING 2024,
Torino, Italy.

Wajdi Zaghouani and Md Rafiul Biswas. 2025a. An
annotated corpus of arabic tweets for hate speech
analysis. arXiv preprint arXiv:2505.11969.

Wajdi Zaghouani and Md Rafiul Biswas. 2025b. Emo-
hopespeech: An annotated dataset of emotions and
hope speech in english and arabic. arXiv preprint
arXiv:2505.11959.

Wajdi Zaghouani, Md Rafiul Biswas, Mabrouka Bess-
ghaier, Shimaa Ibrahim, Georgios Mikros, Abul Has-
nat, and Firoj Alam. 2025. MAHED shared task:
Multimodal detection of hope and hate emotions in
arabic content. In Proceedings of the Third Arabic
Natural Language Processing Conference (Arabic-
NLP 2025), Suzhou, China. Association for Compu-
tational Linguistics.

Wajdi Zaghouani, Hamdy Mubarak, and Md. Rafiul
Biswas. 2024a. So hateful! building a multi-label
hate speech annotated Arabic dataset. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 15044–15055,
Torino, Italia. ELRA and ICCL.

Wajdi Zaghouani, Hamdy Mubarak, and Md Rafiul
Biswas. 2024b. So hateful! building a multi-label
hate speech annotated arabic dataset. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 15044–15055.

589

https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2024.emnlp-main.1173
https://doi.org/10.18653/v1/2024.emnlp-main.1173
https://arxiv.org/abs/2505.11969
https://arxiv.org/abs/2505.11969
https://arxiv.org/abs/2505.11969
https://arxiv.org/abs/2505.11959
https://arxiv.org/abs/2505.11959
https://arxiv.org/abs/2505.11959
https://doi.org/10.18653/v1/2024.findings-emnlp.850
https://doi.org/10.18653/v1/2024.findings-emnlp.850
https://aclanthology.org/2024.lrec-main.1308/
https://aclanthology.org/2024.lrec-main.1308/


Proceedings of The Third Arabic Natural Language Processing Conference, pages 590–594
November 8-9, 2025 ©2025 Association for Computational Linguistics

ANLPers at MAHED Shared Task: From Hate to Hope: Boosting Arabic
Text Classification

Yasser Alhabashi1 Serry Sibaee1* Omer Nacar2 Adel Ammar1 Wadii Boulila1

1Prince Sultan University, Riyadh, Saudi Arabia
2Tuwaiq Academy – Tuwaiq Research and Development Center
{yalhabashi, ssibaee, aammar , wboulila}@psu.edu.sa

{o.najar}@tuwaiq.edu.sa
*Corresponding author: ssibaee@psu.edu.sa

Abstract
The detection of harmful online content, in-
cluding hate speech and propaganda, is partic-
ularly challenging in multimodal and multilin-
gual contexts such as Arabic social media. This
work addresses Sub-task 1: Text-based Hate
and Hope Speech Classification in the MA-
HED2025 (Zaghouani et al., 2025) challenge,
where the goal is to classify Arabic text into
hate, hope, or not_applicable. We develop a
system based on pre-trained Arabic BERT mod-
els with three fine-tuning strategies, combined
with a custom preprocessing pipeline for noise
removal, normalization, and diacritic stripping.
To address class imbalance and lexical sparsity,
we augment the training data with synthetically
generated paraphrases via the OpenAI API. Ex-
perimental results on the official test set demon-
strate that our best configuration, BERT-base-
AraBERTv02 + NN with cleaning and gener-
ated data, achieves a macro-F1 score of 0.6747
F1. Error analysis reveals that mislabeled train-
ing instances significantly limit model perfor-
mance, suggesting that future improvements
may be achieved through systematic dataset
refinement. Our approach highlights the im-
portance of preprocessing, augmentation, and
careful architectural choices for robust Arabic
text classification.

1 Introduction

The rapid growth of social media has transformed
the way information is produced, shared, and con-
sumed, enabling unprecedented reach and imme-
diacy. However, this openness has also facilitated
the large-scale dissemination of harmful content
such as hate speech, propaganda, and other forms
of toxic communication. While such material may
appear in text, images, or videos, multimodal for-
mats like memes present a unique challenge for
automated detection due to their combination of
linguistic and visual cues, cultural references, and
implicit meanings (Alam et al., 2024). These chal-
lenges are further compounded when hateful or

propagandistic elements are intertwined, requiring
models to capture subtle contextual overlaps be-
tween intent, emotion, and target.

Existing research has made significant progress
in detecting harmful content across various modal-
ities, languages, and levels of granularity. For in-
stance, several studies have focused on annotating
and analyzing large datasets for hate speech, of-
fensive language, and related emotional attributes,
particularly in underrepresented languages such as
Arabic [(Zaghouani et al., 2024a),(Zaghouani and
Biswas, 2025b)]. Others have highlighted the need
to move beyond binary classification toward multi-
label frameworks that capture target type, severity,
and overlapping categories (Alam et al., 2024). De-
spite these advances, a number of persistent issues
hinder progress: small and heterogeneous datasets,
low inter-annotator agreement, inconsistent evalua-
tion methodologies, and model performance drops
when applied across domains or languages (Bäum-
ler et al., 2025).

Moreover, most prior work treats modalities in
isolation—either text-only or image-only—leaving
limited exploration of their intersection, especially
in contexts where textual and visual signals work
jointly to convey harmful messages (Zaghouani
et al., 2024a). Multilingual and cross-linguistic
challenges remain especially acute, with the
scarcity of high-quality annotated datasets further
complicating model development (Zaghouani and
Biswas, 2025b). Additionally, while transformer-
based models such as BERT have shown strong per-
formance in single-modality tasks (Bäumler et al.,
2025), their application in complex, multimodal,
multi-label scenarios remains underexplored.

Our work addresses these challenges through
a novel approach that integrates advanced NLP
pre-processing techniques with BERT-based model
training, enabling more accurate and nuanced de-
tection of harmful multimodal content. By leverag-
ing fine-tuned linguistic preprocessing to normalize
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and enrich textual data before BERT training, we
improve the model’s ability to capture subtle se-
mantic and contextual cues that are often missed
in raw text. This combination not only enhances
classification accuracy in multi-label settings but
also facilitates better generalization across different
domains and linguistic varieties. In doing so, our
approach bridges critical gaps identified in the liter-
ature and provides a scalable pathway toward more
robust and context-aware harmful content detection
systems.

2 Background

We use the Arabic hate/hope speech dataset intro-
duced by (Zaghouani et al., 2024b; Zaghouani and
Biswas, 2025c,a) as part of the Sub-task 1: Text-
based Hate and Hope Speech Classification in
the MAHED2025 shared task (Zaghouani et al.,
2025). The goal is to classify Arabic text—either
Modern Standard Arabic (MSA) or dialectal—into
one of three categories:

• Hate: Hostile, offensive, or discriminatory
content.

• Hope: Optimistic, encouraging, or positive
sentiment.

• Not Applicable: Neutral text without hate or
hope signals.

The input is an Arabic sentence, and the output
is a label from the set {hate, hope, not_applicable}.
Below (in Table 1) are example instances from the
dataset, with their corresponding labels:

Table 1: Dataset instances.

The original training set contains 6,890 instances
with columns text and label. A class distribution
analysis reveals a moderate imbalance toward the
not_applicable class, with a majority/minority ratio
of approximately 2.84. Table 2 shows the distribu-
tion.

Label Count Percent
hate 1,301 18.88%
hope 1,892 27.46%
not_applicable 3,697 53.66%
Total 6,890 100%

Table 2: Class distribution in the original dataset.

Texts in the dataset average 22.48 words (median
18; 95th percentile 54) and 139.64 characters (me-
dian 109.5; 95th percentile 357). These figures in-
dicate that most inputs are relatively short, but there
is a long tail of longer utterances. The observed
imbalance motivates the use of macro-averaged
metrics for evaluation and, during training, class-
aware strategies such as re-weighting or targeted
augmentation to improve model robustness across
all categories.

3 System Overview

Our system is built upon pre-trained transformer-
based Arabic language models, with multiple fine-
tuning strategies. We explored three main architec-
tures:

Variant A: BERT as Frozen Embeddings +
Neural Network. We freeze the BERT encoder
(Sibaee et al., 2024), compute average-pooled sen-
tence embeddings, and train a feed-forward neural
network. Two configurations were tested: one with
8 layers. All hidden layers use GELU activations
and optional batch normalization.

Variant B: Fine-tuning BERT End-to-End. We
fine-tune the BERT model directly for the classi-
fication task by updating all encoder parameters
during training. A single linear classification head
is applied on top of the pooled sentence representa-
tion.

Variant C: Fine-tuning BERT + Additional
Fully Connected Layers. We fine-tune the
BERT encoder and append two additional fully con-
nected layers before the classification layer. These
layers use GELU activations and optional batch
normalization to capture higher-level abstractions.

All models incorporate our cleaning pipeline,
which removes Latin characters, symbols, emojis,
and Arabic diacritics, normalizes Unicode, and col-
lapses extra spaces.
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4 Experimental Setup

4.1 Data
We evaluate our models under three data prepara-
tion settings:

1. Without Cleaning: raw text as provided in
the original dataset.

2. With Cleaning: applying the custom prepro-
cessing function described in Section 4.2.

3. With Cleaning + Generated Data: combin-
ing cleaned text with synthetically generated
paraphrases to increase lexical diversity.

Without augmentation, the training set contains
1,000 samples per class (3,000 total) and the valida-
tion set contains 250 samples per class (750 total).
With generated data, the training set grows to 4,000
samples per class (12,000 total) and the validation
set includes 300 samples per class (900 total). The
official test set is provided by the task organizers.

Synthetic Data Generation. To address class
imbalance and enhance linguistic diversity, we ex-
panded the training set with synthetically gen-
erated paraphrases of existing samples. Para-
phrases were produced using the GPT4-mini (Ope-
nAI et al., 2024), guided by prompts designed to
generate semantically equivalent Arabic sentences
while preserving the original class labels. The gen-
eration process introduced lexical, structural, and
stylistic variations without altering the underlying
meaning, enabling the model to better generalize
to unseen expressions.

table 3 presents examples of generated sentences
alongside their corresponding labels.

Table 3: Examples of synthetically generated Arabic
data with corresponding labels.

4.2 Preprocessing
The custom text cleaning pipeline performs the
following steps:

• Remove non-Arabic letters.

• Remove punctuation symbols.

• Remove emojis and pictographs.

• Remove Arabic diacritics.

• Remove diacritics from other languages via
Unicode normalization.

Finally, multiple spaces are collapsed into a single
space, preserving the core Arabic words.

4.3 Training Details

We use the AdamW optimizer with a linear decay
learning rate schedule and warmup. Learning
rates tested across experiments include 1× 10−4,
2 × 10−5, 1 × 10−5, and 1 × 10−6. The batch
size is fixed at 32. Early stopping is applied with
a patience of 10 to prevent overfitting; no fixed
epoch count is used. For most experiments, we
use a dropout rate of 0.3, while for Variant C we
additionally test a higher dropout rate of 0.7.

5 Results

Results are reported using the official evaluation
metric (average macro-F1-score). Table 4 presents
the validation and test average macro-F1-score for
all model variants under the three data preparation
settings. Our best test result is 0.6747, achieved
with BERT-base-AraBERTv02 (Antoun et al.,
2021) + NN using cleaning, generated data, and a
learning rate of 2× 10−5.

6 Error Analysis

Despite achieving competitive macro-F1 scores,
our models’ performance is limited by annotation
quality. A manual review of a subset of the training
data revealed a substantial proportion of mislabeled
instances, which can mislead the learning process
and reduce model generalization.

6.1 Quantitative Error Breakdown

We manually evaluated a random sample of 100
training examples. Out of these, 78 samples were
correctly labeled, while 22 (22%) were found to be
mislabeled. The dataset is heavily skewed toward
the not_applicable class, followed by hope and
hate, as shown in Figure 1. Figure 2 illustrates the
number of correct vs. mislabeled samples for each
class.
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Model LR Clean Gen. Data Dropout Val Avg. Macro-F1 Test Avg. Macro-F1
BERT-base-AraBERTv02 1e-5 Yes Yes 0.3 0.6281 0.6504
BERT-base-AraBERTv02 + NN 2e-5 Yes No 0.7 0.6386 0.6736
BERT-base-AraBERTv02 + NN 2e-5 Yes Yes 0.3 0.6394 0.6747
BERT-base-AraBERTv02 embd + 8 layers 2e-5 Yes Yes 0.3 0.5863 0.6235

Table 4: Comparison of experimental settings and corresponding validation/test macro-F1 scores. Settings are
shown first for clearer interpretability.

Figure 1: Distribution of studied samples

Figure 2: Label correctness by category, showing the
number of correctly labeled vs. mislabeled samples per
class.

6.2 Label Quality Summary

Figure 2 summarizes the distribution of correctly
labeled vs. mislabeled samples by true class. While
all three categories are affected by labeling errors,
’not_applicable’ exhibits the highest mislabel rate
relative to its class size (8 of 29 samples, ∼27.6%).
Nearly a quarter of the reviewed data was misla-
beled, highlighting that annotation noise is a major
bottleneck. These findings suggest that systematic
dataset relabeling or consensus-based annotation
is crucial to improving model robustness (Sibaee
et al., 2025), showing in Table 5 after correcting
the labels for each category.

Labels Correctly
Labeled

After
Correction Total

Hate 21 8 29
Hope 30 7 37
Not_applicable 49 7 56
Total 78 22 100

Table 5: Breakdown of correctly labeled and mislabeled
samples per true class in the manually reviewed subset,
and after correcting each category.

7 Conclusion

In this paper, we introduced a BERT-based Arabic
text classification system developed for the MA-
HED2025: Task-1 challenge, integrating tailored
preprocessing, synthetic data generation, and mul-
tiple fine-tuning strategies. Our best configuration,
combining AraBERT embeddings with additional
neural network layers and generated data, achieved
a macro-F1 score of 0.6747, demonstrating the ef-
fectiveness of our approach. However, manual er-
ror analysis revealed a considerable proportion of
mislabeled instances in the dataset, which limits
performance even with advanced models. Future
work will focus on improving annotation quality
through re-labeling or consensus-based methods, as
well as exploring domain adaptation, cross-lingual
transfer, and multimodal extensions to build more
accurate, robust, and context-aware systems for
harmful content detection in underrepresented lan-
guages like Arabic.
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Abstract

This paper presents our system for Sub-task
1 in MAHED 2025 (Zaghouani et al., 2025)
shared task: Text-based Hate and Hope Speech
Classification. We propose a robust pipeline
built upon the bert-base-arabertv02-twitter
model, leveraging domain-specific preprocess-
ing, hyperparameter optimization with Optuna,
and a K-Fold ensemble strategy. This system
ranked 4 th among all participating teams on
the leaderboard. We discuss technical design
choices, the results of ablation studies, and the
impact of preprocessing and model selection
on final performance.

1 Introduction

Social media in the Arabic-speaking world exhibits
a dynamic interplay between hateful and hopeful
expressions, often entangled with rich dialectal di-
versity, code-switching, and informal orthography
that complicate automatic detection. Beyond text,
hateful content is increasingly conveyed via multi-
modal artifacts such as memes (Alam et al., 2024),
motivating systems capable of analyzing both tex-
tual and visual modalities. Within this context, MA-
HED 2025 (Zaghouani et al., 2025) is organized as
a shared task at ArabicNLP 2025 (co-located with
EMNLP 2025), covering hope/hate and emotion de-
tection in single-task, multi-task, and multimodal
settings.

This paper presents a text-only system for Sub-
task 1, where the input is Arabic text (MSA or
dialect) and the output is one of three labels: hate,
hope, or not_applicable. The task evaluates sys-
tems by macro-averaged F1, a metric robust under
class imbalance.

2 Related Work

Pre-trained transformer models for Arabic, notably
AraBERT (Antoun et al., 2020), have established

strong baselines on sentiment, dialect identifica-
tion, and harmful content detection. AraBERTv0.2-
Twitter (Antoun et al., 2020) extends this by further
pretraining on a large corpus of tweets to better han-
dle dialectal and informal Arabic. Recent datasets
for harmful, offensive, and hopeful Arabic speech
(Zaghouani and Biswas, 2025a; Zaghouani et al.,
2024; Zaghouani and Biswas, 2025b) highlight the
need for balanced evaluation metrics like macro-
F1. For multimodal hateful content, studies such as
(Alam et al., 2024) show the value of multimodal
fusion techniques.

3 Background

3.1 Task Setup
Sub-task 1 requires a three-way classification: hate,
hope, and not_applicable, for short Arabic text.
The evaluation uses macro-F1 to handle class im-
balance. In particular, the validation and test labels
are concealed from participants. Predictions must
be submitted to the official leaderboard to obtain
macro-F1 scores, promoting strong generalization
and preventing tuning on these datasets.

3.2 SubTask1 and its dataset
Sub-task 1 is a three-way classification problem:
hate, hope, not_applicable. Input is short Arabic
text in MSA or dialect. The dataset (Zaghouani
et al., 2024) includes contributions from multiple
platforms, with annotations performed manually by
native speakers. Training set: 6,890 labeled sam-
ples; validation set: 1,476 unlabeled. Evaluation
uses macro-F1 as the primary metric.

Figure 1: Label Distribution in training data
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Key dataset observations:

• Quite imbalanced label distribution but can be
acceptable (Figure 1).

• Short, noisy social-media texts — suitable
for 128–256 BERT token length. After eval-
uating both configurations on the validation
and test data, we found that a token length
of 256 is more suitable for our pipeline in
this task, providing better performance and
results.(Figure 2)

Figure 2: Text length distribution

4 System Overview

4.1 Duplicate handling
The dataset is of high quality with no missing val-
ues but has around 320 duplicate entries found in
the training set.
Duplicate handling in the training dataset:

• Same text, conflicting labels → remove all.

• Same text, same label → keep one text.

The final label distribution after handling duplicate
(Figure 3)

Figure 3: Label distribution after handling duplicate
training set

4.2 Preprocessing
We import ArabertPreprocessor from ara-
bert.preprocess for automatically handles (Antoun
et al., 2020):

• Text normalization.

• Remove non-Arabic characters, URLs, men-
tions.

• Tokenize via HuggingFace AutoTokenizer
(max_len=256).

4.3 Model and System
Our approach uses aubmindlab/bert-base-
arabertv02-twitter (Antoun et al., 2020), pre-
trained on ∼60M tweets, alongside Arabic-aware
preprocessing and Optuna-driven hyperparam-
eter tuning. A 4-fold ensemble is used for
robustness.(Figure 4)

Training data

Text Preprocessing:
-ArabertPreprocessor

- Tokenization 

Hyperparameter Tuning
Optuna + Stratified K-
Fold + Early Stopping

Best Params

AraBERT-twitter fold 1 AraBERT-twitter fold 2 AraBERT-twitter fold 3 AraBERT-twitter fold 4

Ensemble Prediction:
  Average Logits 

Final prediction

Figure 4: Pipeline of Technique in subtask 1

After having Best parameters from Optuna, the
dataset was split into 4 folds using StratifiedK-
Fold. We trained 4 separate AraBERT models from
scratch, one for each fold, using the best parame-
ters found by Optuna. The inference is based on
the average logits from all folds.

5 Experimental Setup

5.1 Resources
We trained and evaluated all models on Kaggle
Notebooks (free tier) with a single NVIDIA Tesla
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P100 16GB GPU, 2 vCPUs, and approximately
13GB RAM. The environment used PyTorch 2.6.0,
Transformers 4.52.4, and Optuna 4.4.0 on the de-
fault Kaggle Linux image (Python 3.11). Training
sessions were constrained by free-tier time limits;
each fold completed within a single session.

5.2 Hyperparameter Search
The Optuna experiment was run with 18 trials with
tokenizer max_length = 256 and 30 trials with
max_length = 128, both using early stopping (pa-
tience = 3). Due to resource constraints, the experi-
ment completed all trials before the early stopping
criteria were met. After evaluating on the valida-
tion and test data, we chose max_length = 256 with
Optuna (n_trials = 18) as the better choice for our
pipeline.
Loss: cross-entropy.
Optimizer: AdamW.
Scheduler: linear warmup-decay.
Hyperparameter tuning via Optuna:

• Learning Rate ∈ [1× 10−6, 1× 10−5]

• Batch size ∈ {8, 16, 32}

• Epochs ∈ [2, 5]

Best parameters: Learning Rate ≈ 9.74 × 10−6,
batch=8, epochs=4.

6 Results

We experimented with two state-of-the-art Arabic
BERT models from the aubmindlab repository us-
ing the same pipeline.

Metric AraBERT-Twitter AraBERT
F1 0.6563 0.6403
Accuracy 0.6775 0.6511
Precision 0.6600 0.6343
Recall 0.6533 0.6477

Table 1: Comparison of AraBERT and AraBERT-
Twitter on Validation data

Due to its higher F1-score on the validation data
(0.66 compared to 0.64), the arabertv02-twitter
model was selected for the final pipeline. Its spe-
cialization in social media text is particularly rel-
evant to the dialectal and informal nature of the
dataset. Moreover, the arabertv02-twitter model
also outperformed the other model on the test data.

Metric AraBERT-Twitter AraBERT
F1 0.7030 0.7017
Accuracy 0.7130 0.7109
Precision 0.7100 0.7061
Recall 0.6990 0.6982

Table 2: Comparison of AraBERT and AraBERT-
Twitter on Test data

To evaluate the impact of the ensemble
approach, we compared our 4-fold Strati-
fiedKFold ensemble against training a single
aubmindlab/bert-base-arabertv02-twitter
model on the full training set using the same
best hyperparameters found via Optuna. The
single-model setup slightly underperforms in
the validation and test dataset compared to the
ensemble, suggesting that ensembling mitigates
variance and improves robustness, particularly
under class imbalance conditions. This aligns
with our observation that different folds capture
complementary patterns in the training data.

6.1 Leaderboard
Our system ranked 4th on the official competition
Leaderboard, with a Macro F1 score just 0.02 be-
hind the top-ranked team. Our Accuracy and Pre-
cision placed us in the top 3, while our competi-
tive recall (0.699) secured a position in the top 4.
This result showcases a quite strong overall perfor-
mance.

Figure 5: The Final Leaderboard by macro-F1

7 Conclusion

We presented a competitive text-only system for
MAHED 2025 Sub-task 1, ranking 4th by macro-
F1 on the Leaderboard. In conclusion, our pro-
posed AraBERT-based ensemble framework, op-
timized with Stratified K-Fold and Optuna for
macro-F1, demonstrates significant effectiveness
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in classifying Arabic text into hate, hope, and
not_applicable categories, highlighting the poten-
tial of transformer-based models combined with
ensemble learning for nuanced emotion detection
in low-resource languages.

7.1 Limitations

This work uses text-only inputs; multimodal cues
from images/memes are not modeled. Dialec-
tal diversity and code-switching can reduce recall
on minority or subtle cases, especially hope vs
not_applicable. Label subjectivity around border-
line cases can introduce noise across folds. Re-
source constraints (free-tier Kaggle Notebooks)
limited the breadth of hyperparameter exploration.

7.2 Ethical Considerations

Misclassifying harmful content as benign can cause
user harm and under-enforcement; human-in-the-
loop moderation is recommended in high-stakes
deployments. Data derived from social media may
contain sensitive content and PII; usage should re-
spect licensing, privacy, and minimize potential
disparate impacts on dialect communities.

7.3 Future work

Future work includes expanding to multimodal in-
puts (images/memes), stronger dialect handling,
and uncertainty-aware inference.
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A Appendix

Full hyperparameters and code are available at:
https://github.com/Limdim1604/MAHED2025
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Abstract

This study investigates the impact of bigram-
based data augmentation on the joint classifica-
tion of hate speech, hope speech, and neutral
content in multilingual social media contexts,
with a particular focus on Arabic. While pre-
vious research has shown the benefits of aug-
mentation in text classification, its effective-
ness in nuanced domains such as hate and hope
speech remains underexplored. Using the anno-
tated MAHED dataset, we compare three sce-
narios: a baseline without augmentation, global
bigram augmentation, and classwise bigram
augmentation. The baseline achieved 68.25%
accuracy (macro-F1 = 0.6729) on the test set.
Global bigram augmentation slightly reduced
accuracy to 63.0% (macro-F1 = 0.62), showing
no improvement over the baseline. Classwise
augmentation achieved 93% accuracy on the
validation set but dropped sharply to 59.65%
accuracy (macro-F1 = 0.4726) on the test set,
indicating severe overfitting. These results sug-
gest that bigram-based methods are sensitive
to class imbalance and may harm generalisa-
tion when applied unevenly across classes. We
conclude by highlighting the need for more bal-
anced, context-aware augmentation strategies
in socially impactful NLP tasks.

1 Introduction

Hate speech and hope speech represent two crit-
ical yet contrasting forms of online expression.
Hate speech fosters hostility, discrimination, and
division (Alshahrani et al., 2025; ?), while hope
speech promotes unity, resilience, and positive so-
cial change (?). With the rapid growth of social
media platforms, especially in multilingual and
dialect-rich contexts such as Arabic, the automatic
detection of these speech forms has become a press-
ing challenge. Although hate speech detection has
received significant research attention (Al-Sukhani
et al., 2025; Gasmi et al., 2025), hope speech detec-
tion remains comparatively underexplored, and the

combined classification of both introduces unique
complexities. These challenges include linguis-
tic diversity, scarcity of high-quality annotated
datasets, and the nuanced cultural and contextual
variations in language use (Alrasheed et al., 2025).

Data augmentation has emerged as a promis-
ing strategy to improve the robustness and gener-
alisation of natural language processing models,
particularly in low-resource scenarios. Among
these, bigram-based augmentation methods have
shown success in enhancing text classification per-
formance by enriching contextual co-occurrence
patterns. However, their efficacy in nuanced, multi-
class problems—such as joint hate and hope speech
classification—remains uncertain. In this study, we
investigate the impact of different bigram augmen-
tation strategies, namely global and classwise aug-
mentation, in comparison with a non-augmented
baseline. Through a comprehensive empirical eval-
uation, we identify scenarios where augmentation
may fail to deliver expected gains and discuss the
implications for future work in socially impactful
NLP applications.

2 Background

Recent advances in text classification have been
driven by the adoption of Large Language Models
(LLMs) across diverse domains. Early transformer-
based approaches showed strong performance on
complex linguistic tasks (Kolesnikova and Gel-
bukh, 2020; Adebanji et al., 2022), while more re-
cent studies have explored fine-tuning and prompt-
based methods for low-resource and multilingual
contexts (Abiola et al., 2025c,b). Shared tasks and
benchmarks (Ojo et al., 2023; Achamaleh et al.,
2025) have further tested LLM robustness in noisy,
real-world settings, and other works (Oladepo et al.,
2025; Abiola et al., 2025a) have integrated contex-
tual cues to improve predictive performance.

In the context of Arabic hate and hope speech
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detection, challenges arise from dialectal diver-
sity, morphological richness, and scarcity of an-
notated resources. The MAHED shared task (Za-
ghouani et al., 2025) addresses this by provid-
ing a labelled dataset with three categories: hate,
hope, and not_applicable, encouraging participants
to explore robust, generalisable classification ap-
proaches. Our submission focuses on a MARBERT-
based pipeline with hybrid lexical–contextual aug-
mentation via bigrams.

3 System Overview

Our system combines light preprocessing, a trans-
former encoder (MARBERT), and three bigram
augmentation strategies. We use MARBERT
(UBC-NLP/MARBERT) to capture deep contextual se-
mantics and append frequent bigrams as explicit
lexical cues. This design addresses two key chal-
lenges: (1) dialectal variation, by using MAR-
BERT’s pretraining coverage, and (2) sparse sur-
face features, by injecting high-frequency n-grams
into the input.

3.1 Preprocessing
We normalise Arabic text with the
ArabertPreprocessor (AraElectra profile),
preserving emojis to retain affective cues. No
morphological segmentation is applied.

3.2 Bigram Augmentation
We explore:

• Global-top: top-K bigrams across the corpus,
appended to all samples.

• Class-specific: top-K bigrams per class, ap-
pended based on ground-truth labels.

• Unsupervised test-time: predicted dominant
class bigrams appended using overlap heuris-
tics.

3.3 Training Setup
We compare:

1. Baseline: MARBERT with no augmentation
(10 epochs).

2. Hybrid: MARBERT with bigram-augmented
text (4 epochs).

Training uses AdamW (HuggingFace defaults),
batch size = 16, maximum sequence length = 128,
and model selection by validation macro-F1.

Class Precision Recall F1 Support
0 0.59 0.63 0.61 238
1 0.62 0.55 0.58 359
2 0.69 0.71 0.70 729

Table 1: Validation metrics — Baseline.

Class Precision Recall F1 Support
0 0.53 0.69 0.60 238
1 0.62 0.57 0.59 359
2 0.69 0.65 0.67 729

Table 2: Validation metrics — Global bigram augmen-
tation.

4 Experimental Setup

The MAHED dataset is split into train, val, and
test as per organisers. Labels are encoded via
LabelEncoder for consistency. Evaluation metric:
macro-F1 (primary), along with accuracy, preci-
sion, and recall.

5 Results

5.1 Validation Performance

The baseline achieved macro-F1 = 0.63 (accu-
racy = 0.65), with the majority class performing
best. Global bigrams improved minority-class re-
call but reduced majority-class accuracy. Classwise
bigrams yielded extremely high validation perfor-
mance (macro-F1 = 0.92) but failed to generalise.

Figure 1: Per-class precision (validation).

5.2 Test Performance and Generalisation

The baseline maintained macro-F1 = 0.6729 on
test data, while classwise bigrams dropped sharply
to 0.4726 due to overfitting.

5.3 Error Analysis

Global bigrams: Provided minor recall gains for
minority classes but reduced precision for the ma-
jority class.
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Class Precision Recall F1 Support
0 0.87 0.87 0.87 238
1 0.94 0.95 0.95 359
2 0.94 0.94 0.94 729

Table 3: Validation metrics — Classwise bigram aug-
mentation.

Scenario Accuracy Precision Recall Macro-F1
Baseline (test) 0.6825 0.6742 0.6733 0.6729
Classwise bigrams (test) 0.5965 0.6802 0.4660 0.4726

Table 4: Test metrics: Baseline vs. Classwise bigrams.

Classwise bigrams: Boosted validation scores
artificially by memorising label-specific tokens,
which became noise in test scenarios.

Other factors: Token truncation and domain
shift likely reduced augmentation benefits.

6 Conclusion

Global bigram augmentation offered only small
gains, while classwise augmentation inflated val-
idation results but failed in generalisation. This
underscores the risk of label-tied augmentation in
imbalanced, nuanced datasets and points to the
need for label-agnostic, domain-robust augmenta-
tion strategies.
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7 Limitations

The small, imbalanced dataset may have skewed
augmentation effects, with classwise augmenta-
tion risking overfitting for rare classes. We only
tested bigram-based methods, leaving other strate-
gies (e.g., paraphrasing, back-translation, contex-
tual augmentation) unexplored. Evaluation was
confined to in-domain data, so cross-domain and
cross-dialect generalisation is uncertain. Finally,

Figure 2: Macro-F1 and accuracy for validation and
test.

we did not assess interpretability, which is impor-
tant to prevent augmentation-induced bias.
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Abstract
Detecting hate and hope speech in Arabic so-
cial media remains a critical challenge in the
MAHED 2025 Shared Task (Zaghouani et al.,
2025) due to the complex diglossia, diverse di-
alects, and prevalent orthographic noise in user-
generated texts. We introduce a multilingual
transformer ensemble that integrates three com-
plementary encoders—AraBERTv2, AraBERT-
Twitter, and XLM-RoBERTa—using a uniform
soft voting approach (Salur and Aydın, 2022).
Each model is fine-tuned with a balanced data
augmentation strategy, combining 70% back-
translation and 30% Easy Data Augmentation
(EDA), followed by noise induction to mimic
real-world textual perturbations (Bayer et al.,
2022). Hyperparameters are optimized via Op-
tuna (Akiba et al., 2019) to maximize macro-F1
performance. Our method achieves a macro-F1
score of 0.65 on the official test set, surpass-
ing the strongest single model by 0.04 and out-
performing competitive multilingual baselines
such as mBERT and LLaMA-based Arabic
large language models. These results demon-
strate that combining complementary linguistic
representations with targeted augmentation sub-
stantially improves robustness across dialects
and addresses class imbalance in Arabic hate
and hope speech classification.

1 Introduction

User-generated Arabic text on social media spans
hope speech—promoting positivity and inclusiv-
ity—and hate speech—spreading hostility and di-
vision. Distinguishing between them is both a com-
putational challenge and a socially impactful task,
as online discourse influences public opinion and
cohesion.

Arabic presents unique difficulties: diglossia
between Modern Standard Arabic (MSA) and re-
gional dialects, rich morphology that increases
data sparsity, and orthographic noise (inconsistent
spellings, elongations, and code-switching) that
hinders generalization (Darwish et al., 2021).

The MAHED 2025 Shared Task (Sub-task 1)
addresses these challenges by providing an imbal-
anced benchmark (over half not_applicable), mak-
ing macro-F1 (Dalianis, 2018) a more reliable met-
ric than accuracy. Success requires robustness to
dialectal variation, noise, and minority-class recall
loss.

We propose a multilingual transformer ensem-
ble integrating AraBERTv2, AraBERT-Twitter, and
XLM-RoBERTa via uniform soft voting. Each
model is trained with a balanced augmentation
pipeline (70% back-translation, 30% EDA) fol-
lowed by noise induction, and tuned using Optuna
for optimal macro-F1.

Our contributions are:

• A targeted augmentation pipeline balancing
semantic fidelity and lexical diversity.

• Optuna-based hyperparameter search for
principled tuning of Arabic-capable trans-
formers.

• A complementary ensemble achieving +0.04
macro-F1 over the best single model.

2 Related Work

Hate speech detection has progressed from tradi-
tional machine learning with handcrafted features
(Schmidt and Wiegand, 2017) to transformer-based
models that capture rich contextual representations.

For Arabic, earlier methods using n-grams and
sentiment lexicons struggled with complex mor-
phology and dialectal diversity. AraBERT (Antoun
et al., 2020) addressed this via morphology-aware
tokenization and large-scale Arabic pre-training,
while AraBERT-Twitter incorporated social media
data to improve handling of informal and dialectal
text.

Data augmentation techniques such as back-
translation (Taheri et al., 2024) and Easy Data Aug-
mentation (EDA) (Wei and Zou, 2019) have im-
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proved performance in low-resource, imbalanced
scenarios. However, prior Arabic-focused studies
typically used them in isolation, without exploring
balanced combinations or integration with noise-
based perturbations to reflect real-world input con-
ditions.

Multilingual models like mBERT (Devlin et al.,
2019) and XLM-RoBERTa (Conneau et al., 2020)
transfer well to Arabic, but may lack robustness
to noisy social media text. Recent Arabic-adapted
LLaMA variants achieve competitive results but
are resource-intensive.

Ensemble methods (Juola, 2022) improve robust-
ness, yet most Arabic NLP ensembles combine
similar models, limiting diversity. Our work dif-
fers by combining three complementary transform-
ers—formal MSA, informal/dialectal Twitter, and
multilingual—via soft voting, alongside a balanced
hybrid augmentation pipeline with noise induction
and principled hyperparameter tuning.

3 Background

3.1 Task Setup

Given an Arabic social media post, the task is to
predict one of three categories: hate, hope, or
not_applicable. The principal evaluation metric
is macro-F1, chosen to address class imbalance
and linguistic diversity. Importantly, the valida-
tion and test labels are hidden from participants.
Predictions must be submitted to the official leader-
board to receive macro-F1 scores, fostering robust
generalization and precluding tuning on these sets.

3.2 Dataset

The dataset (Zaghouani et al., 2024) comprises
posts from multiple platforms, manually annotated
by native speakers. Table 1 shows the distribution,
with not_applicable forming over half of the data,
potentially biasing models. Dialects span Egyptian,
Gulf, Levantine, and Maghrebi, adding linguistic
diversity.

Train Dev Test
Hate 1,301 - -
Hope 1,892 - -
Not_applicable 3,697 - -
Total 6,890 1,476 1,477

Table 1: Dataset statistics.

4 System Overview

Our system combines complementary models, aug-
mentation, and optimization.

4.1 Model Choice
We ensemble three transformers with distinct
strengths:

• AraBERTv2: strong in MSA morphology
and syntax.

• AraBERT-Twitter: captures informal, dialec-
tal social media language.

• XLM-RoBERTa: handles code-switching
and rare tokens via multilingual subword cov-
erage.

4.2 Data Augmentation

Figure 1: Three-stage data augmentation pipeline.

As shown in Figure 1, the augmentation pro-
cess begins with the original Arabic text, which
is split into two main branches: 70% for Back
Translation (Arabic→English→French→Arabic)
and 30% for EDA (synonym replacement, random
insertion, swap, deletion). These two branches are
then merged and passed through a Noise Induction
stage, introducing character-level perturbations to
mimic real-world orthographic errors. This design
intentionally balances semantic fidelity (from BT)
with lexical diversity (from EDA), while Noise
Induction strengthens robustness to typos, elonga-
tions, and informal spellings that are frequent in
social media data. Empirically, this configuration
achieved the best macro-F1 on the development set
compared to using any single augmentation method
alone.

4.3 Ensemble Strategy
Figure 2 illustrates the final ensemble architec-
ture. It integrates AraBERTv2 (specialized in

604



Figure 2: Soft-voting ensemble combining three com-
plementary transformer models.

MSA), AraBERT-Twitter (optimized for infor-
mal/dialectal text), and XLM-RoBERTa (multilin-
gual with strong cross-lingual transfer). We apply
uniform soft voting, where the predicted proba-
bilities from each model are averaged before se-
lecting the label with the highest mean score. This
method exploits complementary strengths—MSA
precision, dialect coverage, and code-switch han-
dling—while avoiding over-reliance on a sin-
gle model. Notably, soft voting preserves high-
confidence predictions for minority classes like
hope, boosting recall without harming overall ac-
curacy.

4.4 Preprocessing

Normalization includes: diacritic removal, Alef
normalization, elongation stripping, and removal
of non-Arabic symbols/emojis, improving token
consistency.

4.5 Hyperparameter Optimization

Optuna tunes learning rate, batch size, weight de-
cay, and dropout over 20 trials, optimizing macro-
F1 with early stopping.

4.6 Tools

Implemented in PyTorch 2.2 + HuggingFace Trans-
formers 4.39, trained on Kaggle P100 GPUs with
public checkpoints for reproducibility. All models
and hyperparameter tuning are performed solely
on the training set, following the competition pro-
tocol that prohibits using validation or test labels
for training or tuning. Evaluation on validation
and test sets is conducted via blind leaderboard
submissions.

5 Results

5.1 Main Results
Table 2 presents the macro-F1 scores on the
MAHED 2025 test set. Among single mod-
els, AraBERT-Twitter achieves the highest score
(0.61), benefiting from its pre-training on infor-
mal, dialectal Arabic that closely matches the
dataset’s social media origin. AraBERTv2 and
XLM-RoBERTa follow closely (0.60 each), with
the former excelling in MSA-heavy samples and
the latter leveraging cross-lingual patterns to han-
dle code-switching and rare dialectal tokens.

Our soft-voting ensemble (Figure 2) achieves
a macro-F1 of 0.65, a +0.04 absolute improve-
ment over the strongest single model. In highly
imbalanced, noisy classification settings like MA-
HED 2025, such gains indicate a substantive boost
in robustness and dialectal coverage. The im-
provement predominantly comes from higher recall
in the minority hope class while maintaining pre-
cision for hate and not_applicable. This effect is
consistent with the design in Figure 2: soft voting
allows confident minority-class predictions from
one model to be preserved, even when two other
models disagree, preventing majority-class domi-
nance.

The ensemble’s performance gain is attributable
to three complementary competencies:

• MSA precision from AraBERTv2.

• Dialect sensitivity from AraBERT-Twitter.

• Cross-lingual generalization from XLM-
RoBERTa.

Because validation and test labels are withheld,
we rely on the leaderboard feedback for validation
performance. Final test set results reflect true gen-
eralization under realistic blind test conditions.

Model Macro-F1
AraBERTv2 0.60
AraBERT Twitter 0.61
XLM-RoBERTa 0.60
Ensemble 0.65

Table 2: Test set performance of individual models and
our ensemble.

5.2 Ablation Study
To isolate the contribution of each augmentation
component in the pipeline shown in Figure 1, we
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conducted controlled experiments with different
augmentation settings (Table 3).

When applied individually, EDA and Back
Translation (BT) provide only marginal gains
over the no-augmentation baseline (+0.01 to +0.02
macro-F1). Noise Induction alone yields negli-
gible benefit, suggesting that robustness to ortho-
graphic noise must be paired with semantic or lexi-
cal diversity to be effective.

The full pipeline—70% BT, 30% EDA,
plus noise induction on all augmented sam-
ples—achieves the highest macro-F1 of 0.65. This
aligns with the design rationale in Figure 1:

• BT preserves semantic fidelity while generat-
ing dialectal and syntactic variations.

• EDA injects controlled lexical and word-order
diversity, enabling better generalization.

• Noise Induction trains the model to withstand
character-level perturbations common in so-
cial media.

Compared to the baseline (0.62), the combined
approach delivers a +0.03 absolute gain, directly
enabling the ensemble’s boost reported in Table 2.

Augmentation Macro-F1
No Augmentation 0.62
EDA only 0.59
Back Translation only 0.60
Noise Induction only 0.59
BT + EDA + Noise Induction 0.65

Table 3: Macro-F1 results for different augmentation
settings.

6 Conclusion

We presented a multilingual transformer ensem-
ble for the MAHED 2025 hate and hope speech
classification task, targeting one of the most chal-
lenging scenarios in Arabic NLP: diglossia, di-
alectal variation, and noisy user-generated text.
Our approach combines three complementary
encoders—AraBERTv2, AraBERT-Twitter, and
XLM-RoBERTa—through a uniform soft-voting
strategy, each fine-tuned with a carefully balanced
data augmentation pipeline (70% back-translation,
30% EDA, plus noise induction). Hyperparameters
were optimized using Optuna, enabling the models
to adapt to the dataset’s imbalance and orthographic
variability.

The system achieves a macro-F1 of 0.65 on the
official test set, outperforming the strongest single
model by +0.04 absolute and surpassing compet-
itive multilingual baselines such as mBERT and
Arabic LLaMA derivatives. Our ablation analysis
confirms that augmentation diversity and model
complementarity are key to robust performance,
especially in the minority hope class.

Practical Implications: Beyond the shared task,
our findings suggest that: (i) balanced multi-
technique augmentation can outperform single-
method augmentation in low-resource, imbalanced,
and noisy settings; (ii) soft-voting ensembles mit-
igate individual model biases without requiring
heavy training of meta-classifiers; and (iii) robust-
ness to orthographic noise is not optional—it is
critical for social media Arabic.

Future Work: We plan to explore: (a) adaptive
ensemble weighting learned from development set
meta-features; (b) integration of large language
model embeddings for richer semantic context; (c)
domain adaptation to handle sarcasm, figurative
speech, and evolving slang; and (d) multi-modal
fusion with images and metadata to capture context
beyond text.

Limitations: Our back-translation process de-
pends on third-party APIs, which may introduce
domain bias. We also did not conduct statistical
significance testing to quantify the reliability of ob-
served improvements. Finally, while our augmen-
tation pipeline is effective, it is computationally
more expensive than single-method augmentation,
which could be a constraint in real-time systems.
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A Appendix

Full hyperparameters and code are avail-
able at: https://github.com/trantranuit/
mahed2025-system.
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Abstract

We present our system for the MAHED 2025
Shared Task on Arabic Hate Meme Detection
(subtask 3), a binary classification task to deter-
mine whether a multimodal meme containing
Arabic text and an image conveys a hateful
message. Our approach uses multimodal fu-
sion combining a visual encoder and an Ara-
bic text encoder. We explored four fusion
strategies—transformer fusion, early fusion,
cross-attention, and bilinear fusion—and found
transformer fusion offered the best single-
model trade-off, while an ensemble of all four
achieved the highest score. To address the
severe class imbalance (90.05% not-hate vs.
9.95% hate), we applied class-weighted loss,
focal loss, strong regularization, and light aug-
mentation. Our best submission reached a
macro-F1 score of 0.75 on the gold test set.

1 Introduction

Social media enables rapid information sharing but
also accelerates the spread of harmful content, in-
cluding hate speech. While text-only hate speech
detection is well studied, much hateful content now
appears in multimodal formats, such as memes,
which combine text and images into a single com-
municative unit. These memes often use humor,
irony, or cultural symbols to mask or amplify harm-
ful messages, making automated detection chal-
lenging (Kiela et al., 2021; Boishakhi et al., 2021).
Figure 1 shows examples of Arabic memes from
the two classes (hate and not-hate), illustrating the
diversity in visual style and text content.

The MAHED 2025 Shared Task (Zaghouani
et al., 2025) targets hateful meme detection in Ara-
bic, a language with rich morphology, diverse di-
alects, and high orthographic variation. Memes
may contain Modern Standard Arabic, dialectal
Arabic, or a mix, with images referencing cultur-
ally specific or political contexts (Mubarak et al.,
2023). These factors, along with OCR errors, slang,

Figure 1: Examples of hate/not-hate memes from the
Evaluation-phase test split.

and stylized fonts, complicate feature extraction.
Modeling the interplay between Arabic text and im-
ages requires fine-grained cross-modal alignment,
motivating our exploration of multiple multimodal
fusion strategies.

We address the task under two constraints: a
small, imbalanced dataset and the need for effec-
tive multimodal fusion. Using state-of-the-art en-
coders for text and vision, we compare four fusion
mechanisms and evaluate an ensemble.

This work makes three main contributions:

1. We provide a systematic comparison of four
fusion strategies for Arabic multimodal hate
detection.

2. We conduct an in-depth analysis of strategies
to mitigate extreme class imbalance, includ-
ing class-weighted loss, focal loss, and multi-
modal augmentation.
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3. We release a public, reproducible system de-
sign1 that can serve as a baseline for future
Arabic multimodal classification tasks.

2 Background

Detecting hate speech in multimodal content has
become a major research area, especially following
the release of the *Hateful Memes* benchmark,
which exposed the limitations of unimodal systems
in handling cross-modal semantics (Kiela et al.,
2021). Subsequent work has explored a range of
fusion techniques, including early fusion (concate-
nating text and image embeddings before classifi-
cation) (Galanakis et al., 2025), late fusion (com-
bining predictions from unimodal models) (Snoek
et al., 2005), and intermediate, attention-based ap-
proaches such as cross-attention and co-attention
(Lu et al., 2017, 2019; Chen et al., 2020; Zhang
et al., 2024).

In Arabic NLP, hate speech detection has mostly
focused on text-only methods (Mubarak et al.,
2023; Al-Saqqa et al., 2024) using pretrained lan-
guage models such as AraBERT (Antoun et al.,
2020), CAMeLBERT (Inoue et al., 2021), and
MARBERTv2 (Abdul-Mageed et al., 2021). Vi-
sion–language pretraining models such as CLIP
(Radford et al., 2021), SigLIP (Zhai et al., 2023),
and Swin Transformer (Wang and Markov, 2024)
have also shown promise for multimodal classi-
fication. However, their effectiveness for Arabic
multimodal hate detection remains underexplored.

3 System Overview

In preliminary experiments on the development set,
we found that combining MARBERTv2 for text
with CLIP-Large for images performed best. Our
final system is therefore built on this pairing, with
the overall architecture described in Section 3.1.
We also experimented with a uni-modal approach
where each modality is used separately for the pre-
dictions (details can be found in Appendix E)

3.1 Model Components

Figure 2 illustrates the overall architecture of
our system. The input meme consists of an
image and its corresponding Arabic text. The
image is processed by a visual encoder (CLIP-
Large), producing image embeddings, while the

1https://github.com/YassirELATTAR/
task3-mahed2025

Figure 2: Framework overview

text is processed by an Arabic text encoder (MAR-
BERTv2) to produce text embeddings. These em-
beddings are then fed into one of four fusion mech-
anisms—transformer fusion, early concatenation,
cross-attention, and bilinear pooling—which learn
joint multimodal representations. The outputs of
all fusion models are combined in an ensemble
module that produces the final prediction as either
hate or not-hate.

Unimodal Representations. We process the
meme text2 using MARBERTv2, a transformer-
based language model pretrained on large-scale
Arabic text from social media. We take the final
hidden state of the [CLS] token as the text embed-
ding.

For the image, we use CLIP-Large (ViT-L/14)
(Radford et al., 2021) to generate visual features.
We take the pooled output from CLIP’s image en-
coder as the image embedding.

3.2 Fusion Mechanisms

We explore four fusion strategies, all of which fall
under early or intermediate fusion: the text embed-
ding t ∈ Rdt from the text encoder and the image
embedding v ∈ Rdv from the vision encoder are
merged into a joint representation.

Concatenation (Early Fusion). The text and im-
age embeddings are concatenated into a single vec-
tor and passed through a feed-forward layer with
ReLU activation and dropout before classification;
see Eq. (1) in Appendix C. Here, [t;v] denotes con-
catenation, W and Wo are weight matrices, and b
and bo are biases.

Transformer Fusion (Single-Stream). A
lightweight transformer jointly processes projected
text (t) and image (v) embeddings of equal
dimension d, augmented with modality type
embeddings. The two-token sequence passes

2The extracted text was provided as part of the task data.
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through L self-attention layers, and the pooled
token is classified with a small MLP.3

Cross-Attention (Dual-Stream). Two single-
head cross-attention blocks let text attend to image
features and vice versa, aligning modalities more
explicitly than concatenation but typically requir-
ing more data to generalize.

Bilinear Fusion. Multimodal Compact Bilinear
(MCB) pooling (Fukui et al., 2016) models mul-
tiplicative interactions between t and v in a com-
pressed space, enabling richer feature combina-
tions at the cost of higher overfitting risk on small
datasets.

3.2.1 Ensemble
We combine the predictions of all fusion models
using:

• Majority Vote: Label predicted by most models.

• Equal Weighted: Mean-pooling of class probabilities
before selecting the argmax.

• Transformer-Weighted: Weighted average giving
higher weight to transformer fusion4.

3.3 Dealing with Imbalance

A major challenge in this task is the severe class
imbalance in the training data (90.05% not-hate
vs. 9.95% hate). To address this, we experimented
with several training-time strategies.

Class-Weighted Training Loss. We use
weighted cross-entropy with inverse-frequency
class weights; see Eq. (2) in Appendix C. This
increases the penalty for errors on the minority
class.

Focal Loss. We also test focal loss (Lin et al.,
2018) to focus more on hard examples (Eq. (3)
in Appendix C), where γ controls hard-example
emphasis and α is set to the minority-class prior.

Regularization. To reduce overfitting to the ma-
jority class, we applied stronger dropout (0.3 in en-
coders, 0.2 in fusion layers), weight decay (10−4),
and early stopping (patience 5).

Targeted Data Augmentation. To balance the
dataset, we augmented the hate class with both

3This was the strongest single-model method in prelimi-
nary validation.

4This choice is based on its stronger validation perfor-
mance compared to other models.

modified images and texts. For images, we ap-
plied rotation, scaling, perspective warp, color jit-
ter, gamma adjustment, noise/blur, geometric dis-
tortions, shadows/fog, and crop–resize. For text,
we used OCR-extracted text from augmented im-
ages (70% probability when confidence was high),
synonym replacement, light character dropout, and
cautious AR→EN→AR back-translation. We de-
signed the augmentation to preserve the original
semantic intent. We paired augmented images and
text in three ways: (i) replacing the text with the
newly extracted text, (ii) appending new text to the
original, and (iii) substituting a few words without
altering the meaning. (We show a few examples in
Appendix B.)

4 Experimental Setup

4.1 Data and Evaluation

The task is to determine whether a multimodal
meme—comprising an image and embedded Ara-
bic text—conveys a hateful message (hate) or not
(not hate). This phenomenon often involves mean-
ing multiplication: even if neither the text nor the
image alone is hateful, their combination can cre-
ate a hateful meaning. Effective fusion of the two
modalities is therefore crucial, and in this work we
explore different fusion strategies.

We use the official splits from the Prop2Hate-
Meme dataset (Alam et al., 2024b,a), which follow
the shared task protocol for training, development,
and testing. The training split is highly imbalanced,
with 90.05% not-hate and only 9.95% hate exam-
ples. This motivates the imbalance-handling strate-
gies described in Section 3.3. No external labeled
data are used. The official evaluation metric for the
shared task, and for all our experiments, is Macro-
F1, which is preferred over accuracy because it
balances performance across classes in the pres-
ence of severe class imbalance.

4.2 Training and Evaluation

We trained the following models in our experi-
ments:

• MARBERTv2 (Abdul-Mageed et al., 2021)
as the Arabic text encoder5.

• CLIP-Large (ViT-L/14) (Radford et al.,
2021) as the visual encoder6.

5https://huggingface.co/UBC-NLP/MARBERTv2
6https://huggingface.co/openai/

clip-vit-large-patch14
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Fusion Accuracy Macro-F1 (Test) Macro-F1 (Gold)

Ensemble (All) 0.90 0.72 0.75
Transformer 0.91 0.72 0.75
Concatenation 0.89 0.74 0.73
Cross-Attn. 0.88 0.69 0.68
Bilinear 0.89 0.63 0.66

Table 1: Performance on evaluation-phase test (Test)
and official leaderboard (Gold) splits. Ensemble gain
over Transformer = +0.005 on Gold.

Figure 3: Macro-F1 progression across epochs on Train
(solid) and Development (dotted). Takeaway: Trans-
former fusion is the most stable and highest-performing;
bilinear overfits quickly.

• Four fusion architectures: concatenation
(early fusion), transformer fusion, cross-
attention (dual-stream), and bilinear fusion.

• An ensemble combining the predictions of all
four fusion models.

We trained all models on the official train split
and tuned them on the development set, using
Macro-F1 as the model selection criterion. Details
of the hyperparameters are reported in Appendix D.

5 Results

Table 1 presents the main results on MAHED Sub-
task 3. We report Macro-F1 on the test split pro-
vided during the evaluation phase, and Macro-F1*
on the gold test set. The latter corresponds to the
official leaderboard score. Macro-F1 is the primary
evaluation metric of the shared task because it bal-
ances performance across classes in the presence
of severe class imbalance (Section 3.3).

Figure 3 visualizes the progression of Macro-F1
over training epochs for each fusion mechanism on
the train and dev splits. To better illustrate the over-
fitting behaviour, we train for 10 epochs without
early stopping, while keeping all other hyperparam-
eters the same.

Observations. Transformer fusion offers the best
single-model trade-off between capacity and sta-
bility. The ensemble slightly improves Macro-F1
(+0.005 on the test split) but at the cost of a small
drop in accuracy. Cross-attention underperforms
transformer fusion, likely due to limited training
data, while bilinear fusion tends to overfit. For
imbalance handling, class-weighted loss yields the
most consistent improvements. Focal loss reduces
the impact of easy majority-class cases and can
slightly improve minority recall, but the gain is
marginal. Data augmentation does not improve
performance—in fact, the model often overfits to
the augmented data, reaching perfect scores on the
training set but dropping significantly on dev. A
possible explanation is that the augmented samples
introduce superficial patterns that the model can
exploit without learning meaningful cross-modal
interactions.

Example predictions for the two samples shown
in Figure 1 are provided in Appendix A.

6 Limitations

Our system depends on pre-extracted texts from
memes, which may miss stylized text; sar-
casm/irony and culture-specific references remain
challenging. The dataset’s class imbalance and lim-
ited size constrain generalization, with bilinear and
cross-attention models prone to overfitting. We
did not perform Arabic-specific vision–language
pretraining, which could improve alignment.

7 Conclusion

We explored different fusion strategies combining
an Arabic text encoder and a visual encoder for
Arabic hate meme detection. We find that an en-
semble that aggregates the individual predictions
is most effective, yielding a Macro-F1 score of
0.75 on the official test set and ranking second on
the shared task leaderboard. We also examined
approaches to mitigate class imbalance, including
class-weighted loss, focal loss, and regularization,
and find class-weighted loss to be the most effec-
tive. Future work could investigate culture-aware
prompts and Arabic-focused vision–language pre-
training. Our findings can guide the development of
future Arabic multimodal hate detection systems.
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Appendix

A Example Predictions

Table 2 shows the predictions from different fusion
models for the two examples in Figure 1.

Model Example 1 Example 2

(Ground truth) not-hate hate
Concatenation not-hate not-hate
Transformer not-hate hate
Cross-Attn. not-hate hate
Bilinear not-hate hate
Ensemble not-hate hate

Table 2: Example predictions from different models.

B Augmentation Examples

Figure 4 illustrates examples of image augmenta-
tions applied to the hate class. The associated text
augmentations are shown below each image.

Figure 4: Examples of image augmentations for the hate
class.

C Additional Modeling Equations

Concatenation (early fusion).

h = ReLU
(
W [t;v] + b

)
,

ŷ = softmax
(
Wo Dropout(h) + bo

)
.

(1)

Table 3: Baseline summary on the test set (accuracy and
macro F1).

Approach Acc (Weighted) Macro-F1 (Weighted) Acc (Focal) Macro-F1 (Focal)

Text only 0.80 0.67 0.76 0.57
Image only 0.77 0.57 0.77 0.59
Confidence combine 0.78 0.59 0.78 0.55

Table 4: Text-only (Weighted) – classification report
(test).

Class Precision Recall F1 Support

not-hate 0.81 0.96 0.88 452
hate 0.74 0.34 0.46 154

Accuracy 0.80 606
Macro avg 0.78 0.65 0.67 606

Weighted avg 0.79 0.80 0.77 606

Weighted cross-entropy.

LwCE = −w1 y log p − w0 (1− y) log(1− p).
(2)

Focal loss.

Lfocal = −α (1− p)γ y log p

− (1− α) pγ (1− y) log(1− p).
(3)

D Framework Training Details and
Hyperparameters

The main hyperparameters used: batch size 16, 40
training epochs, AdamW optimizer, base learning
rate 2×10−5 with a linear scheduler, and weight de-
cay of 10−4. We applied dropout of 0.3 in encoders
and 0.2 in fusion layers, and used early stopping
with patience 5 to prevent overfitting.

E Unimodal Experiments

We evaluate three simple baselines: (i) text only,
(ii) image only, and (iii) a confidence-based com-
bination of the two unimodal systems (if the two
disagree, pick the class from the model with higher
softmax confidence). Each is trained/evaluated un-
der class-weighted cross-entropy and Focal Loss.
We report test accuracy and macro F1, then the
final classification reports.
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Table 5: Text-only (Focal) – classification report (test).

Class Precision Recall F1 Support

not-hate 0.77 0.96 0.86 452
hate 0.60 0.18 0.28 154

Accuracy 0.76 606
Macro avg 0.69 0.57 0.57 606

Weighted avg 0.73 0.76 0.71 606

Table 6: Image-only (Weighted) – classification report
(test).

Class Precision Recall F1 Support

not-hate 0.78 0.97 0.86 452
hate 0.66 0.18 0.28 154

Accuracy 0.77 606
Macro avg 0.72 0.57 0.57 606

Weighted avg 0.75 0.77 0.71 606

Table 7: Image-only (Focal) – classification report (test).

Class Precision Recall F1 Support

not-hate 0.78 0.97 0.87 452
hate 0.70 0.19 0.30 154

Accuracy 0.77 606
Macro avg 0.74 0.58 0.58 606

Weighted avg 0.76 0.77 0.72 606

Table 8: Confidence-based combination (Weighted) –
classification report (test).

Class Precision Recall F1 Support

not-hate 0.78 0.98 0.87 452
hate 0.76 0.19 0.30 154

Accuracy 0.78 606
Macro avg 0.77 0.58 0.59 606

Weighted avg 0.78 0.78 0.72 606

Table 9: Confidence-based combination (Focal) – clas-
sification report (test).

Class Precision Recall F1 Support

not-hate 0.77 1.00 0.87 452
hate 0.91 0.14 0.24 154

Accuracy 0.78 606
Macro avg 0.84 0.57 0.55 606

Weighted avg 0.81 0.78 0.71 606
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Abstract

Arabic hate speech detection presents unique
challenges due to the language’s morpholog-
ical complexity, dialectal diversity, and the
subtle nature of emotional expressions in so-
cial media. In this paper, we present our
submission to the MAHED shared task for
Arabic hate speech classification, which aims
to classify Arabic text into three categories:
hope, hate, and not_applicable. This task
is crucial for building safer online communi-
ties and has applications in content modera-
tion, social media analysis, and digital well-
being initiatives. We systematically evalu-
ate six transformer-based encoders, comparing
Arabic-specific models (MARBERT, AraBERT,
ALCALM) against multilingual alternatives
(XLM-RoBERTa, LaBSE, BGE). Our approach
demonstrates that specialized Arabic models
specially encoders trained on more than one
dialect like marber significantly outperform
their multilingual counterparts, with MAR-
BERT achieving the best overall performance.
Using our proposed methodology, we achieved
competitive results on the MAHED shared task
with a macro-F1 score of 0.707 on the test split,
securing a strong position in the final competi-
tion rankings.

1 Introduction

This paper details the system we developed for the
MAHED (Multimodal Detection of Hope and Hate
Emotions in Arabic Content) shared task, hosted
at the Arabic Natural Language Processing Con-
ference (ArabicNLP 2025)(Zaghouani et al., 2025).
Our work addresses the critical challenge of Arabic
hate speech classification, a multi-class problem
designed to distinguish between hope, hate, and
neutral expressions in Arabic social media content.

The importance of this task has grown substan-
tially with the increasing prevalence of Arabic con-
tent online and the urgent need for effective content

*Equal contribution

moderation systems. Robust hate speech detection
systems have critical real-world applications in so-
cial media platforms for automated content filter-
ing, in digital wellbeing initiatives for protecting
vulnerable users, in research contexts for under-
standing online discourse patterns, and in policy-
making for developing evidence-based regulations
around online hate speech.

The challenge of emotion classification in Arabic
is particularly acute due to the language’s intrinsic
complexities. Arabic is characterized by its rich
morphological system, where words can be derived
from trilateral or quadrilateral roots through com-
plex patterns, making surface-level features less
reliable. Furthermore, the phenomenon of diglos-
sia—the coexistence of Modern Standard Arabic
(MSA) with numerous regional dialects—means
that emotional expressions often carry dialectal nu-
ances that may not be immediately apparent to stan-
dard language models. Additionally, the subtlety
of hate speech and sarcastic expressions in Ara-
bic social media creates challenges for automated
detection systems that must distinguish between
explicit and implicit emotional content.

To address these challenges, we conducted a
systematic evaluation of six transformer-based en-
coders, comparing their effectiveness on Arabic
emotion classification. Our methodology focuses
on fine-tuning individual models with careful hy-
perparameter optimization rather than ensemble
approaches, allowing us to identify the most capa-
ble single-model solution for deployment scenarios
where computational efficiency is crucial.

The key contributions and findings of our work
can be summarized as follows:

• We demonstrate the systematic evaluation of
six diverse transformer encoders on Arabic
emotion classification, providing comprehen-
sive performance comparisons across Arabic-
specific and multilingual models.
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• We show that Arabic-specific mod-
els (MARBERT(Abdul-Mageed et al.,
2021), ALCLAM(Murtadha et al., 2024),
AraBERT(Antoun et al.)) significantly
outperform multilingual alternatives, with
MARBERT achieving the best balance of
performance and robustness.

2 Background

Arabic hate speech detection has evolved from tra-
ditional machine learning approaches using hand-
crafted features to modern transformer-based meth-
ods. Early work in Arabic sentiment analysis re-
lied on lexicon-based approaches and statistical
features, but these methods struggled with the mor-
phological richness and dialectal variation of Ara-
bic text.

The introduction of pre-trained language mod-
els revolutionized Arabic NLP, with BERT-based
models like AraBERT (Antoun et al.) and MAR-
BERT (Abdul-Mageed et al., 2021) demonstrating
significant improvements over previous approaches.
These models leverage large-scale Arabic corpora
to learn contextual representations that better cap-
ture the nuances of Arabic text.

Multilingual models such as XLM-RoBERTa
(Conneau et al., 2019) have shown competitive per-
formance across multiple languages, but their effec-
tiveness on Arabic-specific tasks remains a subject
of investigation. Recent work has suggested that
language-specific pre-training often provides ad-
vantages for morphologically rich languages like
Arabic (Abdul-Mageed et al., 2021)(Antoun et al.).

In our setup, both the input and output are text:
the input is a sentence and the output is a label from
the set {hope, hate, not_applicable}. For example,
the input ú


	̄ ¼PA ���� é J
º K
Q Ó@ Èð@ YÒ m× h. A î �D K. @
èXPAî 	D Ë @ �H@YK. , H. Aj. m�'. XA J
 J. Ò J
 ËðB@ is classified
as hope. We evaluate on a dataset of Arabic social
media posts (Zaghouani et al., 2025) (train: 6890,
validation: 1476, test: 1477), which provides a
realistic benchmark for emotion and hate speech
detection. This task goes beyond sentiment analy-
sis by requiring fine-grained distinctions between

emotional states while handling the informal nature
of online discourse.

3 System Overview

3.1 Model Architecture
Our approach employs a standard fine-tuning
methodology using transformer-based encoders
with task-specific classification heads. The gen-
eral architecture consists of four main components:

1. Input Processing: Text tokenization using
model-specific tokenizers optimized for Ara-
bic text handling.

2. Encoder Layer: Pre-trained transformer en-
coder providing contextualized representa-
tions of input sequences.

3. Classification Head: Linear transformation
layer mapping encoder outputs to class proba-
bilities.

4. Loss Function: Cross-entropy loss with class
weighting to address dataset imbalance.

3.2 Evaluated Models
We systematically evaluate six transformer-based
encoders representing different pre-training ap-
proaches and language coverage:

Arabic-Specific Models:

• MARBERT (Abdul-Mageed et al., 2021):
Bidirectional encoder pre-trained specifically
on Arabic social media content, optimized for
informal Arabic text processing.

• AraBERT-Twitter (Antoun et al.): Large-
scale Arabic BERT model with Twitter-
specific pre-training, designed for social me-
dia content understanding.

• ALCLAM (Murtadha et al., 2024): Contem-
plative language model designed for deeper
Arabic text understanding and reasoning
tasks.

Multilingual Models:

• XLM-RoBERTa (Conneau et al., 2019):
Cross-lingual encoder supporting 100+ lan-
guages, including Arabic, trained on diverse
multilingual corpora.

• LaBSE (Feng et al., 2022): Language-
agnostic sentence encoder designed for cross-
lingual text representation and similarity
tasks.
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• BGE-m3 (Chen et al., 2024): Bidirectional
and generative encoder optimized for text em-
bedding and representation learning.

4 Experimental Setup

4.1 Data Split

Train Validation Test
Number of samples 6890 1476 1477

Table 1: Dataset split for Arabic social media posts.

4.2 Training Setup
Key training parameters for our best-performing
model (MARBERT) include:

• Learning rate: 1 × 10−6 (optimized through
systematic search)

• Batch size: 64 (training), 128 (evaluation)

• Training epochs: 3 with early stopping

• Warmup ratio: 0.1 for learning rate scheduling

• Weight decay: 0.01 for regularization

• Maximum sequence length: 170 tokens

4.3 Evaluation Framework
Following the shared task guidelines, we employ
comprehensive evaluation metrics:

• Primary Metric: Macro-averaged F1 score
for balanced evaluation across all classes

• Secondary Metrics: Accuracy, macro-
averaged precision, and recall

5 Results

5.1 Overall Performance
Table 2 presents comprehensive performance com-
parisons for all models evaluated in the test set. The
results demonstrate clear performance advantages
for Arabic-specific models over their multilingual
counterparts other than alclam model, which we
were surprised with the performance of the model.

5.2 Key Findings
The experimental results reveal several important
insights:

Arabic-Specific Model Superiority: AL-
CALM, MARBERT, and AraBERT-Twitter

Model F1-M Acc. Prec. Rec.

XLM-RoBERTa 0.645 0.653 0.645 0.647
MARBERT 0.707 0.712 0.705 0.710
AraBERT-Twitter 0.630 0.658 0.669 0.616
BGE 0.588 0.617 0.631 0.585
ALCLAM Base v2 0.404 0.563 0.684 0.442
LaBSE 0.627 0.654 0.655 0.611

Table 2: Performance comparison across evaluated mod-
els on the test set.

achieved the highest performance scores, demon-
strating the critical importance of language-specific
pre-training for Arabic emotion classification
tasks.

Multilingual Model Limitations: Bge-m3
showed substantially lower performance despite
its broad language coverage, suggesting that mul-
tilingual models may not effectively capture the
subtle linguistic nuances required for Arabic emo-
tion classification, also XLM-RoBERTa, although
higher than both ALCLAM and AraBERT-Twitter,
still lower than the MARBERT which is trained on
more than one arabic dialect.

Performance-Robustness Trade-offs: MAR-
BERT achieved the best balance across all evalua-
tion metrics, making it the most reliable choice for
deployment scenarios requiring consistent perfor-
mance.

5.3 Error Analysis
Detailed analysis of model predictions on the vali-
dation set reveals several patterns in classification
errors:

1. Implicit Hate Expression: Subtle hate
speech often misclassified as neutral content.
Example:

	Y 	g@ éÊ¾ �� I. ªÊÖÏ @ ú

	̄ ú
æ�J
Ó éÊª 	®K
AÓ

é 	Kñ � j 	® K
 Ð 	PB �H@A ¢ �� 	� Ó (What Messi
does on the field looks like he took stimulants
They need to test him) True: not_applicable,
but contains subtle accusatory language that
could be misinterpreted.

2. Dialectal Variation Impact: Regional di-
alects and informal expressions create clas-
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sification challenges. Example: 	àAj�JÓ@ Õæ�»
èXPA î 	E @ (Damn today’s exam) True:
not_applicable, but vulgar dialectal ex-
pressions can be difficult to classify
accurately.

3. Context-Dependent Statements: Expres-
sions requiring broader context for accurate
interpretation. Example: ��K
Q¢Ë@ ©¢ �®K
 @ 	Yë
Ñ ê ª Ó �é 	® ËA j�J ÖÏ @ Ñ î�EA K. A � « ú
Î « (This
cuts the road on their allied gangs) True:
not_applicable, but political references re-
quire contextual understanding for proper clas-
sification.

6 Conclusion

The experimental results provide valuable insights
into the effectiveness of different architectural ap-
proaches for Arabic emotion classification. The
consistent superiority of Arabic-specific models re-
inforces the importance of language-specialized
pre-training for morphologically complex lan-
guages.

Model Architecture Insights: The performance
gap between Arabic-specific and multilingual mod-
els suggests that the linguistic complexity of
Arabic—including its rich morphology, dialectal
variations, and unique emotional expression pat-
terns—requires specialized model architectures
trained on Arabic-specific corpora.

Task-Specific Challenges: Our error analysis
reveals that the primary difficulties lie in detecting
implicit emotional content rather than explicit ex-
pressions. This finding has important implications
for system deployment, suggesting that additional
context or multi-turn analysis might improve per-
formance on ambiguous cases.

Practical Deployment Considerations: MAR-
BERT’s balanced performance across all metrics
makes it the most suitable choice for production
deployment, where consistent reliability is more
important than peak performance on specific met-
rics.

The main challenges identified in our analysis
include:

• Class Imbalance Effects: The dominance
of neutral content in the shared task dataset
continues to pose challenges for balanced clas-
sification performance.

• Implicit Expression Detection: Subtle emo-
tional expressions, particularly sarcasm and
implicit hate speech, remain difficult to accu-
rately classify.

• Dialectal Variation Impact: Different Arabic
dialects introduce additional complexity that
current models handle with varying degrees
of success.

• Context Dependency: Many emotional ex-
pressions require a wider conversational or
situational context for an accurate interpreta-
tion.

We presented a systematic evaluation of
transformer-based encoders for Arabic emotion
classification in the MAHED shared task. The re-
sults show that Arabic-specific models, especially
MARBERT, outperform multilingual alternatives
in capturing morphological and dialectal nuances.
Key challenges remain to detect implicit and sar-
castic expressions, handle class imbalance, and
address dialectal variation.

Future work will explore lightweight ensembles
of Arabic-specific models, advanced training strate-
gies (e.g., curriculum learning), and incorporating
broader context or multimodal cues to improve sub-
tle emotion detection.

Limitations: We focused on single-model fine-
tuning with limited hyperparameter exploration,
which may cap performance.
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A Detailed Model Specifications

MARBERT Configuration:
TrainingArguments(

output_dir="./checkpoints_marbert",
eval_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=64,
per_device_eval_batch_size=128,
num_train_epochs=3,
learning_rate=1e-6,
warmup_ratio=0.1,
weight_decay=0.01,
logging_strategy="epoch",
save_total_limit=2,
load_best_model_at_end=True,
metric_for_best_model="f1_macro",
greater_is_better=True,
dataloader_num_workers=2

)

Model Architecture Details:

• MARBERT: 12 layers, 768 hidden dimen-
sions, 12 attention heads

• AraBERT-Twitter: 24 layers, 1024 hidden
dimensions, 16 attention heads

• ALCALM: 12 layers, 768 hidden dimensions,
12 attention heads

• XLM-RoBERTa: 12 layers, 768 hidden di-
mensions, 12 attention heads

• LaBSE: 12 layers, 768 hidden dimensions, 12
attention heads

• BGE: Variable architecture depending on spe-
cific variant

B Hardware and Runtime Details

All experiments were conducted on GPU-
accelerated hardware with the following specifi-
cations:

• GPU: NVIDIA Tesla V100 with 32GB mem-
ory

• Training time: Approximately 2-4 hours per
model for 3 epochs

• Framework: PyTorch 1.12+ with Hugging
Face Transformers 4.21+

• Additional libraries: scikit-learn, numpy, pan-
das
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Abstract

This paper presents our system for Subtask-2:
Emotion, Offensive Language, and Hate De-
tection in the MAHED 2025 Shared Task at
ArabicNLP 2025. We address the challenge
of multi-label classification in Arabic social
media text using a two-stage, prompt-based
framework with large language models. In the
first stage, our system classifies emotions into
12 distinct categories; in the second stage, it
detects offensive messages and, when relevant,
further identifies the presence of hate speech.
Both stages leverage the Meta-Llama-3.1-8B
model, fine-tuned to capture the diverse lin-
guistic and dialectal characteristics of Arabic.
Our approach achieved a macro F1-score of
0.518 on the official test set, placing 4th in
Subtask 2. The results demonstrate the effec-
tiveness of prompt-based modeling for com-
plex Arabic text classification and contribute
a practical, LLM-based solution for emotion
and hate speech detection in low-resource sce-
narios.

1 Introduction

The growing influence of social media platforms
has fundamentally transformed how individuals
express emotions and communicate across digital
spaces, with Arabic-speaking communities having
represented one of the fastest-growing user bases
globally (Ali and Aleqabie, 2024; Alqahtani and
Alothaim, 2022). According to Statista, the inter-
net user population in the United Arab Emirates
(UAE) has peaked in 2025 and has increased by
almost a thousand users compared to the previ-
ous year. This rapid growth has generated vast
amounts of user-generated content in diverse Ara-
bic dialects. Consequently, there has been a grow-
ing need for robust NLP tools to understand and
moderate Arabic content, especially given the mix
of emotions and potential for offensive or hateful
language. Yet, existing moderation systems have

often struggled with Arabics morphological com-
plexity, dialect diversity (Center for Democracy
and Technology, 2023), and limited training data
and cultural awareness (AL-Sarayreh et al., 2023).

To address these challenges, we have partici-
pated in Subtask-2 of the MAHED 2025 Shared
Task on Multimodal Detection of Hope and Hate
Emotions in Arabic Content (Zaghouani et al.,
2025). The purposive focus of this task has been
to identify the emotion expressed in Arabic social
media text, determine whether the text is offensive,
and, if offensive, further assess whether it contains
hate content.

To achieve our goal, we have employed a large
language model (LLM), specifically a lightweight
Meta-Llama-3.1-8B, as the core of our system.
This powerful LLM has been fine-tuned using
the Unsloth framework, allowing us to efficiently
adapt it to the challenging Arabic emotion, of-
fensive language, and hate speech detection tasks.
The use of a large language model has enabled
us to build an effective system that has achieved
competitive performance (macro F1-score: 0.518),
ranking 4th among all submissions. The main con-
tributions of this work have been:

• Proposed a two-stage prompt-based frame-
work linking emotion and hate speech detec-
tion.

• Applied lightweight LLM fine-tuning for effi-
cient Arabic multi-label classification.

• Showed conditional prompting outperforms
flat multi-label methods in low-resource Ara-
bic NLP.

Further implementation details can be accessed
via the GitHub repository.1

1https://github.com/ratnajit-dhar/MAHED
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2 Background

The detection of hate speech and offensive lan-
guage in Arabic has remained challenging due to
its complex morphology and dialectal variation.
The MAHED 2025 Shared Task (Zaghouani et al.,
2025) has required systems to analyze short Ara-
bic texts (mostly tweets) and assign multiple la-
bels. The dataset (Zaghouani et al., 2024; Za-
ghouani and Biswas, 2025b,a) used in this work
was introduced at the ArabicNLP 2025 workshop
under the MAHED 2025 Shared Task. Examples
of input texts and their corresponding output labels
are provided in Appendix A.

Early pioneering work has developed founda-
tional methods for Arabic emotion detection uti-
lizing Twitter data in the context of the Egyp-
tian revolution and has found that it was possi-
ble to automatically detect emotions from Ara-
bic tweets after appropriate preprocessing (Ra-
bie and Sturm, 2014). Further studies have pro-
vided sizable progress through a variety of ap-
proaches. A study to collect Arabic dialect
datasets by scraping tweets through Olympic hash-
tags has derived an accuracy of 68.12% with Com-
plement Naive Bayes classifiers (Al-Khatib and El-
Beltagy, 2017). Another one has built large-scale
COVID-19 datasets with 5.5 million tweets and
has achieved an 83% F1-score for emotion classifi-
cation using LSTM models (Al-Laith and Alenezi,
2021). The advent of transformer-based models
has transformed Arabic emotion detection. Re-
search has shown transformer-based models, such
as AraBERT, have been superior to traditional ma-
chine learning methods (Qaddoumi, 2022). Ara-
bic hate speech and offensive language detection,
an equally challenging space, has had progress on
large-scale datasets with special tags for vulgarity
and hate speech where researchers have achieved
F1-scores of 83.2% using state of the art tech-
niques (Mubarak et al., 2020). The integration
of emotional knowledge with hate speech detec-
tion through multi-task learning frameworks has
shown promising results, with studies demonstrat-
ing approximately 3% improvement when combin-
ing emotional analysis with hate speech detection
tasks (Mnassri et al., 2023).

Building on prior work, our system employs a
two-stage prompt-based approach using large lan-
guage models to efficiently address the problem
of hierarchical emotion and hate speech detection
with limited data and different dialects.

3 System Overview

Our system has been built upon a two-stage,
prompt-based classification framework, using
Meta-Llama-3.1-8B as the backbone large lan-
guage model. The main design choice has been
to separate emotion classification from detecting
hate and offensive speech, providing appropriate
prompts and fine-tuning approaches for each stage.
An overview of the architecture is illustrated in
Figure 1.

In the first stage, we have fine-tuned the model
to detect emotion using the prompts that have ex-
plicitly highlighted the 12 emotion categories. An
example of a prompt that has been used during
training and during the inferencing phase follows:

The following text is an Arabic text. Your task is to clas-
sify the emotion expressed in the text into one of the fol-
lowing categories:
1. anger, 2. disgust, 3. neutral, 4. love, 5. joy, 6. an-
ticipation, 7. optimism, 8. sadness, 9. confidence, 10.
pessimism, 11. surprise, 12. fear

Text: {text}

Response: {response}

In the second stage, we employed a dedicated
prompt asking the model to create a response in
two steps, strictly following the task instructions:

You are given an Arabic text. Your task is to classify
whether the text is offensive or not offensive.
- If the text is offensive, respond with: offensive
- Then, further classify the text as either:
- hate (if it expresses hate speech)
- not_hate (if it does not express hate speech)
- If the text is not offensive, respond with: not offensive
- Then, respond with: not_applicable for the second
classification.

Text: {text}

Response:
1. {offensive}
2. {hate}

Based on the hierarchical nature of the task la-
bels, this two-stage design has treated emotion
classification as a foundational step, whereas hate
speech classification has only been taken into con-
sideration if the text has already been deemed of-
fensive. Such a conditional setup has not only re-
duced label confusion but also allowed the model
to focus on distinct linguistic patterns at each stage.
This approach has aligned with prior work show-
ing that hierarchical approaches have had better
performance than flat multi-label classification for
multi-label tasks as it reduces a complex task into
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Figure 1: Two-Stage LLM Framework for Arabic Emotion, Offensive, and Hate Speech Detection.

simpler sub-tasks (Galea et al., 2017; Yang et al.,
2023). To ensure deterministic outputs during
evaluation, we have set the generation temperature
to 0.0 for all inference stages.

All fine-tuning and evaluation have used only
the official MAHED 2025 dataset; no external
data, manual features, or class balancing tech-
niques have been applied.

4 Experimental Setup

4.1 Dataset

We have used the MAHED 2025 dataset from
the shared task on Arabic emotion, offensive lan-
guage, and hate speech classification. Each post
is labeled with one of 12 emotions, an offensive
label (yes or no), and, if offensive, a hate label
(hate or not hate). The training set contained 5,960
posts (1,744 offensive, 303 hate), the validation set
1,277 posts (363 offensive, 68 hate), and the test
set consisted of 1,278 unlabeled posts, used solely
for final shared task evaluation. The detailed dis-
tribution of labels in the training set is shown in
Table 1.

4.2 Model and Hyperparameters

We have fine-tuned the Meta-Llama-3.1-8B model
using 4-bit quantization and LoRA (Hu et al.,
2021) with rank 16 for 3 epochs. Emotion and
offensive/hate models have been trained for 1000
and 500 steps, respectively, using AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 2e-4, weight decay 0.01, and a lin-
ear scheduler with 5 warmup steps. We have em-
ployed gradient accumulation and capped input se-
quences at 2048 tokens. Gradient checkpointing

Label Category Count

Emotion

Anger 1551
Disgust 777
Neutral 661
Love 593
Joy 533
Anticipation 491
Optimism 419
Sadness 335
Confidence 210
Pessimism 194
Surprise 143
Fear 53
Total 5960

Offensive
No 4216
Yes 1744

Hate (if offensive)
Not Hate 1441
Hate 303
Total 1744

Table 1: Distribution of emotion, offensive, and hate
speech labels in the MAHED 2025 training set.

has been enabled to reduce memory usage.

4.3 Libraries and Frameworks

We have used the Unsloth framework (v2024.8)
for fine-tuning and the Hugging Face Transform-
ers library (v4.44.0) for model loading/inference.
Fine-tuning was configured with TRL, and all
models were quantized to 4-bit using BitsAnd-
Bytes (v0.43.1) to reduce memory usage.

4.4 Evaluation Metrics

We have used macro-averaged F1-score as the pri-
mary evaluation metric. Additionally, we have
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reported per-class precision and recall to analyze
how the model has handled both common and un-
derrepresented emotion and hate categories.

5 Results

In this section, we present the results of our Ara-
bic emotion, offensive language, and hate speech
classification task by comparing different prompt-
ing strategies as well as models in order to demon-
strate their abilities in tackling the problems of this
multi-label task.

Our official (fine-tuning LLaMA-3.1-8B) sys-
tem has had a macro-average F1-score of 0.518 on
the test set, placing us in 4th place out of all of the
participating systems.

To gain insight into the impact of different
model architectures and prompting strategies, we
have compared a number of LLMs using zero-shot,
few-shot, and fine-tuned setups. The results, eval-
uated on the development set, are summarized in
Table 2.

In addition to our overall performance, our
team (CUET_823) achieved the highest preci-
sion (0.617), showing strong effectiveness at min-
imizing false positives despite slightly lower F1-
scores.

Model
Name

Prompting
Strategy

Macro
F1

LLaMA-3.1
8B

Fine-tuning 0.554
Zero-shot 0.484
Few-shot 0.477

Mistral
7B v0.3

Zero-shot 0.412
Few-shot 0.420

Fine-tuning 0.435

Qwen-2
7B

Zero-shot 0.458
Few-shot 0.407

Fine-tuning 0.415

CodeGemma
7B

Zero-shot 0.388
Few-shot 0.397

Fine-tuning 0.421

Zephyr
7B

Zero-shot 0.374
Few-shot 0.386

Fine-tuning 0.410

Gemma 3
4B

Zero-shot 0.395
Few-shot 0.402

Fine-tuning 0.428

Table 2: Macro F1 performance of different models on
the validation set.

Fine-tuning has clearly outperformed both zero-
shot and few-shot prompting strategies across all

models. The LLaMA-3.1-8B model has consis-
tently achieved the highest scores, validating our
choice of model and training strategy.

5.1 Error Analysis

While this system has performed very well overall,
it has struggled in borderline cases of offensive/the
hate speech classification decision. In many cases,
the system has flagged text as offensive but has
failed to escalate to hate, especially where hateful-
ness was implied or culturally coded. Below are a
few representative errors from the validation set:

Text: ሒᇆ؇٭ොູ ଫଃ༠ا Մ៰Ղا وඹජاك ዻዧ ނଲ୍ا @ZADXII
True: love, no, -
Predicted: neutral, no, -
A positive, polite thank-you message was predicted as
neutral rather than ’love’ (politeness vs. affection con-
fusion).

Text: ل؇ਵਦلݥ اࠍ੆ݠႤ၍ت ذا ૭૜ިي ل۬ ாண ا۹َ زود اܳأٴ٭ڎ
True: disgust, yes, hate
Predicted: disgust, yes, not_hate
Racist slur went undetected as hate, showing model’s hes-
itation to escalate from ’offensive’ to ’hate’ without ex-
plicit group targeting.

6 Conclusion

In this work, we have presented a hierarchical
two-stage system for Arabic emotion, offensive
language, and hate speech detection. The exper-
iments have shown that detecting emotions first
and then applying conditional offensive and hate
speech classification has been effective due to the
strong correlation between these tasks. The hierar-
chical approach has also been useful in addressing
dialectal diversity while being resource-efficient.

Although the system has performed competi-
tively, there have been some limitations. Gener-
alizability has been limited as we have employed
only a single dataset and architecture, and static
prompting may struggle with evolving language.
Not exploring Arabic-specific transformer models
may also have limited performance. Future work
could explore further architectures, new ensem-
ble methods, dynamic prompting rather than static,
wider dialect coverage, and multimodal features
for better robustness and contextual understand-
ing.
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A Appendix

A.1 Input and Output Examples
The example below shows a sample input and the
corresponding output labels from the train dataset:

Example 1

Input: ؜ٷڎ۱ܾ لܝިن ؇ৎ৊ ఈዳዧݿژ لگިل ඔ൹ਃ಻؇݄اܳأ اܳލٴ؇ب اܳٺ༶؇ر أ༡ڎ
ปฆ݁<LF>!!؜ٷڎي ݆݁ ཯ྥފިڢިا ଫଊݬ ߌߵࢴࣖوا ؇ৎ৊و ۱؇لଫଊ݁؇ر܋ب ߌߵوۋިا Ⴄ၍ش
اܳިޗ݆ ৖৑ڢٺݱ؇د ؇ᆇᅦود ሒᇃ؇ᆇᅦ ܳٴ྘ب ڣٺں ሒᇃ؇ᆇᅦ රජ؇ّ ݆݁ ૭૜ިڢٷ؇ أن ݿٷڎرك
؇ୖ୒ިොຬ ل؇৖৑ت ීෂا آ৖৑ف ݆݁ ቕመ اܳٴٷިك ݁ިޖࠕࠫ ڣފ؊ܳިا ᄕც؊اܳٺ ቕቆارد واذا ،
https://t.co/tBeNnETQ4z . لި݁٭؇ اࠍ੅؇رج ሌᇿإ ೞ಻؇༥৙৑ا اܳٺ༶؇ر
Output:
Emotion: neutral
Offensive: no
Hate: not applicable

Example 2

Input: ڣگޔ ೞ಻؇༥ఈዳዧ ෛ੼ݱݱ۰ @AddadRuh @tlbakhsh: RT
ᄭႍၽލৎ৊ا اܳފأިدل۰!! ሒᇭ ଫଃ༚ ݁؇૰૙ިڣ۳؇ ۰ਊಱਵؗ ࿾ே٭ٴ۰ اނ٭؇ء !!۬੅ျ واܳފأިدي
݁؇لأ݄ܭ… ܾୖ୒دو ሒᇭ ܾዝཏَڰ ೞ಻؇༥৖৑ا
Output:
Emotion: anger
Offensive: yes
Hate: yes

Example 3

Input: ݁ٷ؇ޗݑ ෛ੼ٺܹژ ሒᇭ ਐಾިاݬܭ اܳگڎس ؗݯص ᆇᅹأ۰ ݁ފଫଃات
١٨ - ঌॻਃಮا๤ང৖৑ا اܳأڎو ؕ݁ اܳٺޚٴ٭ؕ ሒᇭ اܳٷޙ؇م ෛຳޚިة ਍ಾڎࢴࣖاً દઊاܳٴۜݠ
< LF > # #اܳٺޚٴ٭ؕ> ٢٠٢٠<LF><LF>#દઊاܳٴۜݠ ଫଊ݄ݿྟٺ

LF > ###Bahrainhttps : //t.co/kBhiuqdJfN

Output:
Emotion: anger
Offensive: yes
Hate: not_hate
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Abstract

Detecting hate speech in social media content
is essential to provide a safe space for people to
connect. Memes have been used lately to sar-
castically express one’s opinion, and they can
be used to hide harmful intentions and spread
hateful speech. In this work, we build our
system that detects hateful speech in memes
by combining visual and textual features and
merging them using different techniques to de-
tect the inherent meaning and overcome the
challenge of vast dialectal differences and the
variety of topics discussed. To improve our sys-
tem’s robustness, we combine different tech-
niques, such as multi-tasking, contrastive learn-
ing, and vision language modeling in a final
ensemble model that secured us the third place
in the MAHED 2025 shared-task leaderboard
with a macro-f1 score of 0.74, showing strong
performance on the evaluation set.

1 Introduction

The social media content of the Arabic-speaking
world is a complex footprint of social and political
expression due to the diverse topics discussed on
it, the different points of view introduced, and the
different narratives they are presented in. People
tend to reflect their hopeful and hateful sentiments
on social media platforms, projecting them in dif-
ferent formats of content, such as memes, videos,
and textual blog posts (Al-Saqqa et al., 2024; Mulki
et al., 2019). The increase of the meme culture over
the last few years provided an abundance of mul-
timodal data that introduced nuanced techniques
to hide complex and harmful messages through
humour and irony (Kiela et al., 2020; Alam et al.,
2024a). This necessitates the need for a means of
automatic detection of such hateful content to en-
able safer online platforms for people to express
their opinion (Chen and Pan, 2022).

We address the need for robust hateful digital
content detection by focusing on the multimodal of

Arabic memes (Arya et al., 2024). Such systems
must have the capacity to analyze both the visual
and textual components of a meme to produce a
binary classification of “hate” or “no-hate”, thereby
mitigating the spread of harmful online content.

One of the challenges in this task can be the lin-
guistic diversity of Arabic, including vast dialectal
variations (Habash, 2010) and cultural expressions
with double meanings that can obscure intent (Elko-
rdi et al., 2024). Additional hurdles include the
wide range of viral social and political topics, such
as politics, religion, and gender, and data-specific
issues like the scarcity of clean annotations and
a significant imbalance where non-hateful memes
are more common (Mulki et al., 2019).

To overcome these obstacles, our system must
handle the complexities of the Arabic language by
analyzing the interaction between visual and tex-
tual features to uncover the actual intent behind
sarcastic content. A key requirement is the abil-
ity to generalize from limited data across diverse
topics and expressions, enabling the model to dif-
ferentiate between benign cultural commentary and
genuinely hateful projections.

Our main contributions can be summarized in
the following points:

• Applied multi-tasking technique to benefit
from fine-grained classed and contrastive
learning to extract meaningful features that
can group samples of the same class closer in
the embedding space.

• Used a pretrained vision language model in
our classification task to benefit from it gener-
alization and multilingual abilities.

• Combined the different techniques we used
in a maximum voting ensemble that is robust
in multimodal hate speech detection and se-
cured the third place in the shared task leader-
board (Zaghouani et al., 2025).
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(a) Our dual-encoder training setup in the multi-tasking setup.
Both input modalities are encoded separately, then the embed-
dings are concatenated, and the binary cross-entropy loss is
applied on the merged embedding and the text embedding while
the contrastive loss is applied only on the textual embedding.

(b) In the testing phase, each model in our system outputs its
prediction, then a maximum voting is applied to produce the
final prediction. Our ensemble benefit from the different en-
coding and merging approaches we used with both modalities,
including VLMs and encoder/decoder-only models for text em-
bedding.

Figure 1: Illustration of our training in the multi-tasking setup and the maximum voting ensemble in the testing
phase

2 Background

Prior research has explored hate speech detec-
tion through different classical and deep learning
techniques in both unimodal and multimodal set-
tings. The main focus was on the textual content
only (Chhabra and Vishwakarma, 2023), relying on
classical techniques such as Bag-of-Words (Husain
and Uzuner, 2022), TF-IDF (Kumar and Varalak-
shmi, 2021), Word Embedding e.g. Word2Vec,
GloVe, and FastText (Plaza-del Arco et al., 2021),
and hybrid methods that combine CNN and GRU
or integrate attention mechanisms for improved
performance (Zhang et al., 2018).

Then, the focus is switched to deep learning tech-
niques that rely on contextual representation using
recurrent networks such as RNNs and LSTMs or
BERT-based models (Devlin et al., 2019) that rely
on the self-attention technique. More recent work
has used both images and text for better contextual
representation and accurate results (Kiela et al.,
2020). In this setup, multiple techniques have been
explored, such as early fusion, late fusion (Lippe
et al., 2020), and pre-trained vision language mod-
els (Chen and Pan, 2022).

Considering the Arabic language, this is the
first use of multimodal memes for hateful speech
detection. A previous task explored the use
of such a setup for propaganda detection from
memes (Hasanain et al., 2024). Participants of
this task explored different techniques to integrate
visual and textual features to produce the final pre-
diction, such as using multi-agent LLMs to detect
the propaganda (Alam et al., 2024a) or using con-
trastive learning with a multi-objective function
(Zaytoon et al., 2024).

3 System Overview

In this section, we present different components of
our system. First, we show the backbones and the
fusion technique we used in a dual-encoder archi-
tecture. Then, we present how we benefited from
the instruction capabilities of pretrained vision lan-
guage models (VLMs) (Bordes et al., 2024). Then,
we showcase how we improved the classification
performance using a multi-task approach. Finally,
we present our system as an ensemble of all the
above components.

3.1 Dual-Encoders

In this component, we employed a separate encoder
for each modality. For the text modality, we relied
on pretrained language models and tested two dif-
ferent approaches. First, we used an encoder-only
model, MARBERTv2 (Abdul-Mageed et al., 2021),
which is known for its robustness against dialec-
tal Arabic. We used a version of it that is trained
for hate speech detection in the Egyptian dialect
(Ahmed et al., 2022). Second, we used a pretrained
decoder-only LLM, Qwen2.5-1.5B (Team, 2024)
to provide a more general representation of the
textual input. For the image modality, we used con-
volutional neural network backbones, specifically
ResNet-101 (He et al., 2016) and ResNeXt-101
(Xie et al., 2017) models, to capture both global
and fine-grained visual features.

After the extraction of both visual and textual
features, they are concatenated to form a single
multimodal representation. Next, we apply binary
cross-entropy on this final representation and the
textual embedding, along with a contrastive loss on
the textual features only, using in-batch sampling
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Split Number of Samples
Total Training 2,452
Validation 606
Test 500

Table 1: Number of samples in each split of the dataset.

to select positive and negative samples as shown
in 1.

Ltotal = Lfusion
BCE + Ltext

BCE + Ltext
CL (1)

3.2 Vision Language Models (VLMs)

In this component, we explored the instruction-
following capabilities of pretrained VLMs and
applied supervised fine-tuning to the recent
Gemma3-4B model (Team et al., 2025) on our task.
The model is provided with an instruction that ex-
plains the task and both modalities, text and im-
age. The model is trained in the next token predic-
tion setup, and the cross-entropy loss is applied on
the model’s output tokens only that include either
“hate” or “no-hate” only.

3.3 Multi-Task

The shared task dataset had another fine-grained
classification for each sample, including nine dis-
tinct categories. We observed a strong correlation
between those categories and the original binary
classes. Hence, we decided to benefit from this
correlation as an additional supervision by employ-
ing a multi-classification objective using our dual-
encoder component with two classification heads
instead of one.

3.4 Ensemble

Finally, we combined all three components in a
maximum voting ensemble as shown in figure 1b,
where each of the three models is treated equally
and the class with the highest vote is picked as our
final classification.

4 Experimental Setup

4.1 Dataset

The dataset is collected from different social me-
dia platforms such as Facebook, Instagram, and
Pinterest. Then, the dataset went through multiple
filteration stages filtered including de-duplication,
text extraction, and memes identification. Then, the
dataset is randomly sampled from the original 6k
samples (Alam et al., 2024b) and gets annotated.

Method Multi-
Tasking macro-F1

Qwen2.5-1.5B + ResNet-18 ✗ 0.689
Qwen2.5-1.5B + ResNet-18 ✓ 0.702
Qwen2.5-0.5B + ResNet-18 ✓ 0.663
Qwen2.5-1.5B + ResNeXt-101 ✓ 0.699
MARBERTv2 + ResNet-18 ✓ 0.705
MARBERTv2 + ResNeXt-101 ✓ 0.703

Table 2: Macro-F1 results on the validation split using
the dual-encoder approach for comparison between sin-
gle and multi-tasking, as well as the size of both textual
and visual encoders and the architecture of the textual
encoder.

Table 1 indicates the distribution of the provided
dataset. It includes 2,452 samples for training, 606
samples for validation, and 500 samples for final
evaluation of the model’s performance.

4.2 Training Setup

For the dual-encoders components, we trained the
model for 150 epochs with a learning rate of 0.001
and used AdamW optimizer (Loshchilov and Hut-
ter, 2017). We used different batch sizes based
on the backbone sizes. We used a batch size of 2
for Qwen2.5-0.5B and 16 for Qwen2.5-1.5B and
MARBERT. For the Gemma3-4B, we trained the model
for 10 epochs with a learning rate of 5e-6 with a
cosine scheduler and a batch size of 2. We evalu-
ated our system during training on the validation
set using the macro-F1 score, which treats each
class equally. All training was done on a single
NVIDIA RTX-3090 GPU.

5 Results

In this section, we present a detailed overview of
our experiments. All results are reported on the
validation set using the macro-F1 score, and finally,
we report our test set results on the leaderboard.

5.1 Effect of Multi-Tasking

We conducted our first experiment to assess the
effect of the fine-grained categories on the main
classification task. We used Qwen2.5-1.5B and
ResNet-18 for this experiment. We can see in the
first two rows of table 2 that the multi-tasking im-
proved the classification performance by 0.013.

5.2 Size of the Text Encoder

We tested the effect of the text encoder size with-
out changing the image encoder. This experiment
was done using the multi-tasking setup. Results
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Method Contrastive
Embedding macro-F1

Qwen2.5-1.5B + ResNet-18 text 0.702
Qwen2.5-1.5B + ResNet-18 fused 0.666
Qwen2.5-1.5B + ResNet-18 text + fused 0.687
VLM - Gemma3-4B - 0.692

Table 3: Comparison between the dual-encoder ap-
proach and fine-tuning a pre-trained VLM approach. In
the dual-encoder approach, different embeddings were
used for the contrastive objective during training.

show that the size increase improved our system
performance by 0.039.

5.3 Size of the Image Encoder
Also, we tested the effect of increasing the im-
age encoder size. In this experiment, we com-
pared ResNet-18 and ResNeXt-101. Our results
show that the size of the image encoder didn’t have
a huge improvement on the classification perfor-
mance.

5.4 Encoder vs. Decoder Models
We tested changing the text encoder architecture
and tried using a bi-directional encoder. We
used MARBERTv2 model, and tested it with both
ResNet-18 and ResNeXt-101. Using an encoder-
only model improved the performance when using
different sizes of the image encoder. Also, increas-
ing the size of the image encoder doesn’t improve
the model’s performance.

5.5 Dual-Encoders vs. VLM
Finally, we compared fine-tuning a pre-trained vi-
sion language model with the dual-encoder setup
with the multi-tasking objective. In the dual-
encoder setup, we tested the application of the con-
trastive objective on different feature vectors: the
text embeddings, the image embeddings, and the
fused embeddings. We can see that applying the
contrastive loss on the text embedding only was the
best performing. Also, fine-tuning VLM had very
close results and was better than other dual-encoder
setups.

5.6 Test Set Results
In this section, we report the results of different sys-
tems we submitted and the final maximum voting
ensemble we made from them in table 4. We chose
the submitted models based on their experimental
results shown in tables 2 and 3. Our max-voting
ensemble achieved a macro-f1 score of 0.74 and
secured our third place in the leaderboard.

Method macro-F1
Qwen2.5-1.5B + ResNet-18 0.71
MARBERTv2 + ResNeXt-101 0.72
VLM - Gemma3-4B 0.72
Ensemble 0.74

Table 4: Macro-F1 scores on the test set submitted on
the shared task leaderboard.

Figure 2: Examples of failure cases from our system.

5.7 Qualitative and Error Analysis

Figure 2 shows cases that our system failed to cor-
rectly predict. In the first sample, our system pre-
diction was misguided by the cartoonish scene and
failed to identify its hateful stance when discussing
religious opinions. In the second image, the obvi-
ously sarcastic text over-shadowed the hateful and
offensive scene displayed in the image. In the final
image, our system identifies the sample as hateful
due to its mocking and stereotyping nature.

6 Conclusion

This paper investigated our work in subtask-3 of
the MAHED 2025 shared task for hate speech de-
tection in memes. We used contrastive learning
and multi-tasking techniques in our dual-enconder
component with late embedding fusion. We also
fine-tuned a vision language model to benefit from
its instruction-following, multi-lingual, and gener-
alization capabilities in the classification task that
covers multiple Arabic dialects and different topics.
Lastly, we combine different models we built in a
robust maximum voting ensemble that secured us
the third place in the competition leaderboard with
macro-f1 score of 0.74.
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Abstract

This work presents our system for MAHED
2025 Task 1, which focuses on classifying Ara-
bic text into Hope Speech, Hate Speech, or Not
Applicable. Our approach combines dialect-
aware contextual embeddings with pragmatic
features—including speech acts, irony detec-
tion, and emotion cues—to capture the nuanced
ways in which hope and hate are expressed
across diverse Arabic varieties. We also em-
ploy targeted data augmentation to improve ro-
bustness in underrepresented categories. Exper-
imental results show that incorporating speech
act and emotion information significantly en-
hances detection performance. This approach
allowed us to secure the fifth place in the offi-
cial ranking1 out of 60 participants, 25 of whom
appeared on the final leaderboard, with a macro-
F1 score of 0.7010. Our results are promising
and mark a first step towards speech-act-aware
hope/hate detection for Arabic social media.

1 Introduction

Online hate speech poses serious challenges glob-
ally, eroding social cohesion and enabling marginal-
ization. In the Arabic-speaking world, these
challenges are exacerbated by the rich tapestry
of dialects—such as Egyptian, Levantine, Gulf,
Maghrebi—and the frequent use of figurative lan-
guage, such as irony, that makes automated detec-
tion especially complex.

While Arabic hate speech detection has received
considerable attention—with resources such as
the ADHAR multi-dialect corpus providing richly
annotated datasets across both Modern Standard
Arabic and major regional dialects, facilitating
high-performance classification systems (Charfi
et al., 2024)—research on Arabic hope speech
detection remains limited compared to other lan-
guages. Prior research on hope speech has explored

1Team: IRIT_HOPE.

a range of perspectives, from peace-oriented dis-
course (Palakodety et al., 2019) to multilingual
detection for promoting inclusion (Chakravarthi,
2020). Other works have examined expressions of
regret and past-oriented hope (Balouchzahi et al.,
2023), and the expression of wish in products re-
views and political discussions (Goldberg et al.,
2009). Building on these prior works, the CDB
model (Da Silva et al., 2025) introduces a more
fine-grained and linguistically grounded classifi-
cation of hope through counterfactual, desire and
belief.

More recently, the EmoHopeSpeech dataset was
introduced, a bilingual resource annotated for both
emotions and hope speech in English and Ara-
bic, offering fine-grained emotional labels and lin-
guistic variety for deeper analysis (Zaghouani and
Biswas, 2025). Additionally, the emergence of
innovative computational frameworks has further
advanced the study of hope speech: for instance,
recent methods leverage emotion-aware modeling
to better distinguish hope expressions from neu-
trality or negativity, However, these approaches
remain relatively unexplored in the context of Ara-
bic hope/hate speech detection, and have largely
focused on emotions alone (Badawi, 2025).

Building on these insights, the MAHED 2025
Shared Sub-Task1 (Zaghouani et al., 2025) presents
an opportunity to jointly study hope and hate
speech within a unified framework that accounts
for Arabic linguistic variation and rich emotional
subtleties. In this work, we extend prior emotion-
based approaches by newly incorporating addi-
tional pragmatic features—most notably speech
acts and irony—alongside emotion categories (e.g.,
anger, sadness, joy, love). Our system combines
dialect-aware transformer embeddings with these
pragmatic and affective cues, supported by targeted
data augmentation to improve robustness for under-
represented dialects and classes.

Our model achieves a strong F1 score of 0.7010,
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hope hate not applicable Total
Train-set 1,892 1,301 3,697 6,890
Validation-set 409 261 806 1,476
Test-set 422 287 768 1,477

Table 1: Distribution of the MAHED dataset across
training, validation, and test splits, showing the balance
of classes for Subtask 1 (hope, hate, and not applicable).

securing fifth place in the official MAHED ranking.
In the following sections, we detail our methodol-
ogy, highlight the impact of speech-act and emo-
tion features, and discuss avenues for advancing
hope/hate detection in Arabic social media.

2 Task Overview

MAHED 2025 Task 1 focuses on classifying Ara-
bic social media posts into three categories: hope,
hate, or not applicable. The input consists of raw
Arabic tweets, encompassing both Modern Stan-
dard Arabic (MSA) and various dialects. The out-
put is a single categorical label. For instance:

1. " A 	JË A 	®£


B É 	� 	̄ 
@ ÉJ. �®�J�Ó ZA 	JK. A 	J 	JºÖß


�
AªÓ" (Together, we

can build a better future for our children.) → hope
2. "

�
@Pñ 	̄ ÑëXQ£ I. m.�'
 	àñÓQm.×ð �ñ�Ë 	áK
Qk. AêÖÏ @ É¿" (All im-

migrants are thieves and criminals who should be
expelled immediately.) → hate

3. "ÉJ
Ôg. ð �Ò ��Ó ÐñK
 ñë ÐñJ
Ë @" (Today is a sunny and
beautiful day.) → not applicable

Dataset Details. The MAHED 2025 dataset for
sub-task 1 comprises 9,843 annotated instances,
divided into training, development, and test sets as
shown in table 1.

All instances were collected from public social
media platforms, anonymized, and annotated by na-
tive speakers, ensuring a Cohen’s Kappa agreement
greater than 0.85.

3 System Description

Our system for the MAHED2025 shared task builds
upon our previous work on exploiting language
models for Arabic text classification (Moudjari
et al., 2021; Moudjari and Benamara, 2025). In
this section, we detail the preprocessing pipeline,
data augmentation strategies, and feature integra-
tion methods used in our approach.

3.1 Data Augmentation
The MAHED train dataset exhibits a notable class
imbalance (see Table 2), with both the hate and
hope categories significantly underrepresented. To

Train Dataset hope hate not applicable Total
MAHED 1,892 1,301 3,697 6,890
MAHED+subtasks2 1,892 1,604 3,697 7,193
MAHED+MLMA 1,892 2,730 3,697 8,319
MAHED+Synthetic 3,226 1,301 3,697 8,224
MAHED+MLMA+Synthetic 3,226 2,730 3,697 9,653

Table 2: Statistics of the original MAHED train dataset
and its augmented variants across the hope, hate, and
not applicable classes.

mitigate this imbalance and improve model robust-
ness, we implemented targeted data augmentation
strategies for these classes.

Hate Class Augmentation. We augmented the
hate speech data by incorporating additional anno-
tated instances from two sources:

• MAHED+subtasks2: 303 hate-labeled exam-
ples were extracted from the second sub-task
MAHED: Emotion, Offensive Language, and
Hate Detection.

• MAHED+MLMA: 1,428 samples annotated
with direct offensive and hateful sentiment
labels were retrieved from the MLMA dataset
(Ousidhoum et al., 2019).

Hope Class Augmentation. Due to the scarcity
of publicly available Arabic hope speech datasets,
we generated synthetic hope speech data using the
ChatGPT-4o language model. By providing in-
context examples from the MAHED dataset, we
generated 1,334 additional hope-labeled instances
designed to preserve domain relevance and linguis-
tic characteristics. The newly augmented dataset is
hereafter referred to as MAHED+Synthetic.
We instructed the model to generate several hun-
dred Arabic texts covering a wide range of di-
alects—including Gulf, Egyptian, Maghrebi, and
Levantine—and supplemented this with dedicated
runs producing several hundred instances for each
individual dialect to ensure balanced representa-
tion. For each run, we provided dialect-specific
examples to guide generation (Figure 1 illustrates
the prompts used).

We further combined the newly added inputs
from MAHED+MLMA and MAHED+Synthetic
to create MAHED+MLMA+Synthetic.

3.2 Enriching Datasets with Pragmatic
Features

To provide richer input representations, we auto-
matically augment the original MAHED dataset
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Figure 1: Prompt design for data generation. The prompts guided the model to produce diverse, dialect-rich hope
speech texts, ensuring both stylistic variation and balanced representation.

and its augmented variants with emotion, irony,
and speech act labels. The emotion and irony an-
notations follow the configuration described in our
previous work (Moudjari and Benamara, 2025) and
are detailed in this section, while the speech act
annotations follow Benamara et al. (2024). Ap-
pendix A provides further details on the datasets
used for each annotation type (emotion, irony, and
speech acts). Throughout the remainder of this pa-
per, we denote each dataset d (either MAHED or
one of its augmented variants) enriched with emo-
tion, irony, and speech act features as demo, dirony,
and dSAct, respectively.

Emotion Detection. We fine-tuned the AceGPT
model (Huang et al., 2024) on the Sem18MSA+Mixed
dataset (Mohammad et al., 2018), which consists
of Arabic tweets annotated for eleven emotions
(anger, disgust, fear, joy, sadness, etc.). Although
the prompting was done in MSA, the dataset itself
contains both MSA and various dialectal forms,
offering a rich and diverse training resource for
emotion classification.

Irony Detection. For irony detection, we fine-
tuned the same model on the IDATMSA+Mixed
dataset (Ghanem et al., 2019), which consists of
Arabic tweets labeled for binary irony classifica-
tion (ironic vs. non-ironic). Similar to the emotion
dataset, it includes a mix of MSA and dialectal va-
rieties, enabling robust evaluation across linguistic
registers.

Speech Acts. Following our previous work
(Benamara et al., 2024), we employed the
arabertv02-twitter model (Antoun et al., 2020),
fine-tuned on the ArSASMSA+Mixed dataset (El-
madany et al., 2018), to predict the underlying com-
municative function of each tweet. The model clas-

sifies speech acts into four categories: Subjective,
Assertive, Interrogative, and Jussive — correspond-
ing in Arabic to: ú
«ñ

	�ñÓ, ø
 YJ
»


A�K, ú
×Aê

	®�J�@, and ø
 QÓ


@,

respectively.

3.3 Model Architecture

Our final architecture builds on
arabertv02-twitter,2 a BERT-based model
pretrained on a large corpus of Arabic tweets and
adapted to the challenges of social media text,
including dialectal variation, orthographic incon-
sistency, and noisy user-generated content. We
fine-tuned this model for multi-class classification
on the MAHED dataset and its augmented variants
(see Table 2). The input text is tokenized and fed
into the base model, and class probabilities are
produced through a softmax output layer. Training
is performed using weighted cross entropy, with
early stopping based on the development set F1
score. We train the model for three epochs with
a learning rate of 2e − 5, employing the Adam
optimizer with an epsilon value of 1e − 8. The
batch size is fixed at 16 for training and 128 for
validation.

2It is worth noting that during the development phase, we
submitted several runs using alternative embedding models,
including CAMeL-Lab/bert-base-arabic-camelbert-msa,
CAMeL-Lab/bert-base-arabic-camelbert-mix,
SI2M-Lab/DarijaBERT, and SI2M-Lab/DarijaBERT-mix,
as well as Arabic-centric large language models
such as FreedomIntelligence/AceGPT-v2-8B and
FreedomIntelligence/AceGPT-v2-8B-Chat. No-
tably, the AceGPT models gave results similar to
bert-base-arabertv02-twitter. Nevertheless,
bert-base-arabertv02-twitter proved to be the most
effective model in our experiments, and thus we focus our
reported results on this model.
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3.4 Feature Integration
We explored several strategies for integrating prag-
matic cues into the model:

Token-level Augmentation: The most effec-
tive approach was to append the predicted emotion,
irony, and speech act labels directly to the raw
input text prior to tokenization. This method con-
sistently yielded the best performance across our
experiments.

Separate Embedding Channels: We also ex-
perimented with multi-channel architectures, pro-
cessing the original text and the additional cues in
parallel before merging their representations. How-
ever, this approach did not lead to performance
gains; in fact, it resulted in a ∼ 2% drop in valida-
tion accuracy compared to token-level augmenta-
tion.

Normalised Log Feature Scaling: Since the
direct insertion of categorical features into text was
the most effective, we also experimented with a
numeric encoding pipeline for these cues — first
normalising label values (z-score), then scaling to
[0, 1], and finally applying a log transformation
(normalLog). While this representation was nu-
merically well-behaved and closer to direct token
insertion in terms of accuracy, it did not outperform
the plain token-level augmentation approach.

4 Results and Discussion

For all experiments, we used the official MAHED
2025 training set and its augmented version for
model fitting and the development set for hyperpa-
rameter tuning and model selection. The results
reported in Table 3 correspond to performance on
the test set as evaluated on the Codabench platform.
The final system submitted to the shared task was
chosen based on its macro F-score during the de-
velopment phase, then retrained on the full training
data and evaluated by the organizers on the official
test set to produce the leaderboard score.

Table 3 presents the experimental results ob-
tained on the MAHED dataset and its augmented
variants. Overall, the results show that augmen-
tations incorporating emotion cues (_emo) and
speech acts (_SActs) generally improve perfor-
mance over the baseline. The best-performing
configuration, MAHED+MLMA+SyntheticSAct,
reached a macro F-score of 0.7014, outperforming
both our MAHED baseline (0.6400) and the offi-
cial BERT baseline (0.5300). In contrast, adding

Test Dataset F-score
ShardTask baseline 0.5300
Our baseline 0.6400
MAHEDemo 0.7000
MAHEDirony 0.6900
MAHEDSAct 0.7010*
MAHEDemo+irony 0.6800
MAHEDSAct+emo+irony 0.6900
MAHED+subtasks2 0.6200
MAHED+MLMA 0.6900
MAHED+Synthetic 0.6800
MAHED+MLMA+Synthetic 0.6900
MAHED+MLMA+Syntheticemo 0.7007
MAHED+MLMA+Syntheticirony 0.6934
MAHED+MLMA+SyntheticSAct 0.7014

Table 3: Macro F-scores of
bert-base-arabertv02-twitter fine-tuned on
the MAHED dataset and its augmented variants.
The score marked with * corresponds to the official
leaderboard submission, for which full precision is
available. Bolded scores indicate newly obtained runs.

Dataset hate hope not applicable
Our baseline 0.6643 0.5392 0.7081
MAHEDemo 0.703 0.6611 0.7237
MAHEDSAct 0.7038 0.669 0.7297
MAHED+MLMA+Syntheticemo 0.7078 0.6757 0.7187
MAHED+MLMA+SyntheticSAct 0.7094 0.6635 0.7314

Table 4: Class-wise macro F-scores for the baseline
and top-performing augmented configurations on the
official MAHED 2025 test set. Scores are reported for
each class (hate, hope, and not applicable) along with
the overall macro F-score.

irony features did not yield consistent gains—either
in isolation or in combination with other fea-
tures—suggesting possible redundancy or the in-
troduction of noise in certain configurations. This
outcome can be attributed to the fact that, upon
inspection, we found that over 95% of the inputs in
the file were labeled as non-ironic.

Table 4 presents class-wise macro F-scores for
the best-performing configurations, alongside our
baseline system. In addition to the overall macro F-
score, we report separate scores for the hate, hope,
and not applicable classes. This breakdown allows
us to assess whether specific augmentations, such
as emotion or speech act features, offer balanced
improvements across all categories or dispropor-
tionately benefit particular classes. Emotion fea-
tures seem especially beneficial for improving the
hope class, while speech acts give more balanced

635



improvements across classes, particularly boosting
hate and not applicable. To assess whether the ob-
served performance differences between models
are statistically meaningful, we conducted McNe-
mar’s tests on paired classification outputs. Results
revealed no significant differences among most
top configurations, except for MAHEDSAct over
MAHED+MLMA+SyntheticSAct (p = 0.0322 us-
ing McNemar’s test), see Appendix Section B for
more detailed on these tests.

These findings underscore the importance of
pragmatic and affective cues—particularly emo-
tion and speech act information—in detecting hope
and hate speech in Arabic social media.

5 Conclusion

We presented an approach to hope and hate speech
detection for Arabic social media, leveraging
dialect-aware contextual embeddings, pragmatic
features (emotion, irony and speech act), and
targeted data augmentation. Our results show
that dialect sensitivity and augmentation substan-
tially improve performance across Arabic vari-
eties, and that incorporating affective and prag-
matic cues—especially speech acts—yields further
gains. These findings underscore the importance
of modeling both linguistic diversity and commu-
nicative intent in fine-grained content moderation.
Future work will explore contrastive learning to
better disentangle hope and hate in the embedding
space, as well as cross-task transfer from sentiment
and stance datasets to enrich affective representa-
tions and enhance generalization.
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Limitations

While our system demonstrates improved perfor-
mance in detecting hope and hate speech across
Arabic dialects, several limitations remain. First,
the reliance on synthetic data—particularly for the
under-represented hope class—introduces a risk of
distributional mismatch between generated and nat-
urally occurring texts. Second, our augmentation

process covered only four major dialect families;
smaller regional varieties remain underexplored.
Third, pragmatic features such as irony and speech
acts were derived from automatically predicted la-
bels, which may propagate upstream errors into the
final classification. Finally, our experiments were
limited to the MAHED dataset, and generalizabil-
ity to other genres (e.g., spoken discourse, formal
writing) remains to be validated. Future work will
address these issues by expanding dialectal cover-
age, improving the robustness of feature extraction,
and testing cross-domain applicability.
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A Datasets

Sem18MSA+Mixed (Mohammad et al., 2018): We
use the Emotion Classification (E-C) subset from
the SemEval-2018 Task 1 “Affect in Tweets” chal-
lenge3. This dataset contains tweets collected in
2017 and manually annotated into 11 emotion cat-
egories: Anger, Anticipation, Disgust, Fear, Joy,
Love, Optimism, Pessimism, Sadness, Surprise, and
Trust.

IDATMSA+Mixed (Ghanem et al., 2019): This
dataset comprises tweets on various political issues
and events in the Middle East from 2011 to 2018.
The tweets are written in Modern Standard Ara-
bic (MSA) as well as Egyptian, Gulf, Levantine,
and Maghrebi dialects, and each tweet is manually
labeled as Ironic or Not-Ironic.

ArSASMSA+Mixed (Arabic Speech-Act and
Sentiment Corpus of Tweets): is a manually anno-
tated dataset comprising over 21,000 Arabic tweets
drawn from diverse dialects and topics. Each
tweet is labeled with one of six speech-act cate-
gories—Assertion, Expression, Recommendation,
Question, Request, and Miscellaneous—as well as
one of four sentiment labels: Positive, Negative,
Neutral, or Mixed.

B Statistical Significance Analysis

Comparison p-value
MAHEDemo vs MAHEDSAct 0.3173
MAHED+MLMA+Syntheticemo vs MAHED+MLMA+SyntheticSAct 0.1416
MAHEDemo vs MAHED+MLMA+Syntheticemo 0.3173
MAHEDSAct vs MAHED+MLMA+SyntheticSAct 0.0322

Table 5: McNemar’s test p-values comparing top-
performing configurations. Statistically significant re-
sults (p < 0.05) are in bold.

To assess whether the observed differences were
statistically significant, we conducted McNemar’s
tests between the top configurations. The com-
parisons between MAHEDemo and MAHEDSAct
(p = 0.3173), as well as between their augmented
counterparts MAHED+MLMA+Syntheticemo and

3https://huggingface.co/datasets/
SemEvalWorkshop/sem_eval_2018_task_1

637

https://doi.org/10.18653/v1/2024.naacl-long.450
https://doi.org/10.18653/v1/2024.naacl-long.450
https://huggingface.co/datasets/SemEvalWorkshop/sem_eval_2018_task_1
https://huggingface.co/datasets/SemEvalWorkshop/sem_eval_2018_task_1


MAHED+MLMA+SyntheticSAct (p = 0.1416),
did not yield significant differences, indi-
cating comparable performance. Simi-
larly, the difference between MAHEDemo
and MAHED+MLMA+Syntheticemo was
not significant (p = 0.3173). However,
the comparison between MAHEDSAct and
MAHED+MLMA+SyntheticSAct showed a sta-
tistically significant improvement (p = 0.0322),
suggesting that dataset augmentation benefits
speech act–enriched models more consistently.
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Abstract

In this paper, we present our system for Sub-
task 1 of the MAHED 2025 shared task, which
involves classifying Arabic text into three
categories: Hate, Hope, and not_applicable.
Our methodology integrates XLM-RoBERTa
embeddings with supervised ML and deep
learning techniques. After applying Arabic-
specific preprocessing, we extract contextual
embeddings and mitigate class imbalance using
SMOTE . We then train LR and LSTM classi-
fiers on the augmented features space, supple-
mented by a similarity calculation with Zero-
Shot for prediction validation. The system was
evaluated in two phases: using the initial val-
idation set, and the official updated datasets.
Results show competitive performance, partic-
ularly in boosting recall for minority classes
with a macro score of 0.60.

Keywords: Arabic text classification; Hate speech;
Hope speech; XLM-RoBERTa; SMOTE; LR;
LSTM.

1 Introduction

Hate speech and hope speech are increasingly im-
portant phenomena in online discourse, with sig-
nificant implications for social harmony, policy-
making, and content moderation (Ahmad et al.,
2024; Charfi et al., 2024). Detecting such speech
in Arabic presents unique challenges due to the
language’s morphological complexity, dialectal di-
versity, and scarcity of labeled datasets (Haidar,
2021). These challenges are further compounded
by class imbalance, where certain categories are
underrepresented, leading to biased models and
reduced generalization (Haj Ahmed et al., 2024).

Recent works on hope speech detection have
shown that transformer-based models combined
with transfer learning can achieve competitive re-
sults, but most research has focused on English

datasets, leaving Arabic-specific challenges under-
explored.

The MAHED 2025 shared task (Zaghouani et al.,
2025) provides an opportunity to address this gap
by focusing on a three-way classification task
for Arabic language texts into hate, hope, and
not_applicable categories. This task is critical in
combating online hostility while also promoting
positive and constructive discourse online. How-
ever, existing literature and models often focus
exclusively on identifying offensive content, ne-
glecting the importance of detecting encouraging
or hopeful messages (Chakravarthi et al., 2022).
Moreover, many approaches suffer from language
imbalance, inadequate handling of class imbalance,
and poor generalization across tasks involving mor-
phologically rich languages such as Arabic (An-
toun et al., 2020).

To tackle these challenges, we developed a clas-
sification pipeline specifically tailored for Arabic.
Our pipeline integrates XLM-RoBERTa embed-
dings, followed by class balancing (SMOTE), and
classification using a logistic regression model. We
also explored a comparative approach using a Bidi-
rectional LSTM neural network (Conneau et al.,
2020).

Our system was submitted to Subtask 1 of MA-
HED 2025. On the official leaderboard, our final
submission achieved a macro Score of 0.60.

2 Background

The MAHED 2025 shared task (Zaghouani et al.,
2025) focuses on the multimodal detection of hope
and hate emotions in Arabic online content. In
particular, Subtask 1, which we participated in, tar-
gets a three-way text classification problem. Given
short Arabic text segments collected from social
media platforms, the system must predict one of
three categories: Hate, Hope, or Not_Applicable.
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These texts are written in either Modern Standard
Arabic or dialectal variations commonly used on
social media. They often include informal spelling,
emojis, and punctuation typical of online discourse.

• Hate: The text contains hate speech or pro-
motes harmful or hostile rhetoric. Example:
Èñ �®K
 éJ
Ê« ¼ñj 	�Ó 	­Ê 	j�JÓ ú
æ.

	« ÉëAg. ø

�
@�	á�
ÒÊ�Ó éªJ
 ��Ë@

• Hope: The text expresses positive sentiment,
optimism, or encourages unity and peaceful
resolution. Example: 	áÓ I. Êg Éë@ @ñ� 	��KB

�
@

Q 	® 	«ð Ñ ê ÔgP@ð Ñ î 	D « h. Q
	̄ Ñ êÊ Ë @ Õº �K@ñ«X�	á�
J
�
J
Ó@ ÑêÊË @ ÑëA�KñÖÏ

• Not_Applicable: The text is neutral or un-
related to the conflict context, and does not
express hate or hope. Example: ú


	æ 	KB ð
�
@�éJ
�̄ @QË @ Z AJ
 ��B@ I. k@

Several datasets support this shared task, includ-
ing So Hateful! (Zaghouani et al., 2024), Emo-
HopeSpeech (Zaghouani and Biswas, 2025b), and
an Annotated Corpus of Arabic Tweets for Hate
Speech (Zaghouani and Biswas, 2025a). These re-
sources provide the foundation for the MAHED
dataset and highlight the novelty of our approach.

Sentiment and emotion analysis in Arabic has
gained increasing attention due to the complexity
and richness of the language. A number of shared
tasks and benchmarks have emerged to foster re-
search in this area.

Recently, the ArAIEval 2022 shared task
(Hasanain et al., 2023) addressed Arabic implicit
emotion detection using tweets. The participat-
ing systems primarily employed transformer-based
models such as AraBERT and multilingual BERT,
achieving notable performance. In a related con-
text, Daouadi et al (Daouadi et al., 2024) have
shown that applying data augmentation alongside
fine-tuning transformer models (e.g., ensemble of
pre-trained models) can effectively mitigate class
imbalance and significantly improve F1 scores in
Arabic hate speech detection tasks.

These studies demonstrate the importance of ro-
bust pre-processing, balanced datasets, and fine-
tuned multilingual models in Arabic text classifica-
tion tasks.

3 System Overview

To address the challenge of Arabic text classifica-
tion into hate, hope, and not_applicable categories,
we propose a system that combines a multilingual
transformer-based model with machine learning
techniques, data balancing, and data augmentation
strategies. Our system is composed of six steps as
follows:

3.1 Data Preprocessing and Tokenization

Arabic sentences were cleaned by removing dia-
critics, URLs, emojis, elongations, stop words, and
rare tokens. The resulting text was normalized and
tokenized at the sentence level using XLMRoberta-
Tokenizer, to meet transformer input specifications.

3.2 Data Augmentation via Back-Translation

To address class imbalance in the hope category,
back-translation was applied. Sentences were trans-
lated from Arabic to English and then back to Ara-
bic using automated translation APIs, producing
semantically equivalent yet lexically diverse sam-
ples.

3.3 Feature Representation with XLM-R

XLM-RoBERTa (XLM-R) from Hugging Face
Transformers was used as the feature extractor due
to its effectiveness in multilingual and low-resource
settings. Trained on 100 languages, including Ara-
bic, it captures both syntactic and semantic nuances,
making it suitable for Arabic social media text con-
taining dialectal variations.

3.4 Label Encoding

To prepare the text data for machine learning, the
categorical labels (hate, hope, not_applicable) were
converted into numerical format using integer label
encoding. This transformation is essential for com-
patibility with scikit-learn and deep learning frame-
works, which require numerical inputs for both
training and evaluation. The mapping preserved
the original class distribution while enabling effi-
cient optimization of loss functions (for Logistic
Regression and LSTM).
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3.5 Data Balancing with SMOTE

To mitigate the class imbalance problem, we
employed SMOTE (Synthetic Minority Over-
sampling Technique) on the training set. SMOTE
generates synthetic samples of the minority classes
(hope and not_applicable) in the embedding space,
thus helping the classifier learn more balanced de-
cision boundaries 1.

3.6 Classification Models

To perform the classification task, we trained and
evaluated a diverse set of models. For traditional
ML approaches, we employed Logistic Regres-
sion. While for neural network architectures, we
explored LSTM models

4 Experimental Setup

Table 1 presents the class distribution of the train-
ing set, which contains 6,890 Arabic sentences dis-
tributed across the three categories.

Table 1: Class distribution in the MAHED 2025 training
set

Class Samples
Not Applicable 3697
Hope 1892
Hate 1301

The dataset was released in two phases. In the
First phase, we received a training set and an initial
validation set. In the Second phase, the organizers
updated the validation set and provided an unseen
test set.

4.1 Development Phase

4.1.1 Logistic Regression Model Performance
in the Developpement Phase

The LR model demonstrated competitive perfor-
mance in the ternary classification task, achieving
a macro F1-score of 0.57 which calculated as the
average of class-wise F1-scores: 0.47, 0.51, 0.72.
Class-wise metrics reveal nuanced behavior: the
model exhibited strong performance for the major-
ity class "Not_applicable" (precision = 0.64, recall
= 0.81, F1 0̄.72), suggesting effective handling of
prevalent patterns. However, minority classes like
"Hate" (precision 0̄.58, recall 0̄.40) and "Hope"
(precision = 0.63, recall = 0.43) showed lower re-
call, indicating challenges in capturing these in-
stances (see Appendix, Table 2). The confusion

matrix further highlights this imbalance, with no-
table misclassifications of "Hate" and "Hope" sam-
ples as "Not_applicable" (see Appendix, Figure
2).

4.1.2 LSTM Model Performance in the
Developpement Phase

The LSTM model achieved a macro F1-score of
0.56, reflecting a trade-off between recall and pre-
cision across classes. It showed strong recall for
minority classes ("Hate": 0.69, "Hope": 0.70), out-
performing Logistic Regression in capturing these
instances, but with lower precision (0.47, 0.48), in-
dicating higher false positives. Conversely, the
majority class "Not_applicable" had high preci-
sion (0.71) but low recall (0.44), suggesting conser-
vative predictions and misclassifications to other
classes (see Appendix, Table 3). The confusion
matrix confirmed these trends, with notable true
positives for minority classes but elevated false
positives (see Appendix, Figure 3).

4.2 Test Phase

4.2.1 Logistic Regression Model Performance
in the Test Phase

The LR model achieved a macro F1-score of 0.57
during testing, demonstrating varied performance
across classes. For minority classes, a trade-off
between precision and recall was observed: "Hate"
showed high recall (0.68) but moderate precision
(0.45), while "Hope" had more balanced metrics
(0.53 precision, 0.65 recall). The majority class,
"Not_applicable", exhibited strong precision (0.70)
but lower recall (0.51), indicating conservative pre-
dictions(see Appendix, Table 4). The confusion
matrix revealed challenges in distinguishing emo-
tional content ("Hate"/"Hope") from neutral cases,
with frequent misclassifications favoring the major-
ity class(see Appendix, Figure 4).

4.2.2 LSTM Model Performance in the Test
Phase

The LSTM model achieved a macro F1-score of
0.56, reflecting a trade-off between recall and pre-
cision across classes. It showed strong recall for
minority classes ("Hate": 0.74, "Hope": 0.70), out-
performing Logistic Regression in capturing these
instances, but with lower precision (0.43, 0.51 re-
spectively), indicating higher false positives (47
and 78 misclassified as "Not_applicable"). Con-
versely, the majority class ("Not_applicable") had
high precision (0.73) but low recall (0.42), suggest-
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ing conservative predictions and frequent misclas-
sifications to other classes (216 as "Hate", 252 as
"Hope") (see Appendix, Table 5). The confusion
matrix confirmed these trends, with 192 true posi-
tives for "Hate" and 288 for "Hope", but elevated
false positives that reveal the model’s tendency to
default to neutral classifications (see Appendix, Fig-
ure 5).

5 Results

Our system einvolves two distinct approaches for
classifying Arabic texts into three categories: a
traditional machine learning model (Logistic Re-
gression) and a deep learning architecture (LSTM).
The comparative analysis reveals important insights
about their respective strengths and weaknesses.
For the official phase developpement, we have ob-
tained the following results:

• Macro F1-score for LR: 0.5658

• Macro F1-score for LSTM:0.5561

For the official phase test, we have obtained the
following results:

• Macro F1-score for LR: 0.5740

• Macro F1-score for LSTM: 0.5551

The logistic regression model offers more trans-
parent decision-making processes compared to the
black-box nature of LSTM (see Appendix, Fig-
ure 1).

5.1 Error Analysis

The logistic regression classification model
achieved a score of 0.6, meaning that 40% of the
data was misclassified. To improve performance,
it would be beneficial to explore other models like
few-shot or one-shot learning, which can better
understand the meaning of words and perform clas-
sification with minimal training data.
Although our system achieved competitive results
on the MAHED 2025 shared task, several system-
atic misclassifications were observed. A recurrent
error pattern was the confusion between Hate and
Hope. For instance, the sentence Õº�J¢J
k 	áªÊK
 é<Ë

�
@

�PA 	ª� 	àñ 	ªJ. ���ð éJ
 �̄Qå��Ë @ PA 	ª� éJ
J. 	ªË @ was anno-
tated as Hate, but the model predicted Hope. This
indicates that the presence of certain positive lexi-
cal cues can mislead the classifier, even when the

overall semantic orientation is hostile. Similarly,
the text ú


	̄ Z @Yª�Ë@ ZB 
ñë É�JÓ ú
Í@ Q
	¢ 	� @ AÒ 	JJ
k

�
@�

@. . . Õ×B@ was misclassified as Hope although it
was labeled as Hate, reflecting the difficulty of
capturing sarcasm and figurative expressions. An-
other frequent source of error was the misclassifi-
cation of hateful or politically charged content as
Not_Applicable. Conversely, the system sometimes
failed to recognize hopeful messages. For example,
�H. Q 	ªÖÏ @ Q
K @ 	Qm.Ì'@ é�AJ
�Ë@ é�̄Q 	®�K 	áË ÐC�B@ éªÔg. AÓ

�
@,

which conveys unity and optimism, was annotated
as Hope but predicted as Hate.

5.2 Discussion

Our system was built by combining contextual
word embeddings from XLM-RoBERTa with a lo-
gistic regression classifier. A comparison with an
LSTM classifier did not reveal a substantial im-
provement, and logistic regression proved to be
more stable and consistent across evaluation set-
tings. These results suggest that while multilingual
transformers such as XLM-RoBERTa can provide
a strong baseline for Arabic text classification.

6 Conclusion

In this work, we have described our participation
in MAHED 2025 sub-task 1. We have developed
a system which classifies sentences extracted from
Arabic social media in three categories : Hate,
Hope and not_applicable. Our system is based
on a combination of XLM-RoBERTa embeddings
with Logistic Regression and LSTM classifiers,
augmented by SMOTE for class imbalance and
back-translation. For future work, we plan to ex-
periment with Arabic-specific pretrained models
such as MARBERT, as well as few-shot and one-
shot learning methods to better capture semantic
nuances.
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A Appendix

A.1 Tables

Table 2: Classification report of development phase for
Logistic Regression

Class Precision Recall F1-score
Hate 0.58 0.40 0.47
Hope 0.63 0.43 0.51
Not_applicable 0.64 0.81 0.72

Table 3: Classification report of development phase for
LSTM

Class Precision Recall F1-score
Hate 0.47 0.69 0.56
Hope 0.48 0.70 0.57
Not_applicable 0.71 0.44 0.54

Table 4: Class-wise performance metrics

Class Precision Recall F1-score
Hate 0.45 0.68 0.54
Hope 0.53 0.65 0.58
Not_applicable 0.70 0.51 0.59

Table 5: Class-wise performance metrics

Class Precision Recall F1-score
Hate 0.43 0.74 0.54
Hope 0.51 0.70 0.59
Not_applicable 0.73 0.42 0.53

A.2 Figures
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Figure 1: Visualizing Data Balancing with SMOTE

Figure 2: Confusion Matrix of development phase for
Logistic Regression

Figure 3: Confusion Matrix of development phase for
LSTM

Figure 4: Confusion Matrix of test phase for Logistic
Regression

Figure 5: Confusion Matrix of test phase for LSTM

Figure 6: Comparative Analysis of Logistic Regression
and LSTM Models
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Abstract

Hope and hate speech detection in natural lan-
guage processing addresses the challenge of
identifying social media content within the fast-
paced environment of online platforms. Hope-
ful speech that promotes supportive and in-
clusive language plays a crucial role in coun-
teracting online toxicity, whereas hate speech
poses threats and challenges to society. This
paper focuses on text-based Arabic hate and
hope speech detection, demonstrating the sys-
tem submitted by the REGLAT team to the
MAHED shared task held in conjunction with
ArabicNLP 2025. The proposed system em-
ploys an ensemble-based model that combines
a TF-IDF + Logistic Regression classifier with
a fine-tuned AraBERTv2 model as baselines.
A majority voting approach is then applied to
aggregate the predictions. The proposed model
reported an F1 score of 0.58. These promis-
ing results are notable given the simplicity of
the system’s architecture, and they highlight
the potential of our approach for improving the
performance of this task.

1 Introduction

Hope speech detection in Natural Language
Processing (NLP) is a multifaceted research area
positioned at the intersection of computational
linguistics and artificial intelligence. With the
rapid growth of digital communication and
social media platforms, the volume and influence
of online speech, particularly language that
supports mental health and social harmony,
have increased significantly (Balouchzahi et al.,
2023). Hope speech refers to positive, supportive,
and inclusive language that can counteract

online toxicity, promote mental health, and
offer solidarity to marginalized or vulnerable
communities. Detecting and amplifying such
speech can play a vital role in mitigating conflict,
encouraging resilience during crises, and encour-
aging inclusive digital spaces (Sharma et al., 2025).

The core objective of hope and hate speech
detection is to automatically identify, classify
and respond to emotionally charged or socially
impactful content within fast-moving streams
of user-generated data (Ashraf et al., 2022).
Given the scale and speed of online discourse,
manual annotation is no longer practical. As a
result, modern systems rely on NLP and learning
techniques ranging from traditional keywords
and lexicon-based methods to more approaches
involving machine learning, deep learning, and
transformers such as BERT and GPT (Ahmad
et al., 2024; ArunaDevi and Bharathi, 2024). These
models enable a deeper contextual understanding
of language, which is essential for accurately
distinguishing between supportive and harmful
expressions in diverse linguistic and cultural
settings.

The main contribution of this work lies in the de-
velopment and evaluation of a hybrid approach for
Arabic hate speech detection submitted to MAHED
shared task (Zaghouani et al., 2025). Arabic is one
of the six official languages of the United Nations
and has more than 400 million native speakers. Ara-
bic NLP poses unique challenges compared to other
languages, due to the complexity of the morpholog-
ical structure, rich inflection, and diverse dialects (
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such as Egyptian, Algerian, Tunisian, Gulf Region,
Levant, Iraqi etc.) (AbuElAtta et al., 2023; Sobhy
et al., 2025). The proposed work combines tradi-
tional machine learning techniques with modern
transformer-based models. We demonstrate that
despite the growing dominance of deep learning,
lightweight models such TF-IDF with Logistic Re-
gression remain highly competitive, particularly
when complemented by contextual embeddings
from models such as AraBERTv2. Furthermore,
we propose an ensemble strategy using majority
voting to find predictions from both approaches,
which yielded the best overall performance in our
experiments.

2 Background

Machine learning has played a pivotal role in
the advancement of NLP, allowing computers to
learn patterns from textual data for tasks such as
sentiment analysis, machine translation and text
classification (Kamal et al., 2024). Traditional
machine learning models, such as Naive Bayes and
Support Vector Machines, are heavily based on
hand-crafted features and vector representations
such as TF-IDF and word embeddings (Khairy
et al., 2024).

The rise of deep learning models such as Re-
current Neural Networks (RNNs), Long Short-
Term Memory (LSTM), and Convolutional Neu-
ral Networks (CNNs) brought significant improve-
ments by automatically learning features from large
amount of data. Doghmash and Saad (2025) pre-
sented a dual approach to combating hate speech in
Arabic social media content. The first part focuses
on hate speech detection, where the authors eval-
uated several deep learning models (RNN, CNN,
and CNN-RNN) trained from scratch using AraVec
word embeddings (Soliman et al., 2017). Among
these, CNN outperforms all other models reported
a macro F1-score and accuracy of 0.51 and 0.80
respectively. In contrast, transformer-based mod-
els (e.g., QARiB (Abdelali et al., 2021), MAR-
BERT (Abdul-Mageed et al., 2021), AraBERT (An-
toun et al., 2020)) significantly outperformed tra-
ditional deep learning models. Among these, the
QARiB model combined with AraBERT prepro-
cessing achieved the best results, obtaining a 0.92,
0.95 macro F1-score and accuracy respectively.

More recently, transformer-based models such
as BERT, MARBERT, and RoBERTa (Liu et al.,

2019) have revolutionized NLP by capturing
complex contextual relationships through self-
attention mechanisms. Abdelsamie et al. (2026)
proposed a multi-task learning (MTL) approach
using transformer models (AraBERT, MARBERT,
MARBERTv2) to improve hate speech detection
across Arabic dialects. Each dialect is treated as a
separate task to address semantic ambiguity caused
by dialectal differences. The AraBERT model
learns both shared and dialect-specific features,
achieving higher F1-scores than traditional single-
task models (up to 0.98 for Egyptian) and 0.85
for MTL combined dialects. It also generalizes
well to unseen datasets, proving more effective
in detecting hate speech across diverse Arabic
dialects.

Daouadi et al. (2024) conducted extensive ex-
periments to optimize hyperparameters and eval-
uate the effectiveness of transformer-based mod-
els for Arabic hate speech detection. Initially,
three pre-trained models were fine-tuned using
varying parameters. The authors implemented en-
semble learning using majority and average vot-
ing. These methods further improved performance,
with majority voting reaching a weighted F1-score
of 0.86. Furthermore, applying data augmenta-
tion using external datasets and semi-supervised
learning boosted the F1-score to 0.86 and outper-
formed prior methods across multiple hate speech
categories. These models achieve state-of-the-art
performance on a wide range of NLP tasks and are
now widely adopted in both academic and indus-
trial applications.

3 System Overview

In this study, We experimented with a range of
machine learning and deep learning models for
text classification. Traditional approaches such
as Support Vector Machines (SVMs) have proven
effective in handling high-dimensional data, mak-
ing them well-suited for text classification tasks.
Similarly, Logistic Regression (LR) offers a sim-
ple yet interpretable linear model that estimates
class membership probabilities. Moving beyond
these classical methods, we explored Deep Neu-
ral Networks (DNNs), which employ multi-layer
architectures with ReLU activation functions and
dropout regularization to mitigate overfitting. Fi-
nally, we fine-tuned transformer-based models, in-
cluding AraBERTv2 (Antoun et al., 2020) and
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CAMeL-BERT (Inoue et al., 2021), both pretrained
on large-scale Arabic corpora and shown to be
highly effective for Arabic NLP.

3.1 Dataset

The MAHED shared task focusing on the detection
of hate speech, hope speech, and emotional ex-
pression in Arabic content through three sub-tasks,
our team participated in subtask 1 (Zaghouani and
Biswas, 2025; Zaghouani et al., 2024). The pro-
posed dataset focuses on classifying Text-based
Hate and Hope Speech in Arabic dialects and Mod-
ern Standard Arabic (MSA). It consists of manually
annotated data collected from social media posts.
Each text instance in the dataset is labeled for Hate,
Hope and Not Applicable. A general statistics of
the class distribution over the dataset is shown in
Figure 1. Data were split into training (70%), vali-
dation (15%), and testing (15%) sets by the shared
task organizers, ensuring consistency and fairness
across all participating systems.

Training
6890

Validation
1476

Test
1477

Figure 1: Dataset statistics across training, validation,
and test splits.

4 Experimental Setup

In this section, experimental setup, model configu-
rations, dataset preprocessing, evaluation metrics
and a detailed analysis of the results have been pre-
sented. We have conducted a series of experiments
to assess the effectiveness of various pre-trained
transformer models and machine learning baselines
for Arabic hate speech detection. The experiments
are organized into preprocessing, future extraction,
hyper-parameter tuning, and evaluation of individ-
ual and ensemble models.

4.1 Dataset Preprocessing
A text cleaning strategy using regular expression,
implemented using the Regex, and NLTK packages.
Text cleaning was applied according to the follow-
ing steps:-

• Remove URLs, mentions, whitespace, punc-
tuation, symbols and emojis

• Normalize Arabic letters

• Remove English letters and numbers

4.2 Model Implementation
This study employed a variety of learning
techniques to compare their performance on
the same task and determine the impact of each
technique on the classification results. These
models were selected on the basis of their diversity
in mathematical structure and complexity. These
models include traditional machine learning, deep
learning, and transformer-based models.

For machine learning technique, SVM and LR
have been implemented using TF-IDF as a text
representation technique over unigrams, bigrams
and trigrams. SVM is particularly effective for han-
dling high-dimensional textual data, while LR was
used to compute the class probabilities, offering a
simple yet robust baseline for text classification
tasks. To further enhance the performance of these
ML models, a fine-tuning technique was applied
using a range of transformer-based models, includ-
ing AraBERTv2 and CAMeLBERT-finetuned-2e-5.

Deep learning model was applied using multiple
hidden layers, incorporating the ReLU activation
function and dropout regularization to reduce
overfitting. In addition, an ensemble model
combining Bi-LSTM and CNN architectures was
examined to capture both sequential and local
features of the text. This ensemble was tested
with two types of word embeddings: a specifically
designed for Arabic AraVec (dim = 300) and a
widely used general-purpose embedding GloVe
(dim = 200). These configurations aimed to
improve the model’s ability to understand semantic
and syntactic nuances in Arabic text.

Transformer-based models were applied
using pre-trained Arabic language models
AraBERTv2 and CAMelBERT. Both models were
fine-tuned for sequence classification with
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three output labels, utilizing the Hugging-
Face AutoTokenizer for tokenization and
AutoModelForSequenceClassification for
model initialization. The training was performed
on GPU with parameter alignment through
the ignore mismatched sizes option to ensure
compatibility. These configurations leveraged
the rich contextual representations of Arabic text
captured by the transformer models, aiming to
enhance classification performance across the
Hate, Hope and Not Applicable categories.

Among all the models evaluated, the hybrid
technique combining TF-IDF-based Logistic
Regression (LR) and transformer-based AraBERT
classification, followed by majority voting,
achieved the best overall performance. This
approach effectively leverages the strengths of both
traditional machine learning and deep contextual
representations. The LR-based model captured
key lexical features, especially effective in high-
dimensional sparse text data, while the AraBERT
classifier provided deep semantic understanding
through pre-trained language representations. To
ensure optimal performance, we experimented
with different hyperparameter configurations for
both models and selected the best-performing
settings based on validation results Table 1. In
addition, we evaluated several Arabic transformer
models and identified AraBERT as the most
effective.

Component Hyperparameters

TF-IDF Vectorizer

max_df = 0.9

min_df = 5

max_features = 50000

ngram_range = (1,3)

sublinear_tf = True

norm = ’l2’

lowercase = True

stop_words = None

Logistic Regression (LR)
class_weight = balanced

max_iter = 1000

AraBERT (Transformer)

num_labels = 3

Optimizer: AdamW

Learning rate = 2e−5

Batch size = 16

Epochs = 3

Tokenizer: AraBERT pretrained vocabulary

Table 1: Hyperparameters used in the ensemble model

By applying majority voting between the
optimized LR and AraBERT predictions, the
system achieved superior classification accuracy
and robustness. This ensemble not only mitigated
the weaknesses of individual models, but also
significantly outperformed standalone deep
learning and transformer models, making it the
most effective method in our study.

The model was experimented with various
configurations to determine the optimal settings
for our models. Given that our datasets are
imbalanced, as the shared task organizers selected
macro F1-Score metric to ensure weight balancing
for each label. The final parameters and evaluation
metrics are summarized in Table 1.

All experiments were conducted on Google Co-
lab using an NVIDIA T4 GPU with 16 GB of
VRAM and 25 GB of system RAM. This setup
ensured efficient training and fine-tuning of the
transformer-based models while maintaining repro-
ducibility of results.

5 Results and Discussions

This section reports and analyzes the results of
our experiments across various configurations and
model architectures. We evaluated the perfor-
mance of traditional machine learning, deep learn-
ing, and transformer-based models for Arabic hate
speech detection. The results include the impact
of hyperparameter tuning and the effectiveness
of ensemble learning technique. Our results are
very competitive compared to the other teams
as shown in Table 2. Among traditional mod-
els, SVM and LR achieved macro F1-scores of
0.42 and 0.40 respectively. The CNN-BiLSTM
deep learning model underperformed, with a low
macro F1-score of 0.31, likely due to limited
data or lack of contextual embeddings. How-
ever, incorporating transformer-based embeddings
significantly improved the results. When com-
bined with AraBERTv2 and CAMeLBERT, both SVM
and LR models showed noticeable performance
gains. In particular, LR-AraBERTv2 achieved the
highest macro F1-score of 0.58, followed by
LR-CAMeLBERT at 0.54. These results highlight
the importance of contextualized transformer em-
beddings, especially when paired with lightweight
classifiers such as LR, to enhance classification
performance in Arabic hate speech detection.
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Model Word Representation Macro F1-score

SVM TF-IDF 0.42

LR TF-IDF 0.40

CAMeLBERT Transformer (AutoTokenizer) 0.36

AraBERTv2 Transformer (AutoTokenizer) 0.46

CNN-BiLSTM GloVe (200) 0.12

CNN-BiLSTM AraVec (300) 0.31

SVM-AraBERTv2 TF-IDF + Transformer 0.47

SVM-CAMeLBERT TF-IDF + Transformer 0.44

LR-AraBERTv2 TF-IDF + Transformer 0.58

LR-CAMeLBERT TF-IDF + Transformer 0.54

Table 2: System performance results on MAHED
dataset

6 Limitations

The performance of the models in this study
was constrained by several key factors. First,
the dataset was imbalanced, which limited the
ability of the models to generalize effectively
across all classes. Second, the lack of large-scale,
domain-specific pre-trained language models for
Arabic hate speech reduced the effectiveness of
transformer-based approaches, as they struggled
to capture the nuanced and context-dependent
expressions of hate across dialects. Finally,
existing resources for Arabic NLP remain limited
compared to high-resource languages, which
restricts the range of architectures and embeddings
that can be effectively applied.

Future work could address these limitations by
developing larger and more balanced datasets, cre-
ating domain-specific pre-trained models tailored
for hate speech detection, and incorporating dialect-
aware modeling. Data augmentation, transfer learn-
ing, and multi-task learning also represent promis-
ing directions for overcoming data scarcity and
improving robustness.
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Abstract
Emotional contagion, the phenomenon where
emotions spread between individuals, shows
the importance of detecting both hope and hate
speech in digital communications. This emo-
tional transmission can amplify positive senti-
ments that foster community resilience or prop-
agate harmful content that divides societies.
While hate speech detection in Arabic has been
extensively studied, hope speech detection has
received comparatively limited attention, cre-
ating an imbalance in the understanding of
emotional influence online. To address this
gap, MAHED 2025 sub-task 1 introduced the
task of detecting both hope and hate speech
using a substantial dataset designed for devel-
oping robust classification models. This pa-
per presents an ensemble approach combining
three Transformer-based encoder models with
soft voting and weighted loss functions to ad-
dress class imbalance issues. Those models,
ArabicDeBERTa-DA, BERT-DA, and MAR-
BERTV2, have been continually pre-trained on
different domains of Arabic, showing the ben-
efits of continual pre-training both on down-
stream performance and computational effi-
ciency. The proposed ensemble model achieved
the highest performance in the competition
with an F1 macro score of 72.3% using an en-
semble voting of the best-performing variants.

1 Introduction

Arabic NLP researchers have extensively investi-
gated the problem of hate speech in Arabic, par-
ticularly through the construction of datasets and
the development of detection systems. In contrast,
hope speech has received considerably less atten-
tion, with only a few datasets available and, con-
sequently, fewer detection systems. sub-task 1 of
MAHED 2025 (Zaghouani et al., 2025) seeks to
address this gap by introducing a dataset that incor-
porates both hate speech and hope speech.

The dataset encompasses two varieties of Ara-
bic: Modern Standard Arabic (MSA) and Dialectal

Arabic (DA). This diversity introduces significant
challenges in developing robust detection systems,
as the linguistic variation between these forms of
Arabic is substantial. Most pre-trained Arabic lan-
guage models have been trained almost exclusively
on a single domain, which limits their ability to gen-
eralize effectively to this dataset. Given the high
computational cost of pre-training from scratch, it
is often impractical to train a new model entirely
for an unseen domain. A practical alternative is
continual training, whereby a pre-trained model is
further adapted to a new domain through additional
pre-training, not only gaining the ability to general-
ize to a new domain but also retaining performance
on the original domain, if done correctly.

Only a limited number of Arabic language mod-
els have undergone continual pre-training, with
notable exceptions such as MARBERTV2(Abdul-
Mageed et al., 2021) and AraBERTv0.2 Twit-
ter(Antoun et al., 2020). MARBERTV2 is an en-
hanced version of the original MARBERT model,
specifically designed to better capture the multi-
lingual and multi-dialectal nature of Arabic text.
It was continually pre-trained on diverse Arabic
corpora thereby improving its robustness for cross-
dialectal tasks. Similarly, AraBERTv0.2 Twitter
was continually pre-trained on Twitter data (specif-
ically, approximately 60 million tweets), which
enables it to better handle the DA semantic and
syntactic language patterns prevalent on social me-
dia. This specialized pre-training makes it particu-
larly well-suited for social media text classification
tasks, such as the detection of hate and hope speech
in informal Arabic discourse.

Ensemble learning in deep learning represents a
powerful paradigm that combines predictions from
multiple models to achieve superior performance
compared to any individual model. This approach
leverages the principle of diversity among mod-
els, where different models, architectures, train-
ing procedures, or data representations can capture
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complementary/independent patterns and their cor-
responding errors in the data(Goodfellow et al.,
2016). If models are diverse enough, which might
translate to their errors being independent, en-
semble models will perform significantly better
than their members/submodels (Goodfellow et al.,
2016). In the context of transformer-based models
like BERT variants, ensemble methods can com-
bine models that have been trained on different
domains, use different tokenization algorithms or
sizes, or have been fine-tuned with a range of hyper-
parameters. The ensemble typically aggregates pre-
dictions through techniques such as majority voting
for classification tasks, weighted averaging of prob-
ability distributions, or more sophisticated methods
like stacking, where a meta-learner is trained to
optimally combine the base models’ outputs.

The main contribution of this paper is the in-
troduction of two continually pre-trained models,
BERT-DA and ArabicDeBERTa-DA, which have
been continually pre-trained on DA data. These
models, when combined with MARBERTV2 in an
ensemble of pre-trained language models, achieved
state-of-the-art performance in sub-task 1 of MA-
HED 2025. The remainder of this paper is orga-
nized as follows: Section 2 reviews related work,
Section 3 describes an overview of the proposed
system and methodology, Section 4 presents the ex-
perimental setup, Section 5 presents the results, and
Section 6 provides a discussion and conclusion.

2 Background

(Ke et al., 2023) have shown that continual pre-
training of a general-domain language model to
a specific domain increases the performance of
the further pre-trained model on the target domain.
They have proposed the continual domain-adaptive
pre-training, continual DAP for short, methodol-
ogy to allow for general-domain language models
to continue training on domain specific data, en-
suring both learning from the new domain, while
avoiding catastrophic forgetting of the model’s gen-
eral knowledge.

(Lee et al., 2023) have shown, at least within the
domain of computer vision, that continual learning
doesn’t always bring an increase in performance,
especially in strong pre-trained models like CLIP. It
was also shown that the algorithm used to training
doesn’t always have the performance boost when
used on continued training phase.

(Ibrahim et al., 2024) have noticed that while

adapting language models to new domain knowl-
edge is more data efficient, the process of continued
pre-training is challenging. As a sub-optimal con-
tinued pre-training can lead to either catastrophic
forgetting of previously trained general knowledge
of the model or poor performance on the new do-
main. Hence, different learning rate schedulers
have been proposed to allow the model to learn
without forgetting its past knowledge. The authors
have shown one of the most efficient and simplest
way to continually pre-train is to use a simple learn-
ing rate scheduler.

Continual pre-training remains a relatively un-
derutilized strategy in Arabic NLP. While mod-
els such as AraBERT (Antoun et al., 2020) and
MARBERTV2 (Abdul-Mageed et al., 2021) exem-
plify its application, explicit discussion of contin-
ual pre-training is scarce in the broader literature.
AraBERT was extended via continual pre-training
to adapt to domain-specific nuances such as so-
cial media, as in the AraBERTv02-Twitter variant,
while MARBERTV2 further refines the original
MARBERT by additional pre-training on MSA cor-
pus with longer sequence lengths.

(Sarkar et al., 2022) have also investigated pa-
rameter and data efficient continual pre-training ap-
proaches for the Arabic language, showing that fur-
ther adaptation of pre-trained multilingual models
(mBERT) with DA can have robust performance.
Beyond these instances, continual pre-training in
Arabic remains largely unexplored.

(Anezi, 2022) addressed the need for an intelli-
gent system that can detect hate speech in Arabic,
as the author highlighted its importance for national
security and combating issues like cyberbullying.
The author introduced a new dataset of 4,203 Ara-
bic social media comments, which are classified
into seven distinct categories: content against reli-
gion, racist content, content against gender equality,
violent content, insulting/bullying content, normal
positive comments, and normal negative comments.
This dataset is notably larger and more granular
in its classification than most existing Arabic hate
speech datasets. The core of the study is a pro-
posed deep recurrent neural network (RNN) model,
called DRNN-2. The model’s performance was
evaluated on three different classification tasks: bi-
nary (positive vs. negative), three-class (positive,
negative, and hate speech), and the full seven-class
classification. The DRNN-2 model achieved a train-
ing accuracy of 99.73% for binary classification,
95.38% for the three-class task, and 84.14% for the
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seven-class task. These results are reported to be
higher than those of similar methods in the current
literature, demonstrating the model’s effectiveness
in tackling the complexities of Arabic text and pro-
viding a potentially valuable tool for monitoring
online content.

(Almaliki et al., 2023) were among the first re-
searchers to pre-train language models and fine-
tune them for the task of hate speech detec-
tion. They introduced Arabic BERT-Mini Model
(ABMM), a smaller BERT variant with a reduced
hidden dimension compared to BERT. After pre-
training, it was fine-tuned on a newly released
dataset of around 9,500 labeled hate speech docu-
ments. Despite its modest size estimated to be ap-
proximately 11 million parameters, it outperformed
much larger models such as AraBERT.

(Gandhi et al., 2024) also delved into the impor-
tance of detecting hate speech, while discussing
literature about the topic since 2020. Alongside the
comprehensive literature review, they introduced a
methodology to tackle multi-label and multi-class
hate speech in Indonesian. With the LSTM model
attaining the highest accuracy compared to Logistic
Regression models.

(Chakravarthi, 2022) proposed a different alter-
native to suppression of hate speech, namely the
promotion and assistance of hope speech. In their
study, the authors proposed the first multilingual
hope speech datasets collected from YouTube along
with a novel deep learning architecture to train on
this dataset and detect hope speech. The dataset
included English, Tamil, and Malayalam text. The
multi-annotator annotation process yielded con-
sistent results across annotators, proved by the
fairly high inter-annotator agreement of 0.6+ score
on Krippendorff’s Alpha metric and reaching as
high as a near-perfect agreement of 0.85 on label-
ing Malayalam text. After dataset collection and
annotation, they tested it on a suite of machine
learning algorithms, ranging from traditional SVM
and Logistic Regression models, among others, to
their proposed deep learning-based system with a
CNN model with T5-sentence embedding and In-
dicBERT. The proposed model outperformed all
other models with an F1 score of 0.75, 0.62, and
0.67 on English, Tamil, and Malayalam, respec-
tively.

Although many hate speech datasets exist, in-
cluding in Arabic, few researchers have developed
a corpus with hope speech, let alone one with Ara-
bic text in it. (Zaghouani and Biswas, 2025b) were

among few Arabic NLP researchers to have col-
lected text and created a hope speech dataset. It
is a bilingual Arabic-English dataset with around
38,000 data points, collected from social media
sites. Not only does it annotate text on emotion
labels, but also for intensity, complexity, and cause,
categorizing hope speech with both binary and
more granular labels. Its reliability can be at-
tributed to its high inter-rater agreement, with a
very good - near perfect - agreement, ranging from
0.75 - 0.85 Fleiss’ Kappa.

(ArunaDevi and Bharathi, 2024) went beyond
just simply creating hope speech datasets, acknowl-
edging the importance of automated and intelligent
systems in detection of hope speech, especially in
social media platforms due to the "snowball effect"
of speech in social media in general Where, accord-
ing to a Facebook (now Meta) study, emotional
states found in comments can directly influence the
emotional state of users reading those comments
(Kramer et al., 2014). Hence, having systems that
can detect hope speech can be of immense useful-
ness to foster a positive environment where certain
types of speech are promoted, further influencing
a positive emotional state of their users. The au-
thors proposed different intelligent systems to de-
tect hope speech, ranging from traditional machine
models like Multinomial Naive Bayes classifier and
Support Vector Machines to the usage of BERT. Un-
surprisingly, the BERT model outperformed tradi-
tional machine learning models while Multinomial
Naive Bayes had a respectable performance.

3 System Overview

The MAHED sub-task 1 (Zaghouani et al., 2024;
Zaghouani and Biswas, 2025b,a) dataset comprises
MSA and DA instances, split into training, val-
idation, and test sets by the task’s organizers.
Each text is accompanied by a target label, with
possible labels being either "hate", "hope", or
"not_applicable". The dataset exhibited somewhat
of a class imbalance, with the training dataset hav-
ing 3,697 text instances labeled as "not_applicable",
1,892 text instances labeled as "hope", and only
1,301 text instances labeled as "hate". Text prepro-
cessing involved the removal of English, emoticons,
symbols, and Arabic diacritics. The clean text was
then tokenized with a sequence length of 128 to-
kens, with sentences shorter or longer being padded
or truncated, respectively. The tokenized data was
stored for later usage.
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Pre-trained language models ArabicDeBERTa-
DA, BERT-DA, and MARBERTV2 were used.
ArabicDeBERTa and BERT-MSA were first pre-
trained on a large corpus of approximately 2.2 bil-
lion MSA tokens, using Masked Language Model-
ing (MLM) task, with cross entropy loss as the loss
function. The pre-training’s aim is for the model
to gain general language understanding, which can
be leveraged later on downstream tasks, increas-
ing performance. After pre-training exclusively
on MSA data, the models have gained knowl-
edge about the syntax, morphology, and seman-
tics of MSA. To facilitate understanding in DA
tasks, ArabicDeBERTa-DA and BERT-DA were
continually pre-trained on DA text obtained from
(Al-Fetyani et al., 2023). While the previous mod-
els were first trained on MSA data then DA data,
MARBERTV2 was first trained on a large corpus
of DA data, then continually pre-trained on MSA
data. MARBERTV2 first pre-training phase in-
cluded around 15.6 billion tokens. Its continual
pre-training phase with MARBERTV2 also used
MLM as the task type, with cross entropy loss as
the loss function.

A custom ensemble model was designed to inte-
grate three transformer-based models: BERT-DA,
ArabicDeBERTa-DA, and MARBERTV2, each
equipped with a classification head consisting of
a linear layer, Tanh activation, and a final linear
layer mapping to three output classes. The ensem-
ble combined their outputs through soft voting by
averaging logits to produce the final prediction.

4 Experimental Setup

The model was trained for 5 epochs with a batch
size of 16, using the AdamW optimizer with a
learning rate of 7× 10−6. Cross-entropy loss with
class weights was applied to address class imbal-
ance. Validation was performed periodically during
training.

Performance was evaluated using macro-
averaged precision, recall, F1-score, and accuracy
on the validation and test sets, demonstrating the
effectiveness of the ensemble in multi-class classi-
fication.

5 Results

The ensemble model performed at its best within
¾ of the first epoch, achieving a 72.2% F1 score.
To achieve the best performance across different
ensemble models, different seeds for initialization

were set for each ensemble model and then the best
performing ensemble models runs were hard voted
for submission, achieving 72.3%. The Macro F1
score achieved by this model gained it its first place
position in the competition. Each model achieved
around 67% F1 score on test dataset, hence their
combined performance boosted the score by 5-6%.
The addition of a weighted loss function with 1.02
for hate, 0.98 for hope and 1 for not applicable
allowed for higher weighting of error for misclassi-
fication of the minority class. The different weight
initialization allowed for better diversity of heads.
The proposed system has close to 0.5 billion pa-
rameters. Appendix A includes a confusion matrix
of models performance on test set along with error
analysis of 3 text instances.

6 Conclusion

This work highlights the importance of detecting
both hope and hate speech in Arabic digital com-
munication, as emotional contagion can either fos-
ter resilience and harmony or amplify societal di-
vides. To address this challenge, this paper pro-
posed an ensemble model integrating three contin-
ually pre-trained transformer-based encoder mod-
els: BERT-DA, ArabicDeBERTa-DA, and MAR-
BERTV2. By leveraging continual pre-training on
dialectal Arabic and combining models through
soft voting with weighted loss functions, the pro-
posed system achieved state-of-the-art results in
sub-task 1 of MAHED 2025, with the the ensem-
ble of best-performing models obtained a macro
F1-score of 72.3%.

The results demonstrate the effectiveness of en-
semble learning in handling linguistic diversity
across Arabic varieties along with the performance
boost and computational efficiency of continually
pre-trained models. Beyond competition perfor-
mance, the contribution of this work lies in intro-
ducing dialect-aware pre-trained models that can be
extended to a wide range of downstream tasks. Fu-
ture research can build on this by exploring larger-
scale pre-training and continual pre-training effi-
cacy and transferability between different Arabic
dialects along with their downstream performance
on tasks such as MAHED 2025 sub-task 1.

Limitations

A key limitation of this study is its proposed
model’s large size, having a nearly half a billion
parameter model makes it unfeasible to run in
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most edge devices and CPU environments with-
out significant delay in response. This makes
the model impractical to run in production and
resource-constrained environments.
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Table 1 shows examples of text along with their
actual and predicted labels, as Error Analysis. Ex-
amples of hate speech and overtly vulgar sentiment
were avoided. The examples call attention to the
ambiguous nature of the text, highlighting the chal-
lenging nature of the task along with annotating it.
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Figure 1: Confusion Matrix displaying performance of best predicted results vs actual labels by class/

Ground Truth Predicted Translated Text Arabic Type
Hope Not applicable Oppression Oh God, I seek refuge in You from the

oppression of men
DA

Not applicable Hope It is not just words of love and flirtation, but rather
it is caring and taking care of the one you love and
staying with him for a lifetime without changing your
feelings towards him, friendship.

MSA

Not applicable Hope I put my heart between your hands and swore not to
care.

MSA

Table 1: Examples of ground truth vs predictions with Arabic text. The Arabic text was translated using Google
Translate.
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Abstract

The dynamic interplay of hope and hate speech
on Arabic social media presents a critical chal-
lenge for content moderation and digital dis-
course analysis. This paper presents our sys-
tems for the MAHED 2025 shared task on
Multimodal Detection of Hope and Hate Emo-
tions in Arabic Content, addressing the two
text-based subtasks. Our approach centers on a
systematic, empirical comparison of Arabic-
native versus large-scale multilingual Trans-
former encoders to determine the optimal pre-
training strategy for this nuanced domain. Com-
prehensive evaluations demonstrate the clear
superiority of Arabic-native models, with our
ARBERTv2-based system achieving the high-
est performance. We secured 11th place in Sub-
task 1 with a macro F1-score of 0.682 and 5th

place in Subtask 2 with a macro F1-score of
0.514. Error analysis reveals persistent chal-
lenges in interpreting implicit language and
overcoming severe class imbalance, particu-
larly in distinguishing targeted hate from gen-
eral offensiveness. This work contributes a ro-
bust benchmark for this comparison and un-
derscores the importance of language-specific
pre-training for nuanced affective computing in
Arabic.

1 Introduction

The proliferation of social media has transformed
the Arabic-speaking world into a complex infor-
mation ecosystem where constructive and destruc-
tive narratives compete. This duality is starkly
represented by the concurrent rise of hate speech
and hope speech, making their automatic detection
paramount for content moderation and understand-
ing online discourse (Mubarak et al., 2017). While
early Arabic NLP efforts focused on general sen-
timent, the community has shifted towards more
nuanced, high-impact tasks like hate speech detec-
tion.

*Authors contributed equally to this work.

The advent of large pre-trained Transformers
(Devlin et al., 2019) has revolutionized this field,
becoming the de facto standard. However, a funda-
mental architectural question remains for Arabic:
do exclusively pre-trained Arabic-native models of-
fer a performance advantage over large-scale mul-
tilingual models like XLM-RoBERTa (Conneau
et al., 2020)? The latter may offer broader linguis-
tic generalization, while the former might better
capture language-specific nuances, dialects, and
cultural contexts.

The MAHED 2025 shared task at ArabicNLP
2025 (Zaghouani et al., 2025) provides an ideal
testbed to investigate this question. Its focus on
the duality of hope and hate speech, alongside a
complex emotion classification challenge, pushes
beyond simple toxicity detection. In this paper, we
present our systems for Subtask 1 and 2, systemati-
cally evaluating a diverse suite of Arabic-native and
multilingual Transformer models to empirically an-
swer this question. Our implementation is made
publicly available to ensure reproducibility.1

The main contributions of our work:

• We present a systematic empirical compar-
ison of seven distinct Transformer architec-
tures, investigating the performance trade-offs
between Arabic-native and multilingual en-
coders for nuanced affective computing.

• We developed robust systems for both sub-
tasks, including a cascaded pipeline for Sub-
task 2 that explicitly models the hierarchi-
cal dependencies between offensive and hate
speech detection, allowing for specialized
classifier optimization.

• We establish a strong benchmark demonstrat-
ing the clear superiority of Arabic-native
models, with our ARBERTv2-based system

1https://github.com/borhanitrash/
ArabicNLP-EMNLP
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achieving competitive performance. Our de-
tailed error analysis further illuminates the
specific challenges posed by semantic ambi-
guity and class imbalance in this domain.

2 Related Works

The automatic detection of nuanced affective states,
including hate and hope speech, is a critical area
of research in Arabic Natural Language Process-
ing (NLP). Our work builds upon recent advance-
ments in deep learning for sentiment and emotion
analysis, particularly those leveraging Transformer-
based architectures.

Recent efforts in Arabic affective computing
highlight the success of pre-trained models. For
instance, Cherrat et al. (2024) demonstrated the effi-
cacy of AraBERT-based models for sentiment anal-
ysis across Standard Arabic and Moroccan dialect,
showcasing their ability to capture complex linguis-
tic features. Similarly, for Arabic tweet classifica-
tion, Al-Onazi et al. (2023) developed a framework
combining Deep Belief Networks with advanced
hyperparameter optimization, while Elfaik et al.
(2023) engineered a feature-fusion model using hy-
brid RNN-CNN architectures to tackle multi-label
affect analysis. These studies affirm the power of
deep learning for Arabic text but often focus on
general sentiment or a broad spectrum of emotions.

This trend of applying sophisticated deep learn-
ing models extends to other languages and related
tasks. Researchers have employed CNNs for de-
tecting violent incitement in Urdu (Khan et al.,
2024), hierarchical attention networks for depres-
sion detection from English tweets (Khafaga et al.,
2023), and various hybrid architectures for emotion
classification in Afan Oromo (Abdella and Sori,
2024). Furthermore, the field is advancing towards
more complex methodologies, such as the tri-modal
(text, audio, visual) graph neural networks for emo-
tion recognition proposed by Al-Saadawi and Das
(2024).

While these studies establish the effectiveness
of Transformer models, a critical gap remains in
the direct, empirical comparison of Arabic-native
versus multilingual pre-training strategies for the
complex, concurrent detection of hope, hate, and
fine-grained emotions. Our work addresses this
gap by leveraging the MAHED 2025 shared task as
a rigorous testbed to provide a robust benchmark
and a detailed analysis of model performance on
this challenging domain.

Split Instances Unique Words Total Words
Train 6,890 62,744 147,285
Validation 1,476 17,553 30,731
Test 1,477 17,891 31,492

Table 1: Dataset statistics for Subtask 1.

Split Instances Unique Words Total Words
Train 5,960 45,015 115,279
Validation 1,277 13,726 25,346
Test 1,278 13,339 24,596

Table 2: Dataset statistics for Subtask 2.

3 Task and Dataset Description

We participated in the two text-based tracks of the
MAHED 2025 shared task (Zaghouani et al., 2025),
which provides a standardized framework to eval-
uate systems on challenging affective computing
tasks in Arabic. We formalize the subtasks as fol-
lows:

Subtask 1: Hate and Hope Speech Classifica-
tion. A three-way classification problem where the
input is an Arabic text and the output is a single
label from the set {hate, hope, not_applicable}.
For example, a text translating to “All immigrants
are thieves and criminals, they must be deported
immediately” is labeled as hate.

Subtask 2: Emotion, Offensive, and Hate De-
tection. A multi-output classification problem with
a hierarchical dependency. Given an Arabic text,
the system must predict: (1) an emotion from a set
of 12 labels (e.g., anger, joy); (2) a binary label
indicating if the text is offensive; and (3) if of-
fensive, a binary label indicating if it constitutes
targeted hate. For instance, a text translating to
“You donkey, why did you forget the keys?” is la-
beled as {anger, yes, not_hate}, distinguishing
general offense from targeted hate.

The task organizers provided two annotated
datasets (Zaghouani et al., 2024; Biswas and Za-
ghouani, 2025a,b) comprising text from online
sources in both Modern Standard and dialectal Ara-
bic. Dataset statistics are detailed in Table 1 and
Table 2. The primary evaluation metric for both
subtasks is the macro-averaged F1-score. For a
more comprehensive analysis, we also report accu-
racy, and macro-averaged precision and recall.

4 Methodology

Our approach involves fine-tuning both multi-
lingual and Arabic-native Transformer models
(Vaswani et al., 2017), which excel at capturing
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the contextual cues necessary for nuanced hate and
hope speech detection. We employed distinct strate-
gies for the Hate and Hope Speech Classification
(Figure 1) and the Emotion, Offensive, and Hate
Detection (Figure 2) subtasks.

Figure 1: Schematic process for Hate and Hope Speech
Classification.

Figure 2: Schematic process for Emotion, Offensive,
and Hate Detection.

4.1 Data Preprocessing
We implemented a unified text normalization
pipeline for both subtasks prior to model-specific
tokenization. The pipeline systematically removed
URLs, user mentions, and hashtags, then normal-
ized whitespace and filtered out non-Arabic charac-
ters. The cleaned text was subsequently processed
using the AutoTokenizer corresponding to each
pre-trained model. All input sequences were either
padded or truncated to a fixed maximum length,
generating input_ids and attention_mask ten-
sors for model consumption.

4.2 Transformer-Based Models
Our selection of encoders was designed to evaluate
a diverse range of pre-training objectives and lin-
guistic specializations. Our model suite included
Arabic-native encoders such as MARBERTV2
(UBC-NLP/MARBERTv2)2 (Abdul-Mageed et al.,
2021), ARBERTV2 (UBC-NLP/ARBERTv2)3

(Abdul-Mageed et al., 2021), AraBERTV2 large
2https://huggingface.co/UBC-NLP/MARBERTv2
3https://huggingface.co/UBC-NLP/ARBERTv2

(aubmindlab/bert-large-arabertv2)4 (Antoun et al.,
2020), and QARiB (ahmedabdelali/bert-base-
qarib)5 (Abdelali et al., 2021). These were comple-
mented by powerful multilingual models, including
XLM-RoBERTa large (FacebookAI/xlm-roberta-
large)6 (Conneau et al., 2020), mDeBERTaV3
base (microsoft/mdeberta-v3-base)7 (He et al.,
2021), and the computationally efficient Distil-
BERT base (distilbert/distilbert-base-multilingual-
cased)8 (Sanh et al., 2019). Each model was
adapted for the downstream tasks as described be-
low.

For Subtask 1, framed as a standard sequence
classification problem, we fine-tuned each Trans-
former encoder by appending a sequence classifi-
cation head. This head comprises a linear layer
that takes the final hidden-state representation of
the [CLS] token as input to produce logits for the
three target classes. The entire fine-tuning process
was managed using the Hugging Face Trainer API
(Wolf et al., 2020), which optimized a standard
Cross-Entropy Loss function. To prevent overfit-
ting, we integrated an EarlyStoppingCallback,
configured to monitor the macro F1-score on the of-
ficial validation set and halt training after 3 epochs
without improvement. The model checkpoint yield-
ing the highest validation F1-score was preserved
for the final test set evaluation.

In contrast, for Subtask 2, we addressed the
task’s explicit hierarchical dependency by design-
ing a cascaded pipeline of three independently op-
timized classifiers. This modular design avoids the
potential negative interference of joint multi-task
optimization and allows each model to specialize.
The pipeline consists of: an Emotion Classifier (12-
class), an Offensive Classifier (binary), and a Hate
Classifier (binary). The Hate classifier was trained
exclusively on the subset of training data labeled
as Offensive. During inference, test instances are
processed in parallel by the Emotion and Offensive
models; instances classified as Offensive are then
routed to the Hate classifier for the final predic-
tion. Each model in this pipeline was fine-tuned

4https://huggingface.co/aubmindlab/
bert-large-arabertv2

5https://huggingface.co/ahmedabdelali/
bert-base-qarib

6https://huggingface.co/FacebookAI/
xlm-roberta-large

7https://huggingface.co/microsoft/
mdeberta-v3-base

8https://huggingface.co/distilbert/
distilbert-base-multilingual-cased
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using a custom PyTorch loop, employing a class-
weighted Cross-Entropy Loss to counteract severe
label imbalance. Model selection for each of the
three components was based on the highest macro
F1-score achieved on the validation dataset.

All experiments were conducted with the
AdamW optimizer (Loshchilov and Hutter, 2017)
and utilized mixed-precision (FP16) training for
computational efficiency. The specific hyperparam-
eters for all models are detailed in Table 3.

Model LR WD BS EP
Subtask 1: Hate and Hope Classification

MARBERTV2 2e-5 0.01 32 10
ARBERTV2 2e-5 0.01 32 10
AraBERTV2 large 1e-5 0.01 32 7
QARiB 2e-5 0.01 32 10
XLM-RoBERTa large 2e-5 0.01 16 10
mDeBERTaV3 base 2e-5 0.01 16 10
DistilBERT base 2e-5 0.01 16 10

Subtask 2: Emotion, Offensive, Hate
MARBERTV2 2e-5 - 16 8
ARBERTV2 2e-5 - 16 8
AraBERTV2 2e-5 - 16 8
QARiB 2e-5 - 16 8
XLM-RoBERTa large 2e-5 - 16 8
mDeBERTaV3 base 2e-5 - 16 8
DistilBERT base 2e-5 - 16 8

Table 3: Hyperparameters used for fine-tuning. LR:
Learning Rate, WD: Weight Decay, BS: Per-device
Batch Size, EP: Max Epochs.

5 Result Analysis

This section presents the performance of our
Transformer-based models on the MAHED 2025
shared task. All models were evaluated using the
official metrics: accuracy, and macro-averaged pre-
cision, recall, and F1-score, with the macro F1-
score serving as the primary metric for comparison.
The comprehensive results for both subtasks are
detailed in Table 4.

In Subtask 1, the Arabic-native models demon-
strated a clear advantage over their multilingual
counterparts. ARBERTv2 emerged as the top-
performing system, achieving the highest macro
F1-score of 0.6824 and the best accuracy of 0.6879.
This strong performance is likely attributable to
its pre-training on a large corpus of Arabic social
media and web data, which aligns closely with the
task’s domain. Notably, MARBERTv2 secured
the highest precision at 0.6824, indicating its pro-
ficiency in correctly identifying positive instances,
albeit with a slightly lower overall F1-score. Other
Arabic-specific models like QARiB and the mul-
tilingual mDeBERTaV3 base also delivered com-

Model Accuracy Precision Recall F1 Score
Subtask 1: Hate and Hope Speech Classification

MARBERTv2 0.6804 0.6824 0.6562 0.6665
ARBERTv2 0.6879 0.6794 0.6939 0.6824
AraBERTv2 large 0.6269 0.6547 0.5714 0.5802
QARiB 0.6770 0.6664 0.6831 0.6738
XLM-RoBERTa large 0.6567 0.6514 0.6652 0.6554
mDeBERTaV3 base 0.6798 0.6716 0.6794 0.6729
DistilBERT base 0.6330 0.6258 0.6124 0.6110

Subtask 2: Emotion, Offensive, and Hate Detection
MARBERTv2 0.7272 0.5040 0.5163 0.5078
ARBERTv2 0.7089 0.5316 0.5257 0.5142
AraBERTv2 large 0.6922 0.4765 0.4575 0.4593
QARiB 0.7415 0.5259 0.4943 0.4915
XLM-RoBERTa large 0.6896 0.4609 0.4564 0.4506
mDeBERTaV3 base 0.6907 0.4498 0.4619 0.4504
DistilBERT base 0.6468 0.3761 0.3801 0.3749

Table 4: Performance comparison of all evaluated mod-
els for Subtask 1 and Subtask 2. The best score in each
column is highlighted in bold.

petitive results, underscoring the effectiveness of
modern Transformer architectures. Conversely,
AraBERTv2 large and DistilBERT base lagged be-
hind, suggesting that either model scale or pre-
training objective was less suited to this specific
classification challenge.

For the more complex, multi-output Subtask 2,
ARBERTv2 once again demonstrated superior per-
formance, leading across all macro-F1 (0.5142),
precision (0.5316), and recall (0.5257) metrics. Its
consistent success across both subtasks highlights
the model’s robustness and its ability to generalize
well to related but distinct classification problems.
MARBERTv2 followed closely with an F1-score
of 0.5078. An interesting observation is the per-
formance of QARiB, which achieved the highest
accuracy (0.7415) but a lower F1-score of 0.4915.
This discrepancy suggests the model may have ex-
celled at predicting the majority classes (e.g., neu-
tral emotion, no offensive) but struggled with the
less frequent, yet critical, minority classes, reinforc-
ing the importance of the macro F1-score as the
primary evaluation metric in imbalanced scenarios.

Overall, our results indicate a distinct perfor-
mance advantage for Arabic-native models pre-
trained on diverse, user-generated content for both
hate/hope speech detection and nuanced emotion
classification. The performance gap between the
two subtasks, with F1-scores being considerably
lower in Subtask 2, underscores the inherent diffi-
culty of the multi-output, hierarchically-dependent
classification challenge. A detailed error analysis
is provided in Appendix A.
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6 Conclusion

In this paper, we presented our systems for the MA-
HED 2025 shared task, systematically evaluating
Arabic-native and multilingual Transformer models
on hope, hate, and emotion detection. Our findings
consistently demonstrate the superiority of Arabic-
native encoders, with our ARBERTv2-based sys-
tem emerging as the top-performing model across
both subtasks, achieving a macro F1-score of 0.682
(11th place) in Subtask 1 and 0.514 (5th place) in
the more complex Subtask 2. The success of our
cascaded classification pipeline in Subtask 2 under-
scores the value of modular models for hierarchical
problems, though error analysis revealed persistent
challenges in distinguishing nuanced emotional
states and overcoming severe class imbalance, par-
ticularly for identifying targeted hate speech. Ulti-
mately, this work contributes a robust benchmark
comparing Arabic-native and multilingual models,
affirming that domain- and language-specific pre-
training remains crucial for tackling the subtleties
of affective computing in Arabic social media.

Limitations

Our study is constrained by several limitations. Se-
vere class imbalance, particularly in Subtask 2, sig-
nificantly impacted our model’s ability to detect the
minority hate class, resulting in a conservative bias
and a high number of false negatives. Our models
also struggled with semantic nuance, often misclas-
sifying subtle expressions of hope as neutral and
confusing strong negative sentiment with targeted
hate speech. The dataset, while valuable, may not
fully capture the evolving nature of coded language
across diverse Arabic dialects. Finally, our work
was confined to the text modality, leaving the rich
contextual information from the full multimodal
task unexplored.
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A Error Analysis

We conducted a quantitative and qualitative error
analysis of our best model, ARBERTv2, on the test
set to understand its performance and limitations.

A.1 Quantitative Analysis
For Subtask 1, Figure 3 reveals key perfor-
mance patterns. The model performs well on the
not_applicable (540 true positives), hope (251),
and hate (225) classes. However, it struggles
with nuance, misclassifying 165 hope instances
as not_applicable. Additionally, it misclassifies
127 not_applicable cases as hate, suggesting an
oversensitivity to strong negative language.

Figure 3: Confusion matrix of the proposed model (AR-
BERTv2) for Hate and Hope Speech Classification.

For Subtask 2, Figure 4 shows the challenges
at each stage of our cascaded pipeline. In Emo-
tion Detection, the model excels at high-frequency
classes like anger (218) and joy (98) but strug-
gles with fine-grained distinctions, often confusing
optimism with neutral (25) or joy (17). In Of-
fensive Detection, the model shows a conservative
bias, missing 139 offensive instances (false neg-
atives) while correctly identifying 301. Finally,
severe data imbalance in the Hate Detection stage
heavily impacts performance; the model misclas-
sifies 41 hate cases as not_hate while correctly
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identifying only 28, showing its difficulty in distin-
guishing targeted hate from general offensiveness.

Figure 4: Confusion matrices of the proposed model
(ARBERTv2) for Emotion, Offensive, and Hate Detec-
tion.

A.2 Qualitative Analysis

Qualitative analysis of misclassifications reveals
further limitations of ARBERTv2. For Subtask

1 (Figure 5), a politically charged text implying
hostility was misclassified as not_applicable in-
stead of hate, highlighting the model’s difficulty
with implicit threats that lack explicit slurs. For
Subtask 2 (Figure 6), a text containing an expletive
was mislabeled as neutral instead of anger. The
formal phrasing seemingly overrode the informal
expletive, highlighting challenges with mixed-tone
sentences.

These observations confirm the system’s primary
weaknesses: handling nuanced language, distin-
guishing related emotions, and overcoming data
imbalance, especially for targeted hate speech de-
tection.

Figure 5: Few examples of predictions produced by the
proposed ARBERTv2 model on Subtask 1.

Figure 6: Few examples of predictions produced by the
proposed ARBERTv2 model on Subtask 2.

664



Proceedings of The Third Arabic Natural Language Processing Conference, pages 665–669
November 8-9, 2025 ©2025 Association for Computational Linguistics

Baoflowin502 at MAHED Shared Task: Text-based Hate and Hope Speech
Classification

Nguyen Minh Bao
University of Information Technology

23520123@gm.uit.edu.vn

Dang Van Thin
University of Information Technology

Abstract

This paper presents Arabic hate and hope
speech classification using pre-trained lan-
guage models and advanced data augmenta-
tion techniques. We evaluate multiple Ara-
bic BERT variants on 6,889 Arabic text sam-
ples labeled as hate speech, hope speech, or
not-applicable. Data augmentation through
back-translation and LLM-based data gener-
ation using few-shot prompting significantly
improves performance across all models. We
establish strong baselines using ensemble bag-
ging XGBoost alongside traditional machine
learning approaches. CAMeLBERT with data
augmentation achieves the best Macro-F1 of
0.6868, demonstrating the effectiveness of
Arabic-specific models combined with modern
augmentation strategies for hate speech detec-
tion speech detection.

1 Introduction

The proliferation of social media has transformed
communication while significantly accelerating the
spread of hate speech and harmful content. In this
competition (Bao, 2025) (Zaghouani et al., 2025)
(Zaghouani et al., 2024), we tackle the Arabic
hate–hope–neutral speech classification problem —
a challenging NLP task due to Arabic’s morpho-
logical richness, diverse dialects, and right-to-left
script. These linguistic complexities, along with
subtle cultural and contextual cues, make model
development more difficult than for high-resource
languages like English (Wahdan et al., 2024; Elna-
gar et al., 2020).

We conduct a systematic evaluation of three
leading Arabic-specific BERT variants —
AraBERTv2 (Antoun et al.), CAMeLBERT (Inoue
et al., 2021), and MARBERT (Abdul-Mageed
et al., 2021) — chosen for their complementary
strengths in handling formal, morphologically
complex, and multi-dialectal Arabic text. To
mitigate data scarcity, we adopt a dual augmen-

tation strategy: multi-hop back-translation to
generate natural paraphrases and LLM-based
few-shot prompting (Kim et al., 2024) to produce
contextually coherent synthetic examples. For
comparison, we also implement strong traditional
baselines using ensemble bagging XGBoost on
contextual embeddings.

Our contributions include: a systematic bench-
mark of high-performing Arabic BERT variants
for hate–hope speech classification, a tailored aug-
mentation pipeline for Arabic text that combines
cross-lingual and generative approaches, and the
development of a hard voting ensemble method
that leverages the complementary abilities of mul-
tiple models, achieving consistent performance im-
provements and advancing Arabic NLP for content
moderation applications.

2 Related Work

2.1 Text Preprocessing for Arabic Social
Media

Effective preprocessing involves converting emo-
jis to textual representations using comprehensive
emoji-to-text dictionaries to preserve emotional
context essential for hate and hope sentiment anal-
ysis. Text normalization through tokenization en-
sures consistent input representation, handling vari-
ations in spelling, punctuation, and formatting com-
monly found in social media posts. Additional pre-
processing includes URL removal, mention clean-
ing, and Arabic text standardization to optimize
model performance while preserving linguistically
relevant information for classification tasks.

2.2 Data Augmentation Strategies

Data augmentation addresses low-resource scenar-
ios through two sophisticated techniques. Back-
translation leverages machine translation sys-
tems to generate paraphrases by translating text
through intermediate languages and back to the
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source language, creating diverse training exam-
ples while preserving semantic meaning. Large lan-
guage model-based data generation using few-shot
prompting provides contextually appropriate train-
ing examples by leveraging in-context learning ca-
pabilities with representative sample prompts. The
combination of back-translation and LLM-based
few-shot generation provides complementary ben-
efits, addressing different aspects of data scarcity
while ensuring high-quality augmented datasets.

2.3 Arabic Language Model Selection

Through comprehensive literature survey, we se-
lected three prominent Arabic-specific BERT vari-
ants demonstrating superior performance in Arabic
NLP tasks: AraBERTv2 (comprehensive Arabic
BERT pre-trained on large-scale Arabic corpora),
CAMeLBERT (advanced model with optimized ar-
chitecture for Arabic morphological features), and
MARBERT (multi-dialectal Arabic specialist for
diverse text processing). This focused selection
ensures robust evaluation of the most established
Arabic language models for hate and hope speech
classification tasks.

3 Methodology

3.1 Dataset Description

Our experimental dataset comprises 6,889 Arabic
text samples systematically collected from diverse
social media platforms including Twitter, Face-
book, and regional Arabic forums. The dataset en-
compasses three distinct classification categories:
Hate Speech samples (2,296 instances, 33.3%)
containing explicit or implicit expressions of hatred
and discrimination targeting individuals or groups;
Hope Speech samples (2,301 instances, 33.4%)
promoting positive values, social inclusion, and
constructive dialogue; and Not-applicable sam-
ples (2,292 instances, 33.3%) representing neutral
content that does not clearly fall into either cate-
gory. The balanced class distribution provides a
solid methodological foundation for robust model
training, while geographic diversity across different
Arab-speaking regions ensures linguistic represen-
tativeness.

3.2 Data Preprocessing Pipeline

We implement a comprehensive preprocessing
pipeline specifically tailored for Arabic social me-
dia text. The process includes emoji replacement
using extensive multilingual dictionaries contain-

ing over 3,000 mappings to preserve emotional con-
text crucial for sentiment classification; URL de-
tection and removal via robust regular expressions
while preserving adjacent contextual information;
Arabic text normalization addressing script-specific
challenges including variant letter forms and punc-
tuation standardization; tokenization using NLTK’s
Arabic-specific algorithms enhanced with custom
rules for morphological patterns; and systematic
mention removal to reduce person-specific bias
while maintaining relevant surrounding context.

3.3 Data Augmentation Strategies

We employ three complementary augmentation
strategies with a 50% augmentation ratio to balance
dataset expansion with computational efficiency:

3.3.1 Multi-hop Back-Translation
Multi-step translation process using Google Trans-
late API following Arabic → English → French →
Arabic sequence. This approach introduces natural
linguistic variations through different language ty-
pologies while preserving semantic content. Qual-
ity control includes automatic filtering of transla-
tion artifacts and semantic similarity verification
using multilingual embeddings.

3.3.2 LLM-based Few-Shot Data Generation
Leveraging GPT-4 with carefully designed prompt-
ing strategies providing 3-5 representative exam-
ples per class. The methodology includes explicit
instructions for maintaining dialectal authenticity,
appropriate emotional intensity, and realistic social
media communication patterns. Quality assurance
involves automated toxicity filtering and semantic
coherence verification.

3.3.3 Controlled Lexical Substitution
Systematic replacement using Arabic WordNet and
curated synonym dictionaries, selectively targeting
non-key terms to introduce lexical diversity without
altering core semantic meaning. The process incor-
porates POS tagging and NER to preserve proper
nouns and category-specific terminology essential
for classification accuracy.

4 Model Architecture and Experimental
Setup

4.1 Pre-trained Language Models

We evaluate three prominent Arabic-specific BERT
variants based on comprehensive literature survey:
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AraBERTv2 (comprehensive Arabic BERT pre-
trained on large-scale Arabic corpora), CAMeL-
BERT (advanced model with optimized architec-
ture for Arabic morphological features), and MAR-
BERT (multi-dialectal Arabic specialist for diverse
text processing). This focused selection ensures
robust evaluation of the most established Arabic
language models for hate and hope speech classifi-
cation tasks.

4.2 Hard Voting Ensemble Method

To leverage the complementary strengths of in-
dividual Arabic BERT models, we implement a
hard voting ensemble combining predictions from
AraBERTv2, CAMeLBERT, and MARBERT. In
this ensemble approach, each model independently
processes the input text and generates predictions
for the three classes (Hate, Hope, Not-applicable).
The final prediction is determined through majority
voting, where the class receiving the most votes
across the three models is selected as the ensem-
ble output. In cases of tie situations, we imple-
ment a confidence-based tie-breaking mechanism
using the model with the highest prediction prob-
ability. This hard voting strategy capitalizes on
the diverse strengths of each Arabic BERT vari-
ant: AraBERTv2’s comprehensive Arabic cover-
age, CAMeLBERT’s morphological optimization,
and MARBERT’s dialectal expertise, potentially
improving overall classification robustness and ac-
curacy.

4.3 Traditional Machine Learning Baselines

For a comprehensive performance comparison, we
establish strong traditional machine learning base-
lines. Specifically, we implement an ensemble bag-
ging XGBoost classifier that operates on vector
embeddings extracted from the AraBERTv2 model.
By combining the representational power of contex-
tualized AraBERTv2 embeddings with XGBoost’s
gradient boosting capabilities, this setup effectively
captures both semantic and lexical patterns present
in the Arabic text. The use of bagging further en-
hances robustness by reducing variance and mitigat-
ing overfitting, thus providing a solid benchmark
against which transformer-based approaches can
be evaluated. In addition to the gradient boosting
baseline, we also evaluate a Multi-Layer Percep-
tron (MLP) with a single hidden layer.

4.4 Experimental Configuration
Our setup ensures rigorous evaluation through
Stratified K-Fold cross-validation to maintain bal-
anced class representation, the Optuna frame-
work (Akiba et al., 2019) for Bayesian hyperpa-
rameter optimization, and macro-averaged Macro-
F1 as the primary metric for balanced evalua-
tion across classes. All transformer models are
trained with GPU acceleration on an NVIDIA Tesla
P100, ensuring efficient experimentation and repro-
ducible results.

5 Results and Analysis

5.1 Baseline Performance
Baseline experiments without augmentation reveal
important insights into Arabic hate and hope speech
classification challenges. Ensemble bagging XG-
Boost achieved 0.626 Macro-F1, demonstrating
traditional gradient boosting effectiveness with
AraBERTv2 embeddings. MLP reached 0.616,
showing marginal improvement despite neural ar-
chitecture. Among individual Arabic BERT mod-
els, AraBERTv2 obtained 0.623, CAMeLBERT
achieved 0.647, and MARBERT reached 0.639,
representing comparable baseline performance
with modest gains over traditional approaches.

These results reveal task characteristics: close
performance between traditional ML and trans-
formers suggests three-class classification chal-
lenges stem from inherent difficulties distinguish-
ing between categories rather than sophisticated
feature representations. Moderate Macro-F1s in-
dicate significant challenges likely due to subtle
distinctions and cultural context requirements.

Model Macro-F1
Ensemble Bagging XGBoost 0.626
MLP 0.616
AraBERTv2 0.623
CAMeLBERT 0.647
MARBERT 0.639

Table 1: Baseline results without data augmentation (5-
fold CV validation); Metric: Macro-F1

5.2 Impact of Data Augmentation and
Ensemble Methods

Data augmentation yields substantial improve-
ments across all models. AraBERTv2 improved to
0.665, MARBERT achieved 0.652, and CAMeL-
BERT reached 0.679. The hard voting ensemble
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combining all three Arabic BERT variants achieved
0.689, representing the highest performance and
demonstrating the effectiveness of leveraging com-
plementary model strengths.

Consistent improvements validate our ensemble
augmentation strategy combining back-translation
and LLM-based few-shot generation. This ap-
proach addresses different data scarcity aspects
while maintaining semantic properties essential for
classification tasks.

Model Macro-F1
Individual BERT Models

AraBERTv2 0.665
MARBERT 0.652
CAMeLBERT 0.679

Ensemble Methods
Hard Voting Ensemble 0.689
Ensemble Bagging XGBoost 0.656

Table 2: Results with data augmentation and ensemble
methods (5-fold CV validation); Metric: Macro-F1

5.3 Model Analysis

The hard voting ensemble’s superior performance
(Macro-F1=0.689) demonstrates the value of com-
bining diverse Arabic BERT variants, leveraging
AraBERTv2’s comprehensive coverage, CAMeL-
BERT’s morphological optimization, and MAR-
BERT’s dialectal expertise. Among individ-
ual models, CAMeLBERT’s strong performance
(Macro-F1=0.679) stems from its optimized archi-
tecture for Arabic linguistic features.

Traditional ML competitive performance rela-
tive to individual transformers suggests primary
challenges relate to dataset size and inherent task
complexity rather than model capacity limitations,
with practical implications for resource-limited sce-
narios.

6 Discussion

6.1 Task Complexity and Ensemble Benefits

The moderate Macro-F1 achieved by individual
models (0.652–0.679) and the ensemble approach
(0.687) underscore the inherent difficulty of three-
class hate/hope speech classification, driven by sub-
jective label boundaries, cultural context dependen-
cies, and subtle linguistic cues. The superior results
of the hard voting ensemble indicate that integrat-
ing diverse Arabic BERT variants can effectively

leverage their complementary strengths to better
handle these challenges.

6.2 Practical Implications
Ensemble data augmentation combining back-
translation and LLM-based few-shot generation
should be standard practice for Arabic datasets.
Hard voting ensemble superiority reinforces the
value of leveraging multiple Arabic-specific mod-
els over single architectures, with practical benefits
for content moderation systems.

6.3 Future Directions
Promising directions include larger datasets with
broader dialectal coverage, soft voting and
weighted ensemble methods, multi-task learning
approaches, and explainability research for ensem-
ble decision-making processes.

7 Conclusion

We present an effective Arabic hate and hope
speech classification approach using a hard vot-
ing ensemble of AraBERTv2, CAMeLBERT, and
MARBERT with multi-hop back-translation and
LLM-based few-shot augmentation, achieving an
Macro-F1 of 0.689 in this competition. This work
systematically evaluates leading Arabic models
and validates that combining complementary archi-
tectures with advanced augmentation significantly
boosts performance, providing a solid foundation
for practical, culturally aware Arabic content mod-
eration systems.
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Abstract

We participated in Subtask 1 of the MAHED
Shared Task 2025, which focuses on detecting
hope, hate, and not applicable labels in Arabic
content. In this work, we tested a multiclass
classifier for hope, hate, and not applicable la-
bel detection from a dataset provided by orga-
nizers as Subtask 1. We approach the task by
two methods. The first one is a fine-tuned Ara-
bic model, ArabicBERT, on a multiclass clas-
sification task. The second one is a two-step
stacked architecture. Both of them include a
dedicated pipeline for specific Arabic prepro-
cessing with different techniques. Official re-
sults are 0.38 F1 score on the validation set
and 0.47 on the test set with a single multiclass
classifier. Post-submission improvements re-
sulted in macro-F1 scores of 0.60(validation)
and 0.63(test) for the single classifier, and
0.59(validation) and 0.91(test) for the stacked
classifier.

1 Introduction

The MAHED Shared Task 2025 (Subtask 1)(Za-
ghouani et al., 2025) focuses on detecting hope
and hate emotions in Arabic text from social me-
dia content and tweets about Middle East con-
flict. The dataset(Zaghouani and Biswas, 2025a)
is annotated with the labels "hope" "hate" and
"not applicable". Training on this task by partic-
ipants contributes to new methodologies in Ara-
bic NLP, especially in the classification of hate
and hope speech and multimodal content detection
for understanding online discourse and promoting
positive engagement in social media communities.
During the task we discover many challenges, in-
cluding overfitting, underfitting, class imbalance,
and label inconsistencies in a few cases. Our code
is available at GitHub1.

1https://github.com/Ebad-urRehman/MAHED_2025_
subtask1_hate_and_hope/

We discovered that proper Arabic preprocessing
significantly improves performance. Undersam-
pling and oversampling led to overfitting, and ad-
justed weights resulted in a performance increase
in both validation and test sets. The difference be-
tween a single multiclass classifier and a stacked
classifier is minimal, however removing emojis in
stack classifier configuration resulted in a notable
improvement, reaching 0.91 F1 score on the offi-
cial test set.

The preprocessing pipeline consists of some
general language preprocessing techniques like
URL and hashtag removal, as well as some spe-
cific Arabic language preprocessing with different
techniques like handling class imbalance, diacriti-
zation, and Arabic letter normalization.

We focused on two model architectures.
The first one is a fine-tuned multiclass Ara-
bicBERT(Safaya et al., 2020)2 for predicting hate,
hope, or not applicable labels in the text. The sec-
ond model architecture consists of two binary fine-
tuned ’ArabicBERT’ classifiers for detecting hate
and hope speech, and this layer is stacked with a
final logistic regression meta-classifier.

On the official leaderboard, our system ranked
25th out of 25 teams, achieving a macro-F1 of 0.48
on the test set. Post-submission results increase F1
scores to around 0.60 in the validation set, and 0.91
in the test set in different configurations.

2 Background

2.1 Task setup

The shared task required participants to classify
Arabic text into one of the classes:

• hope hopeful messages

• hate hateful or abusive messages

2https://huggingface.co/asafaya/
bert-base-arabic
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• not_applicable neutral content

Example

଩ْ଍َِ݁ܳٷَِ؇ ሌَᇿ֣إ ؇َዛُ዇ِْܹ༶َݿَٺ มِฆّ֟ اܳ ِ ۰ َ؇ݬّ֟ ੅ْاࠍ وحِ ّ֡ ීෂ؇ِ࿓ أُިرِ ይِዧލّ֟ َ݄ۜݴٌِّ َ ݁ٺُ ؇َ࿖ ᕚأ •

→ hope

اଫଐ༡৖৑ام ૭૜ٺۜگިن ৖৑ أَࡤࡲ •

→ hate

َ؇س ༥ྡྷފب ೑಻ا ؇݁ ۏٴ؇ن ل؇ ݁ިزه દઑ ࡺ࢘ࢦࡗࡲ ال۬ ّگިل ොູص •
؜ٷ۹ ᄴፁዧڣ؇ع اܳފٷ؞؇ل ݆݁

→ not_applicable

2.2 Dataset
We used the provided MAHED 2025 dataset (Za-
ghouani and Biswas, 2025a), consisting of Arabic
social media posts gathered considering the lin-
guistic diversity and dialect variations. The dataset
is labeled for hope, hate, and not applicable cate-
gories, and it contains train, test, and validation
splits D. The split used for the test set during train-
ing is 0.2. We use only training data for training
of all models.

The full dataset size is 9843, with 6890 for train-
ing, 1476 for validation, and 1477 for testing.

Datasets for Subtask 2 are (Zaghouani and
Biswas, 2025b) and (Zaghouani et al., 2024)
which are not used in this work.

2.3 Track
We participated in Subtask 1 of the MAHED
Shared Task 2025.

2.4 Related Works
Recent studies on Arabic hate speech, including
(Althobaiti, 2022) provide a comparison between
the BERT-based approach and two machine learn-
ing techniques, demonstrating that BERT-based
models are more effective. They also experi-
mented with incorporating sentiment information
along with text into the BERT model and convert-
ing emojis to textual descriptions. While senti-
ment features slightly improved performance, the
effect of emoji descriptions varied depending on
class distribution.

(Almaliki et al., 2023) is a benchmark model for
Arabic offensive language detection, which is clas-
sified into three classes: normal, abuse, and hate
speech. Another study, (Aldjanabi et al., 2021) Us-
ing a Cross-Corpora Multi-Task Learning Model,’
trained a model on a wide variety of datasets

in multiple tasks; their model was fine-tuned on
the MarBERT (Abdul-Mageed et al., 2021) Ara-
bic model. Similarly, ’BERT-CNN for Offensive
Speech Identification in Social Media’ combines
CNN with BERT and demonstrates the effective-
ness of the ArabicBERT model when combined
with CNN.

A multi-task learning strategy was more re-
cently experimented with by (Abdelsamie et al.,
2026) to address dialectal variations in Arabic hate
speech detection. Their model captures the dis-
tinctive features of each of the five Arabic di-
alects (Egyptian, Levant, Saudi, Algerian, and
Gulf) while leveraging shared knowledge across
them. With remarkable F1 scores of 0.98, 0.84,
0.85, 0.76, and 0.80 for the corresponding dialects,
it outperformed single-task models by about 14%.

In contrast to these studies, our system differs in
the datasets used and the training approaches we
employed. We experimented with different levels
of preprocessing, including Arabic letter normal-
ization, diacritics, and tatweel removal. The ap-
proaches we explored were two main strategies: a
single multiclass classifier and a stacked binary en-
semble of classifiers with two approaches. In the
ensemble, one variant includes all ’not applicable’
labels in both binary classifiers, while another vari-
ant splits ’not applicable’ labels into two subsets to
use separately with both binary classifiers.

3 System Overview

We choose ArabicBERT because it is one of
the high-performing models of nlp arabic as per
(Alammary, 2022). We aim to test it for multiclass
classification with a single classifier as well as a
stacked multilayer architecture. We trained and
tested our model on provided datasets only.

3.1 Preprocessing

At first we implemented simple preprocessing
techniques like URL, hashtag, handle, and stop-
word removal.

In later versions we included some specific Ara-
bic preprocessing techniques including:

1. Mapped emojis to Arabic text equivalents us-
ing the defined ‘emoji to text‘ dictionary.

2. Character normalization e.g., أ ,إ , آ → ;ا ى →
.ي

3. Diacritics and tatweel removal for a uni-
fied formatted dataset and noise removal for better
model understanding.
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4. We also implemented some general prepro-
cessing techniques like URL, hashtag, and handle
removals and whitespace normalization, without
stopword removal, as they carry context and mean-
ing in Arabic.

5. For handling class imbalance, we used differ-
ent techniques like undersampling, oversampling,
and adjusting class weights.

3.2 Model

We tested different model configurations. Two of
the main architectures are (i) a single multiclass
classifier and stacked binary ensemble with a meta
classifier.

3.2.1 For Single Multiclass Classifier:

Our system follows a preprocess → tokenize →
classify → evaluate pipeline.

At the start, we experimented with a deeper clas-
sification head consisting of an additional fully
connected layer of size 256 with a ReLU activa-
tion function on top of ArabicBERT. This 256-
dimensional layer was connected to the final out-
put layer, producing three logits, using the same
general preprocessing pipeline. However, this de-
sign showed poor generalization. We then tried a
simpler classifier where ArabicBERT was directly
connected to a linear layer producing three logits,
followed by dropout with improved preprocessing.
This setup gave better performance and stability
on both training and validation and was therefore
chosen as our final classifier design.

After this we tested the selected model with dif-
ferent levels of preprocessing and class imbalance
handling techniques like undersampling, oversam-
pling, and adjusting class weights for loss calcu-
lation (see Appendix E). In addition to this mul-
ticlass approach, we also designed and tested a
stacked binary ensemble architecture.

3.2.2 For stacked binary ensemble:

Our system follows a preprocess → tokenize →
classify → ensemble → evaluate pipeline.

It is a two-step stacked architecture, where one
ArabicBERT model was trained to classify hope
vs. not applicable and another to classify hate vs.
not applicable, with their probability outputs fed
into a logistic regression meta-classifier for final
prediction. The binary ArabicBERT model config-
urations are kept the same as the single multiclass
classifier. Like the single multiclass classifier, we

also tested this for different levels of preprocessing
and class imbalancing handling techniques.

Figure 1: Meta Classifier Architecture

In another variant, as shown in the figure below,
we applied an additional preprocessing step where
the not applicable class was divided into two equal
parts. One part was used alongside the hope exam-
ples, and the other part was paired with the hate ex-
amples for training. We tried this because binary
classifiers (hope and hate) are underperforming on
hate and hope classes due to more examples of not
applicable in dataset. Binary class performance on
this new architecture improves; however, perfor-
mance of the meta-classifier in both stacked archi-
tectures yields close results.

Figure 2: Meta Classifier with not applicable labels
split

3.3 Challenges

The MAHED 2025 hope and hate text classifica-
tion dataset is highly imbalanced. We explored
several strategies, including oversampling, under-
sampling, and adjusting class weights. These ap-
proaches lead to more overfitting and underfitting
and eventually a low F1 score for validation and
test sets, except for adjusting class weights that
gives an increase in F1 score.

However, the best results were achieved by per-
forming specific Arabic preprocessing, without ap-
plying class imbalance techniques. Increasing the
number of training epochs from 3 to 8 slightly im-
proves the performance.

Earlier we tried to test without stopwords, but
later we decided to retain them, and this is also a
reason for improved performance in later experi-
ments.
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4 Experimental Setup

We fine-tuned ArabicBERT3 using the Transform-
ers library. Our model used the AdamW opti-
mizer with the CrossEntropyLoss function, going
through a training of 8 epochs. The max sequence
length for sentences is 128, the single batch size is
16, and the learning rate is 2× 10−5.

We trained, validated, and tested our model us-
ing the official datasets. During training, 20% of
the data was reserved for testing. Training of all
models was performed only on train.csv.

Our implementation used Python 3.13, PyTorch,
HuggingFace Transformers, scikit-learn, NLTK,
pandas. Experiments are conducted on Google co-
lab GPUs T4, L4 and A100. Consuming approxi-
mately 70 compute units on training, and testing.

5 Results

5.1 Official Results from scoring files

Official results from the scoring files show low
scores, because model is underfitting due to exclu-
sion of proper arabic preprocessing like diacriti-
zation, Arabic letter normalization, and convert-
ing emojis to arabic text. Another reasons of low
F1 scores are custom layer on top of bert classi-
fier, and less number of epochs. We also have not
experimented with stacked classifier at that time.
The official results of the scoring files are shown
in Table 1.

Metrics (Macro) F1 Accuracy Precision Recall
Validation File 0.376 0.649 0.376 0.377
Test File 0.465 0.624 0.458 0.474

Table 1: Official results.

5.2 Post Submission Results

F1 scores significantly improves in post sub-
mission experiments, because of specific arabic
preprocessing pipeline and increased number of
epochs.

Metrics (Macro) F1 Accuracy Precision Recall
Validation File 0.603 0.621 0.596 0.612
Test File 0.608 0.632 0.628 0.594

Table 2: Post-submission performance (Macro met-
rics) of Single Multiclass Classifier with weight adjust-
ments.

3https://huggingface.co/asafaya/
bert-base-arabic

Metrics (Macro) F1 Accuracy Precision Recall
Validation File 0.60 0.61 0.59 0.61
Test File 0.63 0.63 0.62 0.64

Table 3: Post-submission performance (Macro metrics)
of Stacked Binary Ensemble Classifier.(with emojis re-
placed with arabic text)

5.3 Analysis

5.3.1 Analysis of Single Multiclass Classifier
under different strategies

Our single multiclass classifier achieves an F1
score of 0.71 on training, 0.57 on validation, and
0.60 on test sets. With adjusted weights, our mul-
ticlass classifier achieves 0.98 on training, 0.60
on validation, and 0.63 on testing. With oversam-
pling, we observe overfitting because duplicate ex-
amples may make the model memorize some ex-
amples instead of generalizing. With undersam-
pling, too, we observe overfitting because of miss-
ing examples in training data, which makes the
model perform poorly on test data.

Model Train/Test Validation Test
No Strategy 0.717 0.578 0.608
With Oversampling 0.984 0.252 0.244
With Undersampling 0.809 0.236 0.231
With Adjusted weights 0.986 0.603 0.635

Table 4: Macro-F1 comparison across different training
strategies for the Single Multiclass Classifier details in
Appendix Table 6. A

With emojis removed instead of being replaced
with Arabic text and no class imbalance tech-
nique applied, the model gives F1 scores of 0.60
and 0.62 for validation and test files, respectively.
While removing emojis and adjusted weights gives
an F1 score of 0.58 on validation and 0.64 on test-
ing, details in Appendix Table 7. A

5.3.2 Analysis of Stacked Binary Ensemble
Classifier under different strategies

Our two-layer stacked binary ensemble classifier
achieves an F1 score of 0.60 on the validation set
and 0.63 on the test set when emojis are replaced
with Arabic words. When emojis are completely
removed, the F1 score changes to 0.59 on valida-
tion and 0.91 on the test set.

In the second variant of the stacked binary en-
semble, which includes an additional preprocess-
ing step that splits the not applicable label into two
subsets, the F1 score is 0.58 for validation and 0.63
for the test set. Excluding emojis in this configu-
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ration results in an F1 score of 0.59 on validation
and 0.65 on the test set.

Metrics (Macro) F1 Accuracy Precision Recall
Training Performance 0.90 0.61 0.89 0.90
Validation File 0.60 0.61 0.59 0.61
Val (without emojis) 0.59 0.61 0.59 0.59
Test File 0.63 0.63 0.62 0.64
Test (without emojis) 0.91 0.91 0.92 0.91

Table 5: Post-submission performance of the Stacked
Binary Ensemble classifier, details in Appendix Table
8. A

System Error Examples. The increase in F1-
scores due to emoji removal in the test set might be
due to sarcasm examples where a laughing emoji
is used, but the overall text is hate. In such cases,
removing emojis instead of converting them into
Arabic equivalent words helps the models under-
standing.

For example, the translation of [laughing] emoji
in the dictionary is ۹ොෘ (laughing), which gives a
hopeful sentiment. However, in the dataset it ap-
pears frequently in hate and not-applicable exam-
ples as shown in Appendix. B

Some annotation mistakes also contributed to
poor model understanding and thus lower perfor-
mance as shown in Appendix. C

Our system sometimes overfits, especially with
oversampling or deeper classification heads. This
causes high training F1 scores but poor perfor-
mance in validation / test sets. The performance
of the system can be improved by better data qual-
ity, proper preprocessing, and the use of a suitable
class imbalance handling technique.

6 Conclusion

In this work, we aimed to classify Arabic social
media posts into hope, hate, and not applicable cat-
egories as part of MAHED Shared Task 2025 Sub-
task 1. We developed a multiclass classifier based
on the Arabic model ArabicBERT, fine-tuned on
the competition dataset, and achieved an F1 score
of 0.60 and 0.63 on the given validation and test
datasets. With our other approach, we tested
stacked binary ensemble models and achieved F1
scores of 0.59 and 0.91 on validation and test sets.
Specific Arabic preprocessing choices, like skip-
ping stopword removal, normalizing Arabic let-
ters, removing diacritics, and tatweel, resulted in
improvement of the F1 score. The adjusted class
weights technique for handling class imbalance

performs better as compared to other techniques
like oversampling and undersampling.
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A Tables

B Emoji Effects Example

[laughing emojis]

ۋފ؇۹ً ྵื ި݁ ଫଐل ިّ اد༠ܭ ༠؇لڰ۬ اَ؇
“I’m afraid to log into Twitter, not just
your account.”
Label: Not Applicable

ሒᆞل؇ܳأݠا ྵื اَگܹؕ ڢܾ มฃلأ ྸะ؊ً ુળَأިݪ [laugh-
ing emojis]
“How do we compensate you? [laughing
emojis] Just get lost, you brat.”
Label: Hate

C Incorrect Annotation Example

ان ۬༶وཹྥ٭ ً؊داء و۱ٷڰިز ل۬ وڣگݠ ۬݁ިً ॱड़रا ༟ܹލ؇ن
আፇዧا اܳڰݠق ؕ݁ ༡ߺࠊة ாணة ਃಸܹأص আॻ۱৖৑ا Մ៰Ղا ނ؇ء
ଫଃ༚ ال۬ اܳـଲ୍ة ؜݆ ሒᇭّأݠ ॱड़रا દઊوًأڎ ாணة ਐಸܹأص
݁ڎورة ؇ዛኡا [laughing emojis]

“Because you are an owl and a poor
girl, and we will win with performance
and results, God willing. Al-Ahly plays
good football with teams that play foot-
ball. And what do you know about foot-
ball other than that it is round? [laugh-
ing emojis]”
Annotated Label: Hope
Correct Label: Hate
Model Predicted: Hope

ሒᇃڢأڎ وش ඔ൹ܹ۱ਵਦ ુળًܳـ ؇ਊಾ اܳފ݄ٷ۬ ሒᇭ اܳټ؇ܳټ۬ اܳފأިدل۬
ુળ݁أ
“Saudi Arabia is third in obesity. Damn
you, you idiots. What made me stay
with you?”
Annotated Label: Hope
Correct Label: Hate
Model Predicted: Hate

D Dataset Train, Validation, and Test set
Details

The full dataset size is 9843, with 6890 for train-
ing, 1476 for validation, and 1477 for testing.

E Adjusting Weights Logic
class_counts = np.bincount(labels_raw)
class_weights = 1. / class_counts
weights_tensor =

torch.tensor(class_weights, dtype=torch.float)
.to(device)

criterion =
nn.CrossEntropyLoss(weight=weights_tensor)
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Model Metrics Train/Test Validation Test
No Strategy Macro-f1 0.717 0.578 0.608

Macro-accuracy 0.757 0.621 0.632
Macro-precision 0.733 0.602 0.628
Macro-recall 0.731 0.563 0.594

With Oversampling Macro-f1 0.984 0.252 0.244
Macro-accuracy 0.985 0.411 0.392
Macro-precision 0.983 0.243 0.231
Macro-recall 0.986 0.265 0.260

With Undersampling Macro-f1 0.809 0.236 0.231
Macro-accuracy 0.806 0.329 0.319
Macro-precision 0.789 0.259 0.251
Macro-recall 0.856 0.219 0.215

With Adjusted Weights Macro-f1 0.986 0.603 0.635
Macro-accuracy 0.986 0.621 0.645
Macro-precision 0.982 0.596 0.633
Macro-recall 0.990 0.612 0.639

Table 6: Performance comparison of different training strategies for the Single Multiclass Classifier.

Metrics(Macro) F1 Accuracy Precision Recall
Test(train split) set 0.717 0.757 0.733 0.731
Test(train split) set without emojis 0.984 0.985 0.984 0.985
(without emojis, with adjusted weights) 0.990 0.991 0.987 0.993
Validation File 0.578 0.621 0.602 0.563
Validation File without emojis 0.600 0.636 0.618 0.589
(without emojis, with adjusted weights) 0.589 0.608 0.585 0.594
Test File 0.608 0.632 0.628 0.594
Test File without emojis 0.622 0.640 0.635 0.613
(without emojis, with adjusted weights) 0.640 0.649 0.639 0.641

Table 7: Post Submission Performance metrics on evaluation and test datasets of Single Multiclass Classifier

Condition Label Macro-F1 Macro-Accuracy Macro-Precision Macro-Recall
With emojis replaced Hope 0.73 0.77 0.72 0.74

Hate 0.76 0.84 0.74 0.79
Not Applicable 0.63 0.63 0.62 0.64

With no emojis Hope 0.93 0.94 0.93 0.94
Hate 0.95 0.97 0.96 0.94
Not Applicable 0.92 0.91 0.91 0.91

Data split + emojis replaced Hope 0.71 0.73 0.71 0.76
Hate 0.78 0.84 0.76 0.82
Not Applicable 0.63 0.62 0.62 0.67

Data split + no emojis Hope 0.74 0.78 0.73 0.76
Hate 0.78 0.86 0.78 0.77
Not Applicable 0.65 0.66 0.65 0.65

Table 8: Performance of different setups for the Stacked Binary Ensemble Classifier on Test file.
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Abstract
This paper describes the MultiMinds team’s
participation in the MAHED 2025 shared task
at ArabicNLP 2025, which targets the detection
of hate speech, hope speech, and emotional
expression in Arabic content. We addressed
two subtasks. For the text-based subtask (Task
2), we experimented with multiple models,
including Support Vector Machines with TF-
IDF and AraBERT embeddings, XGBoost with
fused AraBERT and XLM-RoBERTa embed-
dings optimized via Optuna, and a fine-tuned
AraBERT model and GPT-5 (gpt-oss-20b). The
fine-tuned AraBERT achieved the best perfor-
mance with an F1 score of 0.68. For the mul-
timodal subtask (Task 3), we proposed an ar-
chitecture combining DistilBERT for text rep-
resentation with a lightweight ELU-Net en-
hanced by a cross-attention mechanism, reach-
ing 75% accuracy. Major challenges included
dataset imbalance and noisy text, which we mit-
igated through preprocessing, class-weighted
optimization, and feature fusion. Our results
demonstrate the benefits of combining mul-
tiple embedding layers for text classification
and leveraging lightweight multimodal archi-
tectures for robust hate speech detection in Ara-
bic.

1 Introduction

Online media has become an important avenue for
the consumption and distribution of information,
and many people now rely on it as their primary
source of news (Perrin, 2015). These have enabled
individuals to share their views effortlessly through
images and texts (multimodal and/or unimodal),
reaching a broad and diverse audience (Fortuna
and Nunes, 2018). With the rapid increase in media
posts, manual detection of emotion, hate, and of-
fensive (EHO) content becomes impractical. Con-
sequently, there is a growing interest in developing
automated methods for EHO detection.

MAHED 2025 (Zaghouani et al., 2025) is a
shared task at ArabicNLP 2025 Co-located with

EMNLP 2025, focusing on the detection of hate
speech, hope speech, and emotional expression in
Arabic content. Participants may choose to par-
ticipate in one or more of the following three sub-
tasks:(i) Text-based Hate and Hope Speech Classifi-
cation, (ii) Emotion, Offensive, and Hate Detection
(Multitask), and (iii) Multimodal Hateful Meme
Detection. We, MultiMinds, participated in MA-
HED 2025, with particular interest in tasks (ii), (iii)
and ranked 10th and 7th, respectively.

For Task (ii), three methods were tested for Ara-
bic emotion, offensive, and hate-speech classifica-
tion: Support Vector Machines (SVM) as a Base-
line model with TF-IDF (best macro F1: 0.517);
XGBoost with TF-IDF, AraBERT embeddings, and
fused AraBERT and XLM-RoBERTa embeddings,
which were optimized via Optuna (best F1: 0.57);
and a deep learning approach fine-tuning AraBERT,
which achieved the highest performance score. As
the dataset was imbalanced and contained unneces-
sary information, the key challenge was to extract
the correct information from the text. In our experi-
ment for Task (iii), we used 1D-CNN model (Singh
et al., 2021) as the Baseline model by extracting
image and caption features by CLIP processor. Our
enhanced ELU-Net architecture got the best results
by incorporating a cross-attention mechanism to
combine visual and textual features generated from
the DistilBert (Sanh et al., 2019) tokenizer. Full
Implementation here - Github. The main challenge
of this task was that the classes were not equally
distributed. Our key findings were as follows.

• Fusing multiple embedding layers from differ-
ent textual models improves data representa-
tion.

• Using class weights enhances results.

• First-time use of a lightweight multimodal
model to classify hateful and non-hateful
memes.
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2 Background

2.1 Emotion Detection

In recent years, research into developing state-of-
the-art models for Arabic natural language process-
ing tasks has gained momentum. Alswaidan and
Menai (2020) proposed three models for emotion
recognition in Arabic text. Abdullah et al. (2018)
described their system - SEDAT, and showed sub-
stantial improvements in Spearman correlation
scores over the baseline models. Alsmearat et al.
(2015) explored the Gender Identification(GI) prob-
lem for Arabic text as a supervised learning prob-
lem and compared the Bag-Of-Words (BOW) ap-
proach with computing features related to sen-
timents and emotions. Biswas and Zaghouani
(2025b) introduces a bilingual dataset comprising
23,456 entries for Arabic and 10,036 entries for
English, annotated for emotions and hope speech,
addressing the scarcity of multi-emotion (Emotion
and hope) datasets. Al-Henaki et al. (2025) intro-
duced MultiProSE, an open-source extension of the
existing Arabic propaganda dataset, ArPro, with
the addition of sentiment and emotion annotations
for each text.

2.2 Offensive And Hate Speech Detection

While social media promotes free expression,
it also fosters environments where hate speech
spreads, making its detection a key research pri-
ority. Alsafari et al. (2020) built a reliable Ara-
bic textual corpus by crawling data from Twit-
ter. Mubarak et al. (2023) introduced a generic,
language-independent method to collect a large
percentage of offensive and hate tweets. Aldjan-
abi et al. (2021) developed a classification system
for determining offensive and hate speech using a
pre-trained Arabic language model. Biswas and Za-
ghouani (2025a) introduces multilabel hate speech
dataset with offesnive content in the Arabic lan-
guage. Zaghouani et al. (2024) analyzes 70,000
Arabic tweets, from which 15,965 tweets were se-
lected and annotated, to identify hate speech pat-
terns and train classification models.

2.3 MultiModal Hate Speech Detection

The usage of social media has enabled individu-
als to disseminate hateful messages through the
use of memes. Chhabra and Vishwakarma (2023)
highlighted handcrafted feature-based and deep
learning-based algorithms by considering multi-
modal and multilingual inputs. Alam et al. (2024a)

explored the intersection between propaganda and
hate in memes using a multi-agent LLM-based ap-
proach. El-Sayed and Nasr (2024) described an ap-
proach to hateful meme classification for the Mul-
timodal Hate Speech Shared Task at CASE 2024.
Arya et al. (2024) introduced a novel approach by
leveraging the CLIP model, fine-tuned through the
incorporation of prompt engineering. Alam et al.
(2024b) focused on developing an Arabic memes
dataset with manual annotations of propagandistic
content. AlDahoul and Zaki (2025) explores the
potential of large language models to effectively
identify hope, hate speech, offensive language, and
emotional expressions. Kmainasi et al. (2025)
introduced MemeIntel, an explanation-enhanced
dataset for propaganda memes in Arabic and hate-
ful memes in English. However, multimodal hate
speech detection lacks the use of lightweight archi-
tectures.

3 System Overview

Before tackling Task 2, we observed that the dataset
(Zaghouani et al., 2024), (Biswas and Zaghouani,
2025b), (Biswas and Zaghouani, 2025a) was both
imbalanced and noisy. To address the noise, we
performed text cleaning and preprocessing, convert-
ing the text into TF–IDF features and tokenizing it
using the AraBERT tokenizer. We then fused the
embedding layers of XLM-RoBERTa (Conneau
et al., 2019) and AraBERT (Antoun et al., 2020).
Furthermore, to mitigate the impact of class im-
balance, we incorporated class distribution-based
weighting. For preprocessing, we compiled Arabic
and English punctuation, removed Arabic diacritics
via regex 1, eliminated repeated characters, English
words, and numbers, and collapsed multiple spaces
into one for clean tokenization. Arabic characters
were standardized to reduce variations, ensuring
a consistent representation of letters that look or
sound similar; for example, different forms of Alif
( @ ,

�
@ ,


@ , @
) were replaced with the standard form @

(U+0627).
For feature extraction, we used TF-IDF (Jalil-

ifard et al., 2021) with the top 5,000 terms
(unigrams and bigrams). AraBERT and XLM-
RoBERTa embeddings were integrated with a 128-
token limit, applying padding and truncation, and
extracting the [CLS] token from the final hidden
state. To fine-tune GPT-5 (Daniel Han and team,
2023), we employ LoRA adapters within the PEFT

1https://docs.python.org/3/howto/regex.html
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framework, incorporating a curated set of few-shot
examples.

For Task 3, we employed the CLIP via Rad-
ford et al. (2021) processor for feature extraction,
utilizing the ViT-B/32 2 transformer architecture
as the image encoder and a masked self-attention
transformer as the text encoder. The extracted mul-
timodal features were fed into a Support Vector
Machine for classification; it failed to identify hate-
ful memes accurately. The main challenge was
dataset (Alam et al., 2024a), (Alam et al., 2024b)
imbalance, which could be mitigated by collecting
more hateful memes for a balanced distribution.
Additionally, as non-Arabic speakers, understand-
ing the language and cultural context was difficult,
so we relied on a CNN-based neural network for
better performance.

To achieve our objective of developing a
lightweight model, we employed the ELUNet ar-
chitecture via Deng et al. (2022). Since all captions
in the dataset are in the Arabic language, textual
features were extracted using the DistilBERT to-
kenizer via Devlin et al. (2018). In the case of
preprocessing and cleaning, the same procedure
as Task 2 was followed. Another challenge we
faced was that the tokenizers’ lengths were not
equal for all memes, as they hold different sizes
of text. So we fixed the tokenizer size to 256. If
the tokenizer length is smaller than the value, the
previous value will repeat; otherwise larger size
tokenizer will be shrunk using the PCA algorithm
(Drikvandi and Lawal, 2023). The corresponding
images were processed through the encoder com-
ponent of the ELUNet architecture. Inspired by
Li et al. (2024), a cross-attention mechanism was
then applied, integrating the encoded image fea-
tures from the encoder with the textual embeddings
generated by the tokenizer, positioned at the in-
termediate layers of ELUNet. The cross-attention
outputs were subsequently passed through the de-
coder component of ELUNet. The proposed model
(Figure 1) produces two outputs.

4 Experimental Setup

4.1 Emotion, Offensive Language, and Hate
Detection

The whole dataset was split into Train(70%),
Test(15%), and Validation(15%) via stratified sam-
pling across emotion, hate, and offensive tasks,

2https://huggingface.co/openai/clip-vit-base-patch32
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Figure 1: The architecture of Attention-based ELUNet

with exception for GPT-5 (80-10-10). Table 1 pro-
vides a brief overview of various emotions in the
dataset, including its size and distribution of vari-
ous emotions, as well as there are offensive (yes -
1744, no - 4216) and hate (yes - 303, no - 1441).
Table 2 reveals the Task 2 dataset contains the most
non-Arabic characters (see Figure 2).

Name Amount
Anger 1551

Disgust 777
Neutral 661
Love 593
Joy 533

Anticipation 491
Optimism 419
Sadness 335

Confidence 210
Pessimism 194
Surprise 143

Fear 53

Table 1: Emotion Proportions in Training Data – Task 2

We used Optuna with a class-weighted objective
to optimize XGBoost hyperparameters for the high-
est macro F1-score. We incorporated a deep learn-
ing approach using AraBERTv2 3 for multitask
classification across emotion, offensive language,
and hate speech tasks. Three task-specific linear
layers mapped the 768-dimensional hidden repre-
sentation to class logits, with dropout applied to
improve generalization. For fine-tuning GPT-5, we

3https://huggingface.co/aubmindlab/bert-base-arabertv2
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Name Non-Arabic Chars Count
Train (Task 2) 157138

Test 32968
Validation 32075

Train (Task 3) 4737
Test 1340

Validation 1310

Table 2: Non-Arabic Characters in Tasks 2 & 3

Figure 2: Non-Arabic Character Distribution – Train
Set (Task 2)

configured the rank, selected specific transformer
layers, and applied an appropriate scaling factor,
while enabling gradient checkpointing to optimize
memory usage. Furthermore, no bias parameters
were introduced to ensure that the fine-tuning pro-
cess remained lightweight.

Emo Offn Hate
learning rate 0.0060 0.0011 0.0037
max depth 10 7 10

num. estimator 50 282 182
subsample 0.9453 0.8231 0.7524

colsample_bytree 0.7366 0.6489 0.8440
scale_pos_weight x 2.4179 0.0535

Table 3: Best parameter value from trial run

4.2 Multimodal Hate Speech Detection in
Memes

Table 4 presents the distribution of hateful content
in training, development, and test sets. We pro-
cessed each meme (text + image) using CLIP to
create joint features. Text was tokenized and im-
ages scaled to RGB via CLIPProcessor, producing
tensors for both modalities. Features were concate-
nated and fed to a 1D-CNN. Then we evaluated
our enhaced ELUNet model with AraBert, Distil-
Bert tokenizers. Our best model, ELUNet with the

DistilBert tokenizer gave the accuracy of 75%. In
our experiment, we chose batch size 16, epoch 5,
and learning rate 10−3. This model was trained in
Google Colab and consumed 6.2 GB of GPU.

Name Hate Not Hate
Train 213 1930
Dev 31 281
Test 154 452
Total 398 2663

Table 4: Dataset Size – Task 3 (Initial)

5 Results

Table 5 summarizes our model’s performance on
the task 2 dataset. The results indicate that ap-
plying class weights improves performance based
on the average F1 score, while incorporating deep
learning approaches yields even higher results. For
instance, in our experiments with AraBERT, us-
ing a batch size of 8, 5 epochs, a dropout rate of
0.3, and a learning rate of 10−5 with the excep-
tion (10−4) for Gpt-5, we achieved an F1 score of
0.67. Reducing dropout to 0.1, while doubling both
batch size and epochs, increased the score to 0.68,
matching the performance of DistilBERT. However,
with respect to accuracy, GPT-5 and AraBERT
achieved comparable performance on the offensive
and hate detection tasks, while exhibiting notable
differences in the emotion classification task.

App. Model Emo Offn Hate Avg

Without
Weight

XGB 0.172 0.416 0.344 0.312

XGB-AraBERT 0.241 0.712 0.541 0.484

XGB-AraBERT+XLMRoBERTa 0.244 0.414 0.500 0.384

SVM(Baseline) 0.284 0.702 0.564 0.513

With
Weight

XGB 0.212 0.712 0.400 0.393

XGB-AraBERT+XLMRoBERTa 0.264 0.723 0.500 0.493

XGB-AraBERT+XLMRoBERTa Trial 0.324 0.775 0.624 0.574

DL

AraBERT 0.267 0.834 0.954 0.684
DistilBERT 0.373 0.774 0.924 0.683

Gpt-oss-20b (PC) 0.014 0.412 0.483 0.300

Table 5: Performance of the models on the Task 2
dataset. Here, PC, Emo, Offn, Hate, and Avg denote the
post-competition, emotion, offensive, hate, and average
macro F1 scores, respectively.

The model performances in Task 3 are described
in Table 6. For adding class weight, the result
has been improved. Finally, we get an accuracy
of 75%. For each testing section test dataset was
utilized. Despite fixing the epoch to 20, the best-
fitting model took only 5 epochs by using the early
stopping concept.
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Model Acc MacroAvg-f1 Hateful(f1) Non-Hateful(f1)

1D-CNN(Baseline) 0.745 0.431 0 0.851

ELUNet-DistilBert 0.746 0.421 0 0.852

ELUNet-AraBert 0.744 0.422 0 0.853

ELUNet-AraBert (WW) 0.746 0.372 0 0.855

ELUNet-DistilBert(WW) 0.754 0.500 0.165 0.858

Table 6: Performance of the models on the Task 3
dataset. Here, WW represents ’with weight’.

6 limitations

Both subtasks (Task 2: Emotion, Offensive, and
Hate Detection; Task 3: Multimodal Hateful Meme
Detection) suffered from severe class imbalance.
This led to biased models, poor performance on
minority classes, and necessitated mitigations such
as class weighting, which still did not fully resolve
the issue. Fine-tuning was limited (e.g., 5 epochs
with early stopping, a fixed tokenizer length of 256,
and PCA for shrinkage), which may have led to
underfitting. GPT-5 experiments were constrained
by few-shot examples and memory optimizations
(e.g., LoRA adapters), resulting in lower emotion
detection scores (F1=0.014).

7 Conclusion

Our participation in MAHED 2025 highlights the
effectiveness of advanced NLP and multimodal
methods for detecting hate speech, hope speech,
and emotions in Arabic. For Task 2, our fine-tuned
AraBERT scored 0.68 macro F1, surpassing SVM
and XGBoost baselines through class-weighted op-
timization and fused embeddings to address im-
balance and noise. For Task 3, our lightweight
ELU-Net, cross-attention with tokenizer generated
from DistilBert, achieved 75 % accuracy on hateful
meme classification despite imbalance. Challenges
included limited Arabic meme data, non-Arabic
characters, and noisy text affecting preprocessing
and features. Future work will explore data aug-
mentation, advanced multimodal fusion, and im-
proved preprocessing and fine-tuning to boost ro-
bustness and generalization.
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Abstract

Social media platforms have become major
spaces for sharing opinions, humor, and infor-
mation through memes that blend images with
text. While many memes are harmless, some
promote hate speech against individuals or com-
munities based on cultural, religious, gender,
or national identity. Detecting such content
in Arabic is particularly challenging due to lin-
guistic complexity, cultural context, and limited
annotated data. In this study, we present an ef-
fective approach for detecting hateful content
in Arabic memes using the QCRI Prop2Hate-
Meme dataset, which contains image–text pairs
labeled for hatefulness. We experimented with
several multimodal configurations, and the best
performance was achieved using a combina-
tion of InceptionNet for visual features and
multilingual BERT for text. These represen-
tations were fused after applying normaliza-
tion and augmentation to enhance robustness.
Our InceptionNet with mBERT configuration
achieved a macro F1-score of 63 percent and
secured the sixth position on the official Cod-
aBench leaderboard. These findings highlight
the strength of our multimodal model and sup-
port its potential for detecting harmful Arabic
content in low-resource settings.

1 Introduction

With the exponential growth of social media plat-
forms, memes have evolved into a dominant means
of communication, often blending visual and tex-
tual elements to express humor, satire, or com-
mentary. However, this same format has been
increasingly exploited to propagate hateful narra-
tives targeting individuals or communities based
on attributes such as culture, religion, sex or na-
tionality (Kiela et al., 2021; Pramanick et al., 2021;
Sharma et al., 2020a). Unlike conventional text
based hate speech, hateful memes present a unique
detection challenge since the offensive intent may
only emerge when text and image are interpreted to-

gether (Das et al., 2020; Zhao et al., 2023), making
unimodal approaches insufficient.

In Arabic speaking contexts, the task is fur-
ther complicated by several factors. First, there
is a scarcity of large scale, high quality annotated
datasets for multimodal hate speech detection (Za-
ghouani et al., 2025) . Second, most state-of-the-art
detection models have been trained primarily on
English datasets, limiting their transferability due
to linguistic, cultural, and script specific nuances .
Text only models risk overlooking visual sarcasm
or symbolism, while image only systems may fail
to capture hateful meaning embedded in overlaid
text, leading to both false positives and false nega-
tives.

The NeurIPS “Hateful Memes” Challenge (Kiela
et al., 2021) highlighted how benign confounders,
individually innocuous text and images that form
hateful meaning only when combined, require
models to perform genuine multimodal reasoning.
Large scale vision language transformers such as
UNITER (Chen et al., 2020), ViLT (Kim et al.,
2021), and CLIP (Arya et al., 2024; Radford et al.,
2021) have achieved strong results in high-resource
settings but their reliance on vast amounts of paired
data and high computational cost renders them im-
practical for low resource languages like Arabic.
While dual-encoder fusion strategies (Ahsan et al.,
2024; Hossain et al., 2022; Lippe et al., 2020; Zhou
et al., 2021) have shown promising performances in
other languages, systematic evaluations for Arabic
meme moderation remain scarce.

In order to overcome these challenges, we
proposed a lightweight dual-encoder multimodal
framework that combined a fine-tuned Inception-
ResNetV2 image encoder (Szegedy et al., 2016)
with a multilingual BERT (mBERT) text encoder
(Pires et al., 2019). Visual features were extracted
from resized meme images, while textual features
were derived from OCR-extracted Arabic text af-
ter normalization (Kaundilya et al., 2019; Hossein-
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mardi et al., 2015). These representations were con-
catenated and passed through a compact multilayer
perceptron for binary classification, following prior
dual-encoder fusion strategies in multimodal hate
speech detection (Pramanick et al., 2021; Ahsan
et al., 2024).The design maintained a trade-off be-
tween accuracy and efficiency, making it practical
for use in environments with limited computational
resources.
The key contributions of this study are :

• We developed a lightweight multimodal archi-
tecture for Arabic hateful meme detection by
integrating InceptionResNetV2 with mBERT.

• We conducted comparative experiments
across multiple model combinations and
found that InceptionNet + mBERT achieved
the best macro F1.

• We designed a preprocessing pipeline with
OCR-based text extraction, normalization,
and image augmentation to improve robust-
ness.

2 Background & Related Work

2.1 Task Definition
We participated in Subtask 3: Multimodal Hate-
ful Meme Detection, which is part of Shared
Task 4 (MAHED 2025: Multimodal Detection of
Hope and Hate Emotions in Arabic Content),
organized under Track 1: Speech and Multi-
modal Processing at the ArabicNLP 2025 work-
shop. We used the QCRI/Prop2Hate-Meme1(Alam
et al., 2024), which was released for this shared
task. This subtask focuses on classifying Arabic
memes that contain both images and text as either
hateful or non-hateful. Each sample contains:

1. Image: Visual content, symbols, or scenes
conveying context or sentiment.

2. Embedded Arabic text: Extracted text from
the image, providing essential linguistic con-
text.

A meme is classified as hateful if it explicitly
or implicitly promotes hostility, discrimination, or
stereotypes toward a targeted group. Non-hateful
memes lack such harmful content, even when ex-
pressing strong opinions or satire.

1https://huggingface.co/datasets/QCRI/
Prop2Hate-Meme

Figure 1: Examples of hateful and non-hateful memes.

Formally, the problem is modeled as a binary
classification task:

f(image, text)→ {hateful, non− hateful}

The key challenge lies in effectively capturing the
interplay between visual and textual information,
as hateful intent often arises from their combined
interpretation rather than either modality alone.

2.2 Related Work

Detecting hateful memes inherently requires joint
vision–language reasoning. The Hateful Memes
benchmark introduced by Kiela (Kiela et al., 2021)
incorporated benign confounders, text and images
that appear harmless in isolation but convey hateful
meaning when combined, to prevent models from
exploiting unimodal shortcuts. Their multimodal
baselines, such as late-fusion BERT(Devlin et al.,
2019) + ResNet(He et al., 2015), achieved around
65% accuracy, whereas unimodal baselines rarely
exceeded 60%. The follow-up competition report
showed that improved cross-modal grounding, use
of auxiliary supervision and more effective fusion
strategies enabled some teams to surpass 70% ac-
curacy.

Subsequent works explored architectural varia-
tions. Zhou (Kiela et al., 2021) integrated auxil-
iary image and text matching tasks with a BERT
+ ResNet pipeline, reporting macro F1 gains of
approximately 3–4 percentage points over vanilla
fusion. Lippe (Lippe et al., 2020) employed con-
trastive learning to better align modalities, im-
proving robustness to adversarial confounders and
achieving competitive leaderboard rankings.
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Large-scale vision–language transformers such
as ViLBERT (Lu et al., 2019), VisualBERT (Li
et al., 2019), UNITER, ViLT, and CLIP have
demonstrated strong modality alignment across a
range of multimodal tasks. These models were not
originally trained on the Hateful Memes dataset,
but some have been later fine-tuned for it and
achieved over 70 percent accuracy. However, their
reliance on large paired datasets and substantial
computational resources limits their suitability for
low-resource language settings.

In the related ArAIEval 2024 propaganda meme
classification task (Hasanain et al., 2024), the
top multimodal system (AlexUNLP-MZ)(Zaytoon
et al., 2024) reached a macro F1 of 0.8051. These
results demonstrate the benefit of combining visual
and textual features for Arabic meme moderation.
Despite this progress, lightweight dual-encoder fu-
sion commonly explored for English and multilin-
gual settings which remains under investigated for
Arabic multimodal content moderation.

Cross-lingual studies further demonstrate the vi-
ability of compact fusion strategies. Datasets such
as Memotion(Sharma et al., 2020b) and MUTE
(Hossain et al., 2022) have enabled systematic
benchmarking, while dual-encoder pipelines (Ah-
san et al., 2024) and CLIP-based transfer learning
can perform competitively in low-resource con-
texts, with reported results ranging from 60–68%
depending on modality balance and data quality.

Building on these findings, our work adopts a
lightweight vision backbone combined with multi-
lingual BERT to balance accuracy, OCR robustness,
and deployability in resource constrained settings
for Arabic hateful meme detection.

3 Dataset

We use the QCRI/Prop2Hate-Meme corpus re-
leased for the Arabic multimodal meme shared task.
The dataset pairs each meme image with aligned
Arabic text and provides both coarse (hateful vs.
non-hateful) and fine-grained hatefulness labels,
while preserving related propaganda annotations.
Appendix A shows the dataset’s statistics, includ-
ing important measures and how the data is spread
out.

4 Methodology

Our approach combines text and image information
to detect hateful content in Arabic memes. The
workflow begins with preprocessing of both text

and image inputs, followed by feature extraction
using pre-trained models, and finally a fusion step
that integrates the two modalities for classification.
An outline of the complete pipeline is presented in
Figure 2, which illustrates how data flows through
preprocessing, feature extraction, and multimodal
fusion before reaching the classifier.

Figure 2: An overview of the methodology for our pro-
posed system

4.1 Data Preprocessing
The experiments employed the publicly available
QCRI/Prop2Hate-Meme dataset, hosted on the
Hugging Face repository. The dataset contains
multimodal entries, each consisting of a meme im-
age and associated text, annotated for binary hate
speech classification (hate_label ∈ {0, 1}). The
dataset was supplied in Parquet format and pre-
split into training, validation, and test sets.

Text preprocessing: For each meme text, we
first measured its length in characters and recorded
both the maximum and median values. Based on
these lengths, the data was divided into three in-
tervals to analyze distribution patterns. To reduce
noise, extremely long non-hateful samples (those
exceeding 62 characters) were excluded, while all
hateful samples were kept to preserve minority
class information. Texts were converted to low-
ercase, unnecessary spaces were removed, and the
content was tokenized using the BERT tokenizer.
Finally, each sequence was padded to a maximum
length of 128 tokens.

Image preprocessing: All meme images were
decoded from their byte format using the PIL li-
brary and then resized to a resolution of 128 × 128
pixels to maintain consistency. The resized images
were converted into NumPy arrays, and their pixel
values were normalized to fall within the range [0,
1]. Finally, the processed images were stored as
stacked NumPy arrays, allowing efficient loading.
All meme images were first decoded from their
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byte format using the PIL library and then resized
to a fixed resolution of 128 × 128 pixels to maintain
consistency across samples. The resized images
were converted into NumPy arrays, and their pixel
values were normalized to fall within the range [0,
1] for stable model training. Finally, the processed
images were stored as stacked NumPy arrays, al-
lowing efficient loading and batch processing dur-
ing training.

4.2 Feature Extraction

Text was encoded with the bert-base-multilingual-
cased transformer. After tokenization, batches of
32 samples were forwarded through the model, and
the [CLS] representation from the hidden layer was
taken as the sentence-level embedding. The re-
sulting vectors were stored as NumPy arrays of
shape (N, 768) for downstream use. Text was en-
coded with the bert-base-multilingual-cased trans-
former. After tokenization (max length 128 with
padding/truncation), batches of 32 samples were
forwarded through the model, and the [CLS] repre-
sentation from the final hidden layer was taken as
the sentence-level embedding. The resulting vec-
tors were stored as NumPy arrays of shape (N, 768)
for downstream use.

Images were processed with a pre-trained
InceptionResNetV2 backbone (ImageNet
weights) with the classification head removed
(include_top=False). Preprocessed inputs of size
128 × 128 were passed through the network, and
a Global Average Pooling layer yielded a 1536-
dimensional descriptor per image. This descriptor
was flattened to obtain a fixed-length visual feature
vector. The text and image embeddings produced
here serve as inputs to the subsequent multimodal
fusion module.

4.3 Baselines

Different unimodal models (image only and text
only) and multimodal models (combining image
and text) were analyzed and fused using an early
fusion strategy with appropriate hyperparameter
tuning.

4.3.1 Unimodal Baselines

To extract textual features, we utilized AraBERT,
mBERT, and BERT. For visual features, we ex-
perimented with InceptionResNetV2, Efficient-
NetB3, and EfficientNetB7. The effectiveness of
these models was assessed before integration into

the multimodal framework. Various deep learn-
ing models were employed to establish unimodal
baselines. For textual feature extraction, we uti-
lized AraBERT(Antoun et al., 2020), mBERT, and
BERT. For visual features, we experimented with
InceptionResNetV2, EfficientNetB3, and Efficient-
NetB7(Tan and Le, 2020). These models were
individually trained and evaluated to assess their ef-
fectiveness before integration into the multimodal
framework. Appendix B.1 outlines the hyperpa-
rameters configured for both the textual and visual
unimodal models.

4.3.2 Multimodal Baselines

We adopt an early fusion strategy where the 1536-
D image vector and the 768-D text embedding are
concatenated to form a 2304-D joint representation.
The fused vector is then passed through fully con-
nected layers with ReLU activations (1024→ 512
→ 256 → 128), with dropout (0.5) applied after
the 512- and 128-unit layers to mitigate overfitting.
Finally, a dense layer with two units and a softmax
activation outputs the class probabilities for hateful
vs. non-hateful.

We evaluated several multimodal combination
models, including InceptionNet + mBERT, In-
ceptionNet + BERT, InceptionNet + AraBERT,
EfficientNetB3 + mBERT, and EfficientNetB7 +
mBERT. The hyperparameters used in this work
include learning rate, number of epochs, batch size,
dropout rate, optimizer and activation function, as
summarized in the appendixB.2.

5 Results Analysis

The proposed multimodal fusion approach was
evaluated on the official test split of the
QCRI/Prop2Hate-Meme dataset as part of the
shared task hosted on CodaBench . Among the
tested configurations, the best-performing setup,
combining InceptionNet (Szegedy et al., 2016)
with mBERT (Devlin et al., 2019), achieved a
macro F1-score of 69%, outperforming several
strong vision–language baselines commonly used
in hate speech detection tasks. (Kiela et al., 2021;
Gomez et al., 2020)

Table 1 provides a comparative evaluation of
textual and visual models. Within the text-only ap-
proaches, AraBERT and mBERT demonstrated the
highest performance, both reaching an F1-score of

1Source code available at: GitHub Repository
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Approaches Classifiers F1 P R G

AraBERT 0.63 0.61 0.69 0.64
Textual only BERT-base-uncased 0.55 0.57 0.67 0.61

mBERT 0.63 0.61 0.69 0.64

EfficientNetB3 0.45 0.54 0.61 0.57
Visual only EfficientNetB7 0.48 0.58 0.62 0.60

InceptionNetV2 0.58 0.57 0.60 0.58

Table 1: Result comparison on validation data of uni-
modal models, where F1, P, R, and G represent F1-score,
precision, recall, and the geometric mean of precision
and recall, respectively

0.63. In the visual-only category, InceptionNetV2
achieved the best result with an F1-score of 0.58.

Classifiers F1 P R G F_F1

InceptionNet + AraBERT 0.59 0.56 0.70 0.62 0.59

InceptionNet + BERT-base-uncased 0.67 0.75 0.61 0.68 0.60

EfficientNetB3 + mBERT 0.56 0.60 0.53 0.55 0.56

EfficientNetB7 + mBERT 0.67 0.70 0.64 0.67 0.60

InceptionNet + mBERT(Proposed) 0.69 0.66 0.76 0.71 0.63

Table 2: Result comparison on validation data of mul-
timodal models, where F1, P, R, G, and F_F1 denote
F1-score, precision, recall, geometric mean of precision
and recall, and official F1-score, respectively

In multimodal comparative evaluations, as
shown in Table 2, InceptionNet + AraBERT ob-
tained 59%, InceptionNet + BERT-base-uncased
(Devlin et al., 2019) reached 67%, EfficientNetB3
+ mBERT scored 56%, and EfficientNetB7 +
mBERT achieved 67% macro F-1 score. Incep-
tionNet + mBERT achieved the highest score of
69% among all tested architectures, demonstrating
its effectiveness in jointly leveraging visual and
textual cues for hateful meme detection in Arabic
content. The official shared task result was 63%,
securing 6th place on the leaderboard.

5.1 Error Analysis

We present representative examples of both cor-
rectly and incorrectly classified hateful and non-
hateful memes. Misclassifications often result
from subtle visual cues, implicit expressions, or
cases where the hateful intent is weak or context-
dependent. The selected instances are summarized
in Table 3, which lists the input meme, its true label,
and the model’s prediction.

Detailed error analysis is provided in the ap-
pendix C.

Table 3: Examples of predicted outputs

Input Meme True Label Predicted Label

Hateful Non-Hateful

Non-Hateful Non-Hateful

Non-Hateful Hateful

Hateful Hateful

6 Conclusion and Future Work

This study presented a multimodal fusion approach
for detecting hateful content in Arabic memes by
combining visual and textual information. Us-
ing the QCRI/Prop2Hate-Meme dataset, our best-
performing configuration is InceptionNet with
mBERT which achieved a macro F1-score of 63%
in the official Codabench shared task evaluation.
Results show that multimodal integration signif-
icantly outperforms unimodal models, especially
where meaning depends on text-image interaction.
Future work includes exploring advanced fusion
methods, Vision-Language Models (VLMs), ad-
vance data augmentation to mitigate class imbal-
ance, leveraging external context for subtle cues,
and extending to multilingual scenarios.

Limitations

This work is limited to deep learning and trans-
former models, excluding traditional machine
learning comparisons. The imbalanced dataset
without advanced augmentation may have led to
biased predictions. While multimodal fusion im-
proved results, it also increased overfitting risks
and computational costs.
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A Dataset Statistics

We follow the official train, development, and test
splits without modification. The memes cover com-
mon Arabic social topics, including politics, pub-
lic figures, religion, security, and social issues,
making the dataset representative for real-world
vision–language tasks. The training set contains
2,143 samples (1,930 non-hateful, 213 hateful), the
development set has 312 samples (281 non-hateful,
31 hateful), and the test set includes 603 samples
(452 non-hateful, 151 hateful).

Hate label Train Dev Test WT UWT

Non_hateful 1930 281 452 36123 18059
Hateful 213 31 151 6484 4770

Total 2143 312 603 42607 22829

Table A.1: Class distribution of training, development,
and test sets. WT denotes total words and UWT denotes
unique words for each class.

Table A.1 shows that the dataset suffers from
a notable class imbalance, with non-hateful sam-
ples dominating across all splits. This imbalance
poses challenges for training reliable classifiers and
highlights the need for robust evaluation strategies.

B Hyperparameter Setting

B.1 Unimodal Hyperparameters
Table B.1 summarizes the hyperparameters used
for the textual models (AraBERT, mBERT, and
BERT). The parameters include the learning rate,
number of epochs, batch size, dropout rate, opti-
mizer, and activation function. These values were
selected after systematic tuning to achieve stable
and consistent performance across the text-only
experiments.

Hyperparameter AraBERT mBERT BERT

Dropout rate 0.5 0.5 0.5

Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001

Epochs 16 16 20

Batch size 32 32 32

Table B.1: Hyperparameters used for training the textual
models

Hyperparameter InceptionNet EfficientNetB3 EfficientNetB7

Dropout rate 0.5 0.5 0.5

Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001

Epochs 16 16 20

Batch size 32 32 32

Table B.2: Hyperparameters used for training the visual
models

Table B.2 presents the hyperparameters adopted
for the visual feature extraction networks (In-
ceptionResNetV2, EfficientNetB3, and Efficient-
NetB7). Similar to the textual models, we opti-
mized learning rate, epochs, batch size, dropout
rate, optimizer, and activation function. The visual
backbones were initialized with ImageNet weights,
and the classification head was fine-tuned to adapt
the features to our task.

B.2 Multimodal Hyperparameters
The selected hyperparameters are summarized in
Table B.3.
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Hyperparameter Im Ib Ia E3m E7m

Dropout rate 0.5 0.5 0.5 0.5 0.5
Optimizer Adam Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001 0.001
Epochs 16 16 20 16 16
Batch size 32 32 32 32 32

Table B.3: Hyperparameters used for training the multi-
modal models, where Im, Ib, Ia, E3m, and E7m denote
InceptionNet + mBERT, InceptionNet + BERT, Incep-
tionNet + AraBERT, EfficientNetB3 + mBERT, and
EfficientNetB7 + mBERT, respectively

C Error Analysis

Both quantitative and qualitative error analyses
were carried out to better understand the strengths
and weaknesses of the best-performing model.

C.1 Quantitative Analysis

Table C.1 presents the analysis of our model and
shows that it achieved an overall accuracy of 85%,
with particularly strong results for the non-hateful
class (F1-score of 0.91). For the hateful class,
which represented the minority category, precision
was lower at 0.36, though recall remained rela-
tively high at 0.65. Given the dataset’s class im-
balance, macro F1-score (0.69) was used as the
primary evaluation metric, as it equally weights
both classes and provides a balanced performance
measure. Table C.2 shows the official leaderboard,
the system maintained strong generalization, with
a macro F1-score of 63% on the unseen test set.

Class Precision Recall F1-score Support G_score

non_hateful 0.96 0.87 0.91 281 0.91
hateful 0.36 0.65 0.46 31 0.48
macro avg 0.66 0.76 0.69 312 0.69
weighted avg 0.90 0.85 0.87 312 0.87
accuracy - - 0.85 312 -

Table C.1: Class-wise performance report on the valida-
tion set of the best-performing model

The confusion matrix in Figure C.1, provides
a clear view of how the model distinguishes be-
tween hateful and non-hateful memes.The model
correctly identified 267 non-hateful memes and 4
hateful memes. However, it misclassified 14 non-
hateful memes as hateful and failed to detect 27
hateful memes.From a qualitative perspective, the
fusion approach performs well when both text and
image contribute useful and complementary infor-

Position Team_Name Macro F1-Score (%)

1 NYUAD 80

2 yassirea 75

3 mzaytoon 74

4 itbaan 72

5 annasshaikh2003 68

6 joy_2004114 63

Table C.2: Leaderboard standings for the task

mation. In such cases, subtle textual hints com-
bined with strong visual signals enable the model to
correctly identify hateful content, where unimodal
baselines often fail.

Figure C.1: Confusion matrics of best model

However, the model is not flawless. When one
modality introduces misleading or ambiguous in-
formation, the fusion method can still occasionally
succeed, but it is also vulnerable to misclassifica-
tion. These errors highlight that while multimodal
fusion strengthens overall performance, it remains
sensitive to noise or imbalance in either modality.

C.2 Impact of Class Imbalance

The dataset’s strong class imbalance (only ∼10%
hateful samples) impacted the model’s ability to
maintain high precision for the hateful class. Al-
though our model improved hateful recall com-
pared to several baselines, targeted class balancing
or augmentation strategies could further enhance
performance in future work.
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C.3 Qualatitative Analysis
Figure presents sample outputs from the model, il-
lustrating both correct and incorrect classifications.
In the first image, labeled as hateful, the model
predicted non-hateful, likely due to its focus on ex-
plicit textual features while overlooking subtle vi-
sual cues indicating offensive intent. In the second
image, labeled as non-hateful, the model misclas-
sified it as hateful, reflecting sensitivity to certain
visual or textual patterns that resemble hateful con-
tent. A major factor contributing to these errors
is the significant class imbalance in the dataset,
which biases the model toward dominant classes
and limits its ability to generalize to underrepre-
sented hateful samples. These findings highlight
the need for improved context-aware multimodal
modeling and strategies to mitigate imbalance ef-
fects.
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Abstract

The escalating presence of propaganda
and hate speech on social media platforms
underscores the need for robust automated
detection systems to preserve the integrity
of public discourse. Our team, participated
in the MAHED 2025 Shared Task at the
ArabicNLP 2025 conference, co-located
with EMNLP 2025, focusing on Subtask 1
(Text-based Hate and Hope Speech Classifi-
cation) and Subtask 2 (Emotion, Offensive,
and Directed Hate Detection) in Arabic
content. In Subtask 1, we experimented with
models including XLM-RoBERTa-Large,
Davlan/xlm-roberta-base-finetuned-arabic,
asafaya/bert-base-arabic, aubmindlab/bert-
base-arabertv2, Google Gemma-7B, and
Qwen2.5-14B-Instruct, achieving the highest
macro-f1 of 0.674 with Gemma-7B and
ranking 12th on the leaderboard. In Subtask 2,
using models such as aubmindlab/bert-base-
arabertv2, Google Gemma-7B, Qwen2.5-
14B-Instruct, asafaya/bert-base-arabic, and
domain-specific hate-speech models, our best
macro-f1 was 0.48 with both Gemma-7B and
aubmindlab/bert-base-arabertv2, placing us
6th in the leaderboard.

1 Introduction

Hate and hope speech uses negative or positive
expressions in text to influence readers’ behav-
ior, opinions, or emotions for a specific agenda.
It is widespread on social media in tweets, posts,
and comments, often with inherent bias. These
speeches shape public perception and attract at-
tention by amplifying offensive content, emo-
tional appeals, or harmful narratives. Detecting
hate, hope, and offensive content is essential to
curb misleading or harmful information. Hate,
hope, and offensive speech detection in Arabic text
is challenging due to subtle sentiment, sarcasm,
and context-dependent meanings. Social media
content includes slang, abbreviations, and mixed

styles, adding complexity. There is a gap in large-
scale annotated datasets and specialized NLP tools
for this compared to general sentiment analysis.
This paper aims to detect such speech in Arabic
social media posts and comments.

The MAHED 2025 shared task (Zaghouani
et al., 2025) provides datasets for Subtask 1
and Subtask 2, labeled for offensive, hate, and
hope speech, as a benchmark.We participated
in subtask 1 and subtask 2. To achieve our
goal, we augmented under-represented classes
using back translation and evaluated mod-
els like XLM-RoBERTa-Large (Conneau et al.,
2020), Davlan/xlm-roberta-base-finetuned-arabic
(Davlan Team, 2023), asafaya/bert-base-arabic
(Safaya et al., 2020), aubmindlab/bert-base-
arabertv2 (Antoun et al., 2020), Google Gemma-
7B (Mesnard et al., 2024) with classification head,
and Qwen2.5-14B-Instruct (Yang et al., 2024).
Each model was trained and assessed on the
dataset. For Subtask 1 (Text-based Hate and
Hope Speech Classification), Google Gemma-
7B achieved a macro-F1 score of 0.674, rank-
ing 12th. For Subtask 2 (Emotion, Offen-
sive, and Directed Hate Detection), Gemma-7B
and aubmindlab/bert-base-arabertv2 scored 0.48
macro-F1, placing 6th.

The core contributions of our research work in-
clude:

1. augmenting underrepresented classes using
back translation,

2. leveraging external datasets to enrich training
data, and

3. applying both large language models (LLMs)
and Arabic-specific transformer models to
improve detection of hate, hope, offensive,
emotion, and directed hate speech in Arabic
content.
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Detailed implementation information is available
in the linked GitHub repository 1

2 Related Work

Hate speech detection in Arabic text has gained
attention due to content moderation needs. Za-
ghouani et al. (2024a) developed a multi-label
hate speech annotated Arabic dataset for model
training. Biswas and Zaghouani (2025a) created
an annotated corpus of Arabic tweets for hate
speech analysis. This establishes benchmarks for
Twitter-based systems. Hope speech serves as
a counter to hate speech in research. Biswas
and Zaghouani (2025b) introduced the EmoHope-
Speech dataset annotated for emotions and hope
speech in English and Arabic. The bilingual
dataset enables cross-lingual studies. It supports
identifying positive and harmful content, offer-
ing a nuanced approach beyond binary classifi-
cation. Hate speech research now includes mul-
timodal analysis. Alam et al. (2024a) analyzed
Arabic memes for propaganda-hate links using
multi-agent LLMs. The ArMeme dataset (Alam
et al., 2024b) shows how propagandistic memes
evolve into hateful content. This highlights pro-
gression from persuasion to explicit hate. Propa-
ganda detection intersects with hate speech. The
WANLP 2022 shared task (Alam et al., 2022)
set benchmarks for Arabic propaganda. Hasanain
et al. (2024b) examined GPT-4 for propaganda
spans in news. SemEval-2024 Task 4 (Dimitrov
et al., 2024) focused on multilingual persuasion
in memes. ArAIEval (Hasanain et al., 2023) tar-
geted persuasion and disinformation in Arabic.
Transformer models improve Arabic classifica-
tion. Models like XLM-RoBERTa and AraBERT
are standard. LLMs such as Gemma and Qwen
perform well in tasks. Hasanain et al. (2024a)
showed LLM effectiveness in propaganda annota-
tion. Multitask learning detects emotions, offen-
sive language, and hate using shared representa-
tions. Arabic hate speech detection continues to
face challenges including dialectal variations, cul-
tural context sensitivity, and evolving online hate
speech patterns. The MAHED 2025 shared task
builds upon these foundations while addressing
contemporary challenges in Arabic social media
content moderation through combining traditional
classification with modern large language models.

1GitHub Repository

3 Data

For Subtask 1, we used the dataset from the MA-
HED 2025 shared task (Zaghouani et al., 2025),
consisting of Arabic social media posts labeled as
not_applicable, hope, or hate, introduced in (Za-
ghouani et al., 2024b). The dataset is divided into
training, development, and test sets, though spe-
cific split sizes are not detailed here. The train-
ing set includes 6,890 samples with notable im-
balances: 3,697 not_applicable, 1,892 hope, and
1,301 hate, as shown in Figure 1.

For Subtask 2, we used the EmoHopeSpeech
dataset (Zaghouani and Biswas, 2025), which con-
tains 5,960 rows annotated with emotions, offen-
sive and hate speech in English and Arabic.The
distribution of frequecies for each label are given
in Table A.

Examples of each label are given in section B

4 System

We have participated in subtask 1 and 2, which
are an unimodal and multilabel text classification
task. Figure 2 presents our proposed multi-output
classification architecture for Arabic text analysis.

4.1 Data Augmentation
We have done data augmentation only for subtask-
1.The original training dataset exhibited signifi-
cant class imbalance with 3,697 not_applicable,
1,892 hope, and 1,301 hate instances. We imple-
mented a multi-stage augmentation strategy to ad-
dress this imbalance.

External Dataset Integration We incorporated
additional datasets: 130 instances from an Arabic
optimism dataset2 for hope speech and additional
hate speech samples from an external corpus3.

Synonym Replacement and Back-Translation
For the "hope" class, we applied Arabic synonym
replacement using a comprehensive dictionary4,
preserving URLs, emojis, and punctuation while
replacing content words. We generated 1,675 ad-
ditional samples through this process. We fur-
ther implemented back-translation (Arabic En-
glish Arabic) using Google Translate API: (1)

2https://data.mendeley.com/datasets/
mcnzzpgrdj/2

3https://www.sciencedirect.com/
science/article/pii/S2352340923008144

4https://github.com/mdanok/ArabicLT/
master/csv/synonyms.csv
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Figure 1: Label Distribution Before and After Augmentation for subtask-1

Figure 2: Overview of our proposed multi-output classification system for Arabic text analysis.

translating synonym-replaced Arabic to English,
(2) applying English synonym replacement using
WordNet and spaCy on nouns, verbs, adjectives,
and adverbs, and (3) translating back to Arabic.
This introduced natural linguistic variations while
preserving semantic content.

Label Before After
not_applicable 3,697 3,697
hope 1,892 3,697
hate 1,301 3,697
Total 6,890 11,091

Table 1: Dataset distribution before and after augmen-
tation

The augmentation successfully created a bal-
anced dataset with 3,697 instances per class, rep-
resenting a 61% increase in total samples and en-
suring equal learning opportunities for all cate-
gories. Figure 1 illustrates the class distribution
before and after the augmentation process.

4.2 Data Preprocessing

To ensure clean and consistent input for our mod-
els, we implemented a comprehensive preprocess-
ing pipeline shown in this table2 for the Arabic
text data. The preprocessing steps were applied se-
quentially to handle the specific challenges of Ara-
bic social media text. This preprocessing pipeline
ensured that our models received clean, normal-
ized Arabic text optimized for classification tasks
while preserving essential semantic content.

4.3 Initial Experimentation

In our initial experiments for both subtasks, we
explored several transformer-based models to es-
tablish baselines and understand the performance
landscape. Using xlm-roberta-large on
both augmented+preprocessed and raw datasets,
we observed that while the augmented data
showed a strong bias towards the hope label, per-
formance on the raw dataset was primarily skewed
towards not_applicable. Balanced experiments
on subsets demonstrated that data preprocessing
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Table 2: Examples of Preprocessing Actions on Arabic
Text.

and balancing played a crucial role in improv-
ing model performance. Building on this, we
evaluated additional models including Gemma,
Qwen (14B and 2.5-14B-instruct), asafaya/bert-
base-arabic, aubmindlab/bert-base-arabertv2,
and Davlan/xlm-roberta-base-finetuned-arabic,
as well as specialized hate speech models such
as hossam87/bert-base-arabic-hate-speech (Hos-
sam, 2023) and Hate-speech-CNERG/dehatebert-
mono-arabic (Aluru et al., 2020), which showed
strong bias towards the hate label in training.
Across these experiments, performances var-
ied depending on model architecture and data
preprocessing strategies.

4.4 Overview of the Adopted Model

For Subtask 1, we evaluated several models on
different versions of the dataset, including XLM-
RoBERTa-large, Qwen-14B, and Davlans XLM-
RoBERTa-base fine-tuned models. Among these,
Gemma7b with selected parameters(C) consis-
tently achieved the highest accuracy across com-
binations of training, validation, and test sets, out-
performing others with accuracies ranging from
0.47 to 0.67 depending on the dataset composition.

Similarly, for Subtask 2, Gemma was again cho-
sen as the primary model. Other transformer-
based models showed competitive performance,
but Gemma provided the most consistent and re-
liable results for our multi-label Arabic classifi-
cation task. We used the standard pre-trained
tokenizer, set appropriate maximum sequence
lengths, and experimented with hyperparameters
such as learning rate, batch size, and number of
epochs to optimize performance.

5 Results and Analysis

In this section, we summarize the key findings of
our experiments, focusing on which approaches
performed best rather than presenting full tables.

5.1 Evaluation Metrics
We evaluate using the macro-F1 score, which bal-
ances performance across all classes by averaging
F1-scores independently for each label.

5.2 Comparative Analysis
Our experiments show that among all tested ap-
proaches, Google Gemma-7B with DoRA con-
figuration achieved the best results for Subtask
1 (Hate and Hope Speech Classification), reach-
ing an accuracy of 0.67. The comprehensive per-
formance comparison across different models and
dataset configurations for Subtask 1 is presented
in Table 3.

Model Dataset Configuration Macro-F1

XLM-
RoBERTa-
Large

Augmented + Preprocessed 0.33
Given Dataset 0.54
Given Dataset (1301 per label) 0.32
Cleaned + 1301 per label + Non-cleaned Val 0.59
Preprocessed + 1301 per label + Cleaned test 0.57
Preprocessed given + Unprocessed test 0.23

Google
Gemma-7B

Given + LoRA config 0.66
Given + preprocessed test 0.60
Given + 1301 per label 0.48
Given + 1301 per label + processed test 0.47
Given + DoRA + Unprocessed test 0.67
Given + DoRA + processed test 0.64

Qwen-14B 1300 data samples 0.43
Davlan/xlm-
roberta-base-
arabic

Given Dataset 0.63
Preprocessed Dataset 0.61
Augmented + preprocessed 0.59

Table 3: Performance comparison for Subtask 1 across
different models and dataset configurations.

For Subtask 2 (Emotion, Offensive, and Di-
rected Hate Detection), the highest macro-F1
score (0.48) was obtained by three models:
Qwen2.5-14B-Instruct, aubmindlab/bert-base-
arabertv2, and Google Gemma-7B. The perfor-
mance comparison for Subtask 2 is shown in Ta-
ble 4.

6 Error Analysis

6.1 Confusion Matrix Analysis
To evaluate the classification performance in de-
tail, we analyze the confusion matrices generated
by our best performing Gemma-7B model. For
Subtask 1, the confusion matrix (shown in Fig-
ure 8 in Appendix D) demonstrates the model’s
ability to distinguish between hate speech, hope
speech, and not applicable content.
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Model Macro-F1 Notes
Qwen2.5-14B-Instruct 0.48 -
asafaya/bert-base-arabic (3
epochs)

0.45 -

asafaya/bert-base-arabic
(20 epochs)

0.44 -

aubmindlab/bert-base-
arabertv2

0.48 -

aubmindlab/bert-base-
arabertv2

0.42 Preprocessed

Google Gemma-7B 0.48 -
Ensemble (XLM-
RoBERTa + Gemma +
dehatebert)

0.43 -

Table 4: Performance comparison for Subtask 2 show-
ing macro-F1 scores.

For Subtask 2, we examine three separate con-
fusion matrices corresponding to the multi-label
classification components: emotion classification
(Figure 9), offensive content detection (Figure 10),
and hate speech detection within offensive content
(Figure 11). These matrices provide insights into
the model’s performance across different aspects
of the multi-label task.

6.2 Error Patterns

The confusion matrices reveal several key patterns
in model performance:

• Subtask 1 Performance: The model shows
good discrimination between hate and hope
classes but occasionally confuses both with
not_applicable content. This suggests that
the model sometimes struggles to identify the
presence of clear hate or hope indicators in
ambiguous text.

• Emotion Classification: The model per-
forms well on distinct emotions like joy and
anger but struggles with subtle emotional dis-
tinctions. This indicates that while the model
can capture clear emotional signals, it faces
challenges in differentiating between closely
related emotional states.

• Offensive Content Detection: The analysis
shows high precision but some recall issues,
particularly with borderline cases. This sug-
gests the model tends to be conservative in
its offensive content predictions, potentially
missing some subtle forms of offensive lan-
guage.

• Hate Speech Detection: Within offensive
content, the model demonstrates the inher-
ent challenge of distinguishing targeted hate
from general offensive language. This high-
lights the complexity of the hate speech de-
tection task, where the boundary between of-
fensive and hateful content is often nuanced.

These error patterns provide valuable insights
into the limitations of current approaches and sug-
gest directions for future improvements in hate
and hope speech classification systems.

7 Conclusion

Our study demonstrates the effectiveness of
transformer-based and LLM approaches for Ara-
bic hate, hope, offensive, and emotion detection,
with Gemma-7B achieving the strongest results.
However, the models show limitations in handling
text with divine or religiously inspired speech,
often misclassifying such hopeful expressions as
neutral or humorous, as observed in our error anal-
ysis. Moreover, due to limited computational re-
sources, we could not experiment with larger mod-
els capable of capturing broader context. As fu-
ture work, we plan to incorporate domain-specific
religious and cultural corpora to better model di-
vine hopeful speech and explore larger-scale or
more efficient models to enhance contextual un-
derstanding and overall robustness.

References
Firoj Alam, Md Rafiul Biswas, Uzair Shah, Wajdi Za-

ghouani, and Georgios Mikros. 2024a. Propaganda
to hate: A multimodal analysis of arabic memes with
multi-agent llms. In International Conference on
Web Information Systems Engineering, pages 380–
390. Springer.

Firoj Alam, Abul Hasnat, Fatema Ahmad, Md. Arid
Hasan, and Maram Hasanain. 2024b. ArMeme:
Propagandistic content in Arabic memes. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 21071–
21090, Miami, Florida, USA. Association for Com-
putational Linguistics.

Firoj Alam, Hamdy Mubarak, Wajdi Zaghouani, Gio-
vanni Da San Martino, and Preslav Nakov. 2022.
Overview of the WANLP 2022 shared task on pro-
paganda detection in Arabic. In Proceedings of the
The Seventh WANLP, Abu Dhabi, United Arab Emi-
rates (Hybrid). ACL.

Sai Saket Aluru, Binny Mathew, Punyajoy Saha, and
Animesh Mukherjee. 2020. Deep learning mod-

696

https://doi.org/10.18653/v1/2024.emnlp-main.1173
https://doi.org/10.18653/v1/2024.emnlp-main.1173


els for multilingual hate speech detection. arXiv
preprint arXiv:2004.06465.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: A pre-trained arabic language model. In
Proceedings of the 4th Workshop on Open-Source
Arabic Corpora and Processing Tools, Marseille,
France. European Language Resource Association.

Md. Rafiul Biswas and Wajdi Zaghouani. 2025a. An
annotated corpus of arabic tweets for hate speech
analysis. CoRR, abs/2505.11969.

Md. Rafiul Biswas and Wajdi Zaghouani. 2025b. Emo-
hopespeech: An annotated dataset of emotions
and hope speech in english and arabic. CoRR,
abs/2505.11959.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, Florence,
Italy. Association for Computational Linguistics.

Davlan Team. 2023. Xlm-roberta base fine-tuned for
arabic. No specific academic paper is associated
with Davlan/xlm-roberta-base-finetuned-arabic; re-
fer to the Hugging Face model page for details.

Dimitar Dimitrov, Firoj Alam, Maram Hasanain, Abul
Hasnat, Fabrizio Silvestri, Preslav Nakov, and Gio-
vanni Da San Martino. 2024. Semeval-2024 task
4: Multilingual detection of persuasion techniques
in memes. In Proceedings of the 18th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2024), Mexico City, Mexico. Association for Com-
putational Linguistics.

Maram Hasanain, Fatema Ahmad, and Firoj Alam.
2024a. Large language models for propaganda span
annotation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 14522–
14532, Miami, Florida, USA. Association for Com-
putational Linguistics.

Maram Hasanain, Fatema Ahmed, and Firoj Alam.
2024b. Can gpt-4 identify propaganda? annotation
and detection of propaganda spans in news articles.
In Proceedings of the 2024 Joint International Con-
ference On Computational Linguistics, Language
Resources And Evaluation, LREC-COLING 2024,
Torino, Italy.

Maram Hasanain, Firoj Alam, Hamdy Mubarak, Samir
Abdaljalil, Wajdi Zaghouani, Preslav Nakov, Gio-
vanni Da San Martino, and Abed Alhakim Frei-
hat. 2023. ArAIEval Shared Task: Persuasion tech-
niques and disinformation detection in arabic text.
In Proceedings of the First Arabic Natural Language
Processing Conference (ArabicNLP 2023), Singa-
pore. Association for Computational Linguistics.

Hossam. 2023. Bert base arabic hate speech detection
model. Hugging Face model repository.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
et al. 2024. Gemma: Open models based on
gemini research and technology. arXiv preprint
arXiv:2403.08295.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret.
2020. KUISAIL at SemEval-2020 task 12: BERT-
based multi-label classification for offensive lan-
guage detection. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, Barcelona (on-
line). International Committee for Computational
Linguistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, et al. 2024. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115.

Wajdi Zaghouani and Md Rafiul Biswas. 2025. Emo-
hopespeech: An annotated dataset of emotions and
hope speech in english and arabic. arXiv preprint
arXiv:2505.11959.

Wajdi Zaghouani, Md Rafiul Biswas, Mabrouka Bess-
ghaier, Shimaa Ibrahim, Georgios Mikros, Abul
Hasnat, and Firoj Alam. 2025. MAHED shared
task: Multimodal detection of hope and hate emo-
tions in arabic content. In Proceedings of the Third
Arabic Natural Language Processing Conference
(ArabicNLP 2025), Suzhou, China. Association for
Computational Linguistics.

Wajdi Zaghouani, Hamdy Mubarak, and Md. Rafiul
Biswas. 2024a. So hateful! building a multi-
label hate speech annotated Arabic dataset. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 15044–15055, Torino, Italia. ELRA and
ICCL.

Wajdi Zaghouani, Hamdy Mubarak, and Md Rafiul
Biswas. 2024b. So hateful! building a multi-
label hate speech annotated arabic dataset. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 15044–15055.

A Label distribution
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C Parameter Settings

For both Subtask 1 and Subtask 2, we adopted the
DoRA-enhanced transformer model, “Gemma”,
and set the parameters as follows. The learn-
ing rate was set to 1 × 10−4 with no weight
decay applied. The model was trained for 3
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Figure 3: Data example for subtask 1

Figure 4: Data example for emotion column of sub-
task 2

Figure 5: More example for emotion column of sub-
task 2

Table 5: Label distribution in the EmoHopeSpeech
dataset (subtask2)

Column name Label Frequency

Emotion

Anger 1551
Disgust 777
Neutral 661
Love 593
Joy 533
Anticipation 491
Optimism 419
Sadness 335
Confidence 210
Pessimism 194
Surprise 143
Fear 53

Offensive
No 4216
Yes 1744

Hate (if Offensive = Yes)
Not_hate 1431
Hate 303

Figure 6: Data example of offensive column of sub-
task 2

epochs, with a per-device training batch size
of 1 and gradient accumulation over 4 steps to
simulate a larger batch size. Warmup steps
were set to 10, and the optimizer used was
paged_adamw_8bit. We enabled mixed pre-
cision training with bf16 for efficiency. The max-
imum sequence length for tokenization was 1024,
and padding was applied dynamically using the
DataCollatorWithPadding.

Model checkpoints were saved every 50 steps,

Figure 7: Data example of hate column of subtask 2
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and logging was performed every 10 steps. Un-
used columns in the dataset were removed to op-
timize memory usage. The DoRA configuration
was applied with a rank r of 4, LoRA alpha of 32,
LoRA dropout of 0.1, and targeting the projection
layers q_proj and v_proj.

D Confusion Matrices

This appendix presents the confusion matrices for
both subtasks, providing detailed visualization of
the classification performance.

D.1 Subtask 1: Hate and Hope Speech
Classification

Figure 8: Confusion matrix for Subtask 1 (Hate and
Hope Speech Classification) using Gemma-7B model.

D.2 Subtask 2: Multi-label Classification

Figure 9: Confusion matrix for Emotion classification
in Subtask 2.

Figure 10: Confusion matrix for Offensive content de-
tection in Subtask 2.

Figure 11: Confusion matrix for Hate speech detection
in Subtask 2.
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Abstract

In recent years, online social life has become
an integral part of the global landscape, with so-
cial media platforms enabling users to express
a wide range of emotions and opinions. In the
Arabic-speaking world, navigating the dual na-
ture of content—encompassing both hate and
hope speech—remains challenging due to lin-
guistic and cultural complexities. The MAHED
2025 shared task at ArabicNLP 2025 addressed
this by focusing on detecting both hate and
hope speech in Arabic social media. This pa-
per describes our approach for subtask 1, uti-
lizing various machine learning, deep learn-
ing, and transformer models for classification.
AraBERT-large-v2 yielded the highest macro
f1-score of 0.698, earning 8th place on the
leaderboard.

1 Introduction

Social media platforms, such as Facebook and Twit-
ter, enable widespread communication but also
accelerate the spread of hate speech, which can
fuel hostility and deepen social divides. The hate-
ful content often spreads farther and faster than
non-hateful material, mainly due to closely con-
nected online communities (Mathew et al., 2019).
In Arabic-speaking contexts, detecting hate speech
is challenging due to dialectal diversity, frequent
code-switching, rich morphological structures, or-
thographic variation, and cultural nuances (El-
madany et al., 2024).

Transformer architectures have significantly ad-
vanced hate speech detection. Recent research has
shifted from traditional and deep learning models
to transformer-based approaches, including BERT
and its multilingual variants. Although these mod-
els achieve state-of-the-art performance, they also
introduce higher computational costs, algorithmic
biases, data scarcity, and inconsistent evaluation
practices. The MAHED 2025 shared task (Za-
ghouani et al., 2025) focuses on detecting hope and

hate emotions in Arabic content. This study ad-
dresses subtask 1, which involves classifying hate
and hope speech in Arabic texts. The primary con-
tributions of this work are as follows:

• Investigated the efficacy of various machine
learning models (Logistic Regression, De-
cision Tree, Random Forest, Naive Bayes,
MNB, KNN, and XGBoost), deep learning
models (CNN, BiLSTM, and CNN-BiLSTM),
and transformer-based models (MARBERT,
AraBERT-base, and AraBERT-large) in de-
tecting both hate and hope speech in Arabic
texts.

• Presented a transformer-based approach using
AraBERT-large to classify Arabic social me-
dia texts into hate, hope, and not_applicable
categories.

2 Related Work

Extensive research has been conducted on hate and
hope speech detection, ranging from classical ML
to DL and from transformer models to large lan-
guage models (LLMs). Roy et al. (2022) applied
classical ML models, using Logistic Regression
and TF-IDF features, Random Forest, and XG-
Boost. Their best-performing model was Random
Forest, with an F1 score of 0.96. Yang et al. (2023)
used several LLMs like GPT-3.5-turbo-0613, Flan-
T5, T5-large, GPT-2-large, and two variants of the
HARE framework, Fr-HARE and Co-HARE, to
improve accuracy. Among the models tested, Co-
HARE with Flan-T5 (large) achieved the highest ac-
curacy. Usman et al. (2025) addresses multilingual
hate speech detection in English, Urdu, and Span-
ish using a trilingual dataset of 10,193 tweets. The
evaluated models include LLMs (GPT-3.5 Turbo,
Qwen 2.5 72B), transformers (BERT, RoBERTa),
and SVM with TF-IDF features. Qwen 2.5 72B
achieved the best performance overall, especially
in the joint multilingual setting.
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Recent research has seen significant advance-
ments in the detection of Arabic hate and hope
speech. Zaghouani et al. (2024) evaluated LR,
RF, Gradient Boosting, SVM, Decision Tree, and
AraBERT for this task. AraBERT was the best-
performing model, with an accuracy of 0.83. Charfi
et al. (2024) introduced the ADHAR dataset cov-
ering various dialects. Using AraBERT, they
achieved high performance in hate speech detec-
tion (F1 score of 0.95). Alghamdi et al. (2024)
presented AraTar, where AraBERTv0.2 (base)
achieved the best performance. Yagci et al. (2024)
worked on Turkish and Arabic hate speech de-
tection in the HSD-2Lang shared task, using
AraBERTv02-Twitter fine-tuned with the AdamW
optimizer. Their best-performing configuration
achieved 0.89 accuracy and 0.74 F1 score for Ara-
bic texts. AlDahoul and Zaki (2025) addressed
Arabic hate and hope speech detection, where
an ensemble of GPT-4o-mini, Gemini Flash 2.5,
and Google text embedding with SVM, combined
with a fine-tuned GPT-4o-mini hope/not classifier,
achieved the best performance (macro-F1 score of
72.1%).

Previous research on Arabic hate and hope
speech detection has been constrained by limited
data. In this study, we overcame these constraints
by implementing improved data cleaning and aug-
mentation strategies.

3 Task and Dataset Distribution

The MAHED 2025 shared task aims to advance
research on detecting hate speech, hope speech,
and emotional expressions in Arabic content (Za-
ghouani et al., 2024; Zaghouani and Biswas,
2025b,a). We participated in subtask 1, which
involved classifying Arabic texts into three cate-
gories:

• Hate: Text expressing hostility, bias, or
discrimination against certain individuals or
groups.

• Hope: Text that communicates positivity, en-
couragement, or supportive messages.

• Not Applicable: Text that does not contain
elements of hate or hope speech.

The dataset consists of text samples collected
from Arabic social media platforms and is divided
into a training set (Ttrn), validation set (Tval) and
test set (Ttst). Table 1 shows the statistics of the
dataset.

Table 1: Dataset statistics, where Tw, Tuw, Tmw, and
Taw indicate the number of total words, unique words,
maximum words per text, and average words per text in
the training set, respectively.

Attributes Hate Hope N /A Total
Ttrn 1,301 1,892 3,697 6,890
Tval 261 409 806 1,476
Ttst 287 422 768 1,477
Tw 30,855 41,317 82,700 1,54,872
Tuw 15,606 22,499 42,212 68,126
Tmw 92 105 107 –
Taw 23.0 21.0 22.0 –

4 Methodology

This study explores several ML, DL, and
transformer-based architectures. As shown in Fig-
ure 1, the adopted model follows a multi-stage
design.

4.1 Data Preprocessing
The text preprocessing pipeline systematically
cleans Arabic tweets to improve the model perfor-
mance. It removes punctuation (including Arabic
symbols), numbers, Latin letters, emojis, and ex-
tra whitespace, converts the text to lowercase, and
normalizes the Arabic script by removing Tash-
keel. Additionally, tweet-specific elements, such
as URLs, mentions, and hashtags, were handled,
and informal text was converted to standard Arabic.
This preprocessing ensures that the input data is
normalized and noise-free, making it suitable for
ML, DL, and transformer-based models.

4.2 Data Augmentation
We employed contextual word embedding–based
augmentation using the Arabic BERT model (An-
toun et al., 2020) via the nlpaug1 library, where
selected words were replaced with contextually
similar alternatives predicted by the model. This
approach preserves the semantic meaning of the
original text while introducing lexical and struc-
tural variations, ensuring that the augmented sam-
ples retain their original classification labels.

4.3 Overview of the Adopted Model
We adopted ML, DL, and transformer-based clas-
sifiers for Arabic hate and hope speech detection.

4.3.1 ML Models
For feature representation, we employed the TF-
IDF scheme to represent the textual data. Using the

1https://github.com/makcedward/nlpaug
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Figure 1: Overview of the adopted model

TF-IDF features, we evaluated several ML classi-
fiers, including Logistic Regression (LR), Decision
Tree (DT), Support Vector Machine (SVM), Multi-
nomial Naive Bayes (MNB), Random Forest (RF),
K-Nearest Neighbors (KNN), and XGBoost (XGB).
LR was trained with a maximum of 1200 iterations,
while DT was trained with its default configura-
tion. RF was optimized with tuned estimators and
depth, and SVM was employed with a linear kernel.
For XGBoost, we applied ‘multi:softprob’ objec-
tive, 100 rounds for boosting, multiclass logloss for
evaluation, and ‘gpu_hist’ for the tree construction
algorithm. The KNN model was trained with 12
neighbours.

4.3.2 DL Models
For the DL models, the text was first tokenized
using the Keras library2 with a maximum vocab-
ulary size of 10,000 words, and sequences were
padded or truncated to a fixed length of 150 to-
kens. Multiple neural network architectures were
implemented, including Multi-Layer Perceptron
(MLP) with TF-IDF inputs, BiLSTM, CNN, and
CNN+BiLSTM. MLP was configured with 3 layers
(512, 256, 256), ReLU activation, softmax output,
and trained for 150 epochs with a batch size of 64
and early stopping. The BiLSTM model consisted
of 512 units, a dropout rate of 0.2, and a dense layer
of 256. It was trained for 150 epochs with a batch
size of 64 and learning rate decay (0.96, 1000).
The CNN architecture applied convolution layers
with 512 and 256 filters, a kernel size of 5, vocabu-
lary size of 10,000, maximum input length of 150,
dropout rate of 0.2, and early stopping. The hybrid
CNN+BiLSTM combined a 512-filter convolution
layer with a 256-unit BiLSTM layer, followed by
a dense layer of 128 units and a dropout rate of

2https://keras.io/

0.2. The CNN+BiLSTM model was trained for
100 epochs with a batch size of 64 and early stop-
ping. All models employed embedding layers and
a softmax function for multiclass classification.

4.3.3 Transformer-Based Models
For each transformer-based model, the texts were
tokenized and padded using their respective tok-
enizers from the HuggingFace library. We em-
ployed several transformer-based models for Ara-
bic text classification, including AraBERT-base
(Safaya et al., 2020), MARBERT (Abdul-Mageed
et al., 2021), and AraBERT-large (Antoun et al.,
2020). Each transformer comprises multiple en-
coder layers with multi-head self-attention, feed-
forward networks, residual connections, and layer
normalization, with dropout applied to the hid-
den states and attention weights to prevent over-
fitting. The contextual representation of the [CLS]
token was fed into a fully connected layer for clas-
sification into three categories (hope, hate, and
not applicable). AraBERT-base and MARBERT
were trained with a learning rate of 1 × 10−5

for 20 epochs with a batch size of 128, while
AraBERT-large was trained with varying learning
rates (3.5× 10−6 to 2× 10−5), epochs, and batch
sizes (128 and 256), with or without augmentation.

5 Result Analysis

All experiments were conducted on Kaggle using
two NVIDIA Tesla T4 GPUs with 16 GB of GPU
memory each and 32 GB system RAM. We evalu-
ated the performance of the models using several
metrics, including precision, recall, and macro f1
score (MF1). MF1 was chosen as the primary met-
ric to ensure a balanced performance evaluation of
the models. Table 2 presents a comparative analy-
sis of the performance achieved by ML, DL, and
transformer-based models for Arabic text-based
classification of hope and hate speech.

Among the ML classifiers, Naive Bayes per-
formed best, likely because its probabilistic nature
enhanced its ability to predict positive outcomes,
boosting Recall and thus MF1, which is especially
suitable in cases where positive instances are harder
to capture. In the DL category, CNN + BiLSTM
performed best, with an MF1 score of 0.619, be-
cause it effectively integrated CNN’s local feature
extraction with BiLSTM’s sequential context mod-
eling, resulting in a stronger precision–recall bal-
ance. However, AraBERT-large was the standout
performer among the AraBERT family. Outper-
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Table 2: Performance comparison of ML, DL, and
transformer-based models for Arabic hate and hope
speech classification.

Model Precision Recall MF1
LR 0.652 0.519 0.542
DT 0.516 0.498 0.506
RF 0.652 0.492 0.509
NB 0.638 0.541 0.563
MNB 0.789 0.381 0.325
KNN 0.597 0.494 0.513
XGBoost 0.633 0.517 0.538
MLP 0.617 0.554 0.581
BiLSTM 0.634 0.565 0.582
CNN 0.598 0.594 0.607
CNN + BiLSTM 0.601 0.623 0.619
MARBERT 0.640 0.640 0.640
AraBERT-base 0.600 0.600 0.600
AraBERT-large 0.694 0.697 0.695

forming MARBERT and AraBERT-base in Pre-
cision, Recall, and MF1 scores, AraBERT-large
emerged as the top variant with the highest scores
across all metrics, achieving an MF1 score of 0.695.
This superior performance can be attributed to
AraBERT-large’s broader contextual coverage and
stronger capacity to capture the morphological rich-
ness of Arabic, which enabled it to outperform the
smaller models.

5.1 Ablation Study

The results of the ablation study on the classifica-
tion of hatred and hope discourse in Arabic are
shown in Table 3, with distinct reports for the de-
velopment and testing stages of the models. The
best-performing model was trained for a maximum
of 20 epochs, incorporating early stopping with
a patience of 4. The model converged after 12
epochs. In the development phase, the batch size,
learning rate, and sequence length had a clear effect.
A batch size of 8 and a learning rate of 1 × 10−5

led to stable training, whereas increasing the rate
to 2 × 10−5 slightly reduced performance. Pre-
processing combined with augmentation helped
AraBERT-large and MARBERT achieve the high-
est MF1 score of 0.64, whereas raw data or prepro-
cessing alone yielded lower scores.

In the testing phase, AraBERT-large with prepro-
cessing achieved the best MF1 score (0.69). Using
a smaller learning rate of 3.5× 10−6 and a longer
sequence length of 256 improved generalization,
highlighting the importance of careful hyperparam-
eter tuning along with preprocessing.

5.2 Error Analysis

A detailed error analysis was carried out to un-
derstand the performance of the best-performing
model (i.e., AraBERT-large).

5.2.1 Quantitative Error Analysis
The results highlight the strong performance of
the AraBERT-large model in classifying Arabic
social media texts into hate and hope categories.
The confusion matrix shown in Figure 2 provides a
quantitative breakdown of the predictions.

Figure 2: Confusion matrix of the AraBERT-large
model for the test set

The analysis showed that the model successfully
identified 193 hate samples, 280 hope samples, and
561 not_applicable samples. However, there were a
few misclassifications, with 5 hate instances incor-
rectly labeled as hope and 4 hope instances misclas-
sified as hate. A larger source of error comes from
confusion with the not_applicable class, where 89
hate and 138 hope samples are wrongly predicted
as not_applicable, whereas 80 not_applicable sam-
ples are labeled as hate and 127 as hope. These
errors can be attributed to overlapping linguistic
cues across categories and the class imbalance.

5.2.2 Qualitative Error Analysis
Table 4 demonstrates some sample predictions
made by the AraBERT-large model. Here, samples
2 and 3 were correctly classified, whereas samples
1, 4, and 5 were misclassified. Sample 1 was mis-
labelled as not_applicable when it was hate due
to sarcasm diluting the hateful signals. Sample 4
was predicted as hate instead of not_applicable be-
cause of the strong offensive words that the model
associates with hate, and Sample 5 was inaccu-
rately classified as hope instead of not_applicable
because the positive and uplifting tone resembles
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Table 3: Ablation study on the impact of hyperparameters on the performance of the transformer-based models.

Model Method Batch LR Epochs MaxLen MF1
Development Phase

AraBERT-base Preproc + Aug 8 1× 10−5 20 128 0.60
MARBERT Preproc + Aug 8 1× 10−5 20 128 0.64
AraBERT-large Raw data 8 1× 10−5 20 128 0.61
AraBERT-large Preprocessed 8 1× 10−5 20 128 0.62
AraBERT-large Preproc + Aug 8 1× 10−5 20 128 0.64
AraBERT-large Preproc + Aug 8 2× 10−5 3 128 0.63

Testing Phase
AraBERT-large Raw data 8 1× 10−5 20 128 0.67
AraBERT-large Preproc + Aug 8 3.5× 10−6 20 256 0.69
AraBERT-large Preprocessed 8 3.5× 10−6 20 256 0.69

the hope class. These nuances highlight the impor-
tance of qualitative analysis in understanding the
model performance in specific cases. Moreover,
we observed that dialectal words introduce chal-
lenges in the detection of hate and hope speech.
Sample 1 includes the Gulf/Yemeni dialect expres-
sion “ba’aysh” (“with what”) and sample 5 contains
the Egyptian/Levantine colloquial word “teslamy”
(“thank you” / “bless you”). The presence of di-
alectal expressions in these samples underscores
the complexity of accurately classifying texts in
diverse Arabic dialects.

Table 4: Sample output predictions by the AraBERT-
large model, where Arabic texts were translated using
Google Translate.

6 Conclusion

This work evaluated multiple ML, DL, and
transformer-based models for detecting hate and
hope speech in Arabic. The AraBERT-large model
demonstrated the highest performance, achieving
a macro f1 score of 0.69 and surpassing all other
models tested, benefiting from its broader contex-
tual coverage and stronger ability to capture the
morphological richness of the Arabic language.
However, the system is limited by class imbal-
ance, challenges in capturing nuanced or context-
dependent meanings, and its dependence on the
quality of the training data. Future work should fo-
cus on augmenting the dataset to mitigate class im-
balance, integrating multilingual or cross-domain
data, and investigating hybrid-model architectures
to enhance predictive accuracy.

Limitations

The developed model has several limitations. It re-
lies solely on textual input and cannot leverage mul-
timodal signals, such as images or videos that often
accompany social media posts. Its performance is
also sensitive to preprocessing and augmentation
strategies, which may not generalize well to un-
seen data. Moreover, training on a single dataset
introduces the risk of bias and limits the model’s
adaptability to other dialects, domains, and code-
switched texts.
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The AraNLP system is designed for the 

MAHED Shared Task 2025 on text-based 

hate and hope classification in Arabic. The 

challenge was divided into three subtasks: 

(1) Text-based Hate and Hope Speech 

Classification, (2) Emotion, Offensive, and 

Directed Hate Detection (Multitask), and 

(3) Multimodal Hateful Meme Detection. 

The AraNLP system based on the AraBERT 

model achieved Macro F1-score 65% for 

Sub-task 1 and the results are published in 

the leaderboard, with rank 20. After 

submitting the results, the proposed model 

was updated to improve its performance 

and achieved Macro F1-score 70%, this 

makes the AraNLP system nearly 

equivalent to rank 4 in the leaderboard.   

1 Introduction 

Nowadays, social media platforms (e.g. Twitter, 

Facebook, etc.) facilitate expression of free 

speech. These platforms are very popular for users 

to have discussions and conversations and express 

their thoughts and opinions, but users sometimes 

use them to provide hate towards each other 

(Khezzar, Moursi, and Al Aghbari 2023). 

Moreover, anonymity provided to users on these 

platforms allows the spread of hate speech and 

other offensive material (Alwateer et al. 2025). 

Early and accurate detection of hate speech is 

important for maintaining a respectful and safe 

online environment, especially with the content's 

continuous and rapid growth which can lead to 

negative reactions from users (Al-Saqqa 2024). 

Therefore, there is an essential need to 

automatically detect and report occurrence of hate 

speech in text for different languages. In recent 

years, researchers focus on analyzing data shared 

on social media platforms but their attention is 

mainly directed towards the content written in 

English (Fat’hAlalim et al. 2025). In contrast, 

other languages such as Arabic needs more 

attention from researchers and needs more 

resources that facilitate the research tasks to get 

better results. Focusing on Arabic NLP tasks 

brings many challenges such as the lack of Arabic 

language resources, difficult grammatical 

structure, dialectal variations, and human 

annotation errors (Abdelsamie, Azab, and Hefny 

2026). The goal of the MAHED 2025 Text-based 

Hate and Hope Speech Classification (Sub-task 1) 

is to classify Arabic text as hate, hope, or 

not_applicable. Such challenge is very important 

to encourage the research community to focus 

more on the tasks related to the Arabic content. 

The proposed AraNLP system uses the AraBERT 

model (Antoun, Baly, and Hajj 2020) and the 

experimental results demonstrate that the model 

achieves promising results for Sub-task 1.  

2 Related Work 

Hate speech is a very challenging and complex task 

especially with Arabic dialects as previous studies 

have often used multiple Arabic dialects combined 

in a single dataset without identifying the dialects 

used, which is challenging because it can lead to 

misidentification of non-hateful and hateful 

contexts related to a particular dialect (Abdelsamie 

et al. 2026). Moreover, the lack of adequate 

research on Arabic dialects and the lack of large, 

publicly available datasets highlight the need for 

more investigations about the Arabic hate speech 

detection (Fat’hAlalim et al. 2025).  

Many studies about the detection of hate speech in 

Arabic tweets or social media posts in general have 

used different methods such as machine learning 

techniques, deep learning, the application of 

transfer learning, Arabic BERT-based models, and 

the Large Language Models (LLMs) (Al-Saqqa, 

Awajan, and Hammo 2024). In addition, 

researchers have examined hybrid models that 

combine different approaches to propose ensemble 

methods that incorporate multiple deep learning 

techniques to improve results (Al-Saqqa et al. 

2024).  

AraNLP at MAHED 2025 Shared Task: Using AraBERT for  

Text-based Hate and Hope Speech Classification  
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The arHateDetector Framework was proposed to 

detect hate speech in the Arabic tweets by 

(Khezzar et al. 2023). The authors conducted 

several experiments to evaluate machine learning 

algorithms like logistic regression, Linear SVC, 

and Random Forest, in addition to deep learning 

models like AraBERT and Convolutional Neural 

Networks (CNNs). The experiments prove that 

AraBERT outperformed the other models 

achieving the best performance across seven 

different datasets. 

An interpretable framework to detect hate speech 

in Arabic was developed based on LLMs by 

(Alwateer et al. 2025). The authors focus to 

enhance understanding of model decisions by 

combining interpretable machine learning methods 

with advanced Natural Language Processing 

(NLP) techniques in their proposed method. The 

results show the effectiveness of combining LLM 

with interpretability to provide a transparent 

solution for automated detection of harmful 

content.  

In (Fat’hAlalim et al. 2025), the authors analyze 

Arabic hate speech detection using advanced 

transformer-based models across three datasets 

collected from different social media platforms. 

The analysis includes the effects of data 

augmentation, oversampling, and model 

interpretability using the LIME method. The 

monolingual transformer-based models achieved 

significant performance improvements. Besides, 

they applied cross-validation across datasets to 

evaluate the generalization capabilities of models. 

 In (Abdelsamie et al. 2026), the authors focused on 

understanding of dialect-specific hate speech and 

proposed a multi-task learning approach built upon 

transformer architecture to bridge the gap in hate 

speech detection across Arabic dialects. They used 

publicly available datasets from various dialects, 

the proposed model was designed to identify and 

differentiate subtle hate speech patterns and use 

shared representation knowledge across five 

Arabic dialects: Egyptian, Gulf, Saudi, Levant, and 

Algerian. 

While deep learning, transfer learning, and 

ensemble learning approaches have shown 

potential, many challenges persist, specifically 

with Arabic language difficulties and dialectal 

variations (Fat’hAlalim et al. 2025). In (Ramos et 

al. 2024), the authors highlights that Transformer 

models consistently outperform other methods, but 

their high computational requirements suggest that 

hybrid approaches, combining deep learning with 

traditional machine learning, may be more 

suitable in certain contexts. 

Although significant steps have been made in 

addressing low-resource languages like Arabic, 

there is still a need for further research work to 

improve inclusivity across a wider range of 

cultural and linguistic contexts (Ramos et al. 2024). 

3 Data 

The dataset (Zaghouani, et al., 2024) (Biswas & 

Zaghouani, 2025) (Biswas & Zaghouani, 2025) 

used in the MAHED 2025 Sub-task 1 consists of 

Arabic text (MSA and dialect) with train file of 

6893 tweets, validation file of 1476 tweets, and 

test file of 1477 tweets. Figure 1 shows the 

detailed data format consisting of: tweet id, data 

and label. Each tweet is classified with one of 

three labels: hate, hope, or not_applicable.  

Table 1 illustrates examples of classified tweets 

for different labels. The statistics of the dataset in 

terms of the number of tweets per label is provided 

in Table 2. It can be observed that the dataset is 

imbalanced in the count of tweets of the 

represented labels and this note explains later why 

the trained model is biased towards the 

not_applicable label.   

Tweet Label 

يجب  ومجرمون  لصوص  المهاجرين  كل 

 طردهم فورا  

Hate 

 Hope معا  يمكننا بناء مستقبل أفضل لأطفالنا 

 not_applicable اليوم هو يوم مشمس وجميل 

Label Train Validation Test 

hope 1892 409 422 

hate 1304 262 287 

not_applicable 3697 806 768 

(All Labels) 6893 1476 1477 

Table 2: Statistics of the dataset. 

7197,RT @ayoobe60:  مختصر دين

 حاجات. #معاوية_رأس_الفتنة 4الوهابية 

https://t.co/IvABKys17L,hate 

Tweet data 

Label 

Tweet id 

Figure 1: Train data format. 

Table 1: Examples of different classes  

of labeled data. 
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4 Methodology  

 The proposed system mainly uses the AraBERT 

model (Antoun et al. 2020). AraBERT uses the 

BERT-base configuration that has 12 encoder 

blocks, 768 hidden dimensions, 12 attention 

heads, 512 maximum sequence length, and a total 

of 110M parameters. AraBERT has different 

versions, and all models are available in the 

HuggungFace model page under the aubmind 

name. In the proposed system, the twitter 

AraBERT: 'aubmindlab/bert-base-arabertv02-

twitter' model is used (HuggingFace n.d.). This 

model is selected because it was pretrained on 

60M Arabic tweets with different dialects and 

Modern Standard Arabic (MSA) (i.e. it is a 

general Arabic or a simplified version that does 

not use diacritics and it is usually used in 

newspapers, tweets, etc.) which is similar in 

nature to the MAHED 2025 Sub-task 1 dataset. 

Besides, Arabertv02-twitter has better vocabulary 

coverage for slang, hashtags, and emojis. 

 Figure 2 shows the proposed system based on 

AraBERT model. The AraBERT Preprocessor 

(ArabertPreprocessor) is used for the training and 

validation files to clean the Arabic text. This step 

is important for handling the unique 

characteristics of the Arabic language, such as 

diacritics and ligatures. Then, the data is tokenized 

using the AraBERT tokenizer (AutoTokenizer) to 

convert the text into numerical tokens. After that, 

the distribution of sentence lengths is analyzed to 

help determine an appropriate maximum length. 

The maximum sentence length is determined to be 

128 and truncate longer sentences to avoid 

performance degradation. 27, and 5 tweets of all 

the training, and validation tweets respectively 

exceed the maximum length and have been 

truncated. 

Figure 2 shows the text classification model 

using the fine-tuning approach on a pre-trained 

AraBERT model (aubmindlab/bert-base-

arabertv02-twitter). The training is processed with 

the training parameters such as learning rate, 

batch size, etc. Table 3 illustrates the used uniform 

hyper parameter settings for AraBERTv02-

twitter. 

Once the training is complete, the final fine-tuned 

model is saved to be used later in the prediction 

phase. The last step is to predict the output labels 

of new and unseen text data in the test set using 

the saved model with predict_labels and 

classification report libraries. 

All experiments are carried out on the Google 

Colab environment and covers the entire machine 

learning pipeline from data preparation to model 

training and evaluation. The Google Colab 

platform is used with a NVIDIA L4 GPU, System 

RAM 6.6 / 53.0 GB, GPU RAM 1.3 / 22.5 GB, 

and Disk 40.7 / 235.7 GB. 

Parameter Value 

adam_epsilon 1e-8 

learning_rate 2 e -5 

Number of train epochs 2 

warmup_ratio 0 

per_device_train_batch_size 16 

per_device_eval_batch_size 128 

gradient_accumulation_steps 2 

do_eval True 

load_best_model_at_end True 

metric_for_best_model 

 
'macro_f1' 

greater_is_better 

 
True 

Seed 25 

Table 3: Hyper parameters for AraBERTv02-twitter. 

Test Tweet 

 AraBERT 

Preprocessor 

AraBERT 

Tokenization  

Saved 

Trained 

Model 

M 

Input Raw 

Tweet 

 

AraBERT 

Training  

Tokenization + 

Prediction 

Output Label 

Prediction Phase من جمال حظي اني عرفتك ....ربي يسعد مساك 

Hope 

Training Phase 

Figure 2: AraBERT Tweet Classification Model with labels hope, hate, or not_applicable. 
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5 Results 

 The performance of proposed system is evaluated 

on the validation set after each training epoch. The 

used evaluation metrics include accuracy, macro 

F1-score, precision, and recall, along with a 

confusion matrix.  

The training results are recorded in table 4. 

Although the validation Loss (Model error on 

validation data) is slightly increased from 0.667 to 

0.670 through the two epochs, which might 

indicate no improvement or slight overfitting but 

Macro F1 went from 0.650 to 0.659, which means 

the model got a little better. The Accuracy is 

dropped slightly from 0.680 to 0.675, also do 

Macro Precision from 0.668 to 0.656 meanwhile 

Macro Recall improved from 0.637 to 0.662.  

The confusion matrix for training process shown 

in figure 3, the Class 0 (not_applicable) has 

approximately 19% errors, mostly confused with 

class 1 (hope) while class 1 got about 43% errors, 

mostly confused with class 0 and class 2 (hate) got 

48% errors mostly confused with class 0. The 

model heavily counts on toward predicting class 0 

when unsure. 

To test the model, several experiments have been 

done. So, to differentiate between these 

experiments, they are referenced in this paper as 

Test 1, Test 2, and Test 3. Test 1 is the first 

experiment, and its results are published through 

competition in the leaderboard. Test 2 provides 

improved results than Test 1. The difference in 

results for the two tests comes from the 

predict_label library that was used in Test 2 

instead of the pipeline in Test 1 for getting output 

labels. Test 2 is more accurate and represents 

better results. 

From the classification report for test data (Test 2 

results) in Table 5, it can be observed that while 

68% of real hate is correctly predicted only 51% 

of real hope tweets are correctly found. 78% of 

not_applicable tweets are correctly predicted. The 

corresponding confusion matrix in figure 4 shows 

that about half of hope actual class tweets are 

confused with other labels, which confirms with 

the low recall results for hope class. These results 

suggest that the model generalize well because no  

performance drop from validation to test which 

suggests minimal overfitting. 

 In the third experiment (Test 3),  both train and 

validation data were added in a single file called 

trainall.txt and this file was used to train the model 

with 5 fold Cross Validation and the number of 

epochs was increased from 2 (default value) to 5.  

 

Epoch Training Loss Validation Loss Macro F1 Accuracy Macro Precision Macro Recall 

1 No log 0.667 0.650 0.680 0.668 0.637 

2 No log 0.670 0.659 0.675 0.656 0.662 

 Precision Recall F1-score Support 

Hate 0.70 0.68 0.69 287 

Hope 0.69 0.51 0.59 422 

not_applicable 0.68 0.78 0.72 768 
 

Accuracy   0.68 1477 

Macro Avg 0.69 0.66 0.67 1477 

Weighted Avg 0.68 0.68 0.68 1477 

Table 5: Classification Report for Test 2 (on Test Set). 

Figure 3: Confusion matrix for regular training 

process. 

Table 4: Training Log Table. 

Figure 4: Normalized Confusion Matrix for Test 2. 
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These modifications improve the Test 3 results  

over all metrics compared to Test 1 and Test 2. 

 From the classification report for Test 3 (the last 

improved results) in Table 6, it can be observed 

that while 69% of real hate tweets is correctly 

predicted and only 63% of real hope tweets are 

correctly found. 75% of not_applicable tweets are 

correctly predicted. The corresponding confusion 

matrix for Test 3 in Figure 5 shows that the best 

class not_applicable (recall = 0.75) and the 

weakest one is hope class. The results suggest that 

the model generalize well because no 

performance drop from validation to test which 

suggests minimal overfitting. 

Table 7 and Figure 6 compare the validation 

results for the training process with the predicted 

output labels for the test data using the saved 

trained model. The three experiments results for 

test data are compared in Table 7.  The difference 

between the three experiments for test data have 

been explained earlier in this section.  

In the three test experiments, the model 

generalizes well with no performance drop from 

Validation to Test, which suggests minimal 

overfitting. It is clear that augmenting more data 

samples in training helps to climb higher in 

performance in the experiment Test 3 which 

achieves the better results compared to Test 1 and 

Test 2 results. 

 

6 Conclusion 

Recently, the detection of hate speech from social 

media such as Twitter gains attention of 

researchers. Real-time detection of harmful 

content is essential to safeguarding vulnerable 

communities, so it becomes essential to make 

continued research and development in Arabic hate 

speech detection. 

This paper focuses on the domain of detecting 

hate and hope speech in Arabic. AraBERT model 

is used to detect hate and hope speech in Arabic 

Tweets. Three different experiments have been 

done on the test data and the results are compared 

and explained. The evaluation of AraNLP system 

shows promising and better results in Test 3 than 

Test 1 and Test 2. 

Future work includes evaluating the proposed 

system on various hate speech datasets to evaluate 

the performance of both the multilingual and 

monolingual models. Also, oversampling 

techniques can be used to address the class 

imbalance to improve the proposed model 

performance. In addition, conducting extensive 

experiments by using and evaluating different 

transformer-based models and Large Language 

Models (LLMs) to achieve better results.  

 Precision Recall F1-score Support 

Hate 0.70 0.69 0.69 287 

Hope 0.70 0.63 0.66 422 

not_applicable 0.71 0.75 0.7 768 
 

Accuracy   0.70 1477 

Macro Avg 0.70 0.69 0.70 1477 

Weighted Avg 0.70 0.69 0.70 1477 

 Macro 

F1 
Accuracy 

Macro 

Precision 

Macro 

Recall 

Validation 0.659 0.675 0.6561 0.661 

Test 1  
(Leaderboard) 

0.649 0.677 0.696 0.631 

Test 2 0.67 0.68 0.69 0.66 

Test 3 0.70 0.70 0.70 0.69 

Figure 6: Validation vs. Test Results Comparison. 

Table 6: Classification Report for Test 3  

(on Test Set). 

 

 Macro 

F1 
Accuracy 

Macro 

Precision 

Macro 

Recall 

validation 0.659 0.675 0.6561 0.661 

Test 1  

(leaderboard) 
0.649 0.677 0.696 0.631 

Test2 0.67 0.68 0.69 0.66 

Figure 5: Normalized Confusion Matrix for Test 3. 

Table 7: Results of Validation and Test data. 

 

 Macro 

F1 
Accuracy 

Macro 

Precision 

Macro 

Recall 

validation 0.659 0.675 0.6561 0.661 

Test 1  

(leaderboard) 
0.649 0.677 0.696 0.631 

Test2 0.67 0.68 0.69 0.66 

Table 6: Results of validation and test data. 
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Abstract

This paper describes our system for Task 3 of
the Arabic NLP 2025 competition: detecting
hateful content in Arabic memes. The task re-
quires a robust understanding of both visual
and textual information and their interplay. We
developed and compared three distinct multi-
modal fusion architectures: a Cross-Attention
model, a progressive CNN-based fusion model,
and a two-stage model using custom-trained
embeddings with a gated fusion classifier. All
models leverage pre-trained CLIP and MAR-
BERT encoders for image and text represen-
tation, respectively. We detail our approach
to handling the significant class imbalance in
the dataset through data re-splitting and the
application of a weighted Focal Loss. Our post-
competition analysis, training on all available
data, shows that the CNN-based fusion model
achieved the highest macro F1-score of 0.779,
demonstrating the effectiveness of its hierarchi-
cal feature extraction for this task.

1 Introduction

The proliferation of memes on social media has
transformed them into a potent medium for com-
munication, but also for the spread of hate speech.
Detecting hateful content within memes is a chal-
lenging multimodal task, as the malicious intent
often arises not from the image or text in isolation,
but from their complex and often ironic interplay.
This paper presents our contribution to the Arabic
NLP 2025 Shared Task 3 on Multimodal Hateful
Meme Detection (Zaghouani et al., 2025), which
focuses on classifying Arabic memes as hateful or
not hateful.

Previous work has established benchmarks for
multimodal hate speech detection, often focusing
on English memes and exploring various fusion
strategies (Kiela et al., 2021). While recent efforts
have begun to build valuable resources for Arabic,
such as the ArMeme dataset (Alam et al., 2024b),

a systematic comparison of different deep fusion
architectures specifically for hateful Arabic memes
remains an area ripe for exploration. The optimal
way to combine visual and textual cues—whether
by capturing global context or local patterns—is
not yet well understood for this specific domain.

To address this gap, we conduct a comparative
analysis of three distinct fusion architectures, lever-
aging powerful pre-trained CLIP and MARBERT
encoders as our backbones. We investigate a global
Cross-Attention mechanism, a localized progres-
sive CNN-based approach, and a two-stage Custom
Embedding model. A key part of our methodol-
ogy was also addressing the severe class imbalance
in the dataset through stratified re-splitting and a
weighted Focal Loss. Our experiments reveal that
the progressive CNN model achieves the highest
performance, demonstrating the effectiveness of
learning hierarchical local features for this task.

The main contributions of this paper are as fol-
lows:

1. We provide a direct, empirical comparison of
three different multimodal fusion strategies
(Cross-Attention, CNN, and a two-stage con-
trastive approach) on the task of Arabic hate-
ful meme detection.

2. We demonstrate an effective methodology for
mitigating severe class imbalance through a
combination of stratified data splitting and a
weighted Focal Loss function.

3. Our post-competition analysis provides a
strong performance benchmark, with our best
model achieving a macro F1-score of 0.779
and highlighting the superiority of the CNN-
based fusion approach for this specific task.

Our code is available at a public repository1

1https://github.com/itbaans/ArabicNLP-2025
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2 Related Work

Our research is situated at the intersection of mul-
timodal machine learning, hate speech detection,
and Arabic Natural Language Processing. This sec-
tion reviews key advancements in these areas to
contextualize our contributions.

2.1 Multimodal Hate Speech Detection

The task of identifying hate speech has expanded
from text-only analysis to the more complex do-
main of multimodal content. The Hateful Memes
Challenge by Kiela et al. (2021) was a seminal
work that established a benchmark for the task,
highlighting cases where models fail if they can-
not reason jointly about the image and text. Early
approaches often relied on simple fusion, such as
concatenating features from separate unimodal en-
coders. More recent works have focused on de-
veloping sophisticated deep fusion mechanisms.
Cross-attentional models, which learn to align and
integrate features from different modalities, have
shown strong performance in various vision-and-
language tasks and have been widely adopted for
meme analysis (Tan and Bansal, 2019). Our work
contributes to this line of research by directly com-
paring a cross-attention architecture with alterna-
tive fusion strategies.

2.2 Arabic Multimodal and Hate Speech
Resources

While multimodal research has historically been
dominated by English-language resources, there
has been a significant and growing effort to develop
datasets and models for Arabic. For text-based hate
speech, Zaghouani et al. (2024) provided a large,
richly annotated dataset of Arabic tweets, demon-
strating the effectiveness of transformer-based mod-
els like AraBERT for the task. The challenge of
multimodality in Arabic memes has been tackled
more recently. Alam et al. (2024b) introduced
ArMeme, the first major dataset for multimodal
analysis of Arabic memes, providing annotations
for various tasks including propaganda detection.
Building on this, Alam et al. (2024a) explored the
critical intersection between propaganda and hate
speech in memes, using a multi-agent LLM ap-
proach to annotate and analyze this relationship.
Concurrently, efforts like the ArAIEval shared
task have spurred research into multimodal pro-
paganda detection, with participants such as Shah
et al. (2024) successfully employing fusion archi-

tectures combining BERT with vision models like
ConvNeXt.

Our work builds directly on these foundational
efforts. While previous studies have focused on
creating resources or detecting propaganda, our
paper provides a focused, comparative study of dif-
ferent deep fusion architectures specifically for the
nuanced task of hate speech detection in Arabic
memes, using the dataset provided by the Arabic-
NLP 2025 shared task.

3 System Overview

To conduct our comparative analysis, we developed
three distinct multimodal architectures. All mod-
els share a common foundation, utilizing powerful
pre-trained encoders for initial feature representa-
tion, but differ significantly in their strategy for
fusing these features. A detailed breakdown of
each model’s architecture, including layer config-
urations and hyperparameters, is available in Ap-
pendix A.

3.1 Backbone Encoders

For visual feature extraction, we employ the vision
transformer from openai/clip-vit-base-patch32
(Radford et al., 2021). For the corresponding
Arabic captions, we use UBC-NLP/MARBERT
(Abdul-Mageed et al., 2021). In our end-to-end
models, we adopt a partial fine-tuning strategy, un-
freezing only the final two layers of each encoder to
adapt them to the specific domain of Arabic memes
while preserving their rich, general-purpose knowl-
edge.

3.2 Fusion Architectures

Model 1: Cross-Attention Fusion This model
(Figure 1) is designed to capture the global, inter-
dependent context between modalities. Inspired by
co-attentional transformers (Tan and Bansal, 2019),
it uses a bidirectional cross-attention mechanism
where image and text features query each other to
form contextually enriched representations before
being pooled and classified.

Model 2: CNN-based Fusion In contrast, this
architecture (Figure 2) aims to learn localized, com-
positional features. Motivated by the effective-
ness of convolutions for fusing aligned sequences
(Zadeh et al., 2017), this model uses a stack of 1D
convolutional layers to progressively fuse the im-
age and text embedding sequences, allowing it to
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build a hierarchical understanding of their interac-
tion.

Model 3: Custom Embedding Fusion This
model (Figure 3) follows a two-stage pipeline to de-
couple modality alignment from classification. In
the first stage, we pre-train a custom dual-encoder
model using a contrastive loss, following the CLIP
methodology (Radford et al., 2021), to align the
image and text features into a shared embedding
space. In the second stage, a lightweight classi-
fier fuses these pre-computed embeddings using a
gated mechanism (Arevalo et al., 2017), which dy-
namically weights the contribution of each modal-
ity for the final prediction.

4 Experimental Setup

4.1 Dataset and Preprocessing
The original dataset, introduced by Zaghouani et al.
(2024) and analyzed for multimodal hate speech
by Alam et al. (2024a), was provided with separate
train, development, and test splits. We observed
a significant class imbalance, particularly in the
development set, which could skew validation per-
formance. To create a more stable training and
evaluation environment, we combined all provided
labeled data (train, dev, and the labeled test set
from a previous phase) and performed a new strati-
fied split, allocating 70% for training and 30% for
validation. This ensured that the class proportions
were consistent across both splits.

4.2 Handling Class Imbalance
The dataset is heavily skewed towards the ’not-hate’
class. To mitigate this, we employed a weighted
Focal Loss (Lin et al., 2018) instead of standard
cross-entropy. Focal Loss addresses class imbal-
ance by down-weighting the loss assigned to well-
classified examples, thereby focusing training on
hard, misclassified examples. It is defined as:

FL(pt) = −αt(1− pt)
γ log(pt) (1)

We set the focusing parameter γ = 2. The bal-
ancing parameter αt was set using class weights
computed inversely proportional to class frequen-
cies:

wc =
N

2×Nc
(2)

where N is the total number of samples, and Nc is
the number of samples in class c. These weights
were passed to the loss function, increasing the
penalty for misclassifying the minority ’hate’ class.

4.3 Implementation Details
All models were trained using the AdamW opti-
mizer with a weight decay of 1×10−5. For the end-
to-end models (Cross-Attention, CNN), we used
a learning rate of 2 × 10−5. For the lightweight
fusion classifier (Custom Embedding), we used a
higher learning rate of 5× 10−5. All experiments
were run with a batch size of 32. We used a ‘Re-
duceLROnPlateau‘ scheduler to decrease the learn-
ing rate if the validation F1-score did not improve
for 2 epochs. Early stopping was implemented with
a patience of 10-15 epochs to prevent overfitting.

5 Results and Analysis

We report two sets of results: pre-submission re-
sults based on models trained only on our 70%
training split, and post-submission results where
models were trained on the full combined dataset
(train + validation) and evaluated on the official test
set with gold labels. The official evaluation metric
is macro F1-score.

5.1 Pre-Submission Results
For the official competition submission, we inadver-
tently trained our models only on our 70% training
split, not the full available labeled data. The CNN
and Cross-Attention models were submitted to the
leaderboard. Due to time constraints, the Custom
Embedding model was not submitted, but we report
its projected score on the test set for comparison.
Table 1 summarizes these findings.

The CNN model achieved the highest F1-score
on our validation set, but both submitted models
performed almost identically on the official test
set. The Custom Embedding model, despite its
lower validation score, shows a strong projected
test score, indicating its potential.

5.2 Post-Submission Analysis
After the competition, the test set gold labels were
released. This allowed us to conduct a more thor-
ough analysis by training our models on all avail-
able labeled data (our 70% train + 30% validation
splits combined) and evaluating on the official test
set. The results are shown in Table 2.

Impact of Training Data Size A key finding is
the significant performance boost observed across
all models when trained on the full dataset versus
the partial split. The CNN Fusion model’s F1-
score, for instance, jumped from 0.718 to 0.779
(+6.1 points). This highlights that our models were
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Validation Set (Our Split) Official Test Set
Model Val F1 Precision Recall Accuracy Official F1 Precision Recall Accuracy

Cross-Attention 0.692 0.668 0.750 0.824 0.719 0.733 0.714 0.740
CNN Fusion 0.727 0.696 0.802 0.840 0.718 0.776 0.711 0.754
Custom Emb. 0.690 0.683 0.698 0.853 0.720* 0.752 0.713 0.748

Table 1: Pre-submission results. Models were trained on a 70% split of the data. Metrics for the validation set are
macro-averaged for F1, Precision, and Recall. Official Test F1 is from the CodaLab leaderboard or our projection
based on gold labels (*).

Model Test F1 (Full Data)

Cross-Attention 0.765
CNN Fusion 0.779
Custom Emb. Fusion 0.765

Table 2: Post-submission results. Models were trained
on all available labeled data and evaluated on the official
test set.

data-hungry and that leveraging all available anno-
tations was critical for achieving optimal perfor-
mance. Our pre-submission results were therefore
limited by our experimental oversight.

Model Comparison In the post-submission set-
ting, the CNN Fusion model emerged as the clear
top performer. Its ability to extract and fuse local-
ized features through convolutions appears to be
more effective for this task than the global context
mixing of cross-attention. The progressive nature
of the fusion may also allow it to build more robust
cross-modal representations. The Cross-Attention
and Custom Embedding models achieved identi-
cal, strong scores, demonstrating their viability,
but were ultimately outperformed by the CNN-
based approach. The two-stage custom embed-
ding approach is particularly noteworthy for its
efficiency at inference time, as it only requires run-
ning a very small classifier once embeddings are
pre-computed.

6 Conclusion

In this paper, we presented a comparative study
of three distinct multimodal architectures—Cross-
Attention, progressive CNN, and a two-stage Cus-
tom Embedding fusion—for the task of Arabic hate-
ful meme detection. Our investigation confirmed
that leveraging powerful pre-trained encoders like
CLIP and MARBERT provides a strong founda-
tion. Our findings underscore two critical aspects
for this task: first, the necessity of robust tech-
niques like weighted Focal Loss to handle severe
class imbalance, and second, the significant impact

of training data volume on final performance. Our
post-submission analysis identified the progressive
CNN-based fusion architecture as the most effec-
tive, achieving a final macro F1-score of 0.779
and suggesting that learning localized, hierarchi-
cal cross-modal interactions is a particularly robust
strategy for this domain.

6.1 Limitations and Future Work
Despite these promising results, our study has sev-
eral limitations. A primary concern is the models’
propensity to overfit, evidenced by a decline in vali-
dation performance even as training loss decreased.
This suggests that the complex architectures may
have memorized spurious correlations from the rel-
atively small dataset rather than learning generaliz-
able features of hate speech. Another key limitation
is the "black-box" nature of our fusion mechanisms,
which hinders the interpretability required for reli-
able real-world moderation systems. Furthermore,
our models do not explicitly process text embedded
within images, a common feature in memes.

Future work should directly address these issues.
A promising direction to mitigate both data scarcity
and overfitting is to employ knowledge distillation
(Hinton et al., 2015). One could leverage a power-
ful Vision-Language Model (VLM), such as those
from the CLIP or BLIP families (Radford et al.,
2021; Li et al., 2022), as a "teacher" to generate a
large, pseudo-labeled dataset with soft probability
distributions. A more compact "student" model,
like our CNN architecture, could then be trained to
mimic the teacher’s nuanced outputs, transferring
its reasoning capabilities into a more efficient and
robust model. To improve interpretability, future
research could focus on generating saliency maps
to highlight which image regions and text tokens
most influence a prediction, providing a clearer
view into the model’s decision-making process.
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Figure 1: Architecture of the Cross-Attention Fusion model.

Figure 2: Architecture of the progressive CNN-based Fusion model.

Figure 3: Architecture of the two-stage Custom Embedding Fusion model.
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A Model Architectures and
Implementation Details

A.1 CNN-Based Multimodal Fusion Model
The CNN-based fusion model (CNNMultiModal-
Model) employs 1D convolutional layers to process
and fuse multimodal embeddings from CLIP-ViT
and MARBERT encoders.

A.1.1 CNNFusionLayer Components
The core fusion component uses 1D convolutions
for cross-modal interaction:

• Input Processing: Separate 1D convolutions
for image and text embeddings with kernel
size 3

• Cross-Modal Fusion: Concatenation fol-
lowed by 1×1 convolution for dimensionality
reduction

• Normalization: BatchNorm1d without affine
parameters to prevent overfitting

• Regularization: Progressive dropout rates
(0.2 + layer_index × 0.15)

A.1.2 Backbone Configuration
• Vision Encoder: CLIP-ViT-Base-Patch32

(768-dimensional embeddings)

• Text Encoder: MARBERT (768-dimensional
embeddings)

• Selective Unfreezing: Only the last 2 layers
of each encoder are trainable

• Regularization: 0.3 dropout applied to back-
bone outputs

A.1.3 Classification Head
The final classification component consists of:

Classifier = Sequential(
Dropout(0.5),
Linear(final_dim× 2, final_dim),

GELU(),

LayerNorm(final_dim),

Dropout(0.4),
Linear(final_dim, 2))

A.2 Cross-Attention Fusion Model
The Advanced Fusion Model (AdvancedFusion-
Model) utilizes multi-head cross-attention mecha-
nisms to enable bidirectional information exchange
between visual and textual modalities.

A.2.1 CrossAttentionFusion Module
The fusion mechanism implements bidirectional
cross-attention:

• Text-to-Image Attention:
Attt2i = MultiHeadAttn(Q = I,K =
T, V = T )

• Image-to-Text Attention:
Atti2t = MultiHeadAttn(Q = T,K =
I, V = I)

• Pooling Strategies: Support for mean, max,
and learnable attention pooling

• Feature Concatenation: Final fusion via con-
catenation of pooled representations

A.2.2 Attention Pooling Mechanism
For attention-based pooling, learnable query vec-
tors are employed:

pooled_img = Attention(Q = qimg,K = Attt2i, V = Attt2i)
(3)

pooled_txt = Attention(Q = qtxt,K = Atti2t, V = Atti2t)
(4)

where qimg and qtxt are randomly initialized learn-
able parameters.

A.2.3 Model Configuration
• Attention Heads: 4 heads for cross-attention

modules

• Frozen Backbones: Complete freezing of
CLIP-ViT and MARBERT parameters

• Projection Layer: 512-dimensional interme-
diate representation

• Dropout Rates: 0.4 for projection layer, 0.2
for classification head

A.3 Custom CLIP-Arabic with Embeddings
Fusion

The custom approach involves pre-training a CLIP-
style model on Arabic multimodal data, followed
by embedding-based classification using various
fusion strategies.

A.3.1 CLIPArabic Pre-training
The custom CLIP model implements contrastive
learning:

• Image Encoder: Frozen CLIP-ViT-Base-
Patch32

• Text Encoder: Frozen MARBERT
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• Projection Heads: Linear layers mapping to
512-dimensional space

• Contrastive Loss: Symmetric cross-entropy
on image-text similarity matrix

The contrastive loss function is defined as:

Lcontrastive =
1

2
(Li2t + Lt2i) (5)

where Li2t = CrossEntropy(τ · ITT ,y) (6)

Lt2i = CrossEntropy(τ ·TIT ,y) (7)

with τ being the learnable temperature parameter
and y the identity matrix labels.

A.3.2 Embeddings-Based Classification
The PrecomputedEmbeddingsClassifier supports
multiple fusion strategies:

Gated Fusion (Best Performing):

gimg = σ(Wg,ieimg + bg,i)

gtxt = σ(Wg,tetxt + bg,t)

hfused = gimg ⊙ ReLU(Wieimg)

+ gtxt ⊙ ReLU(Wtetxt)

Alternative Fusion Methods:

• Concatenation: hfused = [eimg; etxt]

• Element-wise Addition: hfused = Wieimg +
Wtetxt

• Element-wise Multiplication:
hfused = Wieimg ⊙Wtetxt

A.4 Training Configuration and
Hyperparameters

Table 3: Training hyperparameters for all models

Parameter CNN Cross-Attn Custom CLIP

Learning Rate 2×10−5 2×10−5 5×10−5

Batch Size 32 32 32
Max Epochs 30 30 30
Early Stop Patience 10 10 10
Weight Decay 1×10−5 1×10−5 1×10−5

Gradient Clipping 1.0 1.0 1.0
Loss Function Focal Focal Focal
Scheduler ReduceLR ReduceLR ReduceLR

A.4.1 Focal Loss Configuration
All models employ Focal Loss to address class
imbalance:

FL(pt) = −αt(1− pt)
γ log(pt) (8)

where γ = 2.0 and αt are computed based on
inverse class frequencies.

A.5 Model Training Curves
To further illustrate the overfitting behavior dis-
cussed in the Limitations section, Figure 4 shows
the training loss and test macro F1-score progres-
sion for all three models. In each case, the test
F1-score (solid lines) peaks relatively early in train-
ing, after which it either stagnates or degrades, even
as the training loss (dashed lines) continues to de-
crease. This divergence is a clear indicator that the
models began to memorize the training data rather
than learning generalizable patterns.
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Figure 4: Comparison of training loss (dashed lines,
right axis) vs. test macro F1-score (solid lines, left axis)
for all models.
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Abstract

We present the findings of the sixth Nuanced
Arabic Dialect Identification (NADI 2025)
Shared Task, which focused on Arabic speech
dialect processing across three subtasks: spo-
ken dialect identification (Subtask 1), speech
recognition (Subtask 2), and diacritic restora-
tion for spoken dialects (Subtask 3). A total
of 44 teams registered, and during the testing
phase, 100 valid submissions were received
from eight unique teams. The distribution
was as follows: 34 submissions for Subtask 1
“five teams”, 47 submissions for Subtask 2 “six
teams”, and 19 submissions for Subtask 3 “two
teams”. The best-performing systems achieved
79.8% accuracy on Subtask 1, 35.68/12.20
WER/CER (overall average) on Subtask 2, and
55/13 WER/CER on Subtask 3. These results
highlight the ongoing challenges of Arabic di-
alect speech processing, particularly in dialect
identification, recognition, and diacritic restora-
tion. We also summarize the methods adopted
by participating teams and briefly outline direc-
tions for future editions of NADI.1

1 Introduction

Spoken Arabic exhibits a remarkable degree of lin-
guistic diversity. Beyond Modern Standard Arabic
(MSA) and Classical Arabic (CA), which have his-
torically dominated computational work, Arabic
encompasses numerous regional and national di-
alects that differ across all linguistic levels (phonol-
ogy, morphology, lexicon, and syntax) and in dis-
course/pragmatics (Talafha et al., 2024; Jarrar et al.,
2023). These varieties also frequently exhibit intra-
and inter-sentential code-switching with other lan-
guages (Abdul-Mageed et al., 2024). These va-
rieties dominate everyday communication across
the Arab world yet remain under-represented in
annotated datasets and resources (Bouamor et al.,

1The official leaderboards and datasets for NADI 2025 are
available at https://nadi.dlnlp.ai/2025.

Figure 1: Overview of the NADI 2025 shared tasks.

2018; Darwish et al., 2021; Abdul-Mageed et al.,
2020, 2023). At the same time, many downstream
applications—from automatic transcription and vir-
tual assistants to text-to-speech and educational
tools—depend on accurate handling of dialectal
speech and the diacritics that indicate short vow-
els and phonological features. Existing systems
trained on CA/MSA (Elmadany et al., 2023a; Toyin
et al., 2023) often ignore these diacritics or assume
text forms, leaving a large gap between technology
and real-world usage.

NADI shared task series, hosted at the Arabic-
NLP conference2 since 2020, was created to alle-
viate this bottleneck by providing curated datasets
and standardized evaluation settings for dialect
identification, translation and related tasks (Abdul-
Mageed et al., 2020, 2021; Abdul-Mageed et al.,
2022, 2023, 2024). These earlier, text-focused edi-
tions—together with the general observation that

2Formerly the Workshop on Arabic Natural Language Pro-
cessing, WANLP
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Arabic dialects remain under-studied due to limited
resources—motivate a shift in NADI 2025 toward
speech and diacritization.

NADI 2025 marks the sixth edition of the NADI
shared task series, hosted by the Third Arabic Nat-
ural Language Processing Conference (ArabicNLP
20253). In the following, we introduce several key
new features that set it apart from previous versions,
focusing on the challenges of real-world, spoken
Arabic dialects:
A unified speech processing benchmark. This
edition brings together three distinct but comple-
mentary tasks, “dialect identification”, “automatic
speech recognition”, and “diacritic restoration”,
under one umbrella. This creates a comprehen-
sive benchmark for evaluating system performance
across the full spectrum of challenges in Arabic
speech processing.
New evaluation datasets and unified benchmark-
ing framework. We introduce a comprehensive
suite of newly-curated datasets across all three sub-
tasks. This includes a high-quality blind test sets
eight-hours speech corpus for spoken dialect iden-
tification, a large-scale 10, 807 utterances for ASR,
and a 1, 332 utterances for diacritic restoration, all
covering diverse Arabic varieties. Beyond the data
itself, NADI 2025 establishes a robust and unified
evaluation framework featuring large-scale blind
test sets to ensure fair comparison. This framework
introduces novel paradigms, such as benchmark-
ing model adaptation in the ADI task and offer-
ing distinct open and closed tracks for Diacritic
Restoration.
A novel diacritic restoration task. We intro-
duce the first shared task for diacritic restoration
that moves beyond formal written Arabic (CA and
MSA) to target spoken dialects and code-switched
language. The task is uniquely designed to encour-
age multimodal solutions that leverage both speech
and text as input.

Figure 1 provides a schematic overview of the
NADI 2025 shared task, illustrating its three main
subtasks including Spoken Arabic Dialect Iden-
tification, which covers eight regional dialects
as “Algerian” (ALG), “Egyptian” (EGY), “Emi-
rati” (UAE), “Jordanian” (JOR), “Mauritanian”
(MAU), “Moroccan” (MOR), “Palestinian” (PAL),
and “Yemeni” (YEM); Multidialectal Arabic ASR,
which targets the exact same set of dialects; and
Diacritic Restoration for Spoken Arabic Dialects,

3https://arabicnlp2025.sigarab.org/

which encompasses MSA, mixed dialects, code-
switched varieties, and CA.

The rest of the paper is organized as follows:
Section 2 provides a review of related work on spo-
ken Arabic processing and the history of the NADI
shared task. In Section 3, we describe the NADI
2025 shared task in detail, including the three sub-
tasks, their datasets, and evaluation metrics. Sec-
tion 4 presents the results for all participating teams
and baselines, followed by an overview of the sub-
mitted systems in Section 5. We conclude the paper
in Section 6.

2 Literature Review

Unlike previous NADI tasks that relied on text,
NADI 2025 concentrates on spoken Arabic dialects.
Accordingly, this section covers related work on the
subtasks of spoken language identification, ASR,
and diacritic restoration. Before delving into the
related work, it is useful to explore the history of
NADI and its growth since its inception.

2.1 NADI Shared Task: Origins and Growth

NADI-2020, the first NADI shared task (Abdul-
Mageed et al., 2020) involved two subtasks, one
targeting country level (21 countries) and another
focusing on province level (100 provinces), both
exploiting X, formerly Twitter, data. NADI 2020
was the first shared task to exploit naturally occur-
ring fine-grained dialectal text at the sub-country
level.
NADI-2021, the second version (Abdul-Mageed

et al., 2021) targeted the same 21 Arab countries
and 100 corresponding provinces as NADI 2020,
also using X data. However, it improved upon the
previous version by removing non-Arabic data and
distinguishing between MSA and dialectical Arabic
(DA). It involved four subtasks: MSA-country, DA-
country, MSA-province, and DA-province.
NADI-2022 (Abdul-Mageed et al., 2022) contin-

ued the focus on studying Arabic dialects at the
country level, but also included dialectal sentiment
analysis with an objective to explore variation in
socio-geographical regions that had not been exten-
sively studied before.
NADI-2023, the fourth edition (Abdul-Mageed

et al., 2023), proposed new machine translation sub-
tasks from four dialectal Arabic varieties to MSA,
in two themes (open-track and closed-track) as well
as a dialect identification subtask at the country
level.
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Finally, NADI-2024, the fifth edition (Abdul-
Mageed et al., 2024), targeted both dialect ID cast
as a multi-label task, identification of the Arabic
level of dialectness, and dialect-to-MSA machine
translation.

2.2 Spoken Dialect Identification
Although CA and MSA have been extensively ex-
amined (Harrell, 1962; Badawi, 1973; Brustad,
2000; Holes, 2004), dialectal Arabic (DA) became
the center of attention only relatively recently. A
significant challenge in studying DA has been
the scarcity of resources, prompting researchers
to create new DA datasets targeting limited re-
gions (Gadalla et al., 1997; Diab et al., 2010; Al-
Sabbagh and Girju, 2012; Sadat et al., 2014; Har-
rat et al., 2014; Jarrar et al., 2016; Khalifa et al.,
2016; Al-Twairesh et al., 2018; Alsarsour et al.,
2018; Abu Kwaik et al., 2018; El-Haj, 2020; Haff
et al., 2022; Nayouf et al., 2023; Jarrar et al., 2023).
Several works introducing multi-dialectal datasets
and models for region-level dialect identification
(Zaidan and Callison-Burch, 2011; Elfardy et al.,
2014; Bouamor et al., 2014; Meftouh et al., 2015)
and the VarDial workshop series employing tran-
scriptions of speech broadcasts (Malmasi et al.,
2016) also followed. Other work developed rela-
tively small-sized commissioned data (Bouamor
et al., 2018; Salameh et al., 2018; Obeid et al.,
2019).

Subsequently, larger datasets that cover between
10 to 21 countries were introduced (Mubarak and
Darwish, 2014; Abdul-Mageed et al., 2018; Za-
ghouani and Charfi, 2018; Abdul-Mageed et al.,
2020; Abdelali et al., 2021; Issa et al., 2021;
Baimukan et al., 2022; Althobaiti, 2022; Elleuch
et al., 2025; Hamad et al., 2025). The majority
of these datasets are compiled from social me-
dia posts, especially X (formerly Twitter). More
recently, benchmarks such as ORCA (Elmadany
et al., 2023b) and DOLPHIN (Nagoudi et al., 2023)
boast dialectal coverage.

Spoken dialect ID shares with text-based dialect
ID a scarcity of labeled data. Important efforts to
counter this include the introduction of the multi-
genre and multidialectal ADI-5 (Ali et al., 2017)
and ADI-17 (Ali et al., 2019; Shon et al., 2020)
datasets (covering coarse regional and fine-grain
country-level dialects, respectively). Moving from
text to speech as a modality, however, introduces
additional complexities such as potential channel
mismatch between train and test sets due to dif-

ferences in recording conditions, as is in the case
with ADI-5 (Ali et al., 2017). Furthermore, dialect
ID models may capture non-linguistic informa-
tion such as gender and channel features (Chowd-
hury et al., 2020), and may experience major per-
formance degradation in cross-domain and cross-
dialect settings (Sullivan et al., 2023; Hamad et al.,
2025).

2.3 Automatic Speech Recognition

Arabic ASR systems often struggle with dialectal
speech, primarily due to lack of (or limited) dialec-
tal data (Waheed et al., 2023). Mozilla Common
Voice (Ardila et al., 2020) and MASC (MSA and
Dialectal Speech) (Al-Fetyani et al., 2022) were
introduced to alleviate this issue. However, both
of these corpora label the data under a single label
(Arabic) instead of different dialect names. Some
of the audio and text samples in these datasets are
also misaligned (Lau et al., 2025). The Casablanca
project (Talafha et al., 2024) compiled high quality
multidialectal speech for eight countries, providing
a significant boost towards research in multidialec-
tal ASR. Djanibekov et al. (2025) have also recently
presented strong results for dialectal Arabic ASR
as well as training strategies that work best based
on data availability for each dialect.

2.4 Diacritic Restoration

Several text-based approaches (Alasmary et al.,
2024; Elgamal et al., 2024; Fadel et al., 2019; Har-
rat et al., 2013) and resources (Toyin et al., 2025;
Zerrouki and Balla, 2017) have been proposed for
Arabic diacritic / vowel restoration. Aldarmaki and
Ghannam (2023) found the speech based approach
to outperform text only approaches. More recently,
speech based or multi-modal approaches have also
been proposed -albeit at a slow rate, mainly due
to lack of parallel speech-text resources (Shatnawi
et al., 2024). Elmadany et al. (2023a) report strong
diacritization models as part of the Octopus toolkit,
based on simple finetuning of AraT5 (Elmadany
et al., 2022). Shatnawi et al. (2024) also propose an
ASR-based diacritic restoration framework, where
a pretrained ASR model generates vowelized tran-
scripts refined by a secondary diacritization model.
While their approach achieved high accuracy for
CA, it fails to generalize to dialectal Arabic due to
dataset limitations.
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3 NADI 2025

NADI 2025 is the sixth edition of NADI shared task
series. Since we extend the scope of the shared task
to address broader challenges in multidialectal Ara-
bic speech processing, we refer to NADI 2025 as
“the first multidialectal Arabic speech processing
shared task”. This edition comprises three comple-
mentary subtasks: spoken Arabic dialect identifica-
tion, multidialectal Arabic ASR, and diacritization
restoration. Collectively, these subtasks target crit-
ical components of the Arabic speech technology
pipeline, each addressing long-standing challenges
arising from the language’s rich dialectal variation,
frequent code-switching, and the absence of dia-
critics in most written Arabic. By curating diverse,
high quality datasets and establishing standardized
evaluation protocols, NADI 2025 aims to catalyze
the development of robust, generalizable systems
that advance state of the art in Arabic speech and
language processing.

3.1 Subtask 1 - Spoken Dialect Identification

Task Description. This subtask is an 8-way clas-
sification task to identify which of country-level
dialect is being spoken in an utterance, with our set
of countries being Algeria, Egypt, Jordan, Mauri-
tania, Morocco, Palestine, United Arab Emirates
(UAE), and Yemen.

Data. In this subtask, we follow similar proce-
dure in selecting utterances to the data collection
procedure of Casablanca (Talafha et al., 2024). For
each dialect, different series were identified and the
dialect spoken was verified by fluent speakers. For
the Adaptation set, we utilize the same series as in
Casablanca, but ensure there is no overlap with the
series used for the Test set. By doing so, we aim to
minimize the influence of potentially overlapping
speakers, and to try to disentangle the dialect ID
task from simple domain classification.

Evaluation Metric. We use both accuracy as
well as the Language Recognition Evaluation 2022
average Cost metric (Cavg) (Lee et al., 2022). Be-
cause Cost is based on the probability of missed
detections as well as false alarms for a given system
it provides a complementary way to characterize
model performance. At a high level, for two mod-
els that have similar accuracy but different Cost,
the lower Cost model will providing a larger posi-
tive margin between the probability of the correct
classes in comparison to incorrect classes, while

the higher Cost model would have a smaller margin
between correct and incorrect class probabilities.

3.2 Subtask 2 - Multidialectal Arabic ASR

Task Description. The ASR subtask2 in NADI-
2025 focuses on building speech recognition sys-
tems that can handle spoken Arabic across a range
of regional dialects: Algerian, Egyptian, Jordanian,
Mauritanian, Moroccan, Palestinian, Emirati, and
Yemeni. The task includes both monolingual and
code-switched speech, which captures the variation
speakers naturally use in different settings.

Data. The dataset used in this subtask is a sub-
set of the Casablanca corpus (Talafha et al., 2024).
In this subtask, we select balanced samples from
each dialect. The training set is intended primar-
ily for adaptation rather than full model training,
encouraging participants to leverage transfer learn-
ing, domain adaptation, and other data-efficient
strategies. We provide a total of 47, 027 utterances,
evenly distributed across the eight dialects for the
training, validation, and test sets (1, 600 utterances
per dialect per split). The only exceptions are Al-
geria, Palestine, and Yemen, which have 727, 900,
and 1, 180 utterances, respectively, in the test set.
These lower counts are due to the limited avail-
ability of samples for these dialects in the original
Casablanca dataset.

Evaluation Metric. System performance is eval-
uated using the word error rate (WER) as the pri-
mary metric, reported both overall and per dialect.
We also report character error rate (CER)4 for ad-
ditional insight into system performance, particu-
larly for short utterances and morphologically rich
forms. During evaluation, in line with Talafha
et al., 2024, we apply a consistent text normal-
ization pipeline to both system outputs and refer-
ence transcripts. Specifically, we: (a) retain only
the % symbol, removing other special characters,
(b) eliminate diacritics, (c) normalize Hamzas and
Maddas to bare alif ( @), (d) convert Eastern Arabic

numerals to Western Arabic numerals (e.g., 29 be-
comes 29), and (e) preserve all Latin characters, as
Casablanca contains code-switching segments in
other languages.

Subtask 3 - Diacritic Restoration for Spoken
Arabic Varieties. This subtask aims to advance

4In the case of a tie, we use the average CER as the
tiebreaker.
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Dataset Type Diacritized Train Dev Test (Ours)

MDASPC Multi-dialectal True 60, 677 — 5, 164
TunSwitch Dialectal, CS True 5, 212 165 110 (110)
ArzEn Dialectal, CS False 3, 344 1, 402 1, 470 (104)
Mixat Dialectal, CS False 3, 721 — 1, 583 (100)
ClArTTS CA True 9, 500 — 204
ArVoice MSA True 2, 507 258 (11)
MGB2 MSA False — — 5, 365 (40)

Table 1: Number of sentences in datasets provided for
the diacritic restoration sub-task. Ours. refers to the
held-out test set for this shared task which we manually
diaritize. CA. refers to Classical Arabic. CS. refers to
code-switching.

research on automatic diacritic restoration for spo-
ken Arabic varieties. As the vast majority of ex-
isting vowelization or diacritic restoration efforts
focus on CA or MSA, we aim to raise attention to
more challenging spoken varieties, such as dialects
and code-switching, with a focus on generalization
across different varieties. The objective of this sub-
task is to restore the diacritics of a given text. The
text can be in a variety of forms, including MSA
and Arabic dialects and may even include code-
switched instances. In addition to text, all inputs
have an associated speech utterance to encourage
multi-modal approaches.

Data. This subtask encourages the development
of multi-modal (speech + text) diacritic restora-
tion models that generalize across Arabic variants.
To enable the development of such models, we
identified several high-quality data sets (Almeman
et al., 2013; Abdallah et al., 2023; Al Ali and Al-
darmaki, 2024; Hamed et al., 2020; Kulkarni et al.,
2023; Toyin et al., 2025) of Arabic variants (CA,
MSA, dialectal, CS) that include parallel speech
and text. Table 1 shows a summary of the data sets
provided to the participants for this subtask. The
MDASPC dataset contains multi-dialectal speech
with diacritized transcriptions and we include it
for training. For the TunSwitch (Abdallah et al.,
2023) training data, we used GPT-4o with a chain-
of-thought prompt to initially diacritize the tran-
scriptions. The diacritized output of GPT-4o was
subsequently manually corrected with the corre-
sponding audio as a reference by a native Arabic
speaker. For code-switching, we provide undia-
critized resources for training; ArzEn (Hamed et al.,
2020), Mixat (Al Ali and Aldarmaki, 2024) and
MGB2 (Ali et al., 2016); for each dataset, we pro-
vide diacritized test sets by manually annotating
random subsets of their test set.

Evaluation Metric. Similar to subtask 2, we use
WER and CER as performance metrics for this
subtask, which are chosen to enable the evaluation
of diacritic restoration performance even for mod-
els that may change the underlying text, such as
ASR-based or sequence-to-sequence models.

4 Shared Task Teams & Results

4.1 Participating Teams

A total of 44 teams registered for the NADI 2025.
At the testing phase, a total of 100 valid entries
were submitted by eight unique teams. The break-
down across the subtasks as follow: 34 submissions
for subtask 1 by five teams, 47 submissions for sub-
task 2 by six teams and 19 submissions by two
teams for subtask 3. Table 2 list NADI 2025 partic-
ipated teams which completed the testing phase.

4.2 Baselines

We developed baseline (BL) models for each sub-
task to serve as reference points for evaluating the
teams’ systems. These models were not shared
with participants during the competition.

Subtask 1. We finetune SpeechBrain’s VoxLin-
gua107 (Valk and Alumäe, 2021) ECAPA-TDNN
(Desplanques et al., 2020) system5 on the adap-
tation split of the dataset. We replace the classi-
fication layers of the pretrained system with new
randomized layers corresponding to the smaller
number of output classes (8); and train these new
layers with the rest of the model frozen for 5K
steps, and then unfreeze the model and train for an
additional 25K steps. We use AdamW with base
learning rate of 1e − 4, and apply a linear ramp
up from 1/3 base LR over 3K steps followed by
constant LR until unfreezing, and then repeat the
linear ramp up and plateau. Finally, Starting at 20K
steps we applying an exponential decay.

Subtask 2. A zero-shot baseline is built on
the pre-trained Whisper-Large-v3 model (Radford
et al., 2022). Dialect-wise inference is performed
on the official NADI 2025 subtask 2 ASR release
available on Hugging Face6, which provides valida-
tion splits for eight country-level dialects; official
evaluation is conducted on a private Codabench test
set. During inference, audio inputs are transcribed

5https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb

6https://huggingface.co/datasets/UBC-NLP/
NADI2025_subtask2_ASR
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Team Name Affiliation Subtask

Abjad AI (Ghannam et al., 2025) Abjad AI, Jordan & Saudi Arabia 1,3
BYZÖ (Abdullah et al., 2025) Saarland University, Germany 2
Elyadata (Elleuch et al., 2025) Elyadata, Tunisia 1,2
Hamsa Hamsa 2
Lahjati (ALBawwab and Qawasmeh, 2025) Princess Sumaya University, Jordan 1
MarsadLab (Attia et al., 2025) Hamad Bin Khalifa University, Qatar 1,2
Munsit (Salhab et al., 2025b) Lebanese American University, Lebanon 2
Unicorn (Elrefai, 2025) Ain shams University, Egypt 3

Table 2: List of teams that participated in NADI 2025 shared task. Teams with accepted papers are cited.

using Whisper’s default decoding parameters with
language explicitly set to Arabic.

Accuracy ↑ Cavg ↓
ELYDATA-LIA (Elleuch et al., 2025) 79.8 17.88
BYZÖ-ADI (Abdullah et al., 2025) 76.4 22.65
MarsadLab (Attia et al., 2025) 61.6 30.68
Abjad AI 61.2 34.77
Baseline 61.1 34.22
Lahjati (ALBawwab and Qawasmeh, 2025) 50.8 48.99

Table 3: Performance of the systems on the test set for
Subtask 1. Results are sorted by Accuracy, while the
average cost (Cavg) score is also reported, with lower
values indicating better performance. The best perfor-
mance is highlighted in bold.

Subtask 3. In this subtask, we provide three base-
lines: (I) A text only baseline based on the publicly
available CATT model (Alasmary et al., 2024),
which we use without further fine-tuning (II) an
ASR based baseline where we use the ArTST v3
checkpoint (Djanibekov et al., 2025), which is pre-
trained on dialectal and code-switched Arabic, and
finetune it for Arabic ASR with diacritics using
the provided training data, and (III) a multi-modal
diacritc restoration model designed as follows:

The raw waveform and corresponding transcrip-
tions are passed in parallel to a speech and text
encoder, respectively. The speech encoder is de-
rived from ArTST ASR (Djanibekov et al., 2025),
and the text encoder is derived from ArTST TTS
model (Toyin et al., 2023). We then align the re-
sulting text and speech embeddings using multi-
head attention with 8 heads, followed by a trainable
prediction component comprising 2 bi-directional
LSTM layers, a 30% dropout layer, and a final lin-
ear prediction head to predict the corresponding
diacritics. Simple ad-hoc post-processing is ap-
plied to add the predicted diacritics to the input text
to produce the fully diacritized text output. This ap-
proach is inspired by the multi-modal diacritization
model described in Shatnawi et al. (2024).

4.3 Results

Tables 3, 4, and 5, present the preformernce of
the submitted systems on the test set for subtask 1,
subtask 2, and subtask 3 respectively.

Subtask1. The ELYDATA-LIA team (Elleuch
et al., 2025) achieved the best performance in
terms of both accuracy and average cost Cavg

(79.8 / 17.88), followed closely by BYZÖ-ADI (Ab-
dullah et al., 2025) (76.4 / 22.65). Both top
teams addressed the limited size of the Adapta-
tion set in novel ways: ELYDATA-LIA leveraged
the much larger ADI-20 dataset (Elleuch et al.,
2025), while BYZÖ-ADI employed kNN voice
conversion (Baas et al., 2023) to augment the train-
ing data with synthetic samples. In third place,
MarsadLab (Attia et al., 2025) improved upon the
baseline system through additional data augmenta-
tion and the introduction of an attention mechanism
prior to the classification layer. In fourth place,
Abjad AI fine-tuned a Whisper Small encoder with
further data augmentation. While the third- and
fourth-place systems were close in terms of accu-
racy (61.6 vs. 61.2), the approach by MarsadLa
achieved a notably better Cavg, reducing it by ap-
proximately 4 points. Finally, we note that one
team (Lahjati (ALBawwab and Qawasmeh, 2025))
perform below the baseline. Overall, these results
highlight the effectiveness and diversity of data
augmentation strategies.

Subtask 2. The Munist team (Salhab et al.,
2025b) obtain the lowest overall average
WER/CER scores (35.68/12.10) among all partic-
ipating systems, achieving the best performance
across all dialects except Moroccan, where it
ranked second in both WER and CER, and Mau-
ritanian, where it ranked first in CER and second
in WER. The ELYADATA-LIA team (Elleuch et al.,
2025) ranked second with scores of 38.52/14.52.
They achieved the best performance on the
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Average JOR EGY MOR ALG YEM MAU UAE PAL

Munsit (Salhab et al., 2025b) 35.68/12.20 20.68/5.64 20.88/7.33 41.71/14.04 53.62/18.44 44.62/14.30 59.03/23.28 22.66/6.55 22.27/8.05
ELYADATA-LIA (Elleuch et al., 2025) 38.53/14.52 28.03/9.36 26.83/11.43 38.26/13.66 53.73/20.43 46.63/16.66 58.10/24.53 29.35/9.91 27.36/10.20
BYZÖ-Whisper (Abdullah et al., 2025) 39.78/14.75 28.84/9.47 29.50/11.91 43.06/15.52 55.04/20.59 46.41/16.05 59.36/24.84 28.38/9.04 27.65/10.59
Hamsa 42.04/16.18 32.24/9.90 24.72/10.21 48.21/18.11 60.32/23.33 51.76/20.41 66.23/29.11 28.00/8.98 24.87/9.41
BYZÖ-CTC (Abdullah et al., 2025) 44.14/15.58 31.74/9.94 37.23/12.57 43.31/15.07 56.12/21.38 46.14/15.68 63.32/26.70 38.65/11.14 36.62/12.18
Baseline 93.89/72.79 46.09/19.28 100.06/81.37 100.38/80.42 101.03/79.58 101.09/80.58 100.59/82.89 101.15/80.27 100.76/77.92
MarsadLab (Attia et al., 2025) 104.89/84.69 44.97/19.19 113.97/97.65 104.07/87.58 116.59/94.26 113.54/94.56 111.59/92.84 116.79/97.00 117.60/94.42

Table 4: Performance of the systems on the test set for Subtask 2. Results are sorted by the overall average
WER/CER score across all dialects, with lower values indicating better performance. The best performance is
highlighted in bold.

WER ↓ CER ↓
Abjad AI (Ghannam et al., 2025) 55 13
Unicorn (Elrefai, 2025) 64 15
Baseline-I (ASR based) 88 45
Baseline-II (text-only) 65 16
Baseline-III (multi-modal) 66 16

Table 5: Performance of the systems on the test set for
Subtask 3. Results are sorted by the overall average
WER/CER score across all dialects, with lower values
indicating better performance. The best performance is
highlighted in bold.

Moroccan dialect (WER/CER of 38.26/13.66) and
obtain the lowest CER for the Mauritanian dialect.
Their performance on the Algerian dialect was
only marginally lower than that of the first-ranked
team, suggesting that their system demonstrates
strong capabilities for North African dialects in
general. The BYZÖ-Whisper team (Abdullah et al.,
2025) ranked third, with average WER/CER scores
of 39.78/14.75. The Hamsa team follow in fourth
place, scoring 42.04/16.18, while the BYZÖ-CTC
team (Abdullah et al., 2025) ranked fifth with
44.14/15.58. Only one team, MarsadLab (Attia
et al., 2025), perform below the baseline, with
notably higher average WER/CER scores of
104.89/84.69. The winning team Munist (Salhab
et al., 2025b) surpassed the baseline by 58.21
WER points (93.89 → 35.68; ≈ 62% reduction).
Furthermore, the variation in WER scores among
the teams that surpassed the baseline is relatively
low (σ ≈ 3.25), corresponding to about 8.1% of
the mean WER for these systems.

Subtask 3. The Abjad AI (Ghannam et al., 2025)
perform the best with the lowest WER of 55% and
CER of 13%. The Unicorn team (Elrefai, 2025)
follow closely behind with WER of 64% and CER
of 15%. Both teams improve over the provided
baselines, the best of which achieve WER and CER
of 65% and 16%, respectively.

5 Overview of Submitted Systems

In this section, we present an overview of the sub-
mitted systems for each subtask and summarize the
methodological approaches adopted by the partici-
pating teams.

5.1 Subtask 1

ELYDATA-LIA (Elleuch et al., 2025). Using
Whisper Large-v3 encoder as their base model, they
adopt a two stage finetuning procedure to first fine-
tune on the forthcoming ADI-20 dataset (Elleuch
et al., 2025), and then use the NADI ADI Adapta-
tion set for a second finetuning. Features of this
approach include freezing the first 16 layers of
the encoder and using plenty of data augmentation
methods including speed perturbation, added noise,
and frequency and chunk dropping.

BYZÖ-ADI (Abdullah et al., 2025) The authors
choose a straightforward finetuning approach us-
ing w2v-BERT-2.0 (Barrault et al., 2023) model
finetuned on the NADI ADI split (69% accuracy).
However, in order to improve the robustness of
the model, they add a data augmentation approach
by using a voice conversion model (Baas et al.,
2023) to re-synthesizing the training utterances us-
ing voice samples from the 4 Arabic speakers from
the LibriVox project, and training on the mixed
natural and synthetic audio, leading to their final
model.

MarsadLab (Attia et al., 2025) Adopts a start-
ing point similar to the baseline with a VoxLin-
gua107 ECAPA-TDNN system that was finetuned
on the ADI task. They introduce a number of fea-
tures in the process including feature reweighting
of the hidden representation just prior to the clas-
sification layer through the use of a lightweight
attention mechanism, discriminative learning rate
of the classification head, progressive unfreezing,
as well as data augmentation using SpecAugment
and injected noise.
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Abjad AI Like the ELYDATA-LIA approach,
this team used Whisper model, Whisper Small,
and finetuned the encoder for dialect ID. They use
only the NADI Adaptation set for finetuning, us-
ing SpecAugment (time and frequency masking)
for data augmentation, and unfreezing the model
partway through training.

Lahjati (ALBawwab and Qawasmeh, 2025)
Using both the VoxLingua107 ECAPA-TDNN sys-
tem as well as WavLM encoder, this fusion ap-
proach concattenates the outputs from the two mod-
els (WavLM pooled to match the ECAPA 256 di-
mension), and passes this combined representation
through a layer normalization layer and then a two
layers feedforward network to perform classifica-
tion. Similar to other approaches the underlying
models start frozen, with unfreezing at 8000 steps,
followed by a ramp up, plateau, and then cosine
annealing learning rate schedule.

5.2 Subtask 2
Munsit (Salhab et al., 2025b) This system fol-
lows a two-stage training pipeline combining large-
scale weakly supervised pretraining and contin-
ual supervised fine-tuning, inspired by Salhab
et al., 2025a. In the first stage, a Conformer-large
model (Gulati et al., 2020) (121M parameters) was
pretrained on 15K hours of weakly labeled Arabic
speech, covering MSA and various dialects, with
automatic labeling and no manual verification. In
the second stage, the model was fine-tuned using
a high-quality dataset composed of 3,000 hours of
rigorously filtered weakly labeled data, excluding
news content, and the official Casablanca Chal-
lenge training set, expanded via data augmentation.
Training used the CTC (Graves et al., 2006) objec-
tive with a SentencePiece (Kudo and Richardson,
2018) vocabulary of 128 tokens, AdamW optimizer,
Noam learning rate schedule, and dropout of 0.1, in
a distributed setup across 8 NVIDIA A100 GPUs
with bfloat16 precision. This approach enabled ro-
bust performance across all dialects, achieving the
lowest average WER and CER in the shared task.

ELYADATA & LIA (Elleuch et al., 2025)
For the ASR subtask, this team fine-tuned the
SeamlessM4T-v2 (Barrault et al., 2023) Large
Egyptian model separately for each of the eight
dialects in the Casablanca dataset, producing eight
distinct models. Training was performed for 6
epochs on NVIDIA A100 GPUs with a label-
smoothed NLL loss (smoothing 0.2), AdamW opti-

mizer, and a learning rate schedule with 100 warm-
up steps ramping from 1e-9 to 5e-5. A batch size of
2 was used for all runs. This per-dialect fine-tuning
approach yielded second overall in the shared task.

BYZÖ (Abdullah et al., 2025) The team sub-
mitted two independent systems. The first,
BYZÖ-Whisper, fine-tuned the Whisper-Large-v3
model (Radford et al., 2023) (1.54B parameters) for
Arabic dialect ASR using only the NADI shared
task data, without external datasets or data aug-
mentation. Text labels were preprocessed by re-
moving bracketed content and normalizing spac-
ing. Training followed a two-stage process: (1)
domain adaptation on combined data from all di-
alects for 9000 steps (learning rate 1e-5, batch size
32), and (2) dialect-specific adaptation for 2000
steps per dialect using CER as the metric. The
second, BYZÖ-CTC, fine-tuned the w2v-BERT-2.0
model (Barrault et al., 2023) (580M parameters)
using a mix of public Arabic ASR datasets, then
further fine-tuned per dialect on the shared task
data (learning rate 1e-5, batch size 16). A multi-
dialectal 3-gram Kneser-Ney smoothed language
model, trained on collected dialect-specific text
data, was integrated to reduce WER. This encoder-
only CTC-based system was noted for efficiency
and competitive zero-shot performance compared
to Whisper large.

MarsadLab (Attia et al., 2025) For the ASR sub-
task, this team adopted Whisper-Large model (Rad-
ford et al., 2023) in a zero-shot setting, without
any fine-tuning, preprocessing, or post-processing.
Leveraging Whisper’s multilingual capabilities, the
system directly transcribed Arabic speech from
multiple dialects in the test set. While the ECAPA-
TDNN architecture was central to their ADI sub-
mission, it was not applied to ASR.

Hamsa Submissions were received from the
Hamsa team; however, a system description was
not made available.

5.3 Subtask 3
Unicorn (Elrefai, 2025) This team addressed
the diacritic restoration task by fine-tuning the
GEMM3N7 multimodal model on both audio and
text inputs. They formed diacritic restoration as
a structured generation task where the model re-
ceives an undiacritized sentence and its correspond-
ing audio and generates a fully diacritized ver-

7https://unsloth.ai/
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sion. They fine-tuned with LoRA adaptation to
efficiently adapt the model with the provided data
for the sub-task only. They applied nlpaug for
speech augmentation to simulate more diverse au-
dio inputs. They perform inference by prompting
GEMM3N with the raw audio and the correspond-
ing undiacritized text.

Abjad AI (Ghannam et al., 2025) This team
presented CATT-Whisper, which is a multimodal
approach that combines both textual and speech in-
formation. Their model represents the text modality
using an encoder extracted from their pre-trained
model named CATT (Alasmary et al., 2024). The
speech component is handled by the encoder mod-
ule of the OpenAI Whisper base model (Radford
et al., 2022). Their approach uses two integration
strategies. The former consists of fusing the speech
tokens with the input at an early stage, where the
1500 frames of the audio segment are averaged
on the basis of 10 consecutive frames, resulting
in 150 speech tokens only. To ensure embedding
compatibility, these averaged tokens are processed
through a linear projection layer prior to merging
them with the text tokens. Contextual encoding
is guaranteed by the CATT encoder module. The
latter strategy relies on cross-attention, where text
and speech embeddings are fused. Then, finally,
the cross-attention output is fed to the CATT clas-
sification head for token-level diacritic prediction.
They randomly deactivate the speech input during
training for robustness, which allows the model to
perform well with or without speech.

6 Conclusion

The sixth NADI shared task extends the scope of
the series beyond text-based processing to encom-
pass speech and diacritization, introducing three
new subtasks: spoken dialect identification, Ara-
bic ASR, and diacritic restoration. By releasing
high-quality resources and providing clear eval-
uation protocols, our goal is to foster progress
in inclusive Arabic speech processing. This edi-
tion, we received 44 registrations, with eight teams
submitting system outputs and seven system de-
scription papers accepted. Results across the three
subtasks highlight substantial headroom for im-
provement: even strong pretrained models continue
to face challenges with multidialectal variability,
code-switching, and diacritic restoration. We hope
that this edition not only advances the state of the
art on each individual subtask but also inspires fu-

ture research toward unified, dialect-aware speech
technologies for Arabic.

Limitations & Ethical Considerations

Despite the contributions of this year’s shared task,
several limitations remain across the three subtasks:
Coverage of dialects: Not all Arabic dialects are
represented in the test sets, which limits the gener-
alizability of results across the full dialect contin-
uum.
Country-level labeling: We acknowledge that the
use of country-level labels may be problematic.
The continuum of Arabic dialects is complex, and
using country affiliation as a stand-in for well-
defined linguistic boundaries is not without lim-
itations. This choice was made to ensure a reason-
able degree of diversity in dialect coverage, while
avoiding assumptions about the generalizability of
models trained on a subset of dialects to unseen but
related varieties.
Code-switching: The datasets capture only a lim-
ited subset of code-switching phenomena, whereas
real-world Arabic speech often involves more di-
verse language mixing.
Real-world conditions: Background noise, spon-
taneous disfluencies, and accented speech are un-
derrepresented in the datasets, limiting ecological
validity.
Evaluation metrics: Metrics such as WER and
CER may be misleading in the ASR task, since a
dialectal utterance can often have multiple valid
references. As the data provides only one reference
per utterance, evaluation scores may underestimate
system performance by penalizing alternative but
correct transcriptions.
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Abstract

Automatic speech recognition (ASR) plays a
vital role in enabling natural human–machine
interaction across applications such as virtual
assistants, industrial automation, customer sup-
port, and real-time transcription. However,
developing accurate ASR systems for low-
resource languages like Arabic remains a signif-
icant challenge due to limited labeled data and
the linguistic complexity introduced by diverse
dialects. In this work, we present a scalable
training pipeline that combines weakly super-
vised learning with supervised fine-tuning to
develop a robust Arabic ASR model. In the first
stage, we pretrain the model on 15,000 hours of
weakly labeled speech covering both Modern
Standard Arabic (MSA) and various Dialectal
Arabic (DA) variants. In the subsequent stage,
we perform continual supervised fine-tuning
using a mixture of filtered weakly labeled data
and a small, high-quality annotated dataset.
Our approach achieves state-of-the-art results,
ranking first in the multi-dialectal Arabic ASR
challenge. These findings highlight the effec-
tiveness of weak supervision paired with fine-
tuning in overcoming data scarcity and deliver-
ing high-quality ASR for low-resource, dialect-
rich languages.

1 Introduction

Automatic speech recognition (ASR), or speech-to-
text (STT), converts spoken language into text, en-
abling voice-based interaction with machines (Al-
gihab et al., 2019; Kheddar et al., 2024). ASR
is widely applied in healthcare, robotics, law en-
forcement, telecommunications, smart homes, and
consumer electronics, among other domains (Vaj-
pai and Bora, 2016). Arabic, the fourth most used
language online and one of the UN’s six official

languages, remains underrepresented in ASR re-
search despite serving millions across 22 coun-
tries (Alwajeeh et al., 2014). Arabic exists in three
forms: Classical Arabic (CA), the language of his-
torical and religious texts; Modern Standard Ara-
bic (MSA), used in formal contexts; and Dialectal
Arabic (DA), comprising diverse regional variants
(Al-Ayyoub et al., 2018). While some datasets,
such as MASC (Al-Fetyani et al., 2021) and SADA
(Alharbi et al., 2024), have advanced Arabic ASR,
they remain limited in size and linguistic diversity,
hindering model generalization. Neural ASR sys-
tems require vast transcribed datasets (Lu et al.,
2020; Wang et al., 2021), but manual transcrip-
tion is costly and time-intensive (Gao et al., 2023).
We address this by proposing a weakly supervised
Arabic ASR system based on the Conformer archi-
tecture (Gulati et al., 2020), trained on large-scale
weakly labeled MSA and DA speech. In the first
stage, we pretrain the model on 15,000 hours of
weakly labeled speech covering both Modern Stan-
dard Arabic (MSA) and various Dialectal Arabic
(DA) variants. In the subsequent stage, we perform
continual supervised fine-tuning using a mixture
of filtered weakly labeled data and a small, high-
quality annotated dataset provided as part of the
challenge (Talafha et al., 2025). This approach
eliminates the need for extensive manual transcrip-
tion and attains state-of-the-art results on the chal-
lenge’s standard benchmarks, demonstrating the
potential of weak supervision for low-resource lan-
guages.

2 Background

Arabic Automatic Speech Recognition (ASR) re-
mains challenging due to data scarcity, lexical vari-
ation, morphological complexity, and dialect diver-
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sity across 22 Arab countries (Ali et al., 2014; Car-
dinal et al., 2014; Diehl et al., 2012). Traditional
systems often used hybrid HMM-DNN pipelines
(Cardinal et al., 2014; Bouchakour and Debyeche,
2018). Dialectal variation is a major bottleneck,
as most systems focus on Modern Standard Ara-
bic (MSA) and high-resource dialects, performing
poorly on low-resource varieties (Djanibekov et al.,
2025). To address this, Djanibekov et al. released
open-source ASR models covering 17 countries, 11
dialects, and code-switched Arabic-English/French
speech. Other efforts integrate dialect identification
directly into ASR (Waheed et al., 2023) or build
dialect-specific systems, e.g., for Egyptian (Mousa
et al., 2013) and Algerian Arabic (Menacer et al.,
2017).

End-to-end architectures have advanced Arabic
ASR by eliminating the need for intermediate fea-
ture extraction (Radford et al., 2023a). Notable
examples include large-scale weakly supervised
systems such as Whisper (Radford et al., 2023b).
Weak supervision has proven particularly effec-
tive; for instance, (Salhab et al., 2025) trained a
Conformer model from scratch on 15,000 hours of
weakly labeled MSA and dialectal speech, achiev-
ing state-of-the-art results without relying on man-
ual transcription.

3 Methodology

Our approach consists of two main stages: weakly
supervised pretraining followed by continual super-
vised fine-tuning. In the first stage, we train the
model on a large-scale, diverse speech dataset with
weak labels—labels that are not guaranteed to be
accurate (i.e., not manually verified)—in line with
the strategy proposed in (Salhab et al., 2025).

In the second stage, the pretrained model is fur-
ther fine-tuned using a smaller, high-quality dataset
constructed from two main sources: (1) the official
training data released for the task (the Casablanca
training set (Talafha et al., 2024)), which is ex-
panded through various augmentation techniques,
including random Gaussian noise injection, back-
ground noise addition, and silence insertion; and
(2) a filtered subset derived from the initial 15,000
hours of weakly labeled training data, selected
through a rigorous data cleaning and filtering pro-
cess.

An overview of the complete pipeline is pre-
sented in Figure 1. The following subsections pro-
vide a detailed explanation of each stage of the

proposed approach.

3.1 Weakly Supervised Learning
Traditional supervised ASR training uses high-
quality, human-annotated pairs (xi, yi), where the
input xi is typically a mel-spectrogram and the
output yi consists of a sequence of tokens, each
selected from a predefined vocabulary. These accu-
rate labels are assumed to be independently drawn
from a clean data distribution, enabling the model
to learn a function that performs well on unseen test
examples. On the other hand, weakly supervised
learning depends on automatically generated or
crowd-sourced labels ŷi, which may contain errors
or noise. These weak labels come from a noisier
distribution and might not precisely reflect the true
transcription. Nonetheless, models trained on such
data aim to generalize effectively when evaluated
on clean datasets.

Building upon the approach introduced in (Sal-
hab et al., 2025), we adopted the same training
pipeline and experimental settings to develop the
initial foundation model. Specifically, the model
was trained on 15,000 hours of weakly annotated
speech data, with automatic labeling performed
using the same method described in the aforemen-
tioned work.

3.2 Continual supervised finetuning
In neural network-based ASR systems, training typ-
ically begins either from scratch—with randomly
initialized weights and a large training corpus—or
from a pretrained model that has already been ex-
posed to a large-scale dataset. The latter approach
enables faster convergence and often better gener-
alization on the target task due to prior knowledge
encoded in the pretrained weights.

In this stage, we adopt the second strategy by
initializing the model with weights obtained from
the first stage, which was trained on weakly la-
beled data. We then fine-tune this model using
a smaller yet higher-quality dataset comprising
3,000 hours of filtered weakly annotated data. The
filtering process was designed to exclude news
content—largely composed of Modern Standard
Arabic (MSA)—and to retain only segments that
passed stringent quality thresholds, as outlined in
the pipeline of (Salhab et al., 2025). Additionally,
we incorporate the Casablanca Challenge training
dataset, which is further expanded through vari-
ous data augmentation techniques. Unlike the first
stage that relied on noisy supervision, this fine-
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Figure 1: The solution’s full pipeline encompasses large-scale pretraining followed by continual fine-tuning.

tuning phase leverages only high-quality transcrip-
tions.

3.3 Model Architecture

The Conformer architecture (Gulati et al., 2020)
effectively models both long- and short-range de-
pendencies in speech through a combination of con-
volutional modules and multi-head self-attention,
making it highly suitable for automatic speech
recognition. In this work, we adopt the same archi-
tecture as introduced in the original paper, specifi-
cally using the large variant of the model.

3.4 Experimental Setup

Our ASR experiments utilized the Conformer ar-
chitecture trained with the Connectionist Tempo-
ral Classification (CTC) objective (Graves et al.,
2006). To tokenize the transcripts, we employed
a SentencePiece tokenizer (Kudo and Richardson,
2018) trained on the same training corpus, with a
vocabulary of 128 tokens.

Model training was carried out in a distributed
setting across 8 NVIDIA A100 GPUs using a
global batch size of 512. Input features were 80-
dimensional mel-spectrograms, extracted using a
25 ms frame length and a 10 ms hop size.

During the weakly supervised pretraining phase,
optimization was performed using the AdamW
optimizer combined with the Noam learning rate
scheduler, incorporating 10,000 warm-up steps and
peaking at a learning rate of 2× 10−3. For regular-
ization purposes, we applied a dropout rate of 0.1
across all layers and used L2 weight decay. For the
fine-tuning stage, the learning rate was reduced by
a factor of ten.

To optimize training speed and reduce mem-
ory overhead, computations were performed using

bfloat16 precision. The Conformer model was
initialized with random weights and comprised 18
encoder layers. Each layer featured a hidden di-
mension of 512, 8 attention heads, a convolutional
kernel size of 31, and a feedforward expansion
factor of 4. The complete model architecture con-
tained approximately 121 million parameters.

3.5 Evaluation Metrics & Datasets

The model’s performance was evaluated using
Word Error Rate (WER) and Character Error Rate
(CER). Training used a development set with
paired speech and transcriptions, while testing in-
volved blind evaluation on speech-only data via
CodeBench.

4 Results

We evaluate our proposed system, against all partic-
ipating teams using both Word Error Rate (WER)
and Character Error Rate (CER) metrics, reported
across multiple Arabic dialects. The results demon-
strate the robustness of our approach across both
evaluation and testing phases, as well as its ability
to generalize across diverse dialectal variations.

As shown in Table 1, our system achieved the
lowest average WER (35.69%), outperforming all
other submissions. Notably, our work consistently
maintained lower WER in most of the dialects, par-
ticularly excelling in Jordanian (20.68%), Egyptian
(20.89%), and Emirati (22.67%) dialects. Simi-
larly, Table 2 shows that our model achieved the
lowest average CER (12.21%), with the best perfor-
mance observed in Jordanian (5.64%) and Egyptian
(7.33%) dialects. Tables 3 and 4 present a break-
down of WER and CER across evaluation and test-
ing phases/datasets. The average WER decreased
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Participant Avg JOR EGY MOR ALG YEM MAU UAE PAL

msalhab96 (Ours) 35.69 20.68 20.89 41.72 53.62 44.62 59.03 22.67 22.28
youssef_saidi 38.54 28.03 26.83 38.27 53.73 46.63 58.11 29.35 27.36
yusser 39.78 28.84 29.50 43.07 55.04 46.42 59.37 28.38 27.66
alhassan10ehab 42.05 32.25 24.73 48.22 60.32 51.77 66.23 28.01 24.87
badr_alabsi 44.15 31.74 37.24 43.31 56.12 46.15 63.32 38.65 36.63
Baseline 93.90 46.10 100.07 100.38 101.03 101.09 100.59 101.15 100.77
rafiulbiswas 104.90 44.97 113.98 104.08 116.60 113.54 111.59 116.79 117.61

Table 1: Dialect-wise WER (%) Comparison Across Participants.

Participant Avg JOR EGY MOR ALG YEM MAU UAE PAL

msalhab96 (Ours) 12.21 5.64 7.33 14.04 18.44 14.30 23.28 6.55 8.06
youssef_saidi 14.53 9.36 11.44 13.66 20.43 16.66 24.53 9.91 10.20
yusser 14.76 9.47 11.91 15.52 20.59 16.05 24.85 9.04 10.59
alhassan10ehab 16.19 9.90 10.21 18.12 23.34 20.41 29.11 8.99 9.41
badr_alabsi 15.59 9.95 12.57 15.07 21.39 15.69 26.70 11.15 12.19
Baseline 72.79 19.29 81.38 80.42 79.59 80.58 82.89 80.28 77.93
rafiulbiswas 84.69 19.19 97.66 87.59 94.27 94.56 92.85 97.01 94.42

Table 2: Dialect-wise CER (%) Comparison Across Participants.

Dialect Evaluation Testing

Avg 36.83 35.69
JOR 21.52 20.68
EGY 22.89 20.89
MOR 44.20 41.72
ALG 54.78 53.62
YEM 47.69 44.62
MAU 57.62 59.03
UAE 24.05 22.67
PAL 21.91 22.28

Table 3: Comparison of WER (%) Across Evaluation
and Testing Datasets.

from 36.83% during evaluation to 35.69% in test-
ing, suggesting that our model generalizes well to
unseen data. This trend is consistent across most
dialects. For instance, the WER in the Jordanian
dialect dropped from 21.52% to 20.68%, and in the
Yemeni dialect from 47.69% to 44.62%.

Similarly, the average CER exhibited a slight
increase from 11.94% (evaluation) to 12.21% (test-
ing), though the variation across dialects remained
minimal, underscoring the model’s stability. These
consistent results across both phases affirm the ro-
bustness and dialectal adaptability of our ASR sys-
tem.

5 Conclusion

We present a scalable two-stage
pipeline—pretraining on 15,000 hours of

Dialect Evaluation Testing

Avg 11.94 12.21
JOR 5.39 5.64
EGY 7.50 7.33
MOR 14.06 14.04
ALG 17.71 18.44
YEM 14.73 14.30
MAU 21.73 23.28
UAE 6.97 6.55
PAL 7.40 8.06

Table 4: Comparison of CER (%) Across Evaluation
and Testing Datasets.

weakly labeled audio, then fine-tuning on a filtered
3,000-hour weak subset plus an augmented official
training set—that, with data filtering, augmen-
tation, and a Conformer backbone, achieved
state-of-the-art performance and first place in the
multi-dialectal Arabic ASR challenge, demon-
strating that carefully curated weak supervision
combined with targeted fine-tuning can overcome
data scarcity and dialectal diversity.
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Abstract

This paper presents Lahjati (ECAPA-WavLM
Fusion with Multi-Stage Optimization) system
for the spoken Arabic Dialect Identification
(ADI) subtask at Nadi 2025 (Talafha et al.,
2025), The task aims to automatically identify
the dialect of spoken Arabic utterances, a chal-
lenging problem due to the rich linguistic diver-
sity of Arabic and the scarcity of labeled speech
resources. Our approach combines ECAPA-
TDNN embeddings from SpeechBrain with
WavLM-base representations. The proposed
system achieved 94.08% accuracy on the val-
idation set and ~51.0% on the test set. Chal-
lenges included differentiating acoustically sim-
ilar dialect pairs and mitigating the effects of
varied recording conditions, which likely con-
tributed to performance degradation on unseen
data. These findings highlight both the poten-
tial and limitations of fusing complementary
speech representations for robust dialect identi-
fication.

1 Introduction

Arabic dialect identification from speech presents a
significant challenge due to the extensive linguistic
diversity across the Arab world and the scarcity
of large, high-quality labeled datasets. These fac-
tors considerably hinder the development and op-
timization of speech technology applications. The
task addressed here involves recognizing speech
from eight distinct dialectal varieties: Palestinian,
Yemeni, Mauritanian, Algerian, Moroccan, Jorda-
nian, Egyptian, and Emirati Arabic. Achieving
accurate identification of these dialects is essen-
tial for enhancing a wide range of downstream
speech-processing technologies, including auto-
matic speech recognition, machine translation, and
conversational systems that can adapt effectively to
regional linguistic variations.

This work builds upon the foundation laid by
the Nuanced Arabic Dialect Identification (NADI)

shared task, first introduced in 2020 (Abdul-
Mageed et al., 2020), which provided standard-
ized benchmark datasets and evaluation proto-
cols for country-level Arabic dialect classifica-
tion . The NADI initiative not only unified frag-
mented research efforts in this domain but also
established a baseline for systematic comparison of
approaches, paving the way for more fine-grained
and context-aware dialect identification systems
(Abdul-Mageed et al., 2021; Abdul-Mageed et al.,
2022, 2023, 2024). By leveraging such frameworks
and addressing current data limitations, this task
aims to push the boundaries of robust, real-world
Arabic speech dialect identification.

Main System Strategy

Our proposed system, ECAPA_WavLM_Fusion,
integrates two complementary pretrained speech
encoders to jointly capture speaker-level and con-
textual acoustic features, enabling robust Arabic
dialect identification across eight dialect classes.

• Speaker-Level Encoder: The first com-
ponent is ECAPA-TDNN, initialized from
SpeechBrain’s VoxLingua107 model, which
generates 256-dimensional speaker embed-
dings directly from raw waveforms. This en-
coder excels at modeling speaker-specific tim-
bre and prosodic characteristics, which are
often correlated with dialectal traits.

• Contextual Acoustic Encoder: The second
component is WavLM-base from Microsoft,
a transformer-based model that produces 768-
dimensional frame-level contextual embed-
dings. These embeddings are mean-pooled
over time to obtain utterance-level representa-
tions, then linearly projected to 256 dimen-
sions to match the ECAPA-TDNN feature
space.
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The outputs from both encoders are concate-
nated to form a 512-dimensional fused representa-
tion, which is LayerNorm-normalized and passed
through a two-layer feedforward classifier with
dropout regularization for final dialect prediction.

Training follows a two-stage fine-tuning strat-
egy:

1. Stabilization phase: Encoder weights are
frozen for the first 8,000 steps, allowing the
classifier layers to learn stable decision bound-
aries from fixed embeddings.

2. Full fine-tuning phase: All parameters are
unfrozen, and training continues with a multi-
phase learning rate scheduler consisting of
linear warmup, constant hold, and cosine an-
nealing.

We optimize with AdamW, incorporating
weight decay for regularization and gradient clip-
ping to mitigate exploding gradients.

By combining speaker-discriminative
and context-aware representations, the
ECAPA_WavLM_Fusion architecture ef-
fectively captures subtle phonetic and prosodic
cues that differentiate closely related Arabic di-
alects, mitigating challenges posed by intra-dialect
similarities. Code and pretrained models are
available at our GitHub repository 1.

2 Background

This task addresses Arabic dialect identification
directly from raw speech waveforms. The in-
put consists of 16 kHz audio clips containing
spoken Arabic from eight dialects: Palestinian,
Yemeni, Mauritanian, Algerian, Moroccan, Jorda-
nian, Egyptian, and Emirati. The system outputs
a predicted dialect label corresponding to one of
these classes. For example, given a short audio
excerpt from a television program, the model must
determine whether the speech is Egyptian, Moroc-
can, or one of the other target dialects.

The dataset used in this work comprises high-
quality multidialectal Arabic speech recordings
sampled at 16 kHz. It contains approximately
12,900 training samples (∼8 hours of speech) and
12,700 validation samples (∼8 hours), totaling
around 16 hours of labeled audio. An additional
8-hour blind test set is provided for final evalua-
tion.

1https://github.com/sanadbawab0/nadi2025/

A qualitative examination of the audio reveals
that many clips are drawn from diverse media
sources such as television dramas, movies, and talk
shows, similar to the Casablanca dataset.(Talafha
et al., 2024). This diversity introduces nat-
ural conversational speech with a wide range
of acoustic conditions—including variations in
background noise, recording quality, and speaker
expressiveness—thereby creating a realistic and
challenging benchmark for dialect classification.

Each audio sample is annotated with one of the
eight target dialect labels, covering a spectrum of
speech genres and speaker demographics. This
diversity helps improve the robustness and general-
ization capabilities of trained models, making them
more applicable to real-world settings.

Our system was developed for the Spoken Ara-
bic Dialect Identification (ADI) track of the
Nuanced Arabic Dialect Identification (NADI)
shared task, which offers standardized datasets,
clear evaluation protocols, and a competitive bench-
marking platform for advancing research in fine-
grained Arabic dialect recognition.

3 System Overview

Our system, Lahjati (ECAPA_WavLM_Fusion),
leverages two complementary pretrained speech
encoders to jointly capture speaker-discriminative
and context-aware acoustic representations for Ara-
bic dialect identification. This design aims to ex-
ploit both timbre/prosody cues (often linked to
speaker identity and dialect) and broader contextual
speech patterns for robust classification.

Key Architecture and Algorithms: The archi-
tecture integrates:

• ECAPA-TDNN encoder (Desplanques et al.,
2020), initialized from the SpeechBrain
VoxLingua107 model, which extracts 256-
dimensional speaker embeddings from raw
audio waveforms.

• WavLM-base encoder (Chen et al., 2022),
a transformer-based model producing 768-
dimensional contextual embeddings from
frame-level speech representations, subse-
quently mean-pooled to form utterance-level
features.

Both embeddings are linearly projected to 256
dimensions, concatenated into a unified 512-
dimensional vector, normalized with LayerNorm,
and passed through a two-layer feedforward neural
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network with dropout regularization to predict one
of eight target dialect classes.

The core forward computation of Lahjati can
be formulated as:

eecapa = ECAPA-TDNN(x),

ewavlm = meanpool(WavLM(x)),

hecapa = Wecapa eecapa + becapa,

hwavlm = Wwavlm ewavlm + bwavlm,

h = LayerNorm
(
[hecapa;hwavlm]

)
,

ŷ = Classifier(h),

(1)

where x is the input audio waveform and ŷ is the
predicted dialect label. The intermediate represen-
tations are defined as follows: eecapa ∈ R256 is
the ECAPA-TDNN speaker embedding, ewavlm ∈
R768 is the pooled WavLM contextual embedding,
hecapa,hwavlm ∈ R256 are the respective projected
embeddings, and h ∈ R512 is the fused representa-
tion after concatenation and normalization.

We employed pretrained ECAPA-TDNN and
WavLM-base encoders, both initially frozen
to exploit their rich acoustic representations
while mitigating the risk of overfitting on
the limited dialectal dataset. All experiments
were conducted on the NADI 2025 dataset
UBC-NLP/NADI2025_subtask1_SLID (UBC-NLP,
2025), available via Hugging Face.

Staged Fine-tuning Strategy: To address data
scarcity and substantial dialectal overlap, we
adopted a two-phase training procedure: (i) for
the first 8,000 steps, encoder weights were frozen
to allow the classifier to adapt to fixed embeddings;
(ii) all parameters were then unfrozen, enabling
joint fine-tuning with a multi-phase learning rate
schedule (linear warmup, constant hold, cosine an-
nealing). This approach balances early training
stability with later model adaptability.

Training Pipeline: The training process follows
five sequential steps: (1) raw audio is processed in
parallel by ECAPA-TDNN and WavLM encoders;
(2) embeddings are projected to a common 256-
dimensional space, concatenated, and normalized;
(3) a two-layer feedforward classifier produces log-
its for the eight target dialect classes; (4) cross-
entropy loss is used for optimization; and (5) learn-
ing rate scheduling and gradient clipping are ap-
plied to ensure stable convergence.

Experimental Configurations: We compared
training durations of 50,000 and 100,000 steps. Ex-
tending training to 100,000 steps improved valida-
tion accuracy by approximately +2%, underscor-

ing the benefits of prolonged fine-tuning for this
task.

3.1 Experimental Setup
Data Splits We used the official splits released
by the NADI 2025 organizers without modifi-
cation. For Subtask 1 (SLID), we employed
the UBC-NLP/NADI2025_subtask1_SLID dataset,
comprising

• Training: 12,900 samples

• Validation: 12,700 samples

For the Subtask 1 (ADI) test phase, we used
the UBC-NLP/NADI2025_subtask1_ADI_Test set
containing 6,268 samples. No external data was
incorporated.

Data Format Each instance consists of an audio
recording and its label. In the SLID dataset, fields
include id, audio, and country. In the ADI test
set, fields include id and audio, where audio is
stored as an array of float values along with the
sampling rate.

Preprocessing Audio waveforms were loaded
at their original sampling rate and resampled to
16 kHz using the AutoFeatureExtractor from
the Hugging Face microsoft/wavlm-base model.
Dialect labels were mapped to integer IDs via:

labels2id = {country : index}.
For batch preparation:

• Raw waveforms were padded to the longest
sequence in the batch for ECAPA-TDNN in-
put.

• WavLM inputs were prepared
using AutoFeatureExtractor
(return_tensors="pt", padding=True)
with a 16 kHz sampling rate.

No data augmentation was applied.

Batching Training batches comprised 4 audio
samples each, randomly shuffled for training and
kept in sequential order for validation.

Training Hyperparameters Models were
trained for up to 100,000 steps using AdamW with a
weight decay of 10−2. Learning rates were set to
1× 10−5 for ECAPA-TDNN and WavLM encoder
parameters, and 1× 10−4 for the projection layers
and classifier. Gradient clipping (max norm = 1.0)
was applied to mitigate exploding gradients.
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Freezing Strategy & Learning Rate Schedule
Pretrained encoders were frozen for the first 8,000
steps, followed by full-network fine-tuning. The
learning rate schedule, implemented via PyTorch,
consisted of:

1. Frozen phase (0–8,000 steps):

• Warmup (0–3,000): LinearLR, start fac-
tor = 1

3 .
• Constant (3,000–8,000): ConstantLR.

2. Unfrozen phase (8,000–100,000 steps):

• Warmup (8,000–12,000): LinearLR,
start factor = 1

10 .
• Constant (12,000–52,000):
ConstantLR.

• Cosine decay (52,000–100,000):
CosineAnnealingLR.

Evaluation Metrics System performance was
assessed using two metrics:

• Accuracy: Proportion of correctly classified
samples over the total number of evaluated
samples.

• Average Cost: Following the NIST LRE 2022
formulation (Lee et al., 2022), log-likelihood
ratios were computed from model logits via
pairwise class comparisons to estimate predic-
tion confidence. The cost combines false pos-
itive rate (FPR) and false negative rate (FNR)
as:

Cost = FPR + FNR.

This metric balances penalties for missed de-
tections and false alarms across varying deci-
sion thresholds.

Accuracy served as the primary metric, with aver-
age cost providing a complementary error-sensitive
measure.

4 Results

Experiments were conducted on the official NADI
2025 validation and blind test splits.

Validation: Our system achieved 94.08% accu-
racy with an average NIST cost of 6.37%, ranking
3rd on the validation leaderboard.

Test: Performance dropped to ~51.0% accuracy
with an average NIST cost of ~49.0%, likely due
to domain mismatch and data distribution shifts
between validation and test sets.

No additional ablation or error analysis was per-
formed; results focus on the primary leaderboard
metrics.

5 Conclusion

We presented Lahjati (ECAPA_WavLM_Fusion), a
dual-encoder fusion model combining ECAPA-
TDNN and WavLM to jointly capture speaker-
level and contextual acoustic representations for
Arabic dialect identification. A staged training
regime—initial encoder freezing followed by fine-
tuning—yielded competitive results, with a valida-
tion accuracy of 94.08% on the NADI 2025 dataset.

Limitations include the absence of data augmen-
tation and challenges from dialectal overlap, both
of which may hinder generalization to unseen data.
Future work will investigate advanced augmenta-
tion, alternative fusion architectures, and hyperpa-
rameter optimization to improve robustness.

This study offers a competitive, reproducible
benchmark for Arabic dialect identification, con-
tributing toward improved speech processing for
underrepresented language varieties.
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Abstract

We present our systems for the NADI 2025
shared task on multidialectal Arabic speech
processing, participating in both spoken di-
alect identification (ADI) and automatic speech
recognition (ASR) subtasks. Working under
data constraints by using only the provided
shared task resources for dialect adaptation,
we explore effective model adaptation strate-
gies for dialectal Arabic speech. For ADI, we
fine-tune w2v-BERT 2.0 and employ voice con-
version as data augmentation, improving accu-
racy from 68.71% to 76.40% on a blind cross-
domain test set. For ASR, we develop two
complementary approaches: (1) a CTC-based
model pre-trained on public Arabic speech
data, and (2) Whisper-based models using two-
stage fine-tuning. Our experiments show that
while dialect-centric CTC models exhibit bet-
ter zero-shot dialectal performance (58.89 vs
93.90 WER), Whisper achieves better perfor-
mance after dialect-specific adaptation, which
reduces WER from 93.89 to 39.78 WER. We
also demonstrate that using character error rate
(CER) as a validation criterion provides prac-
tical benefits with minimal performance trade-
offs. Despite using no external resources for
dialect adaptation beyond the shared task data,
our systems ranked second in ADI and third
in ASR, demonstrating that careful adaptation
strategies can overcome data constraints in di-
alectal speech processing.

1 Introduction

The Arabic language exhibits a rich linguistic vari-
ation landscape. While Modern Standard Arabic
(MSA) serves as the official language and codified
variety across all Arabic-speaking countries, it pri-
marily exists in formal situations such as scripted
news broadcasts and official documents. Daily spo-
ken communication occurs exclusively in regional
dialects that differ from MSA and each other at
every linguistic level: prosody, phonology, lexi-
con, and syntax. Although spoken dialects still

lack a standardized orthography and are not for-
mally taught in schools, they maintain a strong cul-
tural presence through songs, folktales, and cinema
(Holes, 2004; Habash, 2010).

Despite recent advances in language technology,
MSA remains the only Arabic variety that is well-
supported by AI-powered speech technology. For
example, while state-of-the-art ASR systems (e.g.,
Radford et al. (2023)’s Whisper model) work well
on MSA speech, they fail to adequately transcribe
and translate dialectal speech. To address this gap,
recent community efforts have focused on build-
ing speech resources for Arabic dialects. Notable
among these is the Casablanca corpus (Talafha
et al., 2024), the largest fully supervised Arabic
speech dataset covering eight regional dialects. The
NADI 2025 shared task builds on this resource to
advance speech technologies for Arabic dialects
across three speech processing subtasks.

In the NADI 2025 shared task, we participated
in two subtasks: spoken Arabic dialect identifica-
tion (ADI) and multidialectal Arabic ASR. Work-
ing exclusively with the provided datasets by the
organizers, we explored which model adaptation
techniques are most effective under resource con-
straints. For ADI, we adapted the multilingual
pretrained w2v-BERT 2.0 model using supervised
fine-tuning and voice conversion as audio augmen-
tation. We found that this approach improves ro-
bustness to domain mismatch, which is consistent
with our prior work (Abdullah et al., 2025). For
ASR, we developed two systems: (1) a dialect-
centric model based on connectionist temporal clas-
sification (CTC) loss and (2) fine-tuned Whisper
models. While the dialect-centric approach per-
formed better in zero-shot settings, dialect-specific
Whisper-based models achieved superior perfor-
mance after fine-tuning. Overall, our best ADI
system ranked second while our best ASR system
ranked third in their respective subtasks, despite
our data constrained setup.
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2 Shared Task Description

The NADI shared task series has evolved signif-
icantly over the years, with previous iterations
(2020-2024) focusing primarily on text-based di-
alect identification at various granularities (Abdul-
Mageed et al., 2020, 2021; Abdul-Mageed et al.,
2022, 2023, 2024). NADI 2025 represents a major
shift to speech processing, recognizing that dialec-
tal variation is most naturally expressed in spoken
form and that speech technology lags behind text
processing for Arabic dialects.

The NADI 2025 shared task focuses on ad-
vancing multidialectal Arabic speech processing
through three complementary subtasks that ad-
dress critical challenges in dialect-aware speech
technology (Talafha et al., 2025). Building on
the Casablanca corpus (Talafha et al., 2024), the
task provides participants with resources for eight
Arabic dialects throughout the Middle East and
North Africa. The dataset covers eight country-
level dialects with the following abbreviations used
throughout this paper: Algerian (ALG), Egyptian
(EGY), Emirati (UAE), Jordanian (JOR), Maurita-
nian (MAU), Moroccan (MOR), Palestinian (PAL),
and Yemeni (YEM).

2.1 Subtask 1: Spoken Arabic Dialect
Identification (ADI)

This subtask requires systems to predict the spo-
ken Arabic dialect from short audio clips. Given
the rich linguistic diversity of Arabic and the lim-
ited availability of labeled dialectal speech data,
accurate dialect identification remains challeng-
ing, especially in domain mismatch settings (Sul-
livan et al., 2023; Abdullah et al., 2025). This
subtask aims to evaluate how well modern multi-
lingual speech models and embedding techniques
can distinguish between dialectal variations using
acoustic-phonetic features. The provided dataset
for this subtask consists of dialect-annotated speech
samples for three splits: adaptation, validation, and
test, where each split is 8 hours of speech.

2.2 Subtask 2: Multidialectal Arabic ASR

In this subtask, participants are required to develop
ASR systems capable of adequately transcribing
speech across multiple Arabic dialects. The pri-
mary challenge lies in handling the substantial
phonological, lexical, and syntactic variations be-
tween dialects while maintaining high-quality tran-
scriptions across all varieties. Systems are evalu-

ated using both Word Error Rate (WER) and Char-
acter Error Rate (CER) metrics, which measure the
extent to which ASR generated transcripts match
gold human transcriptions. The provided dataset
for this subtask consists of transcribed speech sam-
ples for three splits: adaptation (12,800 utterances),
validation (12,800 utterances), and test (10,298 ut-
terances).

3 System Overview

In this section, we describe our systems for the
shared task. We refer to all our systems under the
name BYZÖ, an acronym formed from the first
letters of each core team member’s first name.

3.1 Spoken Arabic Dialect Identification

We fine-tuned the multilingual pre-trained speech
model w2v-BERT-2.0 for ADI using only the pro-
vided shared task data. We add an 8-way classifi-
cation head that is randomly initialized on top of
the pre-trained model for this task. To improve the
model’s robustness against unpredictable record-
ing variations, we used k-nearest neighbor (k-NN)
voice conversion (Baas et al., 2023) to create resyn-
thesized samples from the training data using target
voices from LibriVox audiobook recordings. We
used four target voices from LibriVox who spoke
standard Arabic. Using this approach, we created
synthesized data that is four times larger than the
original dataset. Our results show that using a com-
bined dataset (natural + resynthesized) significantly
improves performance without adding any natural
samples or requiring architectural modifications.

3.2 Multidialectal Arabic ASR

3.2.1 System 1: BYZÖ-whisper
Similar to prior research in dialectal Arabic ASR
using Whisper (Özyilmaz et al., 2025), we fine-
tune the Whisper-large-v3 model for multidialectal
Arabic ASR and examine how different training
strategies affect its performance. Our Whisper-
based approach consists of three aspects:

1. Two-stage fine-tuning procedure. First, we per-
form domain adaptation by fine-tuning all model
layers on the combined dataset from all dialects,
creating a domain-adapted multidialect baseline.
Second, we conduct dialect adaptation by fine-
tuning eight dialect-specific models, each trained
exclusively on its respective dialect data using the
same configuration. This approach combines the
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benefits of shared dialectal knowledge with dialect-
specific optimization.

2. Alternative validation criterion. We experi-
ment with CER as an alternative validation met-
ric to stop early during dialect adaptation. While
domain adaptation uses WER for validation, we
compare WER versus CER as stopping criteria
for dialect-specific fine-tuning. Using CER for
early stopping may prevent overfitting to frequent
word patterns and yield better character-level per-
formance.

3. Parameter-efficient fine-tuning via LoRA. We
also experiment with Low-Rank Adaptation, or
LoRA (Liu et al., 2024), as an efficient alternative
to full fine-tuning. LoRA inserts trainable rank-
decomposition matrices into the model’s weight
layers while keeping original weights frozen, reduc-
ing computational costs and potential overfitting
on limited dialect data.

3.2.2 System 2: BYZÖ-ctc
As an alternative to Whisper-based models, we
developed our own dialect-centric ASR model
by fine-tuning w2v-BERT-2.0 (580M parameters)
with CTC loss. The model underwent two-stage
training: (1) supervised fine-tuning on public Ara-
bic ASR datasets including Arabic Common Voice
(Ardila et al., 2020), SADA (Alharbi et al., 2024),
Linto (Abdallah et al., 2024; Naouara et al., 2025),
D-Voice 2.0 (Allak et al., 2021), and the Egyptian
Arabic ASR dataset on Kaggle, and (2) dialect-
specific fine-tuning using only the shared task data.
This encoder-only architecture is more efficient
than Whisper-based models and we show that it
outperforms Whisper-large in zero-shot settings.

To enhance the dialectal fidelity of ASR out-
put, we trained dialect-specific n-gram language
models with Kneser-Ney smoothing (with n = 3)
using curated text corpora for each dialect. These
LMs were integrated into BYZÖ-ctc’s decoding to
constrain acoustically plausible but linguistically
unlikely word sequences, reducing grammatical
and lexical errors in the final transcriptions. The
LMs training corpora are detailed in Appendix B.

4 Experimental Setup

We used the Hugging Face Transformers library
and the Trainer module to fine-tune our ASR and
ADI systems. For our Whisper-based systems, we
used the AdamW optimizer with a linear learning
rate warmup for 500 steps to a peak of 1 × 10−5,

System Accuracy (%) Avg. Cost

Baseline 61.09 0.342
BYZÖ-ADI 68.71 1.136
BYZÖ-ADI + VC 76.40 0.227

Table 1: Dialect identification performance metrics. Our
approach with voice conversion (VC) achieves optimal
performance with 76.4% accuracy (higher is better) as
well as the lowest cost value (lower is better).

followed by cosine decay. Each model was trained
for up to 2000 steps. For our w2vBERT 2.0-based
systems, we used the AdamW optimizer with a lin-
ear learning rate warmup for 10% of the adaptation
samples to a peak of 1× 10−5, followed by linear
decay. We applied minimal text processing to the
text transcripts for the ASR systems. We share our
code and models for reproducibility1.

5 Experimental Results

5.1 Spoken Arabic Dialect Identification

Table 1 presents the ADI results on the NADI
2025 test set with two evaluation metrics: accuracy
and average cost as define by the NIST Language
Recognition Evaluation campaign. The baseline
system, which is based on a Pretrained ECAPA-
TDNN VoxLingua107 system fine-tuned on adap-
tation split, achieves 61.09% accuracy with a cost
of 0.342. Our initial BYZÖ-ADI model improves ac-
curacy to 68.71%, though at a higher cost of 1.136,
indicating increased confusion between dialects.
However, incorporating voice conversion (VC) as
a data augmentation strategy yields substantial im-
provements on both metrics. The BYZÖ-ADI + VC
system achieves the best performance with 76.40%
accuracy while simultaneously reducing the cost
to 0.227. This 7.69 percentage point improvement
in accuracy over the base model demonstrates that
voice conversion effectively enhances the model’s
robustness to acoustic variations while improving
its discriminative ability across dialects.

5.2 Multidialectal Arabic ASR

Table 2 shows WER results across eight dialects.
The zero-shot Whisper baseline fails completely
on dialectal speech with an average WER of 93.90,
except for Jordanian (46.10). Our BYZÖ-ctc model
performs outperforms Whisper in zero-shot set-

1https://github.com/Yusser95/
NADI-NLP-2025-Whisper
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System ALG EGY JOR MAU MOR PAL UAE YEM AVG

Whisper (Zero-shot) 101.0 100.1 46.09 100.6 100.4 100.8 101.6 101.1 93.89

BYZÖ-ctc (Zero-shot) 75.17 48.40 40.67 81.25 72.21 52.24 46.91 54.23 58.89
BYZÖ-ctc + SFT 60.82 40.59 44.52 67.00 50.74 45.45 42.31 49.24 50.08
BYZÖ-ctc + SFT + LM 57.12 35.23 32.62 62.81 45.46 37.32 38.20 46.42 44.40

BYZÖ-whisper + SFT I 65.10 32.88 31.49 69.80 57.80 31.31 35.69 53.14 47.15
BYZÖ-whisper + SFT II 55.04 29.50 28.84 59.37 43.07 27.66 28.38 46.42 39.78

Table 2: Word Error Rate (WER) performance across eight Arabic dialects on the NADI 2025 test set. All our
systems used only shared task data for dialect adaptation. The baseline Whisper zero-shot results demonstrate the
challenge of dialectal ASR, while our BYZÖ systems show progressive improvements. Best results (in bold) are
achieved by two-stage fine-tuning with CER as criterion. Lower values indicate better performance.

tings (WER of 58.89), showing that dialect-centric
pre-training is effective for dialectal speech. Af-
ter dialect-specific fine-tuning, both our systems
improve significantly. The CTC model reduces av-
erage WER from 58.89 to 50.08 with supervised
fine-tuning, and further to 44.40 when adding lan-
guage models. The Whisper-based models achieve
better final results despite worse zero-shot perfor-
mance. Whisper fine-tuning gives a WER of 47.15,
while two-stage fine-tuning with CER as a vali-
dation criterion achieves the best performance at
39.78. This 4.62 point gap suggests the encoder-
decoder architecture handles dialectal variations
better than CTC when properly fine-tuned. Both
models show the largest gains on low-resource di-
alects like Mauritanian and Moroccan, reducing
WER by over 40 points from baseline.

On the other hand, Table 3 shows the perfor-
mance measured by CER for the eight dialects. In-
terestingly, the model that yields the lowest WER
for a dialect does not necessarily yield the lowest
CER. This finding suggests that WER and CER
might capture different model competences and
therefore should be combined when evaluating
ASR models.

6 Discussion

Our results reveal several important insights about
adapting ASR systems for dialectal Arabic speech.
The dramatic failure of zero-shot Whisper (93.9
WER average) highlights a fundamental chal-
lenge: models trained primarily on MSA and high-
resource languages cannot generalize to Arabic
dialects, despite Whisper’s multilingual capabil-
ities. This performance gap shows how the dis-
tinct phonological and lexical features, which sep-
arate dialectal Arabic varieties from MSA, affect

the performance of ASR systems. The success of
our adaptation strategies raises interesting ques-
tions about model architecture choices. While our
CTC-based model shows better zero-shot dialectal
speech-to-text transcription (58.89 vs 93.90 WER),
the Whisper architecture ultimately achieves supe-
rior performance after fine-tuning (39.78 WER).
This suggests that encoder-decoder models may
have greater capacity for dialectal adaptation when
provided with adequate supervision for each di-
alect, possibly due to their ability to model longer-
range dependencies and contextual information dur-
ing decoding.

7 Conclusion

We presented data-constrained approaches for the
NADI 2025 shared task, achieving competitive re-
sults in both dialect identification and ASR sub-
tasks. Our key findings include: (1) voice con-
version improves ADI accuracy by 7.69 percent-
age points while reducing classification uncertainty,
(2) dialect-centric pre-training provides better zero-
shot performance than general multilingual mod-
els, and (3) two-stage fine-tuning with character-
level optimization yields the best ASR results. Our
experiments reveal important architectural trade-
offs. CTC models offer better initial dialectal un-
derstanding and efficiency, while encoder-decoder
architectures show superior adaptation capacity af-
ter fine-tuning. Future work should address the
persistent performance disparities across dialects
(27.7-59.4 WER range), which cannot be resolved
through equal data distribution alone. Promising di-
rections including cross-dialectal transfer learning
and extending voice conversion techniques to ASR
tasks. Our competitive rankings despite using only
shared task data demonstrate that advancing dialec-
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System ALG EGY JOR MAU MOR PAL UAE YEM AVG

Whisper (Zero-shot) 79.58 81.37 19.28 82.89 80.42 77.92 80.27 80.58 84.69

BYZÖ-ctc (Zero-shot) 32.65 16.68 11.23 39.47 28.52 16.07 12.76 18.23 21.95
BYZÖ-ctc + SFT 20.17 13.06 12.25 24.64 16.20 13.91 11.68 15.32 15.90
BYZÖ-ctc + SFT + LM 22.03 12.02 10.17 26.25 15.89 12.30 11.00 15.85 15.69

BYZÖ-whisper + SFT I 26.69 13.41 10.36 30.12 21.21 12.23 11.91 24.79 18.84
BYZÖ-whisper + SFT II 20.59 11.91 9.47 24.85 15.52 10.59 9.04 16.05 14.76

Table 3: Character Error Rate (CER) performance across eight Arabic dialects on the NADI 2025 test set. All our
systems used only shared task data for dialect adaptation. The baseline Whisper zero-shot results demonstrate the
challenge of dialectal ASR, while our BYZÖ systems show progressive improvements. Best result for a dialect is
shown in bold. Lower values indicate better performance.

tal Arabic speech technology requires not massive
resources, but careful adaptation strategies tailored
to the unique characteristics of Arabic dialects.

Acknowledgments

This research is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation), Project-ID 232722074 – SFB 1102
and by the German Federal Ministry of Research,
Technology and Space (BMFTR) as part of the
project TRAILS (01IW24005).

References
Ahmed Amine Ben Abdallah, Ata Kabboudi, Amir

Kanoun, and Salah Zaiem. 2024. Leveraging
data collection and unsupervised learning for code-
switched tunisian arabic automatic speech recogni-
tion. In ICASSP 2024-2024 IEEE International Con-
ference On Acoustics, Speech And Signal Processing
(ICASSP), pages 12607–12611. IEEE.

Ahmed Abdelali, Hamdy Mubarak, Younes Samih,
Sabit Hassan, and Kareem Darwish. 2021. QADI:
Arabic dialect identification in the wild. In Proceed-
ings of the Sixth Arabic Natural Language Process-
ing Workshop, pages 1–10, Kyiv, Ukraine (Virtual).
Association for Computational Linguistics.

Muhammad Abdul-Mageed, AbdelRahim Elmadany,
Chiyu Zhang, El Moatez Billah Nagoudi, Houda
Bouamor, and Nizar Habash. 2023. Nadi 2023: The
fourth nuanced arabic dialect identification shared
task. arXiv preprint arXiv:2310.16117.

Muhammad Abdul-Mageed, Amr Keleg, AbdelRahim
Elmadany, Chiyu Zhang, Injy Hamed, Walid Magdy,
Houda Bouamor, and Nizar Habash. 2024. Nadi
2024: The fifth nuanced arabic dialect identification
shared task. arXiv preprint arXiv:2407.04910.

Muhammad Abdul-Mageed, Chiyu Zhang, Houda
Bouamor, and Nizar Habash. 2020. NADI 2020:

The first nuanced arabic dialect identification shared
task. In Proceedings of the Fifth Arabic Natural
Language Processing Workshop, WANLP@COLING
2020, Barcelona, Spain (Online), December 12, 2020,
pages 97–110. Association for Computational Lin-
guistics.

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim
Elmadany, Houda Bouamor, and Nizar Habash. 2022.
Nadi 2022: The third nuanced arabic dialect identifi-
cation shared task. arXiv preprint arXiv:2210.09582.

Muhammad Abdul-Mageed, Chiyu Zhang, Abdel-
Rahim A. Elmadany, Houda Bouamor, and Nizar
Habash. 2021. NADI 2021: The second nuanced
arabic dialect identification shared task. In Proceed-
ings of the Sixth Arabic Natural Language Process-
ing Workshop, WANLP 2021, Kyiv, Ukraine (Virtual),
April 9, 2021, pages 244–259. Association for Com-
putational Linguistics.

Badr M Abdullah, Matthew Baas, Bernd Möbius, and
Dietrich Klakow. 2025. Voice conversion improves
cross-domain robustness for spoken arabic dialect
identification. arXiv e-prints, pages arXiv–2505.

Mohammad Al-Fetyani, Muhammad Al-Barham,
Gheith Abandah, Adham Alsharkawi, and Maha
Dawas. 2023. Masc: Massive arabic speech cor-
pus. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 1006–1013.

Karim Al-Haff, Mustafa Jarrar, Tymaa Hammouda, and
Fadi Zaraket. 2022. Curras + baladi: Towards a Lev-
antine corpus. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
769–778, Marseille, France. European Language Re-
sources Association.

Sadeen Alharbi, Areeb Alowisheq, Zoltán Tüske, Ka-
reem Darwish, Abdullah Alrajeh, Abdulmajeed Al-
rowithi, Aljawharah Bin Tamran, Asma Ibrahim,
Raghad Aloraini, Raneem Alnajim, and 1 oth-
ers. 2024. Sada: Saudi audio dataset for arabic.
In ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 10286–10290. IEEE.

749

https://aclanthology.org/2021.wanlp-1.1/
https://aclanthology.org/2021.wanlp-1.1/
https://www.aclweb.org/anthology/2020.wanlp-1.9/
https://www.aclweb.org/anthology/2020.wanlp-1.9/
https://www.aclweb.org/anthology/2020.wanlp-1.9/
https://www.aclweb.org/anthology/2021.wanlp-1.28/
https://www.aclweb.org/anthology/2021.wanlp-1.28/
https://doi.org/10.1109/SLT54892.2023.10022652
https://doi.org/10.1109/SLT54892.2023.10022652
https://aclanthology.org/2022.lrec-1.82/
https://aclanthology.org/2022.lrec-1.82/


Anass Allak, Naira Abdou Mohamed, Imade Benelal-
lam, and Kamel Gaanoun. 2021. Dialectal voice :
An open-source voice dataset and automatic speech
recognition model for moroccan arabic dialect. In
Proceedings of the Data Centric AI (NeurIPS 2021).

R. Ardila, M. Branson, K. Davis, M. Henretty,
M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.
Tyers, and G. Weber. 2020. Common voice: A
massively-multilingual speech corpus. In Proceed-
ings of the 12th Conference on Language Resources
and Evaluation (LREC 2020), pages 4211–4215.

Matthew Baas, Benjamin van Niekerk, and Herman
Kamper. 2023. Voice conversion with just nearest
neighbors. In Interspeech 2023, pages 2053–2057.

Omar A Essameldin, Ali O Elbeih, Wael H Gomaa,
and Wael F Elsersy. 2025. Arabic dialect classifica-
tion using rnns, transformers, and large language
models: A comparative analysis. arXiv preprint
arXiv:2506.19753.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing. Morgan & Claypool Publish-
ers.

Clive Holes. 2004. Modern Arabic: Structures, func-
tions, and varieties. Georgetown University Press.

Mustafa Jarrar, Fadi A Zaraket, Tymaa Hammouda,
Daanish Masood Alavi, and Martin Waahlisch. 2022.
Lisan: Yemeni, iraqi, libyan, and sudanese arabic
dialect copora with morphological annotations.

Abdullah Khered, Ingy Abdelhalim, Nadine Abdel-
halim, Ahmed Soliman, and Riza Batista-Navarro.
2023. UniManc at NADI 2023 shared task: A com-
parison of various t5-based models for translating
Arabic dialectical text to Modern Standard Arabic.
In Proceedings of ArabicNLP 2023, pages 658–664,
Singapore (Hybrid). Association for Computational
Linguistics.

Yunpeng Liu, Xukui Yang, and Dan Qu. 2024. Ex-
ploration of whisper fine-tuning strategies for low-
resource asr. EURASIP Journal on Audio, Speech,
and Music Processing, 2024(1):29.

Hedi Naouara, Jean-Pierre Lorré, and Jérôme Louradour.
2025. Linto audio and textual datasets to train and
evaluate automatic speech recognition in tunisian
arabic dialect. arXiv preprint arXiv:2504.02604.

Ömer Tarik Özyilmaz, Matt Coler, and Matias
Valdenegro-Toro. 2025. Overcoming data scarcity
in multi-dialectal arabic asr via whisper fine-tuning.
arXiv preprint arXiv:2506.02627.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Peter Sullivan, AbdelRahim Elmadany, and Muhammad
Abdul-Mageed. 2023. On the robustness of arabic
speech dialect identification. In Interspeech 2023,
pages 5326–5330.

Bashar Talafha, Karima Kadaoui, Samar Mohamed
Magdy, Mariem Habiboullah, Chafei Mohamed
Chafei, Ahmed Oumar El-Shangiti, Hiba Zayed, Ra-
haf Alhamouri, Rwaa Assi, Aisha Alraeesi, and 1
others. 2024. Casablanca: Data and models for mul-
tidialectal arabic speech recognition. arXiv preprint
arXiv:2410.04527.

Bashar Talafha, Hawau Olamide Toyin, Peter Sulli-
van, AbdelRahim Elmadany, Abdurrahman Juma,
Amirbek Djanibekov, Chiyu Zhang, Hamad Alshehhi,
Hanan Aldarmaki, Mustafa Jarar, Nizar Habash, and
Muhammad Abdul-Mageed. 2025. Nadi 2025: The
first multidialectal arabic speech processing shared
task. In The Third Arabic Natural Language Process-
ing Conference (ArabicNLP 2025), Suzhou. Associa-
tion for Computational Linguistics.

A Training parameters for Whisper

A.1 System Configurations and Training
Setup

We train and evaluate three Whisper-based ASR
systems, summarized as follows:

1. Whisper + SFT: A two-stage fine-tuning sys-
tem with WER loss in first and second stage.
This configuration trains all model weights
(no LoRA). The maximum generation length
used in training is 225 tokens.

2. Whisper + SFT + 2OPT: A full fine-tuning
system with WER loss in first stage (same
shared across all systems) and CER loss for
the second stage. This configuration trains all
model weights (no LoRA) to directly compare
against System Whisper + SFT and show the
effect of CER-based training. The maximum
generation length is 225 tokens.

3. Whisper + SFT + LORA + 2OPt: We use
the same first stage model trained using full
fine-tuning system with WER loss and for the
scond stage we train a parameter-efficient sys-
tem using LoRA and a CER loss. because it
showed that it was effective in System Whis-
per + SFT + 2OPT. We freeze Whisper’s
original weights and fine-tune only LoRA
adapter parameters inserted in each layer (rank
r = 32). The CER loss term (λ = 0.5) is
added to the training objective to directly opti-
mize character accuracy. We impose a stricter
maximum generation length of 125 tokens to
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simulate potential truncation and evaluate its
effect, especially in conjunction with LoRA.
This setup updates only ∼1% of parameters,
significantly reducing training memory and
time, making it appealing for low-resource or
deployment scenarios if accuracy trade-offs
are acceptable.

B Training Corpora of n-gram Language
Models

The training corpora for the n-gram language mod-
els were compiled from several existing, dialect-
annotated datasets. These primary sources include
the Palestinian Curas corpus (Al-Haff et al., 2022),
the Yemeni Lisan corpus (Jarrar et al., 2022), the
Emirati Emi-NADI (Khered et al., 2023), the Mo-
roccan Darija-LID dataset2, and the multi-dialect
QADI corpus (Abdelali et al., 2021).

To augment these resources, we expanded
the training data by automatically annotating a
subset of the Arabic-tweets dataset (Al-Fetyani
et al., 2023). This dialect identification task was
performed using the MARBERTv2 model (Es-
sameldin et al., 2025).

C Correlation between Different Models

Figure 1 shows the correlation between different
models in their dialect performance. One can
observe a strong correlation between the models,
which indicates that the different systems behave
similarly for the dialectal Arabic ASR task.

2https://huggingface.co/datasets/atlasia/
Darija-LID
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Figure 1: Performance correlation between different
models: Our CTC- and Whisper-based systems (top),
and the top performing system in the shared task vs. our
best system. Each data point in the figure corresponds
to a dialect.
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Abstract
We participated in NADI 2025 shared tasks
on Arabic Dialect Identification (ADI) and
Automatic Speech Recognition (ASR) across
eight Arabic dialects. For ADI, we employ
an enhanced ECAPA-TDNN with VoxLin-
gua107 initialization, featuring self-attention
classification head, progressive unfreezing, ad-
vanced augmentation, and test-time augmenta-
tion. This approach ranked third with 61.6%
accuracy and 0.3068 macro cost. For ASR,
we implement a zero-shot cascaded system us-
ing Whisper Large-v3 and MARBERT with
extreme parameter efficiency (0.0004% train-
able), ranking seventh with 104.895 WER and
84.693 CER. Our results validate complemen-
tary paradigms: direct audio processing for
competitive dialect classification versus founda-
tion model robustness for cross-dialectal tran-
scription.

1 Introduction

Arabic is a pluricentric language with a rich con-
tinuum of regional and social varieties. This
diversity—spanning Egyptian, Levantine, Gulf,
Maghrebi, and other dialect groupings alongside
Modern Standard Arabic (MSA)—poses unique
challenges for speech technologies (Rahman et al.,
2024). Despite steady progress in speech process-
ing, reliable recognition and identification of Ara-
bic dialects from speech remains difficult due to
limited labeled resources, frequent code-switching
with MSA and other languages, and substantial
phonetic and lexical variation (Biadsy et al., 2009).
Earlier shared tasks on spoken dialect identifica-
tion helped define the problem space and catalyze
benchmarking (Ali et al., 2017, 2019) while recent
large-scale models that jointly learn ASR and lan-
guage identification—such as Whisper (Tang et al.,
2022; Radford et al., 2022) and MMS (Pratap et al.,
2023) have reset expectations for zero-/few-shot
performance. Still, their effectiveness on mul-
tidialectal Arabic, especially under domain shift

and fine-grained dialect labels, is far from settled
(Aboelela and Mansour, 2025).

The NADI 2025 shared task (Talafha et al.,
2025) addresses two complementary problems:
fine-grained dialect identification from single ut-
terances and robust ASR across dialects using
the Casablanca dataset. Building on prior Ara-
bic shared tasks and benchmarks (e.g., MGB-3
(Ali et al., 2017), MGB-2 (Ali et al., 2019)), we
adopt two complementary system designs: (1)
an adaptation-heavy ECAPA-TDNN (Desplanques
et al., 2020a) pipeline for dialect classification
and (2) a zero-shot Whisper Large baseline for
ASR. Our design choices emphasize reproducibil-
ity and computational practicality while explor-
ing methods that improve dialect discrimination
and transcription robustness. Our proposed system
model using Whisper and MMS dataset demon-
strates the power of large-scale multilingual models.
community-driven effort to advance multidialec-
tal Arabic speech recognition, while Speechbrain
(Ravanelli et al., 2021a), VoxLingua107 (Valk and
Alumäe, 2021) and ECAPA-TDNN (Desplanques
et al., 2020a) provide crucial multilingual and ar-
chitectural foundations.

Our contributions are threefold: (i) a practi-
cal and reproducible Arabic ASR that is based
on ECAPA TDNN that features the self-attention
mechanism; (ii) an empirical study of the use
of OpenAI Whisper Large v3 in Casablanca for
dialect-specific transcription; and (iii) a transpar-
ent analysis of errors and per-dialect behavior to
inform future multidialectal modeling.

2 Background

NADI subtasks uses Casablanca audio corpus cov-
ering eight target dialects (Algerian, Egyptian, Jor-
danian, Mauritanian, Moroccan, Palestinian, Emi-
rati, Yemeni)(Talafha et al., 2024). Each input
is a single-channel WAV file carrying one utter-

752



ance; ADI expects a single dialect label output
and ASR expects a text transcription (MSA or di-
alectal Arabic depending on the speaker). Table
1 presents the NADI 2025 Arabic dialect dataset
comprising 25,600 audio samples across 8 Arabic
dialects. The dataset is well-balanced with each di-
alect containing exactly 3,200 samples, split nearly
evenly between training (12,900) and validation
(12,700) sets. Audio recordings are sampled at
16 kHz with durations ranging from 1.04 to 15.12
seconds (mean: 4.25s, median: 3.56s, std: 2.79s).
An additional 6,268 unlabeled test samples are pro-
vided for evaluation.

Figure 1 illustrates the audio characteristics anal-
ysis of the dataset. The left panel shows the distri-
bution of audio durations, revealing a right-skewed
distribution with most samples concentrated be-
tween 2-4 seconds, and the mean (4.3s) slightly
higher than the median (3.6s) due to longer out-
liers. Dialects exhibit similar interquartile ranges
and median values around 3-4 seconds. Both vi-
sualizations confirm the dataset’s consistency and
balance, making it suitable for robust Arabic dialect
identification model training and evaluation.

Dialect Train Val

Algeria 1,610 1,590
Egypt 1,603 1,597
Jordan 1,604 1,596
Mauritania 1,617 1,583
Morocco 1,608 1,592
Palestine 1,631 1,569
UAE 1,602 1,598
Yemen 1,625 1,575

Total 12,900 12,700

Dataset Overview
Dialects: 8 Total: 25,600 Test: 6,268
Sampling rate: 16 kHz
Audio Duration Statistics (seconds)
Mean: 4.25 Median: 3.56 Std: 2.79
Range: 1.04 – 15.12

Table 1: Dialectal distribution of NADI dataset

Task Challenges: Prior Arabic speech work
demonstrates recurring challenges: dialectal vari-
ation, scarcity of labeled data for many dialects,
and domain mismatch between broadcast and in-
the-wild audio (Ali et al., 2017; Althobaiti, 2020).
Recent multilingual foundation models (Whisper
(Radford et al., 2022), MMS (Pratap et al., 2023))
show strong zero-shot generalization, while archi-
tectures such as ECAPA-TDNN have been effec-
tive for representation extraction in speaker and
language tasks (Desplanques et al., 2020b). For im-

plementation and tooling we relied on the Speech-
Brain toolkit (Ravanelli et al., 2021b).

3 System Overview

We implemented two systems consistent with the
memorized process described earlier. Below we
summarize the main design choices and compo-
nents for each subtask.

3.1 Subtask 1: Dialect Identification
(ECAPA-TDNN pipeline)

Base architecture: ECAPA-TDNN pre-trained
and described in prior work (Desplanques et al.,
2020b). We adapt ECAPA as a robust embedding
extractor and add a classification pathway on top.

Classification head: Custom multi-layer MLP
with Swish activation, BatchNorm, dropout, and a
feature-wise self-attention module. The attention
reweights ECAPA feature vectors:

a = σ(W2 · Swish(W1h+ b1) + b2) ,

ĥ = a⊙ h,
(1)

Training schedule:

• Phase 1: Freeze ECAPA backbone; train clas-
sifier head (2,500 steps).

• Phase 2: Unfreeze top ECAPA layers;
fine-tune with discriminative learning rates
(ηencoder = 1× 10−6, ηclassifier = 5× 10−5).

Loss & regularization: Combined loss L =
0.3Lfocal + 0.7LCE (focal γ = 2.5), label smooth-
ing, gradient clipping, and cosine-annealing LR
with warmup.

Augmentation & inference: Advanced aug-
mentation pipeline (noise, pitch/time perturbations,
reverb, volume, frequency/time masking) during
training. At inference we applied Test-Time Aug-
mentation (TTA) with 5–10 variants per utterance
and averaged softmax outputs; temperature scaling
was used for calibration.

3.2 Subtask 2: Automatic Speech Recognition
(MARBERT-Whisper pipeline)

We employ OpenAI Whisper
Large-v3 (via Hugging Face
pipeline("automatic-speech-recognition"))
as our baseline (Radford et al., 2022). Our ap-
proach implements a cascaded architecture
for Arabic Dialect Identification (ADI), com-
bining ASR with text classification through
parameter-efficient transfer learning.
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Figure 1: Statistical distribution of audio duration in NADI dataset

Given an input audio signal x ∈ RT of length T ,
the system performs sequential transformations:

1. ASR: Whisper Large-v3 for speech-to-text.

2. Encoding: MARBERT for contextual text
embeddings.

3. Classification: Trainable linear layer for di-
alect prediction.

The speech-to-text step uses a frozen Whisper
model Φwhisper:

t = Φwhisper
(
x;θwhisper

)
, (2)

where t is the transcript and θwhisper are frozen
pretrained parameters.

The transcript t is processed by the frozen MAR-
BERT encoder ΦMARBERT:

h = ΦMARBERT(t;θMARBERT) , (3)

where h ∈ R768 is the [CLS] token embedding.
A trainable classifier maps h to dialect probabil-

ities:
y = softmax(Wh+ b), (4)

where W ∈ R8×768 and b ∈ R8 are the only
trainable parameters.

Audio is resampled to 16 kHz mono, truncated
at 30 s, and zero-padded. Text is tokenized with
MARBERT (max length 512, dynamic padding).
Training uses batch-mode transcript processing;
inference is sequential with error handling.

This cascaded design achieves O(T log T ) com-
plexity for ASR andO(L2) for encoding, with min-
imal overhead due to selective parameter updates.

Component Task 1: ADI Task 2: ASR

Framework SpeechBrain HF Transformers

Pretrained ECAPA-TDNN
Whisper Large
+ MARBERT

Optimizer AdamW AdamW
Batch size 32 8 (train), 4 (val)
Precision FP16 FP16
Augmentation Audio perturb. None
Learning rate 5e-5 2e-5
Trainable params Enhanced classifier 6,152 (0.0004%)
Max steps 25,000 3,000
Hardware 8 GB+ GPU 8 GB+ GPU

Table 2: Training configurations for ADI and ASR tasks

4 Experimental Setup

All experiments used the organizer-provided splits
(Table 1). Implementations used SpeechBrain for
ECAPA-based pipelines and Hugging Face Trans-
formers for Whisper. Important implementation
details are summarized in Table 2.

Metrics and evaluation. For ADI we report
accuracy and the macro-averaged cost metric pro-
vided by the organizers. For ASR we report aver-
age WER and CER using the Codabench evaluation
script. Recent large-scale approaches and multilin-
gual systems motivate the use of zero-shot base-
lines for comparison (Pratap et al., 2023; Radford
et al., 2022).

5 Results

Table 3 summarizes official results submitted to
the organizers and used for official ranking. The
enhanced ECAPA-TDNN system achieved a com-
petition score of 0.616 (cost: 0.3068) in Task 1,
demonstrating competitive performance against the
best system which scored 0.7983 (cost: 0.1788),
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Task Metric 1 Metric 2 Rank

ADI Acc. 0.616 Macro Cost 0.3068 3
ASR Avg. WER 104.90 Avg. CER 84.69 7

Table 3: Performance metrics of our proposed system

validating the effectiveness of direct audio process-
ing for Arabic dialect identification.

For Task2, the novel Whisper + MARBERT cas-
caded approach, while achieving more modest ac-
curacy, offers significant advantages in computa-
tional efficiency and interpretability, requiring only
minimal parameter training while leveraging the
power of large pre-trained models.

5.1 Ablation and analysis (validation splits)

We performed ablations during development on the
validation set. Removing the feature-wise attention
layer reduced validation discrimination between
similar dialect classes and led to decreased stabil-
ity in low-resource dialects (consistent with our
informal validation runs). Progressive unfreezing
and discriminative learning rates helped preserve
pretrained representations and improved final vali-
dation cost.

5.2 Error analysis

We analyzed common confusions on validation and
test samples (explicitly noting which split is used
where):

• Dialect confusions: Moroccan and Algerian
Arabic sound very similar in how they’re
spoken (rhythm/melody) and use similar
words/expressions. The same applies to Lev-
antine and Palestinian Arabic. When these lin-
guistic features "overlapped" (were very simi-
lar between the pairs), the AI system couldn’t
reliably distinguish between them.

• ASR errors: Whisper zero-shot produced fre-
quent errors in colloquial and code-switched
segments (e.g., mixing Arabic and French
terms), and often omitted short function words
or mis-transcribed named entities.

Example (validation): a Moroccan utterance con-
taining dialectal lexical items was misclassified as
Algerian due to shared lexical forms and similar
rhythm; manual inspection revealed low SNR and
overlapped background speech.

6 Discussion

Our NADI 2025 participation reveals several crit-
ical limitations and areas for improvement across
both tasks. For Task 1 (ADI), our enhanced
ECAPA-TDNN system achieved an accuracy of
0.616 with macro cost of 0.3068, ranking 3rd
among participants, compared to the best perform-
ing system at 0.7983, indicating substantial room
for optimization in fine-tuning strategies and fea-
ture extraction despite our sophisticated enhance-
ment techniques including self-attention mecha-
nisms, progressive unfreezing, and advanced data
augmentation.

The cascaded approach in Task 2 (ASR) exposed
fundamental limitations of speech-to-text pipelines,
achieving an average WER of 104.90 and CER of
84.69, ranking 7th in the competition. These high
error rates reflect domain mismatch between Whis-
per’s training data and the competition dataset, as
well as differences in transcription conventions and
dialectal variations that the pre-trained model was
not optimized for. Error propagation from the ASR
component directly impacts downstream classifi-
cation performance, as dialectal acoustic features
crucial for identification are lost during transcrip-
tion. This suggests that preserving prosodic and
phonetic information through direct audio process-
ing remains superior for dialect-specific tasks.

The limited training data for certain dialect
classes exacerbated class imbalance issues in Task
1, despite employing focal loss and data augmen-
tation techniques, while the extremely high error
rates in Task 2 suggest fundamental challenges in
adapting general-purpose ASR models to dialectal
Arabic. Future improvements should focus on di-
alectal data augmentation strategies, cross-lingual
transfer learning from related Arabic varieties, hy-
brid architectures that combine acoustic and lin-
guistic features for ADI, and specialized ASR mod-
els trained specifically on dialectal Arabic corpora.

7 Conclusion

In summary, our experiments presents the comple-
mentary strengths of two paradigms: fine-tuned
ECAPA-TDNN, augmented with diverse perturba-
tions and targeted architectural refinements, deliv-
ers strong dialect classification, whereas Whisper
Large serves as a capable zero-shot transcription
baseline across dialects without any task-specific
adaptation. This contrast suggests a promising
avenue in combining the adaptability of tailored
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acoustic models with the broad coverage of large,
general-purpose ASR systems.

Code Reproducibility

To ensure reproducibility of our results, all source
code, model implementations, and experimen-
tal configurations are made publicly available at
https://github.com/rafiulbiswas/NADI. The
repository includes complete implementations for
both tasks with detailed documentation and setup
instructions.
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Abstract

In this work, we tackle the Diacritic Restora-
tion (DR) task for Arabic dialectal sentences
using a multimodal approach that combines
both textual and speech information. We pro-
pose a model that represents the text modality
using an encoder extracted from our own pre-
trained model named CATT. The speech com-
ponent is handled by the encoder module of the
OpenAI Whisper base model. Our solution is
designed following two integration strategies.
The former consists of fusing the speech tokens
with the input at an early stage, where the 1500
frames of the audio segment are averaged over
10 consecutive frames, resulting in 150 speech
tokens. To ensure embedding compatibility,
these averaged tokens are processed through a
linear projection layer prior to merging them
with the text tokens. Contextual encoding is
guaranteed by the CATT encoder module. The
latter strategy relies on cross-attention, where
text and speech embeddings are fused. The
cross-attention output is then fed to the CATT
classification head for token-level diacritic pre-
diction. To further improve model robustness,
we randomly deactivate the speech input during
training, allowing the model to perform well
with or without speech. Our experiments show
that the proposed approach achieves a word er-
ror rate (WER) of 0.25 and a character error
rate (CER) of 0.9 on the development set. On
the test set, our model achieved WER and CER
scores of 0.55 and 0.13, respectively.

1 Introduction

Diacritics are essential for accurate interpretation,
pronunciation, and meaning in Arabic. However,
in most informal writing such as social media,
messaging, or transcribed speech they are omit-
ted. While native speakers often infer the intended
forms from context, the absence of diacritics in-
troduces significant ambiguity, particularly in di-
alects where phonetic and morphological variation

is high and orthographic conventions are inconsis-
tent. This not only challenges human readers but
also degrades the performance of downstream NLP
tasks such as speech synthesis, machine translation,
and information retrieval. The NADI 2025 shared
task overview (Talafha et al., 2025) highlights that
DR remains particularly difficult for dialectal Ara-
bic due to limited annotated data, regional vari-
ability, and inconsistent spelling practices. Tradi-
tional DR approaches rely solely on text, ranging
from rule-based systems and n-gram models to
transformer-based language models such as BERT
(Devlin et al., 2019). These methods often fail
when orthographic cues alone are insufficient, an
issue exacerbated in dialectal and code-switched
text. In contrast, speech carries prosodic and pho-
netic signals that can directly disambiguate dia-
critic placement, offering a valuable complement
to text.

In this work, we propose CATT-Whisper, a mul-
timodal DR system that integrates a CATT (Alas-
mary et al., 2024) text encoder with the Whisper
(Radford et al., 2023) speech encoder. We evalu-
ated two fusion strategies: (i) Early fusion: pro-
jected speech embeddings are merged with text
embeddings before passing them to CATT encoder
as inputs. (ii) Cross-attention fusion: the output
of the CATT encoder is fused with the speech em-
beddings from Whisper using cross attention layer,
followed by the classification layer.

Our contributions are: (i) A multimodal DR sys-
tem for Arabic dialects combining large-scale pre-
trained text and speech encoders. (ii) Comparative
analysis of early fusion vs. Cross-attention fusion.
(iii) A modality-robust training scheme for variable
speech availability. Our full codebase, including
pre-trained models and training scripts, is publicly
available 1, ensuring reproducibility and facilitating
further research in multimodal DR.

1https://github.com/abjadai/catt-whisper
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2 Background

2.1 Task Setup
The DR shared subtask at NADI 2025 focuses on
restoring missing diacritics in Arabic text, with the
option to also use speech for better performance.
Unlike most previous work that only targets MSA,
this task also covers Classical Arabic, dialects, and
code-switched text, which are more challenging.
Some examples are provided in Table 1.

Example Input 1 èXQî 	DË @ éK
 @ �éK. Pñ �� ñ»Y	J«
CATT �è �X �Q�î

��	DË @ éK
 @
��é�K. �Pñ

��� ñ
�
» �Y�	J«�

CATT-Whisper è �XQ�î 	D�Ë @ éK
 @� �éK.� Pñ �� ñ
�
» �Y 	J �«

Reference è �XQ�î 	D�Ë @ éK
 @� �éK.� Pñ �� ñ
�
» �Y 	J �«

Example Input 2 É¿B@ 	Q�
êj. �JË �H


@ð �éK
ñ �� 	QK
A«

CATT É�
�
¿B@ 	Q��
ê�

�j.
��JË�

��H
�

@ �ð ��é��K
ñ�

��� �	Q�K
A �«
CATT-Whisper É¿

�
B@ 	Q�
ê�j.

��JË� �H


@ �ð �é��K
 �ñ �� 	QK
� A

�«
Reference É¿

�
B@ 	Q�
ê�j.

��JË� �H


@ �ð �é��K
 �ñ �� 	QK
� A

�«

Table 1: Examples from the NADI 2025 Subtask 3
dataset (dev/test). CATT (text-only) and CATT-Whisper
(speech-enhanced) outputs compared with references,
showing how speech features resolve phonological am-
biguities.

2.2 Dataset
Our experiments were conducted using the NADI
2025 DR dataset, provided as part of the shared
task, which is publicly available on Hugging Face
2. The dataset covers a mix of dialectal, multi-
dialectal, and Classical Arabic varieties, with some
segments exhibiting code-switching between Ara-
bic and other languages. The dataset is a combined
collection derived from several resources, namely
MDASPC (Almeman et al., 2013), TunSwitch (Ab-
dallah et al., 2023), ArzEn (Hamed et al., 2020),
Mixat (Al Ali and Aldarmaki, 2024), ClArTTS
(Kulkarni et al., 2023), and ArVoice (Toyin et al.,
2025). While the CATT and Whisper models we
use in our system were already pretrained on their
respective large-scale corpora, the NADI 2025 DR
dataset used exclusively for fine-tuning the com-
bined architecture for this DR task. The provided
training data consists of multiple sub-datasets, sum-
marized in Table 2.

2https://huggingface.co/datasets/MBZUAI/
NADI-2025-Sub-task-3-all

Dataset Type Dia. Train
MDASPC Multi-dialectal True 60,677
TunSwitch Dialectal, CS True 5,212
ArzEn Dialectal, CS False 3,344
Mixat Dialectal, CS False 3,721
ClArTTS CA True 9,500
ArVoice MSA True 2,507

Table 2: Statistics of the NADI 2025 Subtask 3 datasets.
CA = Classical Arabic, CS = Code-Switched Arabic,
Dia. = diacritic. The table reports the number of sen-
tences in each split.

2.3 Related Work

Research on Arabic DR has evolved from rule-
based methods to neural and multimodal ap-
proaches (Elgamal et al., 2024). Early systems
relied on lexicons and morphological analyzers,
later extended with n-gram models (Habash and
Rambow, 2007; Elshafei et al., 2006), but they
struggled with dialectal variation, noisy text, and
borrowed vocabulary. Neural models, from RNNs
and LSTMs (Zitouni et al., 2006; Belinkov and
Glass, 2015) to transformers (Nazih and Hifny,
2022) with pre-trained language models such as
AraBERT (Antoun et al., 2020), CAMeLBERT (In-
oue et al., 2021), and CATT (Alasmary et al., 2024),
improved accuracy but still failed to resolve pho-
netic ambiguities in dialects. While (Elgamal et al.,
2024) highlighted the usefulness of “diacritics-in-
the-wild” signals, text-only models remain insuffi-
cient for ambiguous cases.

Multimodal approaches increasingly exploit
ASR outputs as phonetic cues. Early work (Al-
darmaki and Ghannam, 2023) relies solely on
ASR, which can produce both transcripts and dia-
critic predictions, but errors in transcription often
propagate to diacritization. More recent methods
(Shatnawi et al., 2024a) integrate ASR-derived-
diacritized transcripts with undiacritized text via
cross-attention, enhancing performance while still
being sensitive to ASR noise.

Our approach differs by (i) deeply integrating
text and speech through early and cross-attention
fusion, (ii) focusing explicitly on dialectal DR with
robust pre-trained encoders: CATT and Whisper.

3 System Overview

3.1 Architecture Components

The architecture consists of a Text Encoder, imple-
mented with a pre-trained CATT model for DR, and
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(a) Early Fusion (b) Cross Attention Fusion

Figure 1: Proposed CATT-Whisper Architectures for Multimodal. (a) Early Fusion Configuration. (b) Cross-
Attention Fusion Configuration.

a Speech Encoder, implemented with the Encoder
part of Whisper-Base model. A Linear Projection
Layer follows the speech encoder to match the
dimensionality of the text encoder. The proposed
architectures are summarized in Figure 1.

3.2 Fusion Strategies

3.2.1 Early Fusion

Speech features are downsampled from 1,500
frames to 150 tokens by averaging 10 frames with
and projecting them to match the text embedding
dimension. These speech tokens are then concate-
nated with text tokens and fed into the CATT en-
coder, following a strategy similar to (Wu et al.,
2023). This early fusion approach can be seen as
a form of “soft prompting,” where text tokens are
augmented with speech embeddings via speech-
placeholder tokens, enabling the model to lever-
age acoustic features while preserving the core
CATT architecture. Details of this fusion strategy
is shown in Figure 2.

3.2.2 Cross-Attention Fusion

Text and speech embeddings are encoded sepa-
rately, then fused via a cross-attention layer before
being passed to the classification layer, similar to
the multi-modal setup of (Shatnawi et al., 2024b).

3.2.3 Fusion Strategy Choice

In our experiments, both Early Fusion and Cross-
Attention Fusion yielded comparable results. How-
ever, as Cross-Attention is computationally more
demanding, we focused on Early Fusion, and all
results reported in this paper correspond to this
configuration.

3.3 Speech Augmentation

Time-frequency warping (Park et al., 2019) is ap-
plied during training to improve generalization.

4 Experimental Setup

For training, we used the NADI 2025 DR train and
development sets, while evaluation was performed
on the official test set. Model performance was
measured using Word Error Rate (WER) and Char-
acter Error Rate (CER), which are the standard
metrics. Our preprocessing step included tokeniza-
tion, speech feature extraction, and spectrogram
augmentation through time-frequency warping.

Training was carried out with a batch size of 32,
a learning rate of 1× 10−5, a dropout rate of 0.1,
and the AdamW optimizer. During training, the
speech encoder was frozen for the first 5 epochs al-
lowing the projection layer to adapt, then unfrozen
and jointly trained with the rest of the model for
more 5 epochs. This two-phase procedure was ap-
plied in all experiments for both fusion models.

5 Results

5.1 Development Set Performance
Table 3 shows the performance of our proposed
model compared to other works on the development
set. Our model achieves substantially lower word
error and character error rates (WER and CER).

Participant WER CER
gahmed92 (Ours) 0.25 0.09
omarnj 0.46 0.22
Baseline 0.46 0.22

Table 3: Results on the NADI 2025 Subtask 3 official
development set, reported in WER and CER

5.2 Test Set Performance
Table 4 presents the results on the official test set.
Our models outperforms all models in both metrics.

5.3 Performance on Challenging Test Cases
We further analyzed the model on a set of chal-
lenging test cases recorded by our team, where the
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Figure 2: Early Fusion architecture of the proposed CATT-Whisper model. Speech features are downsampled and
projected to match text embeddings before being concatenated with text tokens and processed by the CATT encoder.

Participant WER CER
gahmed92 (Ours) 0.55 0.13
mohamed_elrefai 0.64 0.15
Baseline 0.65 0.16

Table 4: Results on the NADI 2025 Subtask 3 official
test set, reported in WER and CER

same word is pronounced differently within the
same sentence. The results, summarized in Table 5,
show that while our model achieves lower WER
and CER than the others, these cases remain diffi-
cult and are not fully solved. This highlights both
the robustness of our approach and the need for fur-
ther improvements to handle complex, real-world
pronunciation variability.

Example Input 1 H. Qå 	� H. Qå 	� H. Qå 	�
CATT-Whisper H. Q�å

�	� H. Q�å
�	� H. Q�å

�	�
Reference �H. �Qå�	� �H. Q�å

�	� �H. �Qå�	�
Example Input 2 I. ë

	X I. ë
	X

CATT-Whisper I. ë�
�	X I. ë�

�	X
Reference �I.

�ë �	X �I.
�ë �	X

Table 5: Model performance on challenging test cases
with variable word pronunciations.

6 Conclusion

We present CATT-Whisper, a multimodal sys-
tem for Arabic DR that combines pre-trained text
and speech encoders via early fusion and cross-
attention. Both strategies achieve competitive re-
sults. While speech input boosts diacritic accu-
racy, some ambiguous sequences remain challeng-
ing, suggesting the need for stronger phoneme-
level encoders (e.g., CTC-based models such as
Conformer-CTC (Gulati et al., 2020), Squeeze-

former (Kim et al., 2022)). Future work will ex-
plore alternative acoustic models and larger-scale
training.
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Abstract

This paper describes Elyadata & LIA’s joint
submission to the NADI multi-dialectal Arabic
Speech Processing 2025. We participated in
the Spoken Arabic Dialect Identification (ADI)
and multi-dialectal Arabic ASR subtasks. Our
submission ranked first for the ADI subtask
and second for the multi-dialectal Arabic ASR
subtask among all participants. Our ADI sys-
tem is a fine-tuned Whisper-large-v3 encoder
with data augmentation. This system obtained
the highest ADI accuracy score of 79.83% on
the official test set. For multi-dialectal Arabic
ASR, we fine-tuned SeamlessM4T-v2 Large
(Egyptian variant) separately for each of the
eight considered dialects. Overall, we obtained
an average WER and CER of 38.54% and
14.53%, respectively, on the test set. Our re-
sults demonstrate the effectiveness of large pre-
trained speech models with targeted fine-tuning
for Arabic speech processing.

1 Introduction

Arabic is one of the most widely spoken languages
in the world, both in terms of number of speakers
and geographical spread (Lane, 2025). This wide
distribution, coupled with centuries of contact with
other languages and cultures, has led to the emer-
gence of numerous colloquial varieties collectively
known as Arabic dialects. Although the exact gran-
ularity and classification of these dialects remain a
matter of debate, a common working assumption in
computational processing is to associate a dialect
with a country-level variety (Bouamor et al., 2014;
Shon et al., 2020), or to a larger area where sub-
dialects are the most similar (Gulf, Levant, North
Africa) (Dhouib et al., 2022; Ali et al., 2017).

Dialectal Arabic poses unique challenges for
speech and language processing. Unlike Modern
Standard Arabic (MSA), dialects are predominantly
spoken rather than written (Ferguson, 1959), with
significant variation in phonology, lexicon, and

syntax. They also lack standardized orthographic
conventions, despite recent efforts such as CODA
(Conventional Orthography for Dialectal Arabic)
(Habash et al., 2012), and later efforts of Habash
et al. (2018) and Alhafni et al. (2024). These prop-
erties complicate both Automatic Speech Recog-
nition (ASR) and Automatic Dialect Identification
(ADI) tasks, where systems must generalize across
substantial linguistic variability.

The 2025 Nuanced Arabic Dialect Identifica-
tion (NADI) Shared Task (Talafha et al., 2025)
addresses these challenges through three subtasks
aimed at improving the coverage and robustness of
speech technologies for Arabic dialects:

• Spoken Arabic Dialect Identification (ADI)

• Multidialectal Arabic ASR using the recently
released Casablanca dataset (Talafha et al.,
2024)

• Diacritic Restoration focusing on dialectal
variations of Arabic

Our team participated in the first two subtasks,
achieving first place in ADI and second place in
multi-dialectal ASR on the official test sets. In
both cases, we leveraged large-scale pre-trained
speech models with targeted fine-tuning strategies
to address dialectal variability.

Our main contributions are (1) We propose an
effective two-stage fine-tuning approach for ADI,
using the Whisper-large-v3 encoder to achieve
state-of-the-art results. (2) We demonstrate that
separately fine-tuning the SeamlessM4T-v2 Large
model for each dialect yields competitive ASR per-
formances.

2 Arabic Dialect Identification

The ADI subtask aims to classify speech utterances
into their respective country-level dialect categories
automatically. Our approach leverages large-scale
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pre-trained speech representations and a two-stage
fine-tuning process to effectively adapt to the di-
alectal nuances present in the provided dataset. In
the following subsections, we describe the datasets
used, our ADI model architecture, and the consid-
ered training strategy. We also present our exper-
imental results and follow up with an analysis of
the ADI system performances.

2.1 Datasets

We utilize several datasets to train and evaluate our
ADI system, including established corpora cover-
ing multiple Arabic dialects, as well as the official
NADI 2025 ADI dataset. The following is a de-
tailed description of each dataset.

2.1.1 ADI-17 and ADI-20
The ADI-17 dataset (Shon et al., 2020) comprises
3,033 hours of dialectal Arabic speech from 17
country-level dialects for training, along with ap-
proximately 2 hours per dialect in the development
and test splits, respectively.

The ADI-20 dataset (Elleuch et al., 2025) is an
expanded and rebalanced version of ADI-17, ex-
tending its coverage from 17 to 20 Arabic vari-
eties by including Tunisian and Bahraini dialects
as well as Modern Standard Arabic (MSA). It also
increases representation for previously underrep-
resented dialects, such as Jordanian and Sudanese,
by incorporating additional speech material. In
total, the training partition contains 3,556 hours
of speech, while the development and test sets re-
tain the same structure as in ADI-17, supplemented
with approximately 2 hours per newly added variety
in each split. To enable experiments under resource-
constrained conditions and ensure per-dialect bal-
ance, ADI-20-53h, a stratified subset containing up
to 53 hours of training data for each variety, result-
ing in a total of 1,060 hours is also available. Our
future experiments will use this subset rather than
the full ADI-20 dataset for the reasons mentioned
earlier.

2.1.2 NADI 2025 ADI Dataset
The official dataset for the ADI subtask covers eight
country-level Arabic dialects: Algeria, Egypt, Jor-
dan, Mauritania, Morocco, Palestine, UAE, and
Yemen. It includes an adaptation split of approx-
imately 15 hours (12,900 utterances) with associ-
ated country labels, a validation split of similar size
(12,700), and an eleven-hour held-out test set with
6268 utterances.

2.2 Model Architecture

Our system follows the best-performing configu-
ration from Elleuch et al. (2025). The Whisper-
large-v3 encoder (Radford et al., 2023) is used as a
feature extractor, followed by an attention pooling
layer that aggregates frame-level representations
into fixed-length utterance embeddings. These are
passed through a fully connected layer with a soft-
max activation for classification over the target di-
alects.

We freeze the first 16 layers of the Whisper en-
coder during fine-tuning to preserve general speech
representations while adapting the upper layers
to the ADI task. To enhance robustness, we ap-
ply additive noise, speed perturbation, frequency
masking, and chunk-level dropout. Training is per-
formed with SpeechBrain (Ravanelli et al., 2024)
using negative log-likelihood loss, the Adam opti-
mizer, and a NewBob learning rate scheduler start-
ing from 1 × 10−5 for frozen encoder layers and
1× 10−4 for trainable layers. Training runs for up
to 100 epochs on NVIDIA H100 80GB GPUs, with
early stopping based on validation performance.

2.3 Experiments and Results

We first evaluated the model after fine-tuning only
on ADI-17 and ADI-20-53h to assess zero-shot per-
formance on the NADI validation set. As shown
in Table 1, fine-tuning on ADI-17 yields an accu-
racy of 31.84%, while ADI-20-53h substantially
improves zero-shot accuracy to 78.33%.

Fine-tuning dataset Accuracy (%)
ADI-17 31.84
ADI-20-53h 78.33

Table 1: Zero-shot evaluation on the NADI 2025 ADI
validation set.

Our final submission builds on the ADI-20-53h
model, further adapted with the NADI adaptation
split. This two-stage fine-tuning yields substantial
gains, as shown in Table 2. The system ranked
first, achieving 98.08% accuracy on validation and
79.83% on the test set, with corresponding average
costs of 0.0171 and 0.1788 using the 2022 NIST
LRE formulation.

Analysis of the validation confusion matrix in 1
shows that the Algerian dialect is the most chal-
lenging to predict, with only 96% of utterances
correctly classified. Misclassifications primarily
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involve the geographically adjacent Moroccan di-
alect, and conversely, 30 Moroccan utterances are
labeled as Algerian. Misclassifications between
Egyptian and Jordanian are largely reciprocal; de-
spite their geographic proximity, this pattern is un-
expected from the perspective of Arabic speakers.

ALG
1563
(96%) 3 0 2 11 4 2 5

EGY 2
1579
(97%) 9 0 0 3 0 4

JOR 2 27
1543
(99%) 1 0 8 8 7

MAU 7 0 0
1556
(99%) 6 1 8 5

MOR 30 1 0 1
1549
(99%) 1 5 5

PAL 7 4 4 1 0
1546
(99%) 3 4

UAE 2 4 3 3 0 0
1585
(98%) 1

YEM 9

ALG

5

EGY

7

JOR

5

MAU

4

MOR

6

PAL

4

UAE

1535
(98%)

YEM

Tr
ue

L
ab

el

Predicted Label

Figure 1: Confusion matrix on the provided develop-
ment set.

Split Accuracy (%) ↑ LRE avg. Cost ↓
Validation 98.08 0.0171
Test 79.83 0.1788

Table 2: Final ADI subtask results.

3 Multi-dialectal Arabic ASR

The multi-dialectal Automatic Speech Recognition
(ASR) subtask focuses on transcribing spoken Ara-
bic across eight country-level dialects. This subtask
aims to highlight the challenges posed by phonetic,
lexical, and syntactic diversity of Arabic dialects.
In this section, we describe the dataset, model ar-
chitecture, training methodology, and the obtained
results of our approach.

3.1 Dataset

The NADI 2025 ASR dataset includes the same
eight dialects as the ADI subtask. Each dialect has
1,600 utterances in both the training and validation
splits, with durations ranging from 1 to 30 seconds.
The total duration is 30.72 hours (15.44 hours for
training, 15.27 for validation). Table 3 shows per-
dialect durations.

Dialect Train (h) Validation (h)
Algeria 1.91 1.84
Egypt 2.01 1.85
Jordan 1.93 1.89
Mauritania 1.66 1.63
Morocco 1.60 1.67
Palestine 2.43 2.41
UAE 1.87 1.86
Yemen 2.01 2.11
Total 15.44 15.27

Table 3: Durations per dialect in the NADI 2025 datasets

3.2 Models

We adopted two distinct architectures in our exper-
iments: Whisper and SeamlessM4T-v2 (Barrault
et al., 2023). Whisper is an encoder–decoder
Transformer model trained on a large-scale
multilingual and multitask dataset of speech and
text, enabling robust automatic speech recognition
(ASR) across a wide range of languages. Its ar-
chitecture integrates a Transformer-based encoder
for speech representation learning and a Trans-
former decoder for transcription generation. The
Whisper-large-v3 model contains approximately
1.55 billion parameters, while Whisper-medium
has around 769 million parameters, offering a
faster and more memory-efficient alternative.

SeamlessM4T is a multilingual sequence-to-
sequence model designed for speech and text trans-
lation across more than 100 languages. In its v2 re-
lease, it builds upon the UnitY2 architecture, com-
bining a Conformer-based speech encoder with a
Transformer-based text decoder. We selected the
Egyptian variant due to its demonstrated effective-
ness in Arabic transcription tasks. Given the sub-
stantial phonetic, lexical, and syntactic divergence
between Arabic dialects, we empirically found that
fine-tuning a separate model for each dialect out-
performed a single unified model for all dialects.

3.3 Experiments and Results

Our experimental process for the multi-dialectal
ASR subtask followed three main steps: (i) evalua-
tion of Whisper-based systems, (ii) comparison be-
tween per-dialect and unified models, (iii) compari-
son of the best Whisper model with SeamlessM4T-
v2 Large. All results are reported in terms of WER
and CER, computed on the NADI 2025 validation
and test sets.
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For Whisper-based experiments, we fine-tuned dif-
ferent variants (Medium and Large) under two hard-
ware configurations: (i) on an NVIDIA P100 16GB
GPU with the AdamW optimizer, a fixed learning
rate of 1 × 10−5, a batch size of 1, and gradient
accumulation over 4 steps; and (ii) on an NVIDIA
A100 80GB GPU with a batch size of 8 using the
same optimizer and learning rate.

For SeamlessM4T, we fine-tuned the v2 Large
Egyptian variant for six epochs on an NVIDIA
A100 40GB GPU. Training employed the AdamW
optimizer with a learning rate warmed up over
100 steps from 1 × 10−9 to 5 × 10−5. We used
label-smoothed negative log-likelihood loss with a
smoothing factor of 0.2 and a batch size of 2.

3.3.1 Whisper Large vs Whisper Medium
We first fine-tuned both Whisper-large-v3 and
Whisper-medium on the full multi-dialectal dataset
(all eight dialects combined). On average, Whisper-
large-v3 achieved a WER of 72.20% and a CER of
58.51% while Whisper-medium, despite its smaller
size, outperformed it with a WER of 48.21% and
a CER of 17.94%. Given these substantial im-
provements, Whisper-medium was chosen for all
subsequent experiments.

3.3.2 Multi vs Mono-dialectal Models
We evaluated two training strategies using Whisper-
medium: a multi-dialectal model trained jointly on
all dialects, and mono-dialectal models obtained
via dedicated fine-tuning for each dialect, yield-
ing eight specialized models. The mono-dialectal
approach achieved a lower average Word Error
Rate (WER) of 46.71%, compared to 48.21% for
the multi-dialectal model. In terms of Charac-
ter Error Rate (CER), both approaches performed
similarly, with the multi-dialectal model scoring
17.97% and the specialized models 17.94% on av-
erage. These results suggest that training separate
mono-dialectal models is the best approach.

3.3.3 Whisper vs SeamlessM4T-v2 Large
We also compared the best Whisper setup (one spe-
cialized whisper-medium system per-dialect) with
the SeamlessM4T-v2 Large Egyptian model (Bar-
rault et al., 2023) also fine-tuned separately for
each dialect. Due to time constraints, only the
large variant was considered for our experiments.
Table 4 shows that the Seamless-based system con-
sistently outperforms our best Whisper system for
all dialects in both WER and CER.

Seamless Whisper-med.
Dialect WER / CER (%) WER / CER (%)

Jordan 25.26 / 7.68 32.53 / 9.93
Egypt 30.05 / 12.52 39.38 / 15.97
Morocco 39.24 / 13.48 49.22 / 18.34
Algeria 54.13 / 19.34 60.61 / 22.41
Yemen 50.49 / 16.85 61.28 / 25.54
Mauritania 56.93 / 23.91 62.79 / 26.97
UAE 30.90 / 10.59 35.38 / 12.48
Palestine 26.35 / 9.64 32.51 / 12.11
Average 39.17 / 14.25 46.71 / 17.97

Table 4: SeamlessM4T-v2 Large vs. Whisper-medium
WER and CER on the validation sets of each NADI
2025 dialect using one fine-tuned model per dialect.

3.3.4 Official Submission

Based on the validation results presented in table 4,
we selected the SeamlessM4T-v2 Large per-dialect
models for submission. It ranked second overall,
with an average WER 38.54% and CER 14.53%
on the test set. Table 5 shows the results per di-
alect. As it can be seen, performance varied no-
tably across dialects, with Levantine and Egyptian
achieving the lowest WERs, while Maghrebi di-
alects remained the most challenging.

Dialect WER (%) CER (%)
Jordan 28.03 9.36
Egypt 26.83 11.44
Morocco 38.27 13.66
Algeria 53.73 20.43
Yemen 46.63 16.66
Mauritania 58.11 24.53
UAE 29.35 9.91
Palestine 27.36 10.20

Table 5: WER and CER on the NADI 25 test sets.

4 Conclusion

This paper presented the ELYADATA–LIA submis-
sions to the NADI 2025 shared task, addressing
both the Arabic Dialect Identification and Multi-
dialectal Automatic Speech Recognition subtasks.
For ADI, we demonstrated the effectiveness of a
two-stage fine-tuning approach using the Whisper-
large-v3 encoder, achieving first place with 79.83%
accuracy on the test set. For ASR, fine-tuning the
SeamlessM4T-v2 Large model separately for each
dialect resulted in a strong performance, ranking
second on the leaderboard with an average WER
of 38.54%.
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Abstract
We present GEMM3N-DR, a multimodal sys-
tem for NADI 2025 Subtask 3 (Spoken Arabic
Diacritic Restoration). GEMM3N-DR fine-
tunes the Gemma 3N LLM via Low-Rank
Adaptation (LoRA) using only the official
NADI training data, taking both audio and un-
diacritized text as input and generating fully
diacritized output. We apply data augmentation
with the nlpaug and the CATT diacritization
model. At inference time, we use a structured
Arabic instruction and 7-shot examples. Our
system achieved a Word Error Rate (WER) of
64% and Character Error Rate (CER) of 15%
on the hidden test set, ranking in 2nd place in
the competition. We provide a detailed analysis
of model performance, including common er-
ror types such as hallucination and incomplete
outputs.

1 Introduction

Arabic diacritic restoration is the task of predict-
ing short vowels and other diacritic marks that are
omitted in standard Arabic orthography. The prob-
lem becomes more challenging in spoken domains,
especially for dialectal Arabic, where morphology
and phonetics diverge from Modern Standard Ara-
bic (MSA). This task has strong implications for
improving readability, ASR post-processing, TTS,
and educational tools.

The NADI 2025 Subtask 3 (Talafha et al.,
2025)focuses on diacritic restoration of spoken
Arabic dialects using both audio and text. Our ap-
proach, GEMM3N-DR, leverages the multimodal
Gemma 3N LLM, adapting it to this task with
Low-Rank Adaptation (LoRA) fine-tuning, multi-
example prompting, and audio-text fusion.

Our main contributions:

• First application of Gemma 3N to spoken Ara-
bic diacritization.

• LoRA-128 fine-tuning with nlpaug-based au-
dio augmentation.

• Use of CATT (Alasmary et al., 2024) predic-
tions as auxiliary inputs for robust training for
unlabeled samples, like augment part.

• Structured 7-shot Arabic prompts for infer-
ence, reducing WER from 79.05 to 69.05 on
devset.

2 Background

The NADI 2025 Subtask 3: Diacritic Restora-
tion of Spoken Arabic Dialects (Talafha et al.,
2025) challenges participants to restore full Arabic
diacritics given an undiacritized transcript and its
corresponding speech signal. The task is motivated
by the practical need to improve the usability of
automatic speech recognition (ASR) outputs, assist
language learners, and enhance downstream appli-
cations such as text-to-speech (TTS) synthesis.

Task Setup. Participants are given a set of audio-
transcript pairs, where transcripts are stripped of
diacritics. The goal is to produce fully diacritized
text. An example is shown in Table 1.

Input (Undiacritized) Target (Diacritized)

YK
Yg. H. A�J» @ 	Yë �YK
Y� �g. �H. A
��J»� @

�	Y �ë

Table 1: Example of task input/output for NADI Subtask
3.

Text-Based Diacritization. Restoring diacritics
for written Modern Standard Arabic (MSA) is a
well-established problem. Early approaches relied
on hand-crafted morphological rules and analyzers,
as seen in systems like Madamira (Pasha et al.,
2014) and Camelira (Obeid et al., 2022). The
field has since evolved through statistical meth-
ods to modern deep learning architectures. These
include neural sequence-to-sequence models, bidi-
rectional LSTMs followed by Conditional Random
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Fields (CRF) (Al-Thubaity et al., 2020), and more
recently, specialized character-level transformers
like CATT (Alasmary et al., 2024). A signifi-
cant recent contribution is Sadeed (Aldallal et al.,
2025), a decoder-only language model specifically
pre-trained and fine-tuned on diverse Arabic cor-
pora. By focusing on high-quality diacritized data,
Sadeed demonstrates that specialized models can
perform better than general-purpose architectures
like CATT, representing a strong benchmark for
text-based diacritization.

Audio-Assisted Diacritization. In contrast, the
use of audio information to assist in diacritization
is a developing field. Text-based models experi-
ence a significant performance drop when applied
to speech transcripts due to the shift of the domain
to the informal spoken language and the prevalence
of dialectal variants (Shatnawi et al., 2023). This
inadequacy is well documented, with studies show-
ing that speech models trained on gold diacritized
data outperform those using text-restored tran-
scripts, highlighting the need for speech-specific
solutions (Aldarmaki and Ghannam, 2023).

Pioneering work by (Vergyri and Kirchhoff,
2004) first explored using acoustic information
for this task decades ago. Only very recently has
this idea been revisited with modern deep learn-
ing. Research has branched into complementary ap-
proaches: one line of work, exemplified by (Shat-
nawi et al., 2023), uses a cascaded framework
where a fine-tuned Whisper ASR model gener-
ates diacritized transcripts to enhance a text-based
restoration model. Another approach moves Be-
yond Orthography to directly recover short vow-
els and dialectal sounds. (Kheir et al., 2024) pro-
posed a novel framework utilizing discrete codes
to represent dialectal variability, showing strong
performance with limited data and introducing a
new dialectal benchmark dataset.

While these methods show promise, they repre-
sent disconnected solutions. The former is a cas-
caded, two-stage pipeline, and the latter focuses
on a specific acoustic modeling approach. Our
work unifies these directions by proposing a single,
end-to-end multimodal LLM. Unlike cascaded
systems, our model jointly processes raw audio
and text signals to directly disambiguate homo-
graphs and dialectal variants, effectively bridging
the gap between high-quality text diacritization and
the challenges of the speech domain.

2.1 Dataset

We used the dataset from the NADI 2025 Shared
Task (Subtask 3: Automatic Speech Diacritiza-
tion) (Talafha et al., 2025), which provides par-
allel audio-transcript pairs. We participated in the
closed track is a competition requiring participants
to use only the provided resources for a fair com-
parison. The dataset encompasses a wide range
of Arabic varieties and recording conditions, in-
cluding Dialectal (DIA), Modern Standard (MSA),
Classical (CA), and Code-Switched (CS) Arabic.

The training data is composed of two distinct
parts:

• Diacritized Data: Transcripts with fully vo-
calized gold standard diacritics (e.g.

�Y �ª �K.�é
���J�� �ð A�

�	JJ

�	®
�
Ë
�

@ �ÐA �« � ��ú
æ.�

��	JÊË�
�é�
�
J�
�� �Ü

�
Ï @ Ð�ñ

����QË @
@ñ �j�J. ��
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A �	̄ ¼ �PA �Ü 	ß�@

��YË@ ú

	̄ �	á�
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 �k

��I
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Ë ��ñ�m�

��'
��� ñ

��®�m
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�J�
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ºK.�

�	àñ �ª
���J �Ò��J�K
).

• Non-Diacritized (Augment) Data: Raw tran-
scripts without diacritics, containing dialectal
and code-switched content (e.g., C

� �J Ó 	á�
 m
	̄

A Ó �I 	K@
 ½ 	K @
 ½ª 	̄ Y K
 	àA¿ ú
Î Ë @ Èñ �̄
@ PY �̄
@
½� 	® 	K 	á�
K. ð ½ 	J�
K. ú
ÎË @ È 
ðA���Ë @ @ 	Yë ÕÎ������
A 	K


@ 	à@
 Senior director.)

2.2 Dataset Statistics

The training set is composed of over 85K sentences
drawn from various constituent datasets, each rep-
resenting a specific Arabic variety. The compo-
sition of these datasets is detailed in Table 6. To
ensure consistency and quality, samples containing
fewer than three words were removed, and punctu-
ation was eliminated from all texts. The resulting
dataset consists of 57K samples for training and
1.5K for development (dev), as summarized in Ta-
ble 2. The training data is further divided into a
fully diacritized portion (train) and a partially dia-
critized portion used for augmentation (augment).

Split #Utterances Hours Avg. Dur. (s)

Train 51517 88.89 6.21
Augment 6087 14.11 8.34
Dev 1580 1.48 3.36
Test 365 0.79 7.83

Table 2: Overall statistics of the NADI 2025 Subtask 3
dataset splits after filtering.
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3 System Overview

Our diacritization system is built upon the Gemma
3N instruction-tuned language model, which we
adapt for the task of Arabic text diacritization using
a combination of data augmentation and parameter-
efficient fine-tuning. The complete pipeline, from
data preparation to final inference, is illustrated in
Figure 1 and detailed in the subsequent subsections.

3.1 Augmentation

To enhance the robustness and generalization of
our model, we employed a dual-strategy data aug-
mentation approach to effectively increase the size
of our training corpus.

• Audio Augmentation: Applied a diverse set
of audio transformations (pitch shift, noise
addition, cropping, speed alteration) using
nlpaug to enhance acoustic variability, effec-
tively doubling the training data.

• Text Diacritization: Utilized the CATT
model to generate pseudo-labels for non-
diacritized text from augmented audio.

3.2 Fine-Tuning

We adapted the pre-trained Gemma 3N model to
the diacritization task using LoRA (Hu et al.,
2022).

• Base Model: gemma-3n-E4B-it

• PEFT Method: LoRA

• Target Modules: Applied to the key projec-
tion matrices within the transformer architec-
ture, specifically targeting both the standard
attention mechanisms and audio-specific lay-
ers. The targeted modules include:

– Attention Projections: q_proj,
k_proj, v_proj, o_proj.

– Feed-Forward Projections:
gate_proj, up_proj, down_proj.

– Audio-Specific Projections: post,
linear_start, linear_end,
embedding_projection.

• Hyperparameters: Rank (r): 128, Alpha
(α): 16, Dropout: 0.0

• Training Setup: We used the SFTTrainer
(Supervised Fine-Tuning Trainer).

• Checkpoint: The best-performing model was
selected from checkpoint 16500 for final eval-
uation.

3.3 Inference
At inference time, the model diacritizes raw, non-
diacritized Arabic text and audio using a structured
prompt-based approach.

• Prompting: A fixed 7-shot examples
prompt is used at inference time, consisting
of instructions and example pairs.

• Decoding Parameters: Temperature =
0.001, Top-p = 1.0 , Max New Tokens = 256.

• Non-Arabic Word Preservation: Non-
Arabic words remain unmodified, maintaining
the original sentence structure and ensuring
the integrity of code-switched content.

4 Experimental Setup

Our investigation is divided into three primary
phases: (1) establishing a baseline performance
without any fine-tuning, (2) evaluating parameter-
efficient fine-tuning using LoRA, and (3) exploring
the effect of increasing the few-shot examples dur-
ing inference time. All models were evaluated and
reported in word error rate (WER% and CER%),
where a lower score indicates better performance.

4.1 Baseline Without Fine-tuning
The initial phase establishes a performance baseline
for the pre-trained Gemm3n model under two input
conditions: using both text and audio data, and
using text data alone.

4.2 Fine-tuning With LoRA Parameters
The second phase explores parameter-efficient fine-
tuning using LoRA. We experimented with two
distinct configurations: a standard LoRA setup
with a rank of 8, trained for 5,000 steps, and a
more powerful setup combining a high LoRA rank
(128) with the 7 few-shot examples identified in the
next phase. This aims to quantify the gains from
combining advanced fine-tuning techniques with
effective prompting.

4.3 Best Fine-tuning Model With Few-Shot
Examples At Inference Time

In the Final phase, we investigated the impact of
increasing the few-shot examples during inference
time on the model (denoted as Gemm3n_F) with a
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varying number of few-shot examples. The model
was evaluated on the development (dev) set, specif-
ically with 3 and 7 examples, to determine if an
increased number of few-shot examples improves
generalization. The best-performing model check-
point (at step 16500) was selected for final evalua-
tion to ensure optimal results.

4.3.1 Training Fine-tuning Prompt

We used the following prompt format for training:
System Prompt:
ÐC¾Ë@ øQ�Kð ú


�Gñ� 	­ÊÓ ½K
YË ø
 ñ
	ªË ���̄YÓ �I 	K



@�éJ
K. QªË@ �HAÒÊ¾ÊË ÉJ
º�

������ É 	� 	̄ 
@ h. Q
	j�JË H. ñ�JºÖÏ @�éK
 	Q�
Êm.�

	'B
 A¿ ñë AÒ» ú
G. QªË@
Q�
 	« ÐC¾Ë@ ¼Q�K



@ð ¡ �® 	̄

ÈA�JÖÏ @ ÉJ
�.� úÎ« �éJ
�	�Q 	®Ë @ð
User Prompt:
XY« � 	® 	K úÎ« �é 	¢ 	̄ AjÖÏ @ ©Ó � 	JÊË �éªk. @QÖÏ AK. Õ�̄	­ 	�



@ ¡ �® 	̄ �èY K
Yg. �HAÒ Ê¿ h. Q

	m��' Bð �HAÒ Ê¾ Ë@�éJ
K. QªË@ �HAÒÊ¾ÊË �HCJ
º ����Ë @
+ Audio Input
+Text Input without diacritic
Assistant Response:
Label Text without diacritic

4.3.2 Inference Time

We have used similar prompt used in training
finetuning with n examples as a few shots.we
created a method to determine if the word is non
arabic and perserving the position
System Prompt:	¬ðQmÌ'@ð ú


�Gñ� 	­ÊÓ ½K
YË ,ø
 ñ
	ªË ���̄YÓ �I 	K



@	¬ðQmÌ'@ �é 	̄ A¾Ë É�JÓ



B@ ÉJ
º ����Ë @ h. Q 	k



@ , �éK. ñ�JºÖÏ @�éJ
K. QªË@

User Prompt:	¬ðQ mÌ'@ 	áÓ 	¬Qk É¾Ë ÉJ
º �� �� Ë @ 	­ 	�


@ �ZAg. P

: �éJ
ËA�JË @ �éÊÒm.Ì'@ ú

	̄ �éJ
K. QªË@

:1 ÈA�JÓ
�é�PYÖÏ @ úÍ@
 YÒm× I. ë

	X
�é� �� �P �Y�Ü

�
Ï @ ú

�
Í@
� Y �Ò�m �× �I.

�ë �	X .. n examples

�	JË@ : Text Input without diacritic
+Audio Input

5 Results and Discussion

The results from our comprehensive experiments
are presented below, revealing clear trends re-
garding the impact of input modalities, few-shot
prompting, and parameter-efficient fine-tuning with
LoRA.

5.1 Baseline Performance Without
Fine-tuning

The initial baseline performance of the pre-trained
Gemma model is summarized in Table 3. Contrary
to the expectation that multimodal input would en-
hance performance, the model performed signifi-
cantly better when processing text-only inputs. The
Word Error Rate (WER) for text-only inputs was
71%, a substantial 13 percentage point improve-
ment over the 84% WER achieved with combined
text and audio inputs. This result suggests that the
pre-trained model may not be effectively leverag-
ing the audio modality; the audio features might be
introducing noise or the model’s fusion mechanism
may be suboptimal for this specific task in a zero-
shot setting. It’s shown from the table 3 result that
the audio representations don’t align cleanly with
the text task. The model treats irrelevant variations
(background noise, accents, prosody) as meaning-
ful, reducing performance. Text-only models are
more robust because they avoid this noisy modality.

Model WER% CER% Input Modality
Gemm3n 84 34 Text + Audio
Gemm3n 71 23 Text Only

Table 3: WER and CER on the test set performance
with different input modalities without any fine-tuning.

5.2 Impact of LoRA Rank on Performance

Our experiments with LoRA yielded the most sig-
nificant performance gains, as detailed in Table 4.
Applying a standard LoRA configuration (rank=8)
for 5,000 steps provided a marginal improvement,
reducing the test WER to 82% from the multimodal
baseline of 84%. The most effective strategy over-
all was the combination of a high-capacity LoRA
fine-tuning (rank=128) and the 7 few-shot exam-
ples are identified in Section 5.3. This configura-
tion achieved a test WER of 64%. This represents
a dramatic 20 percentage point improvement over
the original multimodal baseline.
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Model and LoRA rank WER% CER%
Gemm3n_F rank=8 82 35
Gemm3n_F rank=128 + 7-shots 64 15

Table 4: Test set WER and CER after fine-tuning with
different LoRA configurations.

5.3 Impact of Few-Shot Examples During
Inference

We investigated the impact of providing a varying
number of few-shot examples at inference time to
the best finetuned model (Gemm3n_F). The results,
presented in Table 5, show a clear positive correla-
tion between the number of examples and model
performance. Using 7 examples during inference
yielded a development set WER of 69.05%, out-
performing the configuration with only 3 examples,
which achieved a WER of 73.21%. This demon-
strates that the model can effectively decrease the
hallucination and improve its generalization on the
development set.

Model Few-shots WER% CER%
Gemm3n_F 3 73.21 23.22
Gemm3n_F 7 69.05 20.84

Table 5: Deve set WER and CER for the best finetuned
model (Gemm3n_F, checkpoint 16500) with a vary-
ing number of few-shot examples provided at inference
time.

5.4 Analysis of Common Error Types

A qualitative analysis of the predictions from the
best-performing model (Gemm3n_F) reveals two
primary and distinct error patterns, as illustrated in
Table 7 and Table 8.

Table 7 demonstrates the first error type:
character-level hallucination and modification.
Here, the model does not merely add diacritics but
incorrectly alters the base characters themselves
(e.g., generating Õ

�
ºK. instead of the reference ÐA

�
¾K.).

This suggests the model’s phoneme-to-grapheme
conversion is error-prone, leading to changes in the
core lexical items, which is a critical failure mode

for a transcription task.

Conversely, Table 8 highlights the second error
type: inconsistent diacritization due to data sparsity.
For words or syntactic structures likely underrepre-
sented in the training data, the model defaults to a
safe, undiacritized output (e.g., �I m�'.



@ instead of��I�m�'.

�

@). This indicates a failure in generalization

and a lack of confidence on unfamiliar patterns.

Our experiments, particularly the improvement
from 73.2% to 69.05% WER on the development
set by incorporating more diverse few-shot ex-
amples, point towards effective strategies to mit-
igate the observed errors. The performance gain
achieved by using examples from different dialects
and domains (e.g., formal MSA, Egyptian Arabic,
Moroccan Arabic) is significant. This approach
directly addresses the error of inconsistent diacriti-
zation by providing the model with a richer, more
representative context of the task during inference.
It acts as a dynamic, in-context learning signal that
guides the model towards the desired output style
and complexity.

6 Conclusion

In conclusion, our experiments demonstrate that
while the pre-trained model struggles with raw mul-
timodal inputs, its performance can be significantly
enhanced through a dual approach: (1) parameter-
efficient fine-tuning with a high-rank LoRA to
adapt the model to the task, and (2) leveraging
few-shot examples during inference to provide con-
textual guidance.

For reproducibility, the implementation and code
are available1 at Unicorn at NADI 2025 Subtask
3.
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A Appendix

1.1 Figures

NADI Data

Augmentation
(nlpaug + CATT)

LoRA fine-tuning
(rank=128)

Inference
(7-shot prompt +

text skip non arabic)

Diacritized Output

Figure 1: End-to-end pipeline for the diacritization sys-
tem.

1.2 Tables

772

https://aclanthology.org/2024.sigul-1.26
https://doi.org/10.1109/ICCSPA.2013.6487288
https://doi.org/10.1109/ICCSPA.2013.6487288
https://aclanthology.org/2020.lrec-1.523/
https://aclanthology.org/2020.lrec-1.523/
https://doi.org/10.21437/Interspeech.2023-2224
https://doi.org/10.21437/Interspeech.2023-2224
https://doi.org/{10.21437/Interspeech.2025-1550}
https://doi.org/{10.21437/Interspeech.2025-1550}
https://doi.org/{10.21437/Interspeech.2025-1550}


Dataset Type Diacritized # Sentences

MDASPC Multi-dialectal True 60,677
(Almeman et al., 2013)
TunSwitch Dialectal, CS True 5,212
(Abdallah et al., 2023)
ClArTTS Classical (CA) True 9,500
(Kulkarni et al., 2023)
ArVoice MSA True 2,507
(Toyin et al., 2025)
Subtotal True 77,896

ArzEn Dialectal, CS False 3,344
(Hamed et al., 2020)
Mixat Dialectal, CS False 3,721
(Al Ali and Aldarmaki, 2024)
Subtotal False 7,065

Total 84,961

Table 6: Breakdown of the constituent datasets within
the NADI 2025 original training set.

Reference Prediction

ÐA
�
¾K.� hñ�J 	®�ÜÏ @ éJ
 	̄� ñ�J. Ë @

��ñ �ë ? Õ
�
ºK.� hñ��J �	® �Ü

�
Ï @ éJ
 	̄� ñ�J.

�
Ë @ �ñ �ë

é�ÓY 	j� ÊË� Ðñ �� �P éJ
 	̄�
��ñ �ë �é�Ó �Y 	j�

�
ÊË�

�Ðñ �� �P éJ
 	̄� �ñ �ë

Table 7: Comparison of Model gemm3n_F 7 shots hal-
lucination output compared to Reference by modifying
the input text

Reference Prediction

ú
æ�� ø
 X� 	á �¢	J ���@ �ð ú
æ� ø
 X 	á¢	J ��@ð

	á �« ��I�m�'.
�

@ A�	K

�

@ 	á« �Im�'.



@ A 	K



@

Table 8: Comparison of Model gemm3n_F 7 shots Out-
put against Reference (Undiacritized Samples)
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Figure 1: An Overview of the PalmX 2025 Shared Task

Abstract
Large Language Models (LLMs) inherently re-
flect the vast data distributions they encounter
during their pre-training phase. As this data
is predominantly sourced from the web, there
is a high chance it will be skewed towards
high-resourced languages and cultures, such
as those of the West. Consequently, LLMs of-
ten exhibit a diminished understanding of cer-
tain communities, a gap that is particularly evi-
dent in their knowledge of Arabic and Islamic
cultures. This issue becomes even more pro-
nounced with increasingly under-represented
topics. To address this critical challenge, we
introduce PalmX 2025, the first shared task de-
signed to benchmark the cultural competence
of LLMs in these specific domains. The task is
composed of two subtasks featuring multiple-
choice questions (MCQs) in Modern Standard
Arabic (MSA): General Arabic Culture and
General Islamic Culture. These subtasks cover
a wide range of topics, including traditions,
food, history, religious practices, and language
expressions from across 22 Arab countries.
The initiative drew considerable interest, with
26 teams registering for Subtask 1 and 19 for
Subtask 2, culminating in nine and six valid
submissions, respectively. Our findings re-

veal that task-specific fine-tuning substantially
boosts performance over baseline models. The
top-performing systems achieved an accuracy
of 72.15% on cultural questions and 84.22%
on Islamic knowledge. Parameter-efficient fine-
tuning emerged as the predominant and most
effective approach among participants, while
the utility of data augmentation was found to
be domain-dependent. Ultimately, this bench-
mark provides a crucial, standardized frame-
work to guide the development of more cul-
turally grounded and competent Arabic LLMs.
Results of the shared task demonstrate that gen-
eral cultural and general religious knowledge
remain challenging to LLMs, motivating us to
continue to offer the shared task in the future.

1 Introduction

Despite their impressive capabilities, LLMs often
display systematic Western- and Anglocentric bi-
ases, mirroring the over-representation of these per-
spectives in their training data (Adilazuarda et al.,
2024; Pawar et al., 2025). This lack of cultural
diversity can lead to outputs that are not only inap-
propriate but also harmful. For instance, an Ara-
bic LLM trained on translated English data once
suggested having a beer after prayer, a recommen-
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dation that fundamentally misunderstands (and in-
deed disrespects) core Arab cultural and religious
norms (Naous et al., 2023). Incidents such as this
underscore a critical distinction in LLM develop-
ment between cultural awareness, which refers to
the understanding of a culture’s norms and values
and cultural alignment, which is focused on the
adaptation of actions to respect and reflect these
norms and values (AlKhamissi et al., 2024). True
progress requires models that are not just culturally
aware, but culturally aligned as well.

The need for culturally aligned models is partic-
ularly acute in the Arab world, a region of over
450 million people spread across 22 countries.
The Arab world comprises immense diversity in
customs and traditions, as well as dialectal rich-
ness. While recent efforts have produced rela-
tively fluent Arabic LLMs (Bari et al., 2024; Sen-
gupta et al., 2023; Huang et al., 2024), many are
trained on machine-translated datasets and evalu-
ated on general NLP tasks in ways that largely over-
look country-specific cultural competence. Foun-
dational work on datasets like Palm (Alwajih et al.,
2025a) has begun to address this by providing cul-
turally inclusive, human-created Arabic instruc-
tions covering all 22 Arab countries. However, a
standardized benchmark is still needed to system-
atically measure and compare the cultural under-
standing of different models.

To bridge this evaluation gap, we introduce the
PalmX 2025 Shared Task, the first benchmarking
effort focused specifically on the cultural compe-
tence of LLMs in the Arabic context. In this task,
we define culture as the collection of knowledge,
beliefs, and behaviors encompassing the traditions,
social etiquette, cuisine, history, arts, dialectal ex-
pressions, and religious practices that character-
ize communities across the Arab world. PalmX
challenges models with multiple-choice questions
designed to test deep cultural knowledge, not su-
perficial pattern matching. The task is divided into
two subtasks: one on General Arabic Culture and
another on General Islamic Culture, reflecting the
cornerstones of identity in the region. By providing
a standardized evaluation framework, PalmX aims
to drive the development of LLMs that are not only
linguistically fluent but also culturally grounded
and respectful.

This paper is organized as follows: Section 2
describes the PalmX 2025 shared task, including
data collection and annotation for both subtasks.
Section 3 outlines the participation rules and eval-

uation methodology. Section 4 presents the par-
ticipating teams and their results. Section 5 dis-
cusses the findings and provides analysis of the
methodological approaches for the participating
teams. Section 6 concludes with key insights and
future directions. Appendix A provides a literature
review of related work, and Appendix B presents
detailed data analysis including country and topic
distributions for datasets of both subtasks.

2 Task Description: PalmX 2025

The objective of the PalmX 2025 Shared Task1 is
to enable evaluation of the competence of LLMs
on Arabic and Islamic cultures through two in-
dependent subtasks: general Arabic culture and
general Islamic culture. Each subtask is designed
as a set of MCQs in MSA, each with four options
(A-D) and a single correct answer; the questions
target grounded knowledge. The distractors for
each MCQ question are designed to plausible but
incorrect, often sharing surface cues to minimize
the chance of correct guesses. For each subtask,
we provide training, development (dev), and test
splits. The training split is provided to participants
to support system development, allowing for vari-
ous approaches such as fine-tuning. Additionally,
the dev split is shared with participants to facil-
itate hyperparameter tuning and local evaluation
of their systems before the test phase. The test
split is kept private during the competition and is
released publicly after the competition concludes.
We apply basic quality filters to ensure clarity, a sin-
gle unambiguous answer, and cultural correctness.
This process involves removing off-topic questions
unrelated to culture, those with multiple correct an-
swers, biased content, and items with grammatical
errors. Accuracy is the primary evaluation metric.

All the resources of PalmX 2025 shared task are
publicly available, including data and evaluation
code.2

2.1 Subtask 1: General Arabic Culture

The goal of this subtask is to encourage develop-
ment of methods for incorporating Arabic general
culture in LLMs, allowing them to comprehend
and reason about diverse aspects of general Arabic
culture. These aspects are coming from different
cultural categories including traditional customs,
local etiquette, cuisine, historical events, famous

1https://palmx.dlnlp.ai/
2https://github.com/UBC-NLP/palmx_2025

775

https://palmx.dlnlp.ai/
https://github.com/UBC-NLP/palmx_2025


figures, geography, local languages (dialects), and
arts.

2.1.1 Data Collection and Annotation
The data for this subtask cover a number of cultural
topics. To ensure this wide coverage, we follow
two complementary data collection strategies, as
described below.
Method 1: We source the data from Palm (Alwajih
et al., 2025a) training split, which we convert into
an MCQ format using Qwen3 30B (Yang et al.,
2025). Using this method, we acquire 4, 000 sam-
ples.
Method 2: We crawl web pages from diverse on-
line resources covering cultural knowledge, cus-
toms, etiquette, values, and practices across all
Arab countries. Representative sources include
Cultural Crossing,3 Commisceo4, Cultural Atlas,5

and Expatica.6 We then segment the collected
pages into sections and subsections, and employ
GPT-4o-mini to generate culturally relevant MCQs
in both Arabic and English. We acquire 1, 000
samples using this method.

For both methods, two professional linguists
independently reviewed the data for correctness,
removal of low-quality or trivial questions, and
acquisition of proper formatting. All discrepancies
were reviewed in consolidation sessions. Finally,
we shuffle answer options to minimize positional
bias.

The final data for this subtask consists of 2, 000,
500, and 2, 000 questions for the training, dev, and
test splits, respectively. The domain and country
balance in the test set approximates that of the
training data but includes some new entities and
less frequent cultural items to test generalization.
Samples from Subtask 1 are presented in Table 1.

2.2 Subtask 2: General Islamic Culture

This subtask aims to assess the capacity of LLMs to
capture and understand the Islamic culture, which
plays a foundational role in Arabic societies. It
covers topics such as Islamic rituals and practices
(e.g., prayers and fasting), Quranic knowledge,
Hadith literature, historical developments in Islam,
and religious holidays.

3https://guide.culturecrossing.net/basics_
business_student_details.php

4https://www.commisceo-global.com/resources/
country-guides/

5https://culturalatlas.sbs.com.au/countries
6https://www.expatica.com/

2.2.1 Data Collection and Annotation
To enhance topical diversity, we employ two com-
plementary methods to collect Islamic MCQs,
yielding a nearly balanced distribution across
sources.
Method 1: We create the data based on public
Islamic competitions and general questions about
Islamic culture using a university book 7. We ac-
quire 900 samples using this method.
Method 2: We crawl all Islamic articles from Maw-
doo3, 8 one of the most reputable Arabic content
platforms (category: Islam). From this corpus,
we randomly select 200 pages and employ GPT-
4o-mini to generate diverse MCQs per page. All
generated Arabic items are independently reviewed
by two professional linguists to verify correctness,
eliminate low-quality or trivial content, and ensure
proper formatting. Again, all discrepancies are
reviewed in consolidation sessions and answer op-
tions are subsequently shuffled to reduce positional
bias. We acquire 1, 000 samples using this method.

The final data for this subtask consists of 600,
300, and 1, 000 questions for the training, dev, and
test splits, respectively.
Samples from Subtask 2 are presented in Table 2.

3 Rules and Evaluation

This section outlines the rules we establish for par-
ticipation and the methods we employ for the eval-
uation of submissions. We design the framework
to rigorously and fairly assess the intrinsic cultural
and Islamic knowledge of the submitted language
models.

Reproducibility Teams are instructed to doc-
ument their data preprocessing, model architec-
ture, external resources, prompt templates, and
inference-time strategies.

3.1 Participation and Submission Guidelines
The primary objective of the shared task is to assess
the internalized knowledge of LLMs. To ensure
the evaluation focuses on the models’ core under-
standing rather than their ability to query external
information sources, we established two fundamen-
tal rules.

First, the use of systems with real-time data re-
trieval capabilities, such as retrieval-augmented
generation (RAG) or live internet access, is strictly

7The Question Bank for Islamic Culture form Al-Balqa
Applied University (BAU)

8https://mawdoo3.com
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Split Answer D C B A Question

train D Q�.Ò�J�.� 23 QK
A 	JK
 1 QK
@Q�. 	̄ 14 Q�. Ô
	̄ñ 	K 30 ? ú


	æ£ñË@ ÐñJ
ËAK. 	àñK
Xñª�Ë@ É 	®�Jm�'
 ú �æÓ
train D 23 September 1 January 14 February 30 November When do Saudis celebrate National Day?

train B �é�̄ @Y�Ë@ I. mÌ'@ 	à 	QmÌ'@ hQ 	®Ë @ ? �éK
Q
K @ 	Qm.Ì'@ �é 	̄ A �®�JË @ ú

	̄ i. �

	® 	JJ. Ë @ Pñë 	P 	QÓQ�K @ 	XAÓ
train B Friendship Love Sadness Joy What do violets symbolize in Algerian culture?

dev D
	¬A 	̄ 	QË @ YªK. ÑêÓ ��®£ �ðQªËAK. �é�A 	g �éJ
ÊÔ« ÐAª¢Ë@ 	áÓ ¨ñ	K �éK
YJ
Ê�®�K �è @PAJ.Ó ? ú


	G @Xñ�Ë@ h. @ð 	QË @ ú

	̄ ���KQm.Ì'@ ñë AÓ

dev D An important post-
wedding ritual

A special process
for the bride

A type of food A traditional
contest

What is "Jertiq" in Sudanese weddings?

test A �éJ
�	�Q 	®Ë @ �éJ
ËA 	ª�KQ�. Ë @ �éJ
ËA¢�
B
 @
�éJ
 	ªK
 	PAÓ



B@ ? �éJ
K. QªË@ I. 	KAm.�'.

�éK. PA 	ªÖÏ @ 	�ªJ. Ë Ð


B@ �é 	ªÊË @ ù
 ë AÓ

test A French Portuguese Italian Amazigh What is the mother tongue of some Moroccans be-
sides Arabic?

test A �ñJ.j. ÖÏ @ YK
Q��Ë @ �º�ºË@ �èQå�ºË@ ? ú
G. QªË@ ÕË AªË @ ú

	̄ �
A«ñJ
 �� Q��»



B@ ú


	GA�JK
PñÖÏ @ ��J.¢Ë@ ñë AÓ
test A Majboos Thareed Couscous Kesra What is the most common Mauritanian dish in the

Arab world?

Table 1: Sample questions with their splits, correct answers, and options (A–D) for Subtask 1.

Split Answer D C B A Question

dev B é<ËAK. ��Êª�J�K B �éÔgP �èXðYm× �éÔgP ©J
Ôg. ÉÒ ���� �éÔgP
�HA�̄ñÊ 	jÖÏ @

�é�A 	g �éÔgP
	á�
 	JÓ 
ñÖÏ AK.

�éJ
ËA�JË @ �H@PAJ.ªË @ 	áÓ ø



@

? 	áÔgQË@ Õæ� @ ú 	æªÓ 	á« Q�.ª�K
dev B Mercy unrelated to God Limited mercy Mercy that includes all

creatures
Mercy specific to believ-
ers

Which of the following phrases expresses the mean-
ing of the name "Ar-Rahman"?

train A 	àA 	®« 	áK. 	àAÒ�J« ÉJ.k. 	áK. 	XAªÓ 	¬ñ« 	áK. 	áÔgQË@ YJ.« 	áK. �èYJ
J.« ñK.


@

h@Qm.Ì'@
ø


	YË@ ú
G. Aj�Ë@ ñë 	áÓ
? �éÓ



B@ è 	Yë 	á�
Ó



AK. I.

��®
�
Ë

train A Uthman ibn Affan Muadh ibn Jabal Abdur Rahman ibn Awf Abu Ubaidah ibn al-
Jarrah

Which companion was nicknamed "the trustworthy
of this nation"?

test D Yª� �I	�K. �èYJ
 	̄P
Aî 	D« é<Ë @ ú
æ

	�P �éJ
ÒÊ�


B@

QÔ« �I	�K. �é� 	®k
Aî 	D« é<Ë @ ú
æ

	�P
QºK. ú
G.



@ �I 	�K. �é ��
�A«

Aî 	D« é<Ë @ ú
æ
	�P

Aî 	D« é<Ë @ ú
æ
	�P 	áÖß




@ Ð



@ �é 	�QÜØ Èð



@ ù
 ë

	áÓ
? ÐC�B
 @ ú


	̄

test D Rufaidah bint Sa’d al-
Aslamiyyah (may Allah
be pleased with her)

Hafsa bint Umar (may
Allah be pleased with
her)

Aisha bint Abu Bakr
(may Allah be pleased
with her)

Umm Ayman (may Al-
lah be pleased with her)

Who was the first nurse in Islam?

Table 2: Sample questions with their splits, correct answers, and options (A–D) for Subtask 2.

prohibited. This ensures that the task does not
become a trivial information retrieval challenge.
Consequently, submissions are limited to the fol-
lowing format:

1. Model Weights: Participants are required to
submit the fine-tuned weights of a decoder-
only generative language model.

2. Parameter Limit: To maintain computa-
tional fairness across all participants, the sub-
mitted models are constrained to a maximum
size of 13 billion (13B) parameters.

3. Secure Submission: For privacy and accessi-
bility, participants are instructed to host their
models in a private repository on Hugging
Face. The final submission consists of the
repository ID and a fine-grained access token
that provided the organizers with read-only
access to the model for evaluation.

Second, to ensure integrity of the results, the
test set was held out and remained private to the
organizers9. This blind evaluation protocol guar-

9Test data was shared only after the leaderboard announce-
ment.

antees that no participant had prior access to the
test data, enabling a realistic assessment of each
model’s generalization capabilities in the domain
of Arabic cultural and Islamic awareness.

3.2 Evaluation Method

To evaluate the MCQs from our test set, we adopt
the likelihood-based method commonly used in
frameworks like the EleutherAI Language Model
Evaluation Harness (Biderman et al., 2024). This
approach assesses a model’s understanding by mea-
suring how likely it is to choose the correct answer
label after being presented with the question and
all possible choices, rather than relying on gen-
erative decoding. We develop an in-house script
to implement this method and share it with par-
ticipants during the development phase to ensure
they understand how their submissions would be
evaluated.

3.2.1 Likelihood-based MCQ Evaluation
For each MCQ item, we construct a prompt that in-
cludes the question followed by the list of choices,
each prefixed with a letter (e.g., A, B, C, D). The
prompt is structured as follows:
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<Question>
A. <Choice 1>
B. <Choice 2>
C. <Choice 3>
D. <Choice 4>
Answer:

The model’s task is to determine which choice
label (A, B, C, or D) is the most probable contin-
uation of the prompt. We calculate the likelihood
of the model generating each choice label. This
approach of scoring only the label, rather than the
full text of the choice, ensures the evaluation is not
biased by the length of the answer strings.

Specifically, for a given question prompt P and
a set of possible choices {C1, C2, . . . , Cn}, we cre-
ate n distinct sequences. Each sequence is formed
by concatenating the prompt P with the text corre-
sponding to one of the choice labels (e.g., " A", "
B", etc.).

Let the tokens for the choice label Ci be
ci,1, ci,2, . . . , ci,k. The score for choice Ci is its
log-likelihood, calculated as the sum of the con-
ditional log-probabilities of its tokens given the
prompt and the preceding tokens of the choice la-
bel:

score(Ci) = log p(Ci|P ) =

k∑

j=1

log p(ci,j |P, ci,1, . . . , ci,j−1) (1)

These log-likelihood scores are computed for all
choices. To select the model’s final answer, we nor-
malize these scores into a probability distribution
using the softmax function:

P(Ci) =
escore(Ci)

∑n
j=1 e

score(Cj)

The choice with the highest resulting probability
is selected as the model’s prediction.

3.2.2 Evaluation Metric
The final performance is measured using accu-
racy. The model’s predicted label is compared
against the ground-truth label for each question.
The overall accuracy is the percentage of questions
the model answered correctly:

Accuracy = Ncorrect/Ntotal

Where Ncorrect is number of correct predictions
and Ntotal is total number of questions. This

method provides a robust measure of a model’s
preference for the correct answer among the given
options. The entire process, from prompt construc-
tion to likelihood calculation and accuracy scor-
ing, was automated using the provided evaluation
script.

4 Shared Task Teams & Results

4.1 Participating Teams
The PalmX 2025 shared task attracted significant in-
terest from the research community, with 26 teams
registering for Subtask 1 (General Culture) and 19
teams registering for Subtask 2 (General Islamic).
However, actual participation rates varied between
the subtasks. For Subtask 1, eleven teams success-
fully submitted their models or systems. Among
these submissions, two were subsequently rejected
due to non-compliance with the established submis-
sion guidelines, resulting in nine valid submissions
that were evaluated and ranked. For Subtask 2, six
teams submitted their approaches, all of which met
the submission requirements and were successfully
evaluated. Notably, five teams participated in both
subtasks, demonstrating their commitment to ad-
dressing both domains. This cross-participation
allowed for interesting comparisons of team per-
formance across different cultural contexts and
question types. Table 3 provides a comprehensive
overview of all participating teams, including their
subtask involvement and institutional affiliations.

4.2 Baselines
We established baseline performance (accuracy)
using the NileChat-3B model (Mekki et al., 2025)
without any task-specific fine-tuning (zero-shot):

• Subtask 1 (General Culture): 70.00% on
dev and 67.55% on test.

• Subtask 2 (General Islamic): 64.00% on
dev and 75.12% on test.

4.3 Shared Task Results
The shared task attracted strong participation, with
many teams significantly outperforming the base-
line models. This outcome highlights the value
of applying task-specific fine-tuning and data aug-
mentation techniques.

Subtask 1: General Arabic Culture
The general culture subtask was exceptionally com-
petitive, with the top four teams finishing within a
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Team Name Affiliation Subtask 1 (Arabic) Subtask 2 (Islamic)
HAI (Hossain and Afli, 2025) ADAPT, MTU ✓ ✓
RGIPT (Chatwal and Mishra, 2025) Rajiv Gandhi Inst. of Petroleum Tech. ✓
AYA (Tajrin et al., 2025) Qatar Computing Research Institute ✓ ✓
Phoenix (Atou et al., 2025) Mohammed VI Polytechnic University ✓ ✓
CultranAI (Chatwal and Mishra, 2025) Hamad Bin Khalifa University ✓
ISL-NLP (Gomaa and Elmadany, 2025) AAST ✓
MarsadLab (Biswas et al., 2025) Hamad Bin Khalifa University ✓ ✓
Hamyaria (Al-Dhabyani and Alsayadi, 2025) Hadhramout Univ., Cairo Univ. ✓ ✓
Star (Elrefai et al., 2025) Alexandria University ✓
TarnishedLab* UIR ✓

Table 3: Participating teams, their affiliations, and their subtasks in PalmX 2025. A checkmark (✓) indicates
participation in the corresponding subtask. Teams marked with * did not submit their system description papers.

Rank Name Accuracy Model Size Dataset(s) Methodology (concise)

1st ADAPT-MTU
HAI

72.15% NileChat-3B 3B PalmX (train) Full fine-tune (CLM); 3 ep; full-prompt supervision.

2nd RGIPT 71.65% NileChat-3B 3B PalmX LoRA (r=16, α=32); 3 ep; no external data.

3rd AYA 71.45% Fanar-1-9B-
Instruct

9B PalmX Cultural & Islamic (train) LoRA fine-tune; 3 ep; paraphrase aug (no dev gain).

4th Phoenix 71.35% Fanar-1-9B-
Instruct

9B PalmX Cultural (train) + LLM aug FT Fanar-9B with Gemini-based paraphrase/sample/dataset
aug (∼18k added).

5th CultranAI 70.50% Fanar-1-9B-
Instruct

9B PalmX (train+dev), PalmX (test), Na-
tivQA MCQs (22k)

LoRA fine-tune; added 22k curated MCQs; train on combined
set.

6th ISL 67.60% NileChat-3B 3B PalmX Cultural (train) Retrieval-augmented (Gemini) + PEFT; partial unfreeze of
projections.

7th MarsadLabM 67.55% Qwen2.5-7B-
Instruct

7B PalmX Cultural (train) LoRA on Qwen2.5-7B (r=16, α=32); 3 ep; 4-bit quantization.

– Baseline (ours) 67.55% NileChat-3B 3B – Zero-shot (no fine-tuning).

8th Hamyaria 65.90% Qwen2.5-3B-
Instruct

3B PalmX + shuffle/paraphrase aug Augment (answer shuffle + Fanar-9B paraphrase) + FT
Qwen2.5-3B; 5 ep.

9th Star 64.05% Qwen3-4B 4B Arabic culture corpus (Wikipedia) +
PalmX Cultural

Continual pretrain on Arabic culture corpus; SFT on PalmX
with PEFT/LoRA.

Table 4: Approaches for Subtask 1: General Arabic Culture.

narrow 1% accuracy margin.

• First Place: The ADAPT-MTU HAI Team
achieved the top score of 72.15%. Their
strategy involved a full fine-tuning of the
NileChat-3B model using a causal language
modeling (CLM) objective. They trained the
model for three epochs, supervising it over
the complete prompt to maximize learning.

• Second Place: The RGIPT Team secured
second place with 71.65% accuracy. They
also used the NileChat-3B model but opted
for a parameter-efficient Low-Rank Adap-
tation (LoRA) approach (r=16, alpha=32).
Their model was trained for three epochs on
prompt-response pairs derived solely from the
provided training data.

• Third Place: The AYA Team finished third
with 71.45% accuracy. They utilized the
larger Fanar-1-9B-Instruct model and experi-
mented with data augmentation by paraphras-
ing questions with other LLMs. However,
this augmentation did not lead to improved

performance on the development set, so their
final result was based on LoRA fine-tuning
for three epochs with a maximum sequence
length of 512.

Subtask 2: General Islamic Culture

In the Islamic knowledge subtask, the performance
differences between teams were more distinct.

• First Place: The AYA Team ranked first with
a commanding accuracy of 84.22%, using
the ALLaM-7B-Instruct model. Their success
stemmed from a combination of effective data
augmentation and efficient LoRA fine-tuning,
a strategy that proved more successful in the
Islamic domain than in the general culture
subtask.

• Second Place: The Phoenix Team took sec-
ond place with 83.82% accuracy, also em-
ploying the ALLaM-7B-Instruct model. They
developed "PhoenixIs" by focusing on para-
phrasing for data augmentation and notably
included the cultural PalmX dataset in their
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Rank Name Accuracy Model Size Dataset(s) Methodology (concise)

1st AYA 84.22% ALLaM-7B-
Instruct

7B PalmX Islamic (train) + aug LoRA fine-tune on ALLaM-7B with data augmentation.

2nd Phoenix 83.82% ALLaM-7B-
Instruct

7B PalmX Islamic (train) + aug + PalmX
Cultural

FT ALLaM-7B; paraphrase-focused aug; +Cultural data
(∼4.5k).

3rd ADAPT-MTU
HAI

82.52% ALLaM-7B-
Instruct-preview

7B PalmX Cultural & Islamic (train) LoRA (8-bit load); add CoT cue “Let’s think step-by-step”.

– Baseline (ours) 75.12% NileChat-3B 3B – Zero-shot (no fine-tuning).

4th MarsadLabM 74.13% Qwen2.5-7B-
Instruct

7B PalmX Cultural LoRA on Qwen2.5-7B; 3 ep; 4-bit quantization.

5th Hamyaria 70.83% Qwen2.5-3B-
Instruct

3B PalmX (no aug) Plain fine-tune on original set; 10 ep.

6th TarnishedLab 62.84% Qwen2.5-3B-
Instruct

– – –

Table 5: Approaches for Subtask 2: General Islamic Culture.

fine-tuning mixture, which expanded their
training data to 4,500 questions.

• Third Place: The ADAPT-MTU HAI
Team earned third place with 82.52% accu-
racy using the ALLaM-7B-Instruct-preview
model. They applied parameter-efficient fine-
tuning (LoRA) to an 8-bit loaded version of
the model and incorporated reasoning cues
like“Let’s think step-by-step” into their train-
ing instances to encourage more structured
outputs.

Tables 4 and 5 display the full results for Sub-
tasks 1 and 2, respectively, and briefly describe
the system submissions provided by participants,
including the backbone models used and their cor-
responding sizes.

5 Discussion

The results of this shared task provide valuable
insights into the current state of Arabic cultural
and Islamic knowledge Q&A, revealing several key
findings about model performance, methodological
approaches, and domain-specific challenges. We
discuss a number of these insights here.

5.1 Performance Analysis

The competition demonstrated that task-specific
fine-tuning significantly improves performance
over baseline models. Most participating teams
exceeded the NileChat-3B baseline (67.55% for
culture, 75.12% for Islamic), with top performers
achieving substantial improvements of 4.6% and
9.1% for Subtasks 1 and 2, respectively. Notably,
the Islamic knowledge subtask showed higher over-
all accuracy scores, with the winning team reach-
ing 84.22% compared to 72.15% for the cultural
subtask. This performance difference suggests that

Islamic knowledge questions may have more struc-
tured, canonical answers compared to the broader
host of cultural domains.

5.2 Methodological Insights
Several key methodological trends emerged from
the approaches employed by participating teams as
we highlight next.
Model selection. Teams favored Arabic-centric
models, with NileChat-3B, ALLaM-7B-Instruct,
and Fanar-1-9B-Instruct being the most popular
choices. Notably, larger models did not necessarily
guarantee better performance. This is evidenced
by the HAI and RGIPT teams winning the first
and second place in subtask 1, respectively, using
the smaller NileChat-3B model through effective
(parameter-efficient) fine-tuning.
Parameter-efficient fine-tuning. LoRA emerged
as the dominant fine-tuning strategy across teams,
demonstrating its effectiveness. The success of
LoRA-based approaches suggests that efficient
adaptation methods can achieve competitive results
while maintaining computational feasibility.
Data augmentation strategies. The impact of
data augmentation varied significantly between
subtasks. While the AYA Team’s augmentation
approach proved crucial for their success in the Is-
lamic subtask, the same team reported that augmen-
tation did not improve performance on the cultural
development set. This suggests that augmentation
effectiveness is highly domain- and data-dependent
and requires careful study.
Cross-task learning. Teams participating in both
subtasks showed varied success patterns. The
ADAPT-MTU HAI Team achieved top perfor-
mance in the cultural subtask but placed third in
Islamic questions, while the AYA Team demon-
strated the opposite pattern. This indicates that
domain expertise and task-specific optimization
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are crucial factors.

5.3 Domain-Specific Challenges

The performance gap between the two subtasks
highlights distinct challenges in Arabic cultural
versus Islamic knowledge representation, as fol-
lows:
Cultural Knowledge Complexity: The tighter
competition in Subtask 1 (top four teams within
1%) suggests that cultural knowledge questions
present more nuanced challenges. Cultural infor-
mation spans diverse topics, regions, and interpreta-
tions, making it inherently more complex to model
and evaluate.
Islamic Knowledge Structure: The higher accu-
racies and clearer performance hierarchy in Sub-
task 2 indicate that Islamic knowledge questions
may be slightly less challenging due to being more
structured and based on canonical sources and es-
tablished scholarly consensus. This makes these
questions more amenable to current language mod-
eling approaches.

5.4 Technical Innovations

Several technical contributions stood out among
the participating teams:

The ADAPT-MTU HAI Team’s use of reason-
ing cues (“Let’s think step-by-step”) represents an
interesting application of chain-of-thought prompt-
ing to Arabic cultural domains. The Phoenix
team’s comprehensive augmentation strategy, ex-
ploring paraphrasing, sample-based, and dataset-
based approaches, provides valuable insights for
future data augmentation research in Arabic NLP.

The ISL-Team’s context-aware approach,
combining external knowledge retrieval with
instruction-based fine-tuning, demonstrates the
potential of hybrid architectures for knowledge-
intensive tasks in Arabic.

6 Conclusion

The PalmX 2025 Shared Task establishes the first
standardized benchmark for evaluating Arabic and
Islamic cultural competence in LLMs. Our evalua-
tion framework revealed key insights: task-specific
fine-tuning substantially improves performance
over baselines, with parameter-efficient approaches
(LoRA) emerging as the dominant methodology.
The performance gap between cultural (72.15%
best) and Islamic knowledge (84.22% best) sub-
tasks suggests domain-specific challenges, with

Islamic questions potentially benefiting from more
structured canonical sources. Overall, models still
struggle on both general cultural and general Is-
lamic knowledge, motivating us to continue to of-
fer the shared task in the future.

Strong community participation from diverse
international teams demonstrates the critical need
for culturally aligned Arabic LLMs. While partic-
ipating teams achieved significant improvements
over baselines, the modest absolute scores high-
light substantial remaining challenges in achieving
true cultural competence. PalmX 2025 benchmark
provides a foundation for systematic progress track-
ing and comparison in Arabic cultural AI, driving
development of more inclusive language technolo-
gies for Arabic-speaking communities worldwide.

Limitations

Several important limitations should be acknowl-
edged:

• Dataset Imbalances: PalmX includes data
from 22 Arab countries, but the distribution of
questions is uneven. Countries like Iraq and
Algeria are underrepresented, as shown in the
appendix B, while others are overrepresented.
This imbalance may bias the models toward
frequently represented cultures and limit their
generalization to underrepresented communi-
ties. Future releases should focus on targeted
data collection to improve country-level rep-
resentation.

• Evaluation Constraints: The benchmark is
limited to multiple-choice questions in MSA.
While this design ensures clarity, fairness, and
reproducibility, it does not capture broader as-
pects of cultural and linguistic competence,
such as open-ended reasoning, interactive di-
alogue, or sensitivity to dialectal variation.

• Language and Cultural Scope: PalmX is
designed with a focus on Arabic cultural and
Islamic knowledge expressed in MSA. How-
ever, Arabic speaking communities are lin-
guistically and culturally diverse, with ex-
tensive dialectal variation and localized tra-
ditions that MSA-based questions may not
fully capture. Moreover, Islamic cultural prac-
tices extend far beyond the Arab world, but
these dimensions are not addressed in a com-
prehensive way. Therefore, PalmX should
be viewed as an initial step toward assessing
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alignment with Arabic and Islamic cultural
contexts, rather than as a complete evaluation
of all cultural settings.

• Quality and Methodology: Although there
were several levels of human review, cover-
ing all the dataset used, small sections of the
dataset were generated or reformulated us-
ing LLMs (see Section 2.1.1), which could
introduce subtle artifacts or stylistic biases.
Furthermore, the topic classification used for
dataset analysis (Appendix B) partially de-
pended on automated methods that have im-
perfect accuracy. These factors may impact
both the reliability of item difficulty and the
interpretability of model performance.

Ethical Considerations

The development and evaluation of culturally-
aware language models raises several ethical con-
siderations that we have carefully addressed in
PalmX 2025:

• Cultural Representation and Bias: While
we strive for balanced representation across
all 22 Arab countries, acknowledged geo-
graphical imbalances may inadvertently favor
certain cultural perspectives over others. We
mitigate this through transparent reporting of
data distributions and encourage future work
to address underrepresented regions.

• Religious Sensitivity: Questions involving
Islamic knowledge require particular care to
avoid misrepresentation or offense. All reli-
gious content was reviewed by qualified ex-
perts, and we acknowledge that legitimate
scholarly disagreements exist on certain top-
ics. The evaluation framework focuses on
widely accepted knowledge rather than con-
tentious interpretations.

• Data Privacy and Consent: All data sources
used are publicly available or properly li-
censed. Web-crawled content was limited to
public educational resources, and no personal
information was collected or used in dataset
construction.

• Model Deployment Implications: While
this benchmark evaluates cultural compe-
tence, we emphasize that high performance

does not guarantee appropriate real-world de-
ployment. Cultural sensitivity extends be-
yond factual knowledge to include contextual
appropriateness, respect for cultural values,
and awareness of power dynamics.

• Overfitting to Benchmarks: The competi-
tive nature of shared tasks may unintention-
ally promote overfitting to benchmark scores
rather than fostering genuine cultural compe-
tence. As such, it is necessary to stress the
importance of engaging with native speakers
and experts in addition to the use of bench-
marks.

• Potential Misuse: A benchmark that evalu-
ates alignment to specific cultural and reli-
gious norms could be misapplied in harmful
contexts. For instance, it could be used to jus-
tify censorship, surveillance, or exclusionary
practices. The benchmark data and evaluation
methods are designed for research purposes.
We encourage responsible use and caution
against deploying systems without adequate
safeguards for cultural sensitivity and com-
munity feedback.

Acknowledgments

Muhammad Abdul-Mageed acknowledges support
from Canada Research Chairs (CRC), the Nat-
ural Sciences and Engineering Research Coun-
cil of Canada (NSERC; RGPIN-2018-04267),
the Social Sciences and Humanities Research
Council of Canada (SSHRC; 895-2020-1004;
895-2021-1008), Canadian Foundation for In-
novation (CFI; 37771), Digital Research Al-
liance of Canada,10 and UBC Advanced Research
Computing-Sockeye.11

References
Muhammad Abdul-Mageed, Abdelrahim Elmadany, Al-

cides Inciarte, Md Tawkat Islam Khondaker, and 1
others. 2023. Jasmine: Arabic gpt models for few-
shot learning. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 16721–16744.

Muhammad Farid Adilazuarda, Sagnik Mukherjee,
Pradhyumna Lavania, Siddhant Singh, Alham Fikri
Aji, Jacki O’Neill, Ashutosh Modi, and Monojit

10https://alliancecan.ca
11https://arc.ubc.ca/ubc-arc-sockeye

782

https://alliancecan.ca
https://arc.ubc.ca/ubc-arc-sockeye


Choudhury. 2024. Towards measuring and mod-
eling" culture" in llms: A survey. arXiv preprint
arXiv:2403.15412.

Emran Al-Buraihy, Dan Wang, Tariq Hussain,
Razaz Waheeb Attar, Ahmad Ali AlZubi, Khalid
Zaman, and Zengkang Gan. 2025. Aratraditions10k
bridging cultures with a comprehensive dataset for
enhanced cross lingual image annotation retrieval
and tagging. Scientific Reports, 15(1):19624.

Walid Al-Dhabyani and Hamzah A. Alsayadi. 2025.
Hamyaria at PalmX2025: Leveraging Large Lan-
guage Models to Improve Arabic Multiple-Choice
Questions in Cultural and Islamic Domains. In
Proceedings of the Third Arabic Natural Language
Processing Conference (ArabicNLP 2025), Suzhou,
China. Association for Computational Linguistics.
Co-located with EMNLP 2025, November 5–9.

Badr AlKhamissi, Muhammad ElNokrashy, Mai
AlKhamissi, and Mona Diab. 2024. Investigating
cultural alignment of large language models. arXiv
preprint arXiv:2402.13231.

Fakhraddin Alwajih, Abdellah El Mekki, Samar Mo-
hamed Magdy, AbdelRahim A. Elmadany, Omer
Nacar, El Moatez Billah Nagoudi, Reem Abdel-
Salam, Hanin Atwany, Youssef Nafea, and 1 others.
2025a. Palm: A culturally inclusive and linguisti-
cally diverse dataset for Arabic LLMs. In Proceed-
ings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 32871–32894, Vienna, Austria. Associ-
ation for Computational Linguistics.

Fakhraddin Alwajih, Samar Mohamed Magdy, Ab-
dellah El Mekki, Omer Nacar, Youssef Nafea,
Safaa Taher Abdelfadil, Abdulfattah Mohammed
Yahya, Hamzah Luqman, Nada Almarwani, Samah
Aloufi, and 1 others. 2025b. Pearl: A multimodal
culturally-aware arabic instruction dataset. arXiv
preprint arXiv:2505.21979.

Fakhraddin Alwajih, El Moatez Billah Nagoudi, Gagan
Bhatia, Abdelrahman Mohamed, and Muhammad
Abdul-Mageed. 2024. Peacock: A family of Arabic
multimodal large language models and benchmarks.
In Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 12753–12776, Bangkok, Thai-
land. Association for Computational Linguistics.

Zaid Alyafeai, Khalid Almubarak, Ahmed Ashraf,
Deema Alnuhait, Saied Alshahrani, Gubran AQ Ab-
dulrahman, Gamil Ahmed, Qais Gawah, Zead Saleh,
Mustafa Ghaleb, and 1 others. 2024. Cidar: Cul-
turally relevant instruction dataset for arabic. arXiv
preprint arXiv:2402.03177.

Houdaifa Atou, Issam Ait Yahia, and Ismail Berrada.
2025. Phoenix at Palmx: Exploring Data Augmen-
tation for Arabic Cultural Question Answering. In
Proceedings of the Third Arabic Natural Language
Processing Conference (ArabicNLP 2025), Suzhou,

China. Association for Computational Linguistics.
Co-located with EMNLP 2025, November 5–9.

Lama Ayash, Hassan Alhuzali, Ashwag Alasmari,
and Sultan Aloufi. 2025. Saudiculture: A bench-
mark for evaluating large language models’ cultural
competence within saudi arabia. Journal of King
Saud University Computer and Information Sciences,
37(6):123.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

M Saiful Bari, Yazeed Alnumay, Norah A Alzahrani,
Nouf M Alotaibi, Hisham A Alyahya, Sultan Al-
Rashed, Faisal A Mirza, Shaykhah Z Alsubaie, Has-
san A Alahmed, Ghadah Alabduljabbar, and 1 others.
2024. Allam: Large language models for arabic and
english. arXiv preprint arXiv:2407.15390.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika,
Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black,
Jordan Clive, Anthony DiPofi, Julen Etxaniz, Ben-
jamin Fattori, Jessica Zosa Forde, Charles Foster,
Jeffrey Hsu, Mimansa Jaiswal, Wilson Y. Lee, Hao-
nan Li, and 11 others. 2024. Lessons from the
trenches on reproducible evaluation of language mod-
els. Preprint, arXiv:2405.14782.

Md. Rafiul Biswas, Shimaa Ibrahim, Kais Attia,
Mabrouka Bessghaier, Firoj Alam, and Wajdi Za-
ghouani. 2025. MarsadLab at PalmX Shared Task:
An LLM Benchmark for Arabic Culture and Islamic
Civilization. In Proceedings of the Third Arabic
Natural Language Processing Conference (Arabic-
NLP 2025), Suzhou, China. Association for Compu-
tational Linguistics. Co-located with EMNLP 2025,
November 5–9.

Pulkit Chatwal and Santosh Kumar Mishra. 2025.
Cultura-Arabica: Probing and Enhancing Arabic
Cultural Awareness in Large Language Models via
LORA. In Proceedings of the Third Arabic Natural
Language Processing Conference (ArabicNLP 2025),
Suzhou, China. Association for Computational Lin-
guistics. Co-located with EMNLP 2025, November
5–9.

Rochelle Choenni and Ekaterina Shutova. 2024. Self-
alignment: Improving alignment of cultural val-
ues in llms via in-context learning. arXiv preprint
arXiv:2408.16482.

Eman Elrefai, Esraa Khaled, and Alhassan Ehab. 2025.
Star at PalmX 2025: Arabic Cultural Understand-
ing via Targeted Pretraining and Lightweight Fine-
tuning. In Proceedings of the Third Arabic Natural
Language Processing Conference (ArabicNLP 2025),
Suzhou, China. Association for Computational Lin-
guistics. Co-located with EMNLP 2025, November
5–9.

783

https://arxiv.org/abs/2403.15412
https://arxiv.org/abs/2403.15412
https://www.nature.com/articles/s41598-025-02894-z
https://www.nature.com/articles/s41598-025-02894-z
https://www.nature.com/articles/s41598-025-02894-z
https://www.nature.com/articles/s41598-025-02894-z
https://arxiv.org/abs/2402.13231
https://arxiv.org/abs/2402.13231
https://doi.org/10.18653/v1/2025.acl-long.1579
https://doi.org/10.18653/v1/2025.acl-long.1579
https://arxiv.org/pdf/2505.21979
https://arxiv.org/pdf/2505.21979
https://doi.org/10.18653/v1/2024.acl-long.689
https://doi.org/10.18653/v1/2024.acl-long.689
https://arxiv.org/pdf/2402.03177
https://arxiv.org/pdf/2402.03177
https://arxiv.org/abs/2503.17485
https://arxiv.org/abs/2503.17485
https://arxiv.org/abs/2503.17485
https://arxiv.org/pdf/2204.05862
https://arxiv.org/pdf/2204.05862
https://arxiv.org/pdf/2204.05862
https://arxiv.org/abs/2407.15390
https://arxiv.org/abs/2407.15390
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://arxiv.org/pdf/2408.16482
https://arxiv.org/pdf/2408.16482
https://arxiv.org/pdf/2408.16482


Sara Ghaboura, Ahmed Heakl, Omkar Thawakar, Ali
Husain Salem Abdulla Alharthi, Ines Riahi, Ab-
duljalil Radman, Jorma Laaksonen, Fahad Shahbaz
Khan, Salman Khan, and Rao Muhammad Anwer.
2025. CAMEL-bench: A comprehensive Arabic
LMM benchmark. In Findings of the Association
for Computational Linguistics: NAACL 2025, pages
1970–1980, Albuquerque, New Mexico. Association
for Computational Linguistics.

Mohamed Gomaa and Noureldin Elmadany. 2025. ISL-
NLP at PalmX 2025: Retrieval-Augmented Fine-
Tuning for Arabic Cultural Question Answering. In
Proceedings of the Third Arabic Natural Language
Processing Conference (ArabicNLP 2025), Suzhou,
China. Association for Computational Linguistics.
Co-located with EMNLP 2025, November 5–9.

Shehenaz Hossain and Haithem Afli. 2025.
ADAPT–MTU HAI at PalmX 2025: Leverag-
ing Full and Parameter-Efficient LLM Fine-Tuning
for Arabic Cultural QA. In Proceedings of the Third
Arabic Natural Language Processing Conference
(ArabicNLP 2025), Suzhou, China. Association
for Computational Linguistics. Co-located with
EMNLP 2025, November 5–9.

Huang Huang, Fei Yu, Jianqing Zhu, Xuening Sun,
Hao Cheng, Song Dingjie, Zhihong Chen, Mosen Al-
harthi, Bang An, Juncai He, Ziche Liu, Junying Chen,
Jianquan Li, Benyou Wang, Lian Zhang, Ruoyu
Sun, Xiang Wan, Haizhou Li, and Jinchao Xu. 2024.
AceGPT, localizing large language models in Arabic.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8139–8163, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Rebecca L Johnson, Giada Pistilli, Natalia Menédez-
González, Leslye Denisse Dias Duran, Enrico Panai,
Julija Kalpokiene, and Donald Jay Bertulfo. 2022.
The ghost in the machine has an american ac-
cent: value conflict in gpt-3. arXiv preprint
arXiv:2203.07785.

Cheng Li, Mengzhuo Chen, Jindong Wang, Sunayana
Sitaram, and Xing Xie. 2024. Culturellm: Incorpo-
rating cultural differences into large language mod-
els. In Advances in Neural Information Processing
Systems, volume 37, pages 84799–84838. Curran
Associates, Inc.

Zhaoming Liu. 2025. Cultural bias in large language
models: A comprehensive analysis and mitigation
strategies. Journal of Transcultural Communication,
3(2):224–244.

Samar Mohamed Magdy, Sang Yun Kwon, Fakhraddin
Alwajih, Safaa Taher Abdelfadil, Shady Shehata, and
Muhammad Abdul-Mageed. 2025. JAWAHER: A
multidialectal dataset of Arabic proverbs for LLM
benchmarking. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the

Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 12320–12341, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Abdellah El Mekki, Houdaifa Atou, Omer Nacar,
Shady Shehata, and Muhammad Abdul-Mageed.
2025. Nilechat: Towards linguistically diverse and
culturally aware llms for local communities. arXiv
preprint arXiv:2505.18383.

Basel Mousi, Nadir Durrani, Fatema Ahmad, Md. Arid
Hasan, Maram Hasanain, Tameem Kabbani, Fahim
Dalvi, Shammur Absar Chowdhury, and Firoj Alam.
2025. AraDiCE: Benchmarks for dialectal and cul-
tural capabilities in LLMs. In Proceedings of the
31st International Conference on Computational Lin-
guistics, pages 4186–4218, Abu Dhabi, UAE. Asso-
ciation for Computational Linguistics.

Tarek Naous, Michael J Ryan, Alan Ritter, and Wei
Xu. 2023. Having beer after prayer? measuring cul-
tural bias in large language models. arXiv preprint
arXiv:2305.14456.

Siddhesh Pawar, Junyeong Park, Jiho Jin, Arnav
Arora, Junho Myung, Srishti Yadav, Faiz Ghifari
Haznitrama, Inhwa Song, Alice Oh, and Isabelle
Augenstein. 2025. Survey of cultural awareness in
language models: Text and beyond. Computational
Linguistics, pages 1–96.

Abdelrahman Sadallah, Junior Cedric Tonga, Khalid
Almubarak, Saeed Almheiri, Farah Atif, Chatrine
Qwaider, Karima Kadaoui, Sara Shatnawi, Yaser
Alesh, and Fajri Koto. 2025. Commonsense reason-
ing in Arab culture. In Proceedings of the 63rd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
7695–7710, Vienna, Austria. Association for Com-
putational Linguistics.

Neha Sengupta, Sunil Kumar Sahu, Bokang Jia,
Satheesh Katipomu, Haonan Li, Fajri Koto, William
Marshall, Gurpreet Gosal, Cynthia Liu, Zhiming
Chen, and 1 others. 2023. Jais and jais-chat: Arabic-
centric foundation and instruction-tuned open gen-
erative large language models. arXiv preprint
arXiv:2308.16149.

Jannatul Tajrin, Bir Ballav Roy, and Firoj Alam. 2025.
AYA at PalmX 2025: Modeling Cultural and Is-
lamic Knowledge in LLMs. In Proceedings of the
Third Arabic Natural Language Processing Confer-
ence (ArabicNLP 2025), Suzhou, China. Associa-
tion for Computational Linguistics. Co-located with
EMNLP 2025, November 5–9.

Yan Tao, Olga Viberg, Ryan S Baker, and René F Kizil-
cec. 2024. Cultural bias and cultural alignment of
large language models. PNAS Nexus, 3(9):pgae346.

Fanar Team, Ummar Abbas, Mohammad Shahmeer Ah-
mad, Firoj Alam, Enes Altinisik, Ehsannedin Asgari,
Yazan Boshmaf, Sabri Boughorbel, Sanjay Chawla,
Shammur Chowdhury, and 1 others. 2025. Fanar:

784

https://doi.org/10.18653/v1/2025.findings-naacl.105
https://doi.org/10.18653/v1/2025.findings-naacl.105
https://doi.org/10.18653/v1/2024.naacl-long.450
https://arxiv.org/pdf/2203.07785
https://arxiv.org/pdf/2203.07785
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a16935bf54c4af233e25d998b7f4a2c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a16935bf54c4af233e25d998b7f4a2c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a16935bf54c4af233e25d998b7f4a2c-Paper-Conference.pdf
https://doi.org/10.1515/jtc-2023-0019
https://doi.org/10.1515/jtc-2023-0019
https://doi.org/10.1515/jtc-2023-0019
https://doi.org/10.18653/v1/2025.naacl-long.613
https://doi.org/10.18653/v1/2025.naacl-long.613
https://doi.org/10.18653/v1/2025.naacl-long.613
https://arxiv.org/pdf/2505.18383
https://arxiv.org/pdf/2505.18383
https://aclanthology.org/2025.coling-main.283/
https://aclanthology.org/2025.coling-main.283/
https://arxiv.org/abs/2305.14456
https://arxiv.org/abs/2305.14456
https://arxiv.org/abs/2411.00860
https://arxiv.org/abs/2411.00860
https://doi.org/10.18653/v1/2025.acl-long.380
https://doi.org/10.18653/v1/2025.acl-long.380
https://arxiv.org/abs/2308.16149
https://arxiv.org/abs/2308.16149
https://arxiv.org/abs/2308.16149
https://doi.org/10.1093/pnasnexus/pgae346
https://doi.org/10.1093/pnasnexus/pgae346
https://arxiv.org/pdf/2501.13944


An arabic-centric multimodal generative ai platform.
arXiv preprint arXiv:2501.13944.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

785

https://arxiv.org/pdf/2501.13944
https://arxiv.org/pdf/2505.09388


Appendices
These appendices provide supplementary material
supporting the main findings of this work. The
content is organized as follows:

• A: Literature Review
Reviews related work on cultural bias in
LLMs, Arabic centric LLMs, and Arabic
culturally-Aware datasets and benchmarks.

• B: Data Analysis
This section presents the country-level
and topical distributions of both subtasks’
datasets.

A Literature Review

Our work is situated at the intersection of several
active research areas: the evaluation of cultural
biases in LLMs, the development of Arabic-centric
models, and the creation of culturally grounded
benchmarks.

1.1 Cultural Bias and Alignment in LLMs

The detection, mitigation, and control of cultural
bias in LLMs is an expanding research area, seek-
ing to produce generative models that are free of
stereotypes and which align with a defined cul-
tural perspective and value framework (Pawar et al.,
2025).

Since many LLMs are trained primarily on
widely available, high-quality English datasets,
they inevitably reflect cultural elements present
in those sources (Johnson et al., 2022). Tech-
niques such as fine-tuning and reinforcement learn-
ing from human feedback (RLHF) are commonly
employed to align such models with a desired
value system (Bai et al., 2022; Li et al., 2024);
however, this depends on the availability of high-
quality instruction data that accurately reflects that
system (Liu, 2025). Another approach is to use
prompting and system roles to enforce a cultural
identity (Tao et al., 2024; Choenni and Shutova,
2024).

1.2 Development of Arabic-Centric LLMs

To counter the dominance of English-centric mod-
els, significant efforts have been made to de-
velop foundational LLMs for Arabic. Models
like JAIS (Sengupta et al., 2023) pioneered a

bilingual Arabic-English training strategy to lever-
age cross-lingual knowledge transfer. The Jas-
mine (Abdul-Mageed et al., 2023) suite of mod-
els was specifically designed to enhance few-shot
learning capabilities in Arabic, while the AceGPT
project (Huang et al., 2024) introduced a com-
prehensive localization pipeline, including pre-
training, supervised fine-tuning (SFT), and rein-
forcement learning with a reward model sensitive
to local values.

More recent models like ALLAM (Bari et al.,
2024) and Fanar (Team et al., 2025) have further ad-
vanced Arabic capabilities. NileChat (Mekki et al.,
2025), in particular, was developed as a linguis-
tically diverse and culturally aware model specif-
ically tailored for local communities. NileChat
proved that it’s possible to build a performant 3
billion parameters language model that can repre-
sent the Moroccan and Egyptian communities, in-
cluding their dialects, cultural heritage, and values
through controlled-generated synthetic data. While
these models represent crucial advancements in
Arabic linguistic competence, their evaluations
have largely focused on standard NLP tasks (e.g.,
question answering, summarization) and general
knowledge benchmarks like Arabic MMLU. They
have not been systematically evaluated on their
understanding of deep, country-specific cultural
knowledge.

1.3 Arabic Culturally-Aware Datasets and
Benchmarks

A growing body of work is dedicated to developing
datasets and benchmarks that reflect Arab culture.
One of the earliest benchmark efforts is the Arabic
Cultural and Value Alignment dataset (Huang et al.,
2024), comprising 8.7K yes–no questions syntheti-
cally generated by GPT-3.5 Turbo on various topics
related to Arab values. AraDiCE-Culture (Mousi
et al., 2025) is a fine-grained benchmark designed
to assess cultural awareness across the Gulf, Egypt,
and the Levant. Jawaher (Magdy et al., 2025) offers
10K multi-dialectal Arabic proverbs to evaluate un-
derstanding of cultural nuances through figurative
language. ArabCulture (Sadallah et al., 2025) is
a manually crafted dataset of 3.5K commonsense
reasoning questions covering the cultures of 13
Arab countries across 54 subtopics.

On the other hand, instruction datasets aimed at
embedding cultural understanding during model
training include CIDAR (Alyafeai et al., 2024), a
10K culturally localized instruction dataset created
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Figure 2: Country distribution of cultural questions in
the training data.

via machine translation followed by human review,
and Palm (Alwajih et al., 2025a), a 17K human-
crafted instruction dataset spanning the cultures
of the 22 Arab countries. Efforts to support local
cultures also include datasets and models such as
NileChat (Mekki et al., 2025) for Egyptian and
Moroccan dialects, and benchmarks like SaudiCul-
ture (Ayash et al., 2025).

More recently, a focus has emerged on cul-
turally aware Arabic multimodal resources, in-
cluding Peacock (Alwajih et al., 2024), Camel-
Bench (Ghaboura et al., 2025), AraTradi-
tions10K (Al-Buraihy et al., 2025), and Pearl (Al-
wajih et al., 2025b).

B Data Analysis

2.1 Subtask 1 Data Analysis

Country distributions of training, development, and
test data are shown in Figures 2, 3, and 4. We use
ISO 3166 Alpha-2 code for countries12. We note
that certain countries, such as Iraq (IQ) and Algeria
(DZ), are underrepresented across all data splits. In
future releases of PalmX, we aim to ensure more
balanced country distributions.
Table 6 presents the 15 most frequent topics, which
together account for 95% of all test questions,
along with illustrative examples. The topics were
initially classified using GPT-4o and subsequently
consolidated and manually verified. To estimate
classification quality, 200 random questions were
sampled, yielding an accuracy of 85%. We ob-
serve that roughly one-third of the test questions
pertain to historical events in Arab countries, such
as the dates of revolutions, the founding of political
parties, or the birthdates of notable writers.

12https://www.iban.com/country-codes

Figure 3: Country distribution of cultural questions in
the development data.

Figure 4: Country distribution of cultural questions in
the test data. *ARB denotes questions related to Arab
culture in general, rather than those tied to a specific
country.
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Topic Example %
History ?ø
 Q


K @ 	Qm.Ì'@ ÈC�®�J�B@ Õç�' ú �æÓ 35.2
When did Algeria gain independence?

Geography/Environment ? AK
Pñ� ú

	̄ PAî 	E



B@ Q�.»



@ ñë AÓ 10.0

What is the largest river in Syria?
Food ? AJ
�. J
Ë ú


	̄ 	áK
 	PAJ. Ë @ ��J.£ ñë AÓ 7.9

What is the Bazin dish in Libya?
Customs ? ú


	G @Xñ�Ë@ h. @ð 	QË @ ú

	̄ �é 	JmÌ'@ ÈAÒª�J�@ AÓ 7.6

What is the use of henna in Sudanese marriage?

Arts ?�	�ñ�K ú

	̄ �éJ

KAÒ 	J�
� �éJ
ËAª 	̄ Ñë



@ ù
 ë AÓ 6.0

What is the most important cinematic event in Tunisia?

Sports ? Qå�Ó ú

	̄ �éJ
J.ª �� Q��»



B@ �é 	�AK
QË @ ù
 ë AÓ 5.1

What is the most popular sport in Egypt?

Literature ? Q¢�̄ ú

	̄ �é�JK
YmÌ'@ �éJ
K. X



B@ �é»QmÌ'@ �H



@YK. ú �æÓ 4.6

When did the modern literary movement begin in Qatar?
Economics ? �HA«A 	J�Ë@ �IJ
k 	áÓ 	á�
¢�Ê 	̄ ú


	̄ ÑmÌ �I�
K. �é 	JK
YÓ Qî �D ���� @ 	XAÖß. 4.6

What is Bethlehem, Palestine, famous for in terms of industries?

Religion ?¨ñJ.�


B@ ú


	̄ 	á�
ÒÊ�ÒÊË �Y�®ÖÏ @ ÐñJ
Ë @ ñë AÓ 3.9

What is the holy day of the week for Muslims?
Language ? �éJ
�̄ @QªË@ �éj. êÊË @ ú


	̄ " �é¢	J�" �éÒÊ¿ ú 	æªÓ AÓ 2.8

What does the word ’santa’ mean in the Iraqi dialect?
Clothing ? ú
G. Q

	ªÖÏ @ ��ñK. Q¢Ë@ ñë AÓ 2.4

What is the Moroccan fez?
Education ? �éJ
��K
ñºË@ �P@YÖÏ @ ú


	̄ �éJ
Ó@ 	QË @
 Q�. �Jª
��K ú


�æË @ �éJ
 	K A�JË @ �é 	ªÊË @ ù
 ë AÓ 1.5

What second language is mandatory in Kuwaiti schools?

Politics ?(ÐAÖ �ß) AJ
 	K A�JK
PñÓ Ég.


@ 	áÓ ©Òj. �JË @ H. 	Qk �



@QK
 	áÓ 1.3

Who heads the Rally for Mauritania (RMA) party?

Tourism ? ú

�GñJ. J
k. ú


	̄ A�KP


@ 
ù£A �� 	Q�
Öß
 AÓ 1.3

What makes Arta Beach in Djibouti special?
Law ? 	áK
QjJ. Ë @ ú


	̄ 	á�
 	gY�JÊË ú

	Gñ 	KA �®Ë @ 	á�Ë@ ñë AÓ 1.3

What is the legal smoking age in Bahrain?
Other 10 topics Technology, Architecture, Medecine, etc. 5.0

Table 6: Topic distribution of the cultural questions (translated to English) in the test set.

2.2 Subtask 2 Data Analysis
Table 7 presents the topic distribution along with
examples from the test set. Topic labels were pre-
dicted using GPT-4o. To estimate accuracy, we
sampled 200 questions and found a 91% agree-
ment with manual annotations. Notably, about one-
quarter of the questions concern historical events,
such as battles, the birthplaces of scholars, or for-
mer names of places.
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Topic Example %
History ?¼ñÓQ�
Ë @ �é»QªÓ �Iª�̄ð 	áK




@ 25.5

Where did the Battle of Yarmouk take place?
Worship ? Qj. 	®Ë @ �èC��. �é¢J. �KQÖÏ @ Y
K @ñ 	®Ë @ øYg@
 AÓ 18.2

What is one of the virtues of Fajr prayer?

Ethics ? ÐC�B
 @ ú

	̄ 	áK
Q 	k

�
B@ Ð@Q��g@ QëA 	¢Ó Yg



@ AÓ 12.4

What is one of the manifestations of respecting others in Islam?
Fiqh (Islamic Jurisprudence) ? ÈAÖÏ @ ú


	̄ �éJ.k. @ñË@ �èA¿ 	QË @ P@Y�®Ó AÓ 12.3

How much zakat is due on money?
Quranic Sciences ?QÒ�®Ë@ ��A�® ��	� @ úÍ@
 Q�
 ��

�� ú

�æË @ �éK


�
B@ AÓ 10.3

Which verse refers to the splitting of the moon?

Aqidah (Islamic theology) ? 	àAÖß
B
 @
	àA¿P



@ XY« Õ» 9.4

How many pillars of faith?
Hadith Sciences ? ú
æ�Y

�®Ë@ �IK
YmÌ'@ 	Q�
Ò�JK
 @ 	XAÖß. 3.5

What distinguishes the Hadith Qudsi?
Mu’amalat (Islamic Transactions) ?¡J
��®�JËAK. ©J
J. ÊË ÐAªË @ ÕºmÌ'@ AÓ 2.4

What is the general ruling on installment sales?

Contemporary Issues ? ú

	æK
YË@

	¬Q¢�JË @ QëA 	¢Ó Yg


@ AÓ 2.1

What is one manifestation of religious extremism?

Sirah (Biography of the Prophet) ? ú
æ.
	JË @ 	�QÓ Y�J ��@ 	à



@ YªK. �A 	JË AK. úÎ� ø


	YË@ 	áÓ 2.0

Who led the people in prayer after the Prophet’s illness became severe?
Philosophy ? ÐC�B
 @

�é�J
ÖÏ A« Ðñê 	®Ó ú

	æªK
 @ 	XAÓ 2.0

What does the concept of the universality of Islam mean?

Table 7: Topic distribution of the Islamic questions (translated to English) in the test set
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Abstract

Large language models (LLMs) have been
widely used recently. Adapting these models to
multiple languages would enhance the accuracy
and precision of the other languages. Apply-
ing LLMs with Arabic language could improve
the prediction of Arabic language. This work
applies LLMs with MCQs of Arabic in both
the cultural and Islamic domain. The dataset
used is PalmX, which is an MCQ benchmark
dataset. In this work, traditional and AI gen-
eration data augmentations are used. For the
cultural domain, we applied data augmenta-
tion techniques, including paraphrasing using
Fanar-1-9B-Instruct model and answer shuf-
fling. For the Islamic domain, we used the
original dataset without augmentation to main-
tain content integrity. We then fine-tuned the
Qwen2.5-3B-Instruct model on both datasets
and evaluate its performance, achieving 65.90%
accuracy on the cultural set and 70.83% on the
Islamic set. Experiment and evaluation are dis-
cussed and the best accuracy achieved in this
work is explained in both domains.

1 Introduction

Due to their exceptional performance in a wide
range of applications, LLMs are becoming more
and more well-liked in both academia and indus-
try. Since LLMs are still essential for research
and everyday applications, it is becoming more
and more important to evaluate them at the task
level as well as the societal level in order to bet-
ter comprehend the hazards they may pose (Chang
et al., 2024). Adapting LLMs in Arabic language
is still challenging (Mashaabi et al., 2024). Due
to grammatical complexity, semantic diversity, and
domain specialization, answering multiple choice
questions in Arabic is a challenging NLP task, es-
pecially in cultural and Islamic contexts. Building
strong language-understanding systems requires
improving the quality of MCQ datasets in these
areas. In order to increase model performance, our

work uses LLMs to enhance and optimize Arabic
MCQ data. This work was conducted as part of
the ArabicNLP 2025 competition named "PalmX
2025: The First Shared Task on Benchmark-
ing LLMs on Arabic Culture" (Alwajih et al.,
2025b)1.

We use both conventional augmentation meth-
ods (answer shuffling) and AI-based methods (para-
phrasing using QCRI/Fanar-1-9B-Instruct 2) (Team
et al., 2025) on the general culture dataset. To main-
tain the authenticity of religion, the Islamic dataset
is left unchanged. With significant accuracy gains,
Qwen2.5-3B-Instruct 3 (Team, 2024) is refined us-
ing both datasets.

The rest of the paper, an introduction is ex-
plained in Section 1. Section 2 contains the back-
ground. Section 3 illustrated the system overview.
Section 4 has the experimental setup. The results
are explained in section 5. Finally, conclusion is in
section 6.

2 Background

Task setup, dataset details, and related work are
explained in this part of the paper.

2.1 Task Setup

Enhancing the quality and precision of Arabic
MCQ in two different areas—general culture and
Islamic knowledge—is the challenge at hand. Ara-
bic questions with several possible answers make
up the input, and choosing the right response from
the list of options is the output. Examples about
PalmX dataset are in Appendix A.

2.2 Dataset Details

We make use of the PalmX dataset (Alwajih
et al., 2025b) which is an MCQ benchmark Arabic
dataset. Palmx dataset is created from the Palm

1
https://palmx.dlnlp.ai/index.html

2
https://huggingface.co/QCRI/Fanar-1-9B-Instruct

3
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
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Dataset #Train #Dev #Test
Culture 2000 500 2000
Islamic 1000 300 1001

Table 1: PalmX dataset characteristics.

dataset 4 (Alwajih et al., 2025c) (Alwajih et al.,
2025a), which is an instruction dataset. The Palm
dataset is a comprehensive benchmark created to
assess Large Language Models on tasks involving
Arabic in a range of dialects and contexts.

The PalmX dataset is especially well-suited to
our study goals because it offers broad coverage
of both cultural and Islamic knowledge categories.
In order to ensure thorough evaluation coverage,
the PalmX dataset contains questions covering a
range of topics and difficulty levels within each do-
main. The data set characteristics are illustrated in
the table 1. The PalmX dataset has 3000 questions
of the training data, 800 questions of the devel-
opment data and 3001 questions for the test data.
The PalmX dataset contains both Cultural and Is-
lamic domains. The separation of both domains are
illustrated in table 1.

2.3 Related Work
Previous research in Arabic NLP has highlighted
the unique challenges posed by the language’s mor-
phological complexity and the need for culturally
appropriate content generation. While significant
progress has been made in general Arabic NLP
tasks, specialized domains such as cultural and Is-
lamic knowledge require targeted approaches that
respect content integrity and cultural sensitivities.
The remainder of this section is in Appendix B.

The novelty of our contribution lies in the
domain-specific approach to Arabic MCQ enhance-
ment, particularly the differentiated treatment of
cultural versus Islamic content, recognizing that
religious content requires special consideration to
maintain authenticity and accuracy.

3 System Overview

In this section, our proposed solutions for both
tasks and the used resources are explained in detail.
Furthermore, the challenging that we faced through
the work with the dataset and other models.

3.1 Key Algorithms and Design Decisions
Our system architecture employs a multi-stage ap-
proach involving data preprocessing, augmentation,

4
https://github.com/UBC-NLP/palm

Figure 1: The used model for fine-tunning the LLM for
the both dataset (Cultural and Islamic)

and model fine-tuning. The core design decision
revolves around treating cultural and Islamic do-
mains differently based on their respective require-
ments for content modification. Figure 1 shows
the approaches used in fine-tuning and evaluating
the LLMs and Trained Model. In the next two sec-
tion, we explained the steps used in fine-tunning
the modles with Palm dataset.

3.1.1 Cultural Domain Processing
1. Load original cultural MCQ dataset
2. Generate paraphrased questions using

QCRI/Fanar-1-9B-Instruct. Paraphrasing
techniques follow these approaches:

• Two questions are generated for each
question.

• Concatenate the original questions with
the generated questions separated by the
phases " ".

3. Combine original and paraphrased datasets in
one dataset.

4. Apply traditional augmentation (answer shuf-
fling). For every question in the new dataset,
there are three shuffling in the answers for
each question.

5. Apply final answer shuffling, combined the
new dataset that contains shuffling answers
with the new dataset(orginal dataset + para-
phrased dataset)

6. Load the pretrained model Qwen2.5-3B-
Instruct from Hugging face hub.

7. Fine-tune Qwen2.5-3B-Instruct on augmented
data.

8. Evaluate accuracy and performance of the
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Name Explanation
QCRI/Fanar-1-
9B-Instruct

Large language model (LLM) used for
paraphrasing the questions.

Qwen2.5-3B-
Instruct

Utilized for fine-tuning the model specif-
ically for the Arabic language.

PalmX Dataset The primary dataset used for model train-
ing and evaluation.

Colab A100
GPU (40GB)

Provided the computational resources
for experiments and training.

Transformers
(Vaswani et al.,
2017)

Open-source library used for model load-
ing, fine-tuning, and inference.

PyTorch Underlying deep learning framework en-
abling implementation and optimization.

Table 2: Execution environment and resources used in
experiments with the PalmX dataset.

trained model in the test dataset.

3.1.2 Islamic Domain Processing
1. Load original Islamic MCQ dataset.
2. Preserve original structure without augmenta-

tion.
3. Load the pretrained model Qwen2.5-3B-

Instruct from Hugging face hub.
4. Fine-tune Qwen2.5-3B-Instruct on original Is-

lamic MCQ dataset.
5. Evaluate accuracy and performance of the

trained model in the test dataset.

3.2 Resources Used, External Tools and
Libraries

The resources used, External Tools and Libraries
are explained in table 2. Model access, versioning,
and deployment are managed through the Hugging
Face Hub.

3.3 Addressing Task Challenges

Assuring proper handling of culturally sensitive
content, managing the complexity of the Arabic
language with its morphological and dialectical
variations, striking a balance between the advan-
tages of data augmentation and the preservation of
content integrity in domain-specific contexts, and
optimizing performance within the limitations of
computational resources are the main challenges
this work attempts to address. Furthermore, in the
paraphrasing stage, there was some words trans-
lated to English language that we have addressed
and solved.

4 Experimental Setup

In this section of the work, we discussed in detail
the experiments steps for both datasets such as Data

Split usage, Preprocessing, and Hyperparameter
Details, and Evaluation Metrics.

4.1 Data Split Usage

The experiments utilized the standard
train/development/test split provided by the
PalmX dataset. With evaluation performed directly
on the designated test sets for both cultural and
Islamic domains.

4.2 Preprocessing and Hyperparameter
Details

Cultural Domain Configuration: We fine-tune
Qwen2.5-3B-Instruct for 1 epoch (optionally ex-
tending to NUM_EPOCHS = 5) with a learning rate
of 1e-5 and a batch size of 1; for evaluation we
use BATCH_SIZE = 100. Training uses 8 gradient-
accumulation steps, 50 warm-up steps, and a max-
imum sequence length of 512, optimized with
AdamW (adamw_torch) and a cosine learning-
rate scheduler. Gradient checkpointing is enabled.
Checkpoints are saved every 1,000 steps, evalu-
ation runs every 1,000 steps, and logging occurs
every 200 steps.

Islamic Domain Configuration: We likewise
use Qwen2.5-3B-Instruct for 1 epoch (with ex-
tended runs up to NUM_EPOCHS = 10) at a learn-
ing rate of 1e-5 and a batch size of 1. The setup
includes 8 gradient-accumulation steps, 50 warm-
up steps, a maximum sequence length of 512, the
AdamW (adamw_torch) optimizer, and a cosine
scheduler, with BF16 precision enabled. We save
every 300 steps, evaluate every 300 steps, and log
every 200 steps.

4.3 Evaluation Metrics

The primary evaluation metric used is accuracy,
calculated as the percentage of correctly answered
questions in the respective test sets. This metric
provides a straightforward measure of model per-
formance in the MCQ answering task. The accu-
racy, confusion matrix, and heatmap are discussed
in detail in this section 5.

5 Results

5.1 Quantitative Findings

Our experiments yielded the following perfor-
mance results:

Cultural Domain: The model achieved 65.90%
test accuracy using an augmented dataset that com-
bined traditional and AI-based techniques with the
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Class Prec. Rec. F1 Sup.
A 0.58 0.77 0.66 497
B 0.67 0.63 0.65 491
C 0.66 0.67 0.66 500
D 0.79 0.57 0.67 512
Acc. 0.66 2000
Macro 0.67 0.66 0.66 2000
W. Avg 0.68 0.66 0.66 2000

Table 3: Classification (confusion matrix) report for the
Culture dataset.

Figure 2: Normalized confusion matrix (heatmap) for
cultural dataset

original data. Training only on the original dataset
yielded 65.40%, while other models performed
worse.

Table 3 shows the classification performance.
Precision, recall, and F1-scores are balanced across
the four classes (A–D) with averages around 0.66.
Class A has high recall (0.77) but lower precision
(0.58), while Class D shows the opposite (recall
0.57, precision 0.79). The results confirm consis-
tent performance across classes.

The normalized confusion matrix in Figure 2
illustrates the model’s classification performance
across classes A–D. Correct predictions lie on the
diagonal (e.g., 77.1% of class A and 66.6% of
class C), while off-diagonals show misclassifica-
tions (20% of class B predicted as A, 18.8% of
class D as A). The model achieves higher recall for
classes A and C but struggles with class D, often
confused with A (18.8%) and C (13.3%), suggest-
ing overlapping feature representations between
A↔B and D↔A/C.

Islamic Domain: The model achieved 70.83%
test accuracy using the original Islamic dataset
without augmentation.

Table 4 summarizes the classification results.
Class B performed best (F1=0.81, precision=0.89,
recall=0.75), showing robust and balanced perfor-
mance. Class C also performed well (F1=0.70, pre-

Class Prec. Rec. F1 Sup.
A 0.48 0.73 0.58 153
B 0.89 0.75 0.81 546
C 0.71 0.69 0.70 213
D 0.41 0.56 0.47 73
OTHER 0.00 0.00 0.00 16
Acc. 0.71 1001
Macro 0.50 0.55 0.51 1001
W. Avg 0.74 0.71 0.72 1001

Table 4: Classification report (confusion matrix) for the
Islamic dataset.

Figure 3: Normalized confusion matrix (heatmap) for
Islamic dataset

cision=0.71, recall=0.69). Class A captured many
relevant cases with higher recall (0.73) but lower
precision (0.48, F1=0.58). Class D underperformed
(F1=0.47), and the “OTHER” class had no correct
predictions due to extremely low support (16 sam-
ples). The overall weighted F1-score is 0.72, but
the lower macro-average F1-score (0.51) highlights
poorer performance on underrepresented classes.

Figure 3 shows the normalized confusion matrix
for the Islamic dataset. Class B achieved the high-
est recall (74.9%), followed by A (73.2%) and C
(69.0%), while Class D had the lowest (56.2%).
Correct predictions lie on the diagonal, while off-
diagonals show key misclassifications: 37.5% of
OTHER samples were predicted as B, 14.7% of B
as A, and 16.4% of D as B. The “OTHER” class,
with very few samples, had no correct predictions,
indicating difficulty in recognizing this minority
class. Overall, the model performs well on major-
ity classes but struggles with D and OTHER.

5.2 Analysis

The results highlight three key insights: Domain-
Specific Performance: The Islamic domain
achieved higher accuracy (70.83%) than the cul-
tural domain (65.90%), suggesting that preserving
original content structure benefits religious and cul-
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turally sensitive queries.
Augmentation Impact: Despite using tradi-

tional and AI-based augmentation to expand the
cultural dataset, the slightly lower accuracy implies
that content preservation can be more critical than
dataset size in certain domains. By employing AI-
based data augmentation through concatenation of
real questions with generated ones, our findings
indicate that this approach is not particularly effec-
tive. Due to time constraints, we were unable to
conduct additional experiments using the original
questions combined with the generated ones in a
merged dataset, which could potentially improve
the accuracy of the trained model. Furthermore, the
application of traditional augmentation techniques
yielded only marginal benefits. In the context of
Arabic MCQ datasets, it is crucial to apply tradi-
tional augmentation methods more selectively and
precisely. Overall, both augmentation strategies led
to an improvement of only 0.5%, which is consid-
ered negligible.

Model Configuration: Differences in hyperpa-
rameters—particularly more training epochs in the
Islamic domain (up to 10 vs. 5)—may also explain
the performance gap.

Model Selection: We experimented with various
models for AI-based data augmentation and model
training. During the data augmentation phase, we
encountered several issues. In particular, many
models failed to correctly paraphrase the questions;
for example, ALLAM (Bari et al., 2024) often
transformed the original questions into different
syntactic forms, resulting in outputs that were dif-
ficult to interpret. Additionally, some models in-
advertently translated certain words into English,
even though the questions were primarily in Ara-
bic. For the training phase, we observed that most
models produced lower accuracies compared to
the QWEN2.5-3B-INSTRUCT model. For instance,
LLAMA-3.2-3B-INSTRUCT5 consistently under-
performed relative to QWEN2.5-3B-INSTRUCT.

5.3 Error Analysis

The performance gap between domains suggests
several potential factors:

1. Content Integrity: Islamic questions may
benefit more from maintaining original phras-
ing and structure due to the precision required
in religious knowledge.

2. Augmentation Effects: The paraphrasing pro-

5
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct

cess in cultural questions might introduce sub-
tle semantic changes that affect answers accu-
racy.

3. Training Dynamics: The different training
configurations (more epochs for Islamic do-
main) may have allowed for better conver-
gence on the Islamic dataset.

5.4 Comparison with Baseline

The Cultural dataset had an accuracy of 65.90%,
which was somewhat lower than its baseline of
70% as illustated in (Alwajih et al., 2025a), and the
Islamic dataset had an accuracy of 70.83%, which
was higher than its baseline of 65%, in compari-
son to the predetermined baselines. These findings
show that the model performed well in the Islamic
domain, outperforming the baseline by a significant
margin, even while the Cultural dataset performed
slightly worse than its baseline. Due to limited
computational resources, we were unable to utilize
large-scale LLMs such as Qwen2.5-5B-Instruct or
Qwen2.5-7B-Instruct. Nevertheless, we acknowl-
edge that employing such models could potentially
yield higher accuracies than those achieved in our
experiments.

6 Conclusion

This work presents a comprehensive approach to
improving Arabic multiple-choice questions in cul-
tural and Islamic domains using large language
models. Our system demonstrates the importance
of domain-aware processing, showing that different
content domains benefit from tailored approaches
to data handling and model training. The key
findings indicate that Islamic domain questions
achieve better performance when processed with-
out augmentation (70.83% accuracy), while cul-
tural domain questions, despite augmentation ef-
forts, achieve 65.90% accuracy. This suggests
that content integrity and cultural sensitivity are
paramount considerations when working with spe-
cialized Arabic educational content.

Future research directions include the addition
of more evaluation techniques. However, we need
to investigate transfer learning between Islamic and
cultural domains, creating more advanced augmen-
tation techniques that maintain religious and cul-
tural integrity. Extending the method to more effec-
tively handle different Arabic dialects is required.
Finally, we need to perform thorough comparisons
with other Arabic Models and approaches.
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A Appendix A

PalmX Dataset Examples
Examples of PalmX dataset for Cultural and Is-

lamic Domains.
Input (Cultural Domain):
• Question: ?Qå�Ó �éÖÞ�A« ù
 ë AÓ ñë (What is

the capital of Egypt?)
• Options: �éK
PY	Jº�B
 @ (H.

�èQëA�®Ë @ (


@

	à@ñ�


@ (X �è 	Q�
m.Ì'@ (h.

• Expected Output: �èQëA�®Ë @ (


@

Input (Islamic Domain):
• Question: ? ÐC�B
 @

	àA¿P


@ XY« Õ» (How many

pillars of Islam are there?)
• Options: �é�J� (X �é�Ô 	g (h.

�éªK. P


@ (H.

�é�KC�K (


@

• Expected Output: �é�Ô 	g (h.

B Appendix B

Remaining of Related Work
Abdallah et al. (Abdallah et al., 2024) presented

"ArabicaQA" which is the first extensive Arabic
dataset for open-domain question answering (QA)
and machine reading comprehension (MRC). It
includes 3,701 difficult unanswerable questions
and 89,095 answerable questions, together with
open-domain annotations. In addition, the work
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benchmarks several models, including as GPT-
3.5,AraBERT (Antoun et al., 2020), PPLX, and
Falcon, on Arabic QA tasks and presents AraDPR,
the first dense passage retrieval model trained on
Arabic Wikipedia. The results demonstrate that
while dense retrieval techniques beat traditional
approaches, fine-tuned Arabic-specific models per-
form better than traditional baselines, but LLMs
still have difficulty successfully utilizing retrieved
material. Their work advances Arabic natural lan-
guage processing research by offering empirical
insights and a useful resource.
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Abstract

Cultural understanding is essential for large
language models (LLMs), particularly in the
Arabic context where many models struggle
to capture nuanced cultural elements. To ad-
dress this gap, we propose a novel approach
for Arabic cultural multiple-choice question
answering that integrates retrieval-based train-
ing data augmentation with parameter-efficient
fine-tuning. Our system employs Gemini1 to
retrieve contextual evidence for each question,
selects candidate pairs, and adapts NileChat-
3B by fine-tuning only three projection layers,
reducing trainable parameters by 68.2% while
preserving general language proficiency. On
the PalmX 2025 Subtask 1 benchmark2, our
system attains 67.60% accuracy on the blind
test set, ranking 6th overall and outperforming
the NileChat-3B baseline by 3% on the devel-
opment set. The model weights are publicly
available at MohamedGomaa30/Ibn-Al-Nafs.

1 Introduction

The PalmX 2025 (Alwajih et al., 2025) provides a
rigorous Arabic cultural benchmark 3for evaluat-
ing AI systems in Arabic, particularly their ability
to reason within complex cultural, religious, and
historical contexts. This task addresses a key gap
in Arabic natural language processing (NLP) by
focusing on multiple-choice questions that require
cultural reasoning rather than surface-level fact re-
call.

We tackle this challenge with a two-stage ar-
chitecture that combines contextual retrieval and
parameter-efficient model adaptation, motivated by
two observations: (1) Arabic LLMs often lack cul-
tural knowledge available in existing data, and (2)
full fine-tuning of large models is computationally

1We use the Gemini 2.5 Pro API for contextual evidence
retrieval.

2https://example.com/palmx2025
3https://palmx.dlnlp.ai

expensive and risks catastrophic forgetting of gen-
eral linguistic abilities.

• Contextual Retrieval – We employ Gemini’s
retrieval features with structured prompts to
automatically attach concise (≤50 words) con-
textual evidence to each question-answer pair
in the PalmX 2025 subtask1 dataset. The re-
trieved evidence captures cultural, geographi-
cal, and historical information.

• Model Adaptation – We adapt NileChat-3B
(Mekki et al., 2025) by fine-tuning only three
projection layers: q_proj for question rep-
resentation, v_proj for value transformation,
and gate_proj for information routing. This
yields a 68.2% reduction in trainable parame-
ters compared to full fine-tuning.

Our system ranked 6th on the Palmx 2025 leader-
board with 67.70% accuracy on the blind test set,
surpassing the NileChat-3B baseline by 3% on the
development set. These results demonstrate that
targeted architectural choices can improve cultural
reasoning in LLMs while preserving computational
efficiency and real-world deployability. The re-
mainder of this paper is organized as follows. The
background is presented in Section 2. In Section
3, we provided The details of our proposed system
are described in Section 3. In Section 4, the experi-
mental results and their analysis are given. Finally,
we conclude this paper in Section 5.

2 Background

2.1 Task Setup
The task evaluates the large language model’s abil-
ity to understand Arabic culture, covering history,
geography, arts and customs and traditions for Ara-
bic countries. The input consists of text-based
multiple-choice questions (MCQs) and context-
aware text that is related to the question that will
help the model distinguish the correct answer. This
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is for the training phase only in modern standard
Arabic, with the model selecting one correct an-
swer (A, B, C, or D) from four options.

2.1.1 Input Example for Training Phase
��AJ
�Ë@ ú


	̄  ñ 	«AÖÏ @ YÒm× �HA«@YK. @

	Q�
Ö
�ß ú


�æË @ �éJ
K. X


B@ l×CÖÏ @ AÓ

?ø
 Pñ�Ë@ ú

	̄ A �®�JË @

Options:
A. �éJ
ÊjÖÏ @ �é 	̄ Aj�Ë@ ú


	̄ �éJ
«AÒ�Jk. B@ �èQ�
��®Ë@ �é��®Ë@ ¡Ö 	ß QK
ñ¢��
B. �éK
Pñ�Ë@ �èPñ�JË @ 	áÓ �èAgñ�J�Ó �éJ
	m�'
PA�K �HAK
@ðP 	­J
Ë



A�K

C. éËAÔ«


@ ú


	̄ Q 	kA�Ë@ ú
æ�AJ
�Ë@ hQå�ÖÏ @ ©Ó �éK
Q�� 	JË @ �èYJ
��®Ë@ l .×X
D. �éJ
 	®�Ê 	̄ Qå�A 	J« �é 	̄ A 	�@
 ©Ó ø
 YJ
Ê

�®�JË @ ø
 XñÒªË@ Qª
��Ë@ ZAJ
k@


Context:
	á« @ �Yª�JJ.Ó , AK
Pñ� ú


	̄ �QmÌ'@ Qª ��Ë@ �Ë é��
�


A�JK.  ñ 	«AÖÏ @ 	¬Qª�K


. �éK
Q�� 	JË @ �èYJ
��®Ë@ �éK. A�J» ú

	̄ ¨QK. AÒ» ,ø
 YJ
Ê

�®�JË @ Qª ��Ë@ �éK
XñÔ«
�IÒ���@ , �	á£ð AK
 ½�A¿�ð �	àAÒª 	JË @ ��
KA �® ��

�
@ É�JÓ , �éJ
kQå�ÖÏ @ éË AÔ«



@

ø
 Pñ�Ë@ H. X


B@ ú


	̄ �è 	PPAK. �éÖÞ� ù
 ëð , �éJ
�AJ
�Ë@ �éK
Q 	j�Ë@ð �è


@Qm.Ì'AK.

Qå�AªÖÏ @

Output: C

2.1.2 Dataset Preparation
The training dataset is enriched with evidence-
based context retrieved through Gemini, which pro-
vides historical, geographical, and cultural facts for
each multiple-choice pair. This contextual informa-
tion guides the model in learning cultural cues and
improves its ability to select the correct answer.

2.2 Dataset Details
The PalmX 2025 Subtask 1 dataset targets Arabic
cultural knowledge, covering customs, traditions,
and general background across different Arab coun-
tries. The task is evaluated through multiple-choice
questions (MCQs), organized as follows:

• Training Set: 2,000 MCQ pairs.

• Development Set: 500 MCQ pairs for inter-
mediate evaluation.

• Blind Test Set: 2,000 unseen MCQ pairs,
balanced across countries and domains.

2.3 Related Work
Cultural Alignment in LLMs: Cultural alignment
for Large Language Models (LLMs) has received
growing attention due to concerns over the dom-
inance of Western perspectives and the marginal-
ization of non-Western cultures (AlKhamissi et al.,
2024; Wang et al., 2024). Prior studies show that

existing models often fail to capture nuanced cul-
tural variables, leading to irrelevant or biased out-
puts (Mihalcea et al., 2024; Ryan et al., 2024).
This challenge is particularly pronounced for un-
derrepresented linguistic communities such as Ara-
bic speakers, whose cultural diversity is frequently
oversimplified (Keleg, 2025).

Arabic Cultural Nuances and LLMs: Sev-
eral Arabic-centric LLMs have recently been in-
troduced to address these gaps. NileChat-3B is
the first Arabic model adapted for Egyptian and
Moroccan communities, designed to incorporate
dialects, customs, and traditions. Jais (Sengupta
et al., 2023) is a bilingual Arabic–English model
trained on hundreds of billions of tokens, demon-
strating improved reasoning and knowledge in Ara-
bic. AceGPT (Huang et al., 2023) is tailored for
Arabic-speaking communities by aligning cultural
and linguistic features. Fanar (Abbas et al., 2025)
is trained on one trillion Arabic and English to-
kens and explicitly aligned with Islamic values and
Arab cultures. ALLaM (Bari et al., 2024) achieves
state-of-the-art performance across several Arabic
benchmarks, including Arabic MMLU (Hendrycks
et al., 2020), ACVA, and Arabic Exams.

Cultural QA Benchmarks and Technical
Adaptation: New benchmarks have advanced cul-
tural evaluation in Arabic NLP, including:

• ArabicMMLU (Koto et al., 2024), focusing
on educational and academic subjects.

• ArabDCE-Culture (Mousi et al., 2024), tar-
geting cultural fact-based QA across diverse
Arab countries.

• BLEnD (Myung et al., 2024), evaluating ev-
eryday Algerian contexts.

From the perspective of model adaptation, im-
provements in cultural QA have been supported
by Parameter-Efficient Fine-Tuning (PEFT) tech-
niques (Xu et al., 2023). Rather than updating all
parameters—which is computationally expensive
and risks catastrophic forgetting—PEFT updates
only a small subset of weights. This reduces mem-
ory and compute requirements while enabling tar-
geted adaptation to culturally specific datasets.

3 Proposed System

Our system follows a two-stage pipeline that com-
bines contextual retrieval with parameter-efficient
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fine-tuning to address the challenges of Arabic cul-
tural multiple-choice question answering (MCQ).
In the first stage, we leverage Gemini’s. retrieval
capabilities to enrich the dataset with culturally
relevant evidence. In the second stage, we adapt
NileChat-3B through partial fine-tuning of selected
layers, reducing computational cost while preserv-
ing performance.

3.1 Key Algorithms and Design Decisions

We adopt NileChat-3B as the base model due to its
strong performance on Arabic language understand-
ing tasks, particularly in Egyptian and Moroccan
contexts. Instead of full fine-tuning—which is com-
putationally expensive and risks catastrophic forget-
ting—we selectively update only three projection
layers: q_proj for question representations, v_proj
for value transformations in attention layers, and
gate_proj for information routing in feed-forward
layers. This strategy reduces trainable parameters
by 68.2% compared to full fine-tuning, improving
training efficiency while preserving general linguis-
tic capabilities.

3.2 Resources Beyond Provided Training Data

While PalmX 2025 subtask1 is the primary training
dataset, we augmented it with retrieval-augmented
context. Using Gemini, we generated concise ev-
idence from trusted cultural, historical, and geo-
graphical sources for each MCQ pair. This ad-
ditional context strengthens the model’s ability to
make culturally informed decisions beyond surface-
level associations.

3.3 Rationale for Training-Time Context
Augmentation

The positive effect of training-time context aug-
mentation comes from latent concept alignment
rather than memorization. The model is taught
to link superficial cues in questions and answers
with their underlying cultural principles through
the supervisory signal provided by the (question,
context, answer) triplets. The internal representa-
tions of the model are improved during training in
order to encode these patterns of cultural reasoning.
As a result, the model exhibits enhanced general-
ization without explicit context when it is tested,
recognizing pertinent cultural cues in unaugmented
questions and deducing the right response from its
learned conceptual understanding.

3.4 Addressing Task Challenges
The task presents two main challenges. First, Ara-
bic cultural questions require nuanced contextual
knowledge beyond factual recall. To address this,
we utilized Gemini to retrieve concise, culturally
grounded evidence for each MCQ pair, enabling
the model to reason with supporting information
rather than relying solely on memorization. Sec-
ond, limited computational resources constrained
model training. To mitigate this, we employed
parameter-efficient fine-tuning, updating only the
q_proj, v_proj, and gate_proj layers of NileChat-
3B. This approach reduces computational overhead
and mitigates catastrophic forgetting while main-
taining strong performance.

3.5 Implementation Details
We implemented our system using PEFT 4, the
SFTrainer from the TRL (0.8.2) library 5, and the
Transformers library (v≥4.41.0) 6. The dataset
was formatted into instruction-response pairs, with
a structured Arabic prompt guiding the model to
analyze each question, consider candidate answers,
and output a single-letter choice (A, B, C, D). Train-
ing was conducted for three epochs with eight gra-
dient accumulation steps and a per-device batch
size of two. To optimize memory and efficiency,
we used the AdamW optimizer 7, FP16 mixed
precision, a learning rate of 2 × 10−4, and non-
reentrant gradient checkpointing.

4 Experimental Results

4.1 Data Splits
The official palmx_2025_subtask1_culture
dataset is divided into a training set of 2,000
multiple-choice question–context pairs, a develop-
ment set of 500 pairs for validation, and a blind
test set of 2,000 unseen pairs balanced across
cultural domains.

4.2 Data Preprocessing
Each question was augmented with culturally rel-
evant evidence retrieved using Gemini. For every
question–answer pair, we constructed a structured
prompt in Modern Standard Arabic. The prompt

4https://github.com/huggingface/peft
5We use the supervised fine-tuning component

(SFTrainer) from https://github.com/huggingface/
trl

6https://github.com/huggingface/transformers
7https://pytorch.org/docs/stable/generated/

torch.optim.AdamW.html
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instructed Gemini to retrieve concise historical, ge-
ographical, or cultural evidence (≤50 words) that
distinguishes the correct answer from distractors,
without explicitly revealing the answer.

4.3 Experimental Settings
We fine-tuned NileChat-3B using the PEFT ap-
proach, updating only three projection layers
(q_proj, v_proj, and gate_proj). Training was
conducted on two NVIDIA T4 GPUs (15 GB each)
for three epochs with a per-device batch size of 2,
gradient accumulation steps of 8, a learning rate of
2× 10−4, and FP16 mixed precision. Optimization
used AdamW.

Our implementation relied on the Transformers
(v≥4.41.0), TRL (0.8.2), and PEFT libraries from
Hugging Face, with dataset handling via Datasets
and retrieval through Gemini’s API. All preprocess-
ing and training scripts will be released publicly
for reproducibility.

4.4 Results
We compare our approach on the development split
against the model base NileChat-3B to measure
the improvement from our method. , and against
general-purpose state-of-the-art Arabic models
(Qwen2.5-1.5B and Qwen1.5-1.8B). Using the of-
ficial metrics of precision, recall, F1-score, and
accuracy at Table 1. Our system achieves the best
performance across all metrics, with notable im-
provements over both baselines.The proposed sys-
tem outperforms Qwen2.5-1.5B by approximately
10% in precision, recall, F1-score, and accuracy,
demonstrating its effectiveness.

Model Pre. Recall F1-S Acc.
Qwen2.5-1.5B 64.73 63.89 63.59 63.60
Qwen1.5-1.8B 63.24 60.88 59.15 59.80
NileChat-3B 71.74 70.00 69.92 70.00
Our system 73.81 73.88 73.54 73.60

Table 1: Performance on the development set of PalmX
2025 subtask1, Values are percentages.

5 Conclusion

This paper introduced a parameter-efficient,
retrieval-augmented approach for Arabic cultural
multiple-choice question answering. Our method
combines Gemini-based contextual evidence re-
trieval with selective fine-tuning of NileChat-3B’s
projection layers. The approach achieves a 3.0%
improvement over the base model on the develop-
ment set and ranks 6th on the official Palmx 2025

leaderboard, showing that targeted architectural
adjustments can enhance cultural reasoning while
remaining computationally feasible.

However, two limitations remain. First, the cul-
tural knowledge base depends on the coverage
and quality of retrieved evidence, which may miss
region-specific details. Second, the selective fine-
tuning strategy, while efficient, may restrict im-
provements in tasks requiring broad cross-cultural
reasoning or temporal understanding.

Future work will extend the retrieval corpus
to cover richer regional variations, integrate tem-
poral reasoning modules for handling historical
timelines, and explore hybrid adaptation strategies
that combine parameter-efficient fine-tuning with
lightweight full-layer updates. These directions
aim to further strengthen cultural comprehension
in Arabic NLP systems.
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Abstract

We present ADAPT–MTU HAI’s submission
to PalmX 2025, targeting Arabic cultural ques-
tion answering through large language model
(LLM) adaptation. We apply full fine-tuning
on NileChat-3B for general cultural compre-
hension, and parameter-efficient LoRA-based
tuning on ALLaM-7B for Islamic knowledge
reasoning. Our models achieved first place in
the General Culture subtask and third place in
the Islamic Culture subtask. This paper outlines
our methodology and results, demonstrating
the effectiveness of aligning LLM fine-tuning
strategies with cultural knowledge domains.

1 Introduction

Language is not merely a tool for communica-
tion—it embodies the cultural, historical, and re-
ligious identities of its speakers. In Arabic, this
interplay is particularly intricate: expressions are
shaped by centuries of regional diversity, theologi-
cal tradition, and social customs (Habash, 2010; Zi-
touni, 2011; Farghaly and Shaalan, 2009; Darwish
et al., 2021). As large language models (LLMs)
become increasingly central to NLP applications
(Antoun et al., 2020; Touvron et al., 2023; Huang
et al., 2024b), a pressing question arises—can these
models truly reason over culturally embedded con-
tent, especially in linguistically rich and context-
dependent settings such as Arabic?

The PaLMX 2025 shared task (Alwajih et al.,
2025) 1 directly addresses this challenge through
two subtasks. Subtask 1 focuses on Arabic cul-
tural comprehension, evaluating LLMs on multiple-
choice questions (MCQs) covering general cultural
knowledge like geography, customs, historical fig-
ures, dialectal expressions, and more.

Subtask 2 targets Islamic knowledge reasoning,
assessing understanding of Quranic principles, Ha-
dith, and theology. Both subtasks require models

1https://palmx.dlnlp.ai/

to go beyond surface-level fluency and demonstrate
genuine cultural and contextual alignment.

Our team submitted systems to both subtasks,
building tailored solutions to address their unique
requirements. For Subtask 1, we fine-tuned
NileChat-3B (Mekki et al., 2025), a culturally
grounded decoder-only model adapted for North
African Arabic under the Language–Heritage–Val-
ues (LHV) framework. For Subtask 2, we employed
ALLaM-7B-Instruct (Bari et al., 2024), an Arabic
instruction-tuned model, and applied parameter-
efficient fine-tuning using LoRA (Brown et al.,
2020) with 8-bit quantization (Dettmers et al.,
2023) to reduce memory usage without sacrificing
accuracy.

On the official leaderboard, our systems ranked
first in Subtask 1 with prompt-aligned full fine-
tuning for cultural QA, and third in Subtask 2,
where efficient adaptation highlighted the strength
of lightweight tuning in resource-constrained set-
tings.

This paper presents our unified approach to both
subtasks. Section 2 summarizes related work, Sec-
tion 3 details our methodology and training setups,
Section 4 discusses results and analysis, and Sec-
tion 5 concludes with reflections on cultural model-
ing in Arabic LLMs.

2 Related work

Research on embedding Islamic cultural knowledge
into NLP systems is still emerging, though select ini-
tiatives have begun to address this need (Saadaoui
et al., 2024). The Qur’an QA Shared Task (Malhas
et al., 2022, 2023)23 introduced the Qur’anic Read-
ing Comprehension Dataset (QRCD), composed of
approximately 1,093 question‑passage pairs derived
from the Holy Qur’an in Modern Standard Arabic.
Participating systems, including AraBERT‑based

2https://sites.google.com/view/quran-qa-2022
3https://sites.google.com/view/quran-qa-2023
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models, achieved modest Exact Match (EM) scores
below 35%, highlighting the challenge of reasoning
over sacred religious text (Mostafa and Mohamed,
2022).

Following this, Hajj-FQA (Aleid and Azmi,
2025) was released in 2025 as the first Arabic
dataset targeting pilgrimage-related fatwa questions,
offering realistic legal and religious Q&A reflective
of common Hajj scenarios (Alyemny et al., 2023).
The Hadith-QA corpus expands Islamic QA fur-
ther by focusing on Prophetic narrations, while
IslamicPCQA provides a rich Persian multi-hop
benchmark (12,282 QA pairs) over Islamic ency-
clopedic content, illustrating cross-lingual interest
in knowledge reasoning even beyond Arabic con-
texts (Ghafouri et al., 2023). Recent work has also
introduced large-scale QA resources for deep reli-
gious understanding, (Qamar et al., 2024) presented
a 73,000-question dataset spanning Quranic Tafsir
and Ahadith, enriched with contextual explanations
and interpretations to support nuanced QA system
development.

Additionally, the CAMeL cultural bias bench-
mark evaluates Arabic LLMs’ performance on cul-
turally sensitive prompts, confirming consistent is-
sues with Western-centric bias and cultural mis-
alignment in language models (Naous et al., 2024).
In recent years, several Arabic and Arabic‑English
LLMs have been introduced — including FANAR
(Team et al., 2025), JAIS (Sengupta et al., 2023),
AceGPT (Huang et al., 2024a), and ALLaM (Bari
et al., 2024).In parallel, Arabic cultural and di-
alectal (Hossain et al., 2025; de Francony et al.,
2019) evaluation benchmarks such as CamelE-
val (Qian et al., 2024) and AraDiCE (Mousi et al.,
2024) have foregrounded the importance of cul-
tural alignment, dialect robustness, and domain
sensitivity in LLM evaluation—factors directly rel-
evant to legal-religious reasoning While these mod-
els demonstrate impressive general reasoning and
instruction-following ability, independent evalua-
tions reveal that they still inherit cultural biases and
struggle with nuanced religious and historical con-
tent. For example, (Mohammed et al., 2025) show
that even GPT-4 can produce factually incorrect
or inconsistent responses to Islamic content due to
misinterpreting context, lacking grounding in au-
thoritative sources, and being sensitive to minor
wording changes. Similarly, (Alnefaie et al., 2023)
report that GPT-4 struggles with Quranic questions,
largely because of challenges in classical Arabic,
semantic ambiguity, and contextual interpretation.

Despite the advances, structured MCQ‑style
benchmarks focused specifically on Islamic cul-
tural literacy in Arabic remain rare. PalmX2025
addresses this gap directly, framing cultural under-
standing explicitly as a multiple-choice reasoning
format — making it one of the first shared tasks to
assess not just fluency but deep cultural and theo-
logical accuracy.

3 Dataset Composition

3.1 Subtask 1: Arabic Cultural
Comprehension

This dataset contains culturally grounded MCQs
in Modern Standard Arabic on customs, history,
geography, arts, cuisine, and dialects, eachwith four
options (A–D) and one correct answer. It includes
2,000 training, 500 development, and 2,000 blind
test questions.

3.2 Subtask 2: Islamic Knowledge Reasoning
This dataset contains MCQs on Islamic practices,
theology, Quranic knowledge, jurisprudence, and
historical context, following the same format as
Subtask 1. For training, we combined 600 Subtask
2 MCQs with 2,000 from Subtask 1 to leverage
shared linguistic patterns and reasoning structures.
It includes 300 development and 1,000 blind test
questions.

4 Methodology

4.1 Subtask 1: Full Fine-Tuning of
NileChat-3B

For Subtask 1, which focuses on Arabic cultural
comprehension, we employ NileChat-3B (Mekki
et al., 2025)4, a 3-billion-parameter decoder-only
language model built upon Qwen-2.5. NileChat-3B
has been instruction-tuned on Egyptian and Moroc-
can Arabic under the Language–Heritage–Values
(LHV) framework, enabling it to capture cultur-
ally nuanced responses across Arabic dialects. The
model natively supports both Arabic script and Ara-
bizi, making it well-suited for culturally grounded
language tasks.

4.1.1 Input Formatting and Tokenization
To ensure strict compatibility with the shared task’s
evaluation pipeline, each training example is for-
matted using the official multiple-choice question
(MCQ) template provided by the organizers. The

4https://huggingface.co/UBC-NLP/NileChat-3B
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input consists of a question followed by four answer
options prefixed with “A.” through “D.”, and con-
cludes with the Arabic keyword used to prompt the
model’s autoregressive completion:

{question text}

A. {option A}
B. {option B}
C. {option C}
D. {option D}

:باوجلا

This formatting aligns precisely with the eval-
uation script, which expects the model to autore-
gressively generate a single-letter label (e.g., “A”)
immediately following :باوجلا .

Tokenization is performed using the model’s as-
sociated AutoTokenizer, with inputs truncated or
padded to a maximum length of 512 tokens. As the
tokenizer does not define a dedicated padding to-
ken, we explicitly assign the end-of-sequence token
(eos_token) as the pad_token to ensure consis-
tency in attention masking and loss computation
across batches.

4.1.2 Training Configuration
Fine-tuning is conducted on a single NVIDIAA100
(40GB) GPU using Hugging Face’s Trainer with
BF16 precision for 3 epochs, batch size 1, and gra-
dient accumulation of 16 (effective batch size 16).
Inputs are truncated or padded to 512 tokens, with
full-sequence supervision achieved by copying in-
put_ids into labels and masking padding tokens
with -100. This implements standard causal lan-
guage modeling (CLM), training the model to pre-
dict each token from preceding context, including
question and answer. We use AdamW (LR 2e–5,
no weight decay, without warm-up steps), evaluat-
ing and checkpointing at each epoch, and selecting
the best model by validation loss. Preprocessing
via datasets.map() removes irrelevant columns to
reduce memory use and prevent data leakage.

4.2 Subtask 2: LoRA-Based Fine-Tuning of
ALLaM-7B

For Subtask 2, which centers on Islamic cul-
tural and legal knowledge reasoning, we adopt
ALLaM-7B-Instruct-preview(Bari et al., 2024)5,
a 7-billion-parameter Arabic instruction-tuned lan-
guage model developed to handle Modern Stan-

5https://huggingface.co/ALLaM-AI/
ALLaM-7B-Instruct-preview

dard Arabic (MSA), Arabic dialects, and cultur-
ally grounded textual inputs. Due to its scale and
resource requirements, we fine-tune ALLaM-7B
using Low-Rank Adaptation (LoRA)(Hu et al.,
2021), a parameter-efficient approach that signifi-
cantly reduces memory consumption and training
time while preserving task-specific adaptation ca-
pabilities.

4.2.1 Input Formatting and Tokenization
To encourage more structured reasoning during
training while maintaining compatibility with the
evaluation protocol, we introduced an augmented
version of this prompt for fine-tuning:
{question text}

A. {option A}
B. {option B}
C. {option C}
D. {option D}

:ةوطخبةوطخركفنانعد

:(DوأCوأBوأA)ةحيحصلاةباجإللطقففرحلاببجأ

:باوجلا

While the evaluation prompt does not contain
these (e.g., :ةوطخبةوطخركفنانعد ) reasoning cues,
prior work in prompt engineering has shown that
such instructions during fine-tuning can enhance
a model’s internal reasoning processes without
impairing its ability to follow simpler formats at
inference(Wei et al., 2022; Kojima et al., 2023).
We applied full-sequence causal language model-
ing (CLM) supervision by duplicating input_ids
into labels and used a custom collator for dynamic
padding.

4.2.2 LoRA Configuration
To efficiently fine-tune ALLaM-7B, we employ
Low-Rank Adaptation (LoRA) using Hugging
Face’s peft library. Only low-rank matrices in-
jected into the attention projection layers are up-
dated, while the base model remains frozen. Specif-
ically, we target the q_proj and v_proj modules
with a LoRA rank of 16, scaling factor (alpha) of 32,
and dropout of 0.05.The task is set to CLM, updat-
ing under 1% of parameters for efficient adaptation
on limited hardware.

4.2.3 Quantization and Memory Optimization
To further reduce GPU memory usage, ALLaM-
7B is loaded in 8-bit precision via bitsandbytes
and trained in FP16 mixed precision for efficiency.
GPU cache clearing and checkpoint pruning control
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memory usage, with all experiments run on a single
NVIDIA RTX 4090 (24GB VRAM).

4.2.4 Training Configuration
Fine-tuning is performed using Hugging Face’s
Trainer with gradient checkpointing for memory
efficiency. Training runs for 5 epochs with a per-
device batch size of 8 and gradient accumulation
over 4 steps (effective batch size 32), using a maxi-
mum sequence length of 256 tokens. Optimization
employs AdamW (default β), a learning rate of 3e–
5 with cosine decay, 100 warmup steps, and weight
decay 0.01. A custom data collator applies dynamic
padding and masks padded tokens with -100 to en-
sure loss is computed only on valid token positions.

4.2.5 Adapter Merging and Deployment
Following fine-tuning, LoRA adapters are merged
into the base model resulting in a self-contained
checkpoint. The merged model is uploaded to Hug-
ging Face for submission.

4.3 Evaluation Protocol
All final test results were computed by the organiz-
ers using the official evaluation script 6 on a held-out
blind test set. We submitted our fine-tuned mod-
els via Hugging Face, and accuracy was reported
based on the organizers’ execution of the shared
evaluation pipeline.

5 Results

We report results for both subtasks on development
and blind test sets (Table 1). Development scores
were computed locally with the official evaluation
script, while blind test scores were obtained through
centralized evaluation by the organizers on a held-
out set.

Table 1: Model Accuracy (%) on Development and Test
Sets for Both Subtasks

Task Dev Set (%) Test Set(Blind)
(%)

Subtask 1 78.60 72.15
Subtask 2 75.60 82.52

In Subtask 1, which targets general Arabic cul-
tural awareness, our model achieved 78.60% accu-
racy on the development set, with a slight drop to
72.15% on the blind test set, likely due to domain
shift or question-style variation. For instance, in

6https://palmx.dlnlp.ai/

the development set, it misclassified a question on
the main environmental factor affecting the distribu-
tion of the Kuhl’s free-tailed bat in southwest Saudi
Arabia (correct: ماظتنابءاملابرشىلإةجاحلا ) despite pre-
dicting heat adaptation, while correctly answering
a question on the precise academic trajectory of
Dr. Nidal Shamoun in Syria.

Conversely, the Subtask 2 model, which targets
domain-specific reasoning in Islamic knowledge,
demonstrated strong generalization capacity. De-
spite a slightly lower dev set performance (75.60%),
it achieved a significant improvement on the test set,
reaching 82.52%. For example, in one development
set question on why a man’s testimony equals that
of two women, the correct answer was “(B + C)

ناتحيحص ” (“both B and C are correct”); our system
selected option B (“ لجرلانمربكأةأرملاىدلنايسنلا ” –
“forgetfulness is greater in women than in men”),
which is partially correct but incomplete. In con-
trast, it correctly answered a question on what is
opened for a believer who engages in tasbīḥ ( حيبست –
“glorification of God”), selecting “ ةنجلاباوبأ ” (“the
gates of Paradise”).

These results underscore the methodological
rigor of our approach in capturing culturally
grounded linguistic patterns under minimal super-
vision. The coherence between development and
test set performance attests to the generalizability
and stability of our fine-tuning strategy across eval-
uation regimes.

6 Conclusion and Future Work

We introduced culturally aligned LLM adaptation
strategies that achieved top rankings at PalmX 2025.
The combination of full fine-tuning and lightweight
LoRA techniques enabled scalable and effective
performance across subtasks. In future work, we
aim to incorporate retrieval-augmented generation
and test robustness on dialectal and low-resource
Arabic varieties. Despite these promising results,
our approach has limitations. Full fine-tuning is
computationally expensive and may not generalise
well across domains. Additionally, both datasets are
limited in scope, which may affect transferability to
unseen topics. Lastly, performance remains sensi-
tive to prompt formatting and initialisation choices,
which can impact reproducibility.
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A Additional Results

In this appendix, we provide detailed dev set
results for both subtasks, comparing baseline
(zero-shot) and fine-tuned variants of Fanar-9B-
Instruct, NileChat-3B, and ALLaM-7B models.
These results illustrate the consistent improvements
achieved through fine-tuning, with larger models
generally benefiting more from adaptation.

Table 2: Dev set accuracy of baseline and fine-tuned
models for subtask 1.

Model Fine-tune Dev Acc.(%)
Fanar-1-9B-
Instruct (zero-shot) 69.80
Fanar-1-9B-
Instruct (fine-tuned) 75.40
NileChat-3B (zero-shot) 70.00
NileChat-3B (fine-tuned) 78.60

For Subtask 1 (cultural QA), Fanar-1-9B-Instruct
improves from 69.80% in zero-shot to 75.40% after
fine-tuning, while NileChat-3B achieves the highest
dev accuracy of 78.60% after fine-tuning.

Table 3: Dev set accuracy of baseline and fine-tuned
models for subtask 2.

Model Fine-tuning Dev Acc.(%)
NileChat-3B (fine-tuned) 71.67
ALLaM-7B (zero-shot) 68
ALLaM-7B ( PEFT ) 75.60

For Subtask 2 (Islamic knowledge reasoning),
NileChat-3B with fine-tuning reaches 71.67%,
while ALLaM-7B shows stronger performance, im-
proving from 68.00% zero-shot to 75.60% after
PEFT-based adaptation.
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Abstract

In this paper, we report our participation to the
PalmX cultural evaluation shared task. Our
system, CultranAI, focused on data augmen-
tation and LoRA fine-tuning of large language
models (LLMs) for Arabic cultural knowledge
representation. We benchmarked several LLMs
to identify the best-performing model for the
task. In addition to utilizing the PalmX dataset,
we augmented it by incorporating the Palm
dataset and curated a new dataset of over 22K
culturally grounded multiple-choice questions
(MCQs). Our experiments showed that the
Fanar-1-9B-Instruct model achieved the highest
performance. We fine-tuned this model on the
combined augmented dataset of 22K+ MCQs.
On the blind test set, our submitted system
ranked 5th with an accuracy of 70.50%, while
on the PalmX development set, it achieved an
accuracy of 84.1%. We made experimental
scripts publicly available for the community.1

1 Introduction

Cultural information plays a pivotal role in shaping
human identity, behavior, and social interactions.
It encompasses the shared beliefs, values, customs,
languages, traditions, and collective knowledge of a
community or society. In today’s interconnected in-
formation, communication, and interaction ecosys-
tem, hundreds of millions of users engage with
LLMs for everyday queries - many of which in-
volve aspects of local culture, traditions, cuisine,
and more (Pawar et al., 2025; Hasan et al., 2025).
A central challenge lies in evaluating how effec-
tively LLMs comprehend and generate responses
to such culturally embedded queries, particularly
in multilingual settings characterized by significant
dialectal variation. Other challenges include how
to develop culturally aligned LLMs (Wang et al.,

* The contribution was made while the author was intern-
ing at the Qatar Computing Research Institute.

1https://github.com/hunzed/CultranAI

2023) and make them available in low-compute
environments (Hu et al., 2022). Recent initiatives
have introduced evaluation resources - such as cul-
turally relevant datasets, task-specific benchmarks,
and performance metrics - to assess LLM capabil-
ities in this domain (Myung et al., 2024; Li et al.,
2024b; Mousi et al., 2025).

Yet these efforts remain limited, especially in
achieving deeper, dialect-specific advancements.
Addressing this gap requires sustained, targeted,
rigorous initiatives. The PalmX Shared Task at
ArabicNLP 2025 (Alwajih et al., 2025b) is a step
in this direction, offering a dedicated benchmark
for culturally specific evaluation with a special em-
phasis on Arabic - thereby advancing the devel-
opment of LLMs that are both linguistically and
culturally aligned. Other recent relevant efforts for
Arabic include the development of Arabic-centric
LLMs (Team et al., 2025; Sengupta et al., 2023;
Bari et al., 2025), leaderboards (Al-Matham et al.,
2025), and culturally specific datasets (Alwajih
et al., 2025a; Ayash et al., 2025).

To advance the state of the art in Arabic cul-
tural knowledge representation within LLMs, in
this paper, we report our participation in the shared
task. We specifically focus on the cultural evalu-
ation subtask. To address the challenges of train-
ing and deploying LLMs in low-compute resource
settings, we conducted a comparative analysis of
quantized vs. full-precision models. In parallel, we
employed LLM-driven data augmentation strate-
gies to improve the model accuracy. To summarise,
the contributions of our study are as follows.
• We provide a performance comparison of differ-

ent LLMs (Arabic-centric and multilingual) in a
zero-shot setup.

• We demonstrate that the performance gap be-
tween quantized models and their full-precision
counterparts is minimal.

• We show that data augmentation contributes to
improving model performance.
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2 Related Work

General Capabilities of LLMs. LLMs have
demonstrated remarkable capabilities across a wide
range of natural language processing (NLP) tasks,
including text classification, question answering,
summarization, and dialogue generation (Bubeck
et al., 2023; Abdelali et al., 2024). Their ability to
leverage vast amounts of pretraining data and adapt
to downstream tasks with minimal supervision has
enabled strong performance in both zero-shot and
few-shot settings (Abdelali et al., 2024). These
advances have accelerated the integration of LLMs
into diverse real-world applications spanning edu-
cation, healthcare, finance, and customer support.

Cultural and Everyday Knowledge. Despite
successes in several downstream NLP tasks, LLMs
often underperform on tasks requiring culturally
grounded knowledge, particularly in low-resource
languages and dialects (Pawar et al., 2025; Hasan
et al., 2025; Alam et al., 2025). A culturally aligned
model should accurately interpret and generate
content that reflects local linguistic forms, social
norms, and lived experiences across domains such
as healthcare, education, and cuisine (Li et al.,
2024b,a; Shi et al., 2024). However, current mod-
els frequently fail to capture region-specific expres-
sions and indigenous knowledge, limiting their ef-
fectiveness in culturally nuanced contexts (Myung
et al., 2024; Chiu et al., 2025). To address these
limitations, recent research has focused on de-
veloping benchmarks and datasets that evaluate
and enhance LLMs’ performance for both cul-
tural and everyday information-seeking queries.
These resources span mono- and multilingual set-
tings and are sourced from diverse origins, includ-
ing Wikipedia (Yang et al., 2018; Kwiatkowski
et al., 2019), Google Search QA (Khashabi et al.,
2021), Reddit forums (Fan et al., 2019), and na-
tive speaker-authored question–answer pairs (Clark
et al., 2020). Other approaches combine native
and machine-translated content or employ LLMs
to generate culturally relevant QA datasets (Putri
et al., 2024; Li et al., 2024b).

Although English and multilingual resources
have advanced the state of the art in culturally
aligned LLMs, the richness and diversity of the
Arabic language and its dialects require dedicated
efforts in both resource creation and culturally
aligned model development. Recent initiatives
have begun addressing this gap through the de-
velopment of datasets for benchmarking and fine-

tuning Arabic-centric models (Mousi et al., 2025;
Alwajih et al., 2025a). The PalmX Shared Task
at ArabicNLP 2025 is a targeted initiative to ad-
vance culturally aligned LLM development through
a benchmark for culturally grounded evaluation in
Arabic.

3 Task and Dataset

3.1 Task Overview

The PalmX 2025 shared task offered two subtaks,
one of which is General Culture Evaluation (Sub-
task 1). The goal of the task is to benchmark Arabic
language models on their ability to answer cultur-
ally grounded multiple-choice questions in Modern
Standard Arabic (MSA). The questions span vari-
ous domains such as history, customs, geography,
literature, and food, and are designed to reflect gen-
eral cultural literacy in Arab countries.

Participants are provided with a training and de-
velopment set of MCQs, each with four answer
options. The final evaluation is performed on a
held-out test set of 2,000 questions, with accuracy
as the primary metric. The task encouraged the use
of external data for model enhancement, provided
that models remain under 13 billion parameters and
final checkpoints are submitted for evaluation.

3.2 Dataset

The PalmX 2025 Cultural Evaluation dataset con-
sists of 2,000 training examples and 500 develop-
ment examples, each formulated as a MCQ with
four answer options and a single correct answer.
We used the training split for fine-tuning and re-
served the development set for evaluation, except
for our final iterations, where we use both training
and evaluation splits for fine-tuning.

3.3 Data Augmentation

Palm. To complement PalmX dataset, we incor-
porated the Palm dataset (Alwajih et al., 2025a),
a broader community-curated resource created by
contributors from the 22 Arab countries. Unlike
PalmX, which is entirely in MSA, Palm spans both
MSA and various dialects, offering instruction-
style QA pairs on 20 culturally relevant topics such
as heritage, cuisine, history, and proverbs. All ex-
amples are manually written by native speakers
with cultural familiarity, ensuring authenticity and
regional diversity. Although Palm includes training
and test splits, only the test portion, comprising
1,926 QA pairs, is publicly available.
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We split the available Palm test set into two
halves: one for fine-tuning, and the other for eval-
uation. The splits were created using stratified
sampling based on country, ensuring balanced rep-
resentation across regions in both halves. To bring
its free-form QA format in line with PalmX, we
converted each example into MCQ format using
GPT-4.1. Specifically, we generated three plausible
distractors per question, preserving semantic coher-
ence and cultural plausibility. In Appendix 3, we
provided the prompt that we used for MCQ version
of the palm dataset.

Extending PalmX Dataset. To further diversify
and expand our training data, we leveraged the
NativQA framework (Alam et al., 2025) in combi-
nation with GPT-4.1. The NativQA framework can
seamlessly curate large-scale QA pairs based on
user queries, ensuring cultural and regional align-
ment in native languages. GPT-4.1 was selected for
its optimal trade-off between cost and performance
at the time of experimentation. In all cases, we
employed zero-shot prompting with GPT-4.1.

As illustrated in Figure 1, our process for ex-
tending the PalmX dataset began by identifying
the country associated with each question using
GPT-4.1. The prompt used for this task is provided
in Listing 3. This country information was then
combined with the NativQA framework to curate
location-specific QA pairs.

The NativQA framework’s retrieval process was
carried out in two iterations to maximize topical
diversity. To maintain factual quality, all answers
were filtered using NativQA’s Domain Reliability
Check (DRC), which retains only those sourced
from NativQA-verified web domains. Furthermore,
GPT-4.1 was employed to filter and refine the an-
swers described in Listing 1. The idea is to remove
culturally irrelevant or factually incorrect QA pairs
and refine answers for conciseness and the overall
quality of the dataset. Similar to the Palm test set,
these new entries were converted into MCQ format
to match PalmX, using the same prompt applied
to the original Palm data. This process augmented
the original dataset with culturally rich examples
while preserving structural and contextual consis-
tency with the PalmX questions. We also manually
reviewed 50 samples, which received an average
score of about 7.4 on a scale of 10 for accuracy and
clarity. We refer to this dataset as the PalmX-ext
set. In Table 1, we report the distribution of the
dataset that we used for training and evaluation.

Figure 1: Pipeline for extending the PalmX dataset using
the NativQA framework and GPT-4.1.

Data Train Dev Test

PalmX 2,000 500 2,000
Palm 950 950 -
PalmX-ext 22,000 - -

Table 1: Distribution of the datasets used for training,
development and test.

4 Experiments

Models. We began by evaluating a set of open-
sourced LLMs in a zero-shot setup on both evalu-
ation datasets. This initial comparison helped us
identify the most promising model for fine-tuning,
and further demonstrated the utility of the Palm test
set as an effective evaluation benchmark.

To identify the most suitable model for
the task, we evaluated a set of models based
on their performance on the PalmX devel-
opment set. The models for experiments
include tiny-random-LlamaForCausalLM,2

Qwen2.5-7B-Instruct (Wang et al., 2024),
Jais-13B-Chat (Sengupta et al., 2023), Miraj
Mini,3 Llama-3.1-8B-Instruct (Touvron
et al., 2023), NileChat-3B (Mekki et al., 2025),
ALLaM-7B-Instruct (Bari et al., 2025), and
Fanar-7B-Instruct (Team et al., 2025). We se-
lected both Arabic-centric and multilingual models
to compare the effectiveness of models tailored to
Arabic with those trained on broader multilingual
corpora. The tiny-random-LlamaForCausalLM
model was included for baseline results.
Training Setup. We experimented with two fine-
tuning approaches: LoRA and QLoRA. LoRA
trained only a set of low-rank adapter layers while
keeping the rest of the model frozen, whereas

2https://huggingface.co/HuggingFaceH4/
tiny-random-LlamaForCausalLM

3https://huggingface.co/arcee-ai/Meraj-Mini
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QLoRA combined 4-bit quantization with LoRA
adapters to reduce memory usage without a sub-
stantial drop in performance.

Both methods were trained on the same mix of
datasets: PalmX Train, Palm, and PalmX-ext. We
used Fanar’s native tokenizer with its default tok-
enization strategy, a batch size of 4, and gradient
accumulation steps of 4. Training was conducted
for 3 epochs with a learning rate of 2× 10−4, sav-
ing the best-performing checkpoint at the end of
each run. Fine-tuning followed a specific prompt
- each question was prefixed by a system prompt,
followed by the question and answer choices, as
shown in Figure 2.
Data Augmentation. We then studied the effect
of our data augmentation strategy by comparing
LoRA training on PalmX Train alone vs. LoRA
training on PalmX Train combined with our aug-
mented Palm and PalmX-ext datasets. This ex-
periment used the same configuration as the earlier
LoRA vs. QLoRA comparison. After identifying
the best-performing approach, we performed hy-
perparameter tuning to optimise its performance.
In Appendix B and C, we report complete experi-
mental setup and results, respectively.
After identifying the best-performing model, the
most effective fine-tuning strategy, and the optimal
hyperparameters, the final submission was trained
for 3 epochs with a learning rate of 2×10−4, LoRA
rank 64, dropout 0.1, and scaling factor α = 16,
using PalmX Train and Dev, Palm, and PalmX-ext.

5 Results

Zero-shot Performance. Table 2 reports the
zero-shot performance of several multilingual and
Arabic-centric instruction models. Fanar-7B
achieved the highest accuracy on PalmX Dev, mak-
ing it our choice for fine-tuning.

Model PalmX Dev Palm

tiny-random-Llama 23.40 26.51
Qwen2.5-7B-Inst. 69.20 74.32
Jais-13B-chat 61.00 55.72
Miraj Mini 70.20 75.99
Llama3.1-8B-Inst. 66.60 74.06
Nilechat-3B 70.00 66.89
ALLaM-7B-Inst. 70.60 74.32
Fanar-7B 72.40 73.34

Table 2: Zero-shot performance of base models.

Comparison on PEFT methods. Table 3 com-
pares LoRA with its quantized variant (QLoRA)
under identical settings. LoRA achieved a slight
improvement over QLoRA on PalmX Dev, suggest-

ing that full-precision adapters were marginally
more effective.

Method PalmX Dev (%)

QLoRA (4-bit) 80.00
LoRA 80.60

Table 3: Results using PEFT methods.

Effect of Data Augmentation. Table 4 evaluates
the impact of adding augmented Palm and PalmX-
ext data to PalmX Train. The augmented dataset
led to substantial gains on PalmX Dev, indicating
improved generalization. A more detailed error
analysis is provided in Appendix D.

Training Data PalmX Dev (%)

PalmX 76.6
PalmX + PalmX-ext + Palm 80.6

Table 4: Results with and without augmented data.

The final submitted model achieved an accuracy
of 84.1% on the Palm test set. As the PalmX de-
velopment set was included in the training data,
it was excluded from evaluation on the submitted
model. On the blind test set, the model obtained an
accuracy of 70.5%. A more detailed analysis of the
discrepancy between Dev and Test performance is
provided in Appendix E.

6 Conclusions and Future Work

In this paper, we present our system, CultranAI,
designed to enhance cultural knowledge represen-
tation in LLMs for Arabic. We conduct an exten-
sive comparative evaluation in a zero-shot setting
using various multilingual and Arabic-centric mod-
els, which led us to identify Fanar as the most
suitable model for further experimentation. To as-
sess performance in low-compute scenarios, we
explored different PEFT methods. We also inves-
tigated data augmentation techniques aimed at im-
proving model accuracy. Our proposed system
achieved an accuracy of 84.1% on the Palm set,
and ranked 5th on the blind test set with an accu-
racy of 70.5%. Future work will focus on refining
data augmentation pipelines and further exploring
model generalizability.

7 Limitations

While augmentation brought clear improvements,
we believe the performance could have been higher
with more careful dataset preparation. In the Palm
dataset, instructional QAs were directly converted
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to MCQ, but some QAs exceeded the 512-token
PalmX limit. PalmX-ext avoided this by refor-
matting MCQs in the first post-processing step.
Another problem was distractor quality: in both
PalmX-ext and Palm, distractors were often shorter
than the correct answer. These issues can be ad-
dressed by refining the prompts for distractor gen-
eration and adding a processing step to truncate
long Palm QAs.
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A Prompts

<bos> You’re a helpful Arabic assistant
that answers multiple-choice questions
accurately. Choose the best answer based
only on the given question and options.
<start_of_turn>user

È@ 
ñ�Ë@
A.

Èð


B@ PAJ
	mÌ'@

B.
ú

	GA�JË @ PAJ
	mÌ'@

C. �IËA�JË @ PAJ
	mÌ'@
D.

©K. @QË @ PAJ
	mÌ'@
<end_of_turn>
<start_of_turn>model
Answer <end_of_turn>

Figure 2: Example of a formatted prompt used for Ara-
bic MCQ fine-tuning.

system_prompt = """
You are an advanced NLP annotation assistant
specializing in evaluating Arabic questions and
answers. Your role is to classify questions,
assess answers, and refine them for conciseness
and accuracy.

Follow the structured guidelines for
classification:
- **Step 1: Evaluate and refine the answer**,
ensuring it is concise and factually correct.
- **Step 2: Determine if the question-answer
pair is relevant to the Arabic culture.

### **Annotation Task**
You are an expert Arabic NLP QA annotator. Your
task is to evaluate and refine a
question-answer pair based on the following
steps:

### **Step 1: Evaluate and Edit the Answer**
- **Answer Evaluation:**

- **Correct:** Fully and accurately answers
the question.

- **Incorrect:** Does not answer the question
or contains false information.

- **Partially Correct:** Provides some
relevant information but is incomplete.
- **Answer Refinement:**

- If correct or partially correct but **too
long, vague, or redundant**, rewrite it to be
**concise and precise**.

### **Step 2: Determine Arabic cultural
relevance**
- **Yes:** The question explicitly refers to
the Arabic culture.
- **No:** The question is about a different
culture than Arabic.

- **Unsure:** It is difficult to determine
whether the question refers to any specific
culture.
"""

user_prompt = f"""
### **Input Data:**

Question: {data['question']}
Answer: {data['answer']}

### **Your Response in JSON format:**
{
"answer_evaluation": "Correct" or "Incorrect"
or "Partially Correct",
"corrected_answer": "Provide a concise, precise
answer if needed, otherwise leave empty.",
"culture_relevance": "Yes" or "No" or "Unsure"
}
"""

Listing 1: Prompt for evaluating, refining, and filtering
Arabic QA pairs.

system_prompt = """
You are an expert in educational content
creation specializing in Arabic language and
culture. Your task is to convert culturally
relevant question-answer pairs into
multiple-choice questions (MCQs) by generating
three plausible, culturally relevant, and
contextually appropriate incorrect answer
options (distractors) in Arabic for each
question.

Requirements:
- All options must be in Arabic.
- Distractors must be plausible and relevant to
the question.
- Avoid answers that are obviously incorrect,
unrelated, or closely paraphrase the correct
answer.
- Output only the 3 incorrect answers in the
following JSON format:

JSON Output format:
{{
"A.": "",
"B": "",
"C": ""
}}
"""

user_prompt = f"""
Given the following question and its correct
answer, generate 3 plausible but incorrect
answer options in Arabic.

Question: "{data['question']}"
Correct Answer: "{data['answer']}"
"""

Listing 2: Prompt for generating 3 plausible distractors.
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system_prompt = "You are an AI assistant for
country identification."

user_prompt = """
You are an expert in Arab culture and geography.
Given a question in Arabic, your task is to
identify the most relevant Arab
country that the question is likely referring
to, either explicitly or implicitly.

Always return the name of a single Arab country
in English
(e.g., Qatar, Egypt, Saudi Arabia, UAE,
Morocco, etc.).

Even if the country is not directly named, use
cultural, linguistic,
environmental, or historical clues to infer the
closest matching Arab country.

Return your response in JSON format with a
single field "country"
containing only the country name.

QUESTION: "{question}"
"""

Listing 3: Prompt for identifying country.

Epochs LR r Dropout Alpha PalmX Dev (%)

4 5e-5 64 0.15 16 79.6
5 1.2e-4 64 0.05 16 79.8
3 5e-5 64 0.05 16 79.8
4 5e-5 64 0.10 16 80.2
5 1e-4 32 0.05 32 80.4
3 2e-4 64 0.05 16 80.5

Table 5: PalmX Dev results from hyperparameter tun-
ing.

B Hyperparameters

Hyperparameter tuning varied the number of
epochs (3–5), the learning rates (5 × 10−5 to
2× 10−4), the dropout rates (0.05, 0.1, 0.15), and
the LoRA-specific parameters such as the rank
(r = 32 or 64) and the scaling factor (α = 16
or 32). Starting from a baseline, we tested higher
epochs, lower learning rates, and increased dropout
for regularization effects, as well as a reduced-rank,
higher-α variant (r = 32, α = 32). Each configu-
ration was trained and evaluated on the PalmX Dev
set to ensure consistency in reporting.

C Results on the Hyperparameter Tuning

Fine-tuning experiments with Fanar-7B are sum-
marized in Table 5. The top setup used 3 epochs, a

2×10−4 learning rate, LoRA rank 64, dropout 0.05,
and α = 16, yielding an average accuracy of 80.5
on PalmX Dev. We also observed a slight improve-
ment when increasing the dropout to 0.1 in an ear-
lier run with a similar configuration, and therefore
incorporated this change into the top-performing
setup to form our final configuration.

D Error Analysis: Effect of
Augmentation

To better understand the impact of augmentation,
we analyzed the subset of questions from the
PalmX 2025 development set that the base model
(Fanar-9B-Instruct) failed to answer correctly. Out
of 500 questions, Fanar produced 138 errors.

Finetuning on PalmX alone corrected 38 of these
errors. When augmented data was included, the
model solved an additional 53 questions, while
losing accuracy on only 3 of the 38 cases previously
resolved. In total, the augmented model recovered
88 of the 138 initially incorrect items.

Representative examples of these improvements
are shown in Figures 3 and 4. These illustrate
how augmentation introduced broader topical cov-
erage, especially on less-documented cultural and
regional details. Without augmentation, the model
remained limited to narrower knowledge encoded
in PalmX.

Figure 3: Questions solved by both PalmX-only and
Augmentation.

E Error Analysis: Dev vs. Test
Performance

We also examined the discrepancy between the
Dev and Test set performance. While our model
showed strong results on Dev, its accuracy dropped
considerably on Test. To better understand this, we
compared representative samples of questions from
Train, Dev, and Test.
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Figure 4: Questions solved only with Augmentation.

The train and dev sets are closely aligned, fo-
cusing on contemporary cultural, institutional, and
social knowledge (see Figures 5 and 6). This align-
ment explains the stronger performance on dev: the
model is effectively evaluated on material resem-
bling what it was trained on.

By contrast, the test set introduces broader and
less-represented domains, including ancient history,
proverbs, zoology, and legal systems (Figure 7).
These require background knowledge beyond the
distribution covered in training, explaining the ob-
served performance drop.

It should also be noted that model development
and checkpoint selection relied on dev, while the
test set remained hidden, reinforcing the discrep-
ancy.

Figure 5: Examples from PalmX Cultural Train Set.

Figure 6: Examples from PalmX Cultural Dev Set.

Figure 7: Examples from PalmX Cultural Test Set.
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Abstract
This paper presents our submission to the
PalmX 2025 Shared Task on Arabic cultural
and religious knowledge comprehension. We
focus on training large language models capa-
ble of representing domain-specific cultural and
religious knowledge in Arabic. Our approach
leverages parameter-efficient fine-tuning of the
instruction-tuned Qwen2.5-7B model using
Low-Rank Adaptation (LoRA). To address
the challenges of limited training data, we
apply quantization-aware fine-tuning with 4-
bit precision, enabling efficient adaptation un-
der constrained resources. The model is fur-
ther aligned with the multiple-choice evalu-
ation format to enhance task-specific reason-
ing. Without relying on external data augmen-
tation, our system achieves competitive perfor-
mance across both the Arabic General Culture
and Islamic Culture subtasks, demonstrating
the effectiveness of targeted fine-tuning for en-
riching cultural and religious knowledge rep-
resentation in LLMs. On the blind test sets,
our systems ranked 7th and 4th in the cul-
tural and Islamic subtasks, respectively. To
ensure reproducibility, we make our full code-
base and experimental configurations available
at https://github.com/rafiulbiswas/PalmX.

1 Introduction

Culturally aware language technologies are es-
sential for high-stakes applications—education,
public services, healthcare, and content modera-
tion—where responses must be accurate, respectful,
and contextually appropriate. In Arabic settings, a
lack of cultural and religious grounding can lead
to biased or inappropriate outputs, partly due to
the predominance of Western-centric training data
in large language models (LLMs) (Ayash et al.,
2025; Alwajih et al., 2025b). Addressing this gap
requires models that can represent and reason over
Arabic cultural heritage and Islamic knowledge, as
well as standardized evaluations that make such
competence measurable (Sadallah et al., 2025a).

To advance cultural and islamic capabilities in
Arabic-centric LLMs PalmX 2025 shared task of-
fered two subtasks—General Culture and Islamic
Culture—using multiple-choice (MCQ) datasets in
Modern Standard Arabic (MSA) (Alwajih et al.,
2025a). These subtasks probe models’ ability to
reason about customs, cuisine, history, and Islamic
practices, providing a focused testbed for culturally
grounded reasoning in Arabic.

Developing such capabilities is challenging. Be-
yond data imbalance, Arabic presents diglossia,
rich morphology, and strong context dependence,
all of which complicate knowledge representation
and question answering (Hasan et al., 2025). Prac-
tical constraints—limited labeled data and domain-
specific MCQ formats—further motivate resource-
efficient adaptation strategies.

We adapt an instruction-following LLM to
these subtasks using parameter-efficient fine-
tuning. Concretely, we fine-tune the 7B-parameter
Qwen2.5-Instruct (Team, 2025) with Low-Rank
Adaptation (LoRA) (Hu et al., 2022) on the offi-
cial PalmX training sets (Alwajih et al., 2025a),
enabling effective domain adaptation under modest
compute. At inference, we employ prompt-based
strategies to inject expert priors and enforce output
constraints (e.g., instructing the model to act as
an “expert in Arabic culture and Islamic studies”
and to output only the option letter). Empirically,
careful prompt design yields consistent but modest
gains in MCQ accuracy; closing the remaining gap
will likely require richer cultural grounding and
more structured supervision. To summarize, our
contributions include:
• We adapt Qwen2.5-7B-Instruct to Arabic cultural

and religious knowledge using Low-Rank Adap-
tation (LoRA) with 4-bit quantization-aware fine-
tuning, achieving effective domain specialization
under modest computational budgets.

• We introduce inference-time instruction tem-
plates and output-space constraints that align the

818

https://github.com/rafiulbiswas/PalmX


model with the multiple-choice setting (expert
prior + option-letter output), yielding consistent
accuracy gains without additional supervision.

• Our system attains resonable performances on
PalmX 2025 General Culture and Islamic Cul-
ture, ranking 7th and 4th on the blind test sets,
respectively, without recourse to external data
augmentation.

• We provide a concise pipeline demonstrating that
low-compute PEFT can reliably enrich cultur-
al/religious knowledge in Arabic LLMs.

2 Related Works

Benchmarking language models for Arabic has pro-
gressed along two complementary lines: inclusion
within multilingual suites and dedicated evalua-
tions of large language models (LLMs) for Ara-
bic. Early efforts commonly incorporated Arabic
into broad benchmarks such as XGLUE, XTREME,
XTREME-R, GEM, and Dolphin, covering a spec-
trum of tasks that emphasized classification (e.g.,
natural language inference), sequence labeling
(part-of-speech tagging, named entity recognition),
and generation (summarization) (Liang et al., 2020;
Hu et al., 2020; Ruder et al., 2021; Gehrmann et al.,
2021; Nagoudi et al., 2023). More recent work has
turned to Arabic-focused LLM assessment, evalu-
ating standard and Arabic-centric models on task
suites and datasets (Sengupta et al., 2023; Khon-
daker et al., 2023; Abdelali et al., 2024; Dalvi
et al., 2024), probing the effects of prompting in na-
tive (Arabic) versus non-native (English) languages
(Kmainasi et al., 2025), and extending analyses to
multimodal settings (Alwajih et al., 2024; Das et al.,
2024).

Within cultural evaluation, prior studies quan-
tify representational bias in entity mentions to-
ward Western versus Arab contexts (Naous et al.,
2024), assess cultural alignment using constructs
from the World Values Survey (AlKhamissi et al.,
2024), and introduce culture-aware diagnostic and
QA resources (Arora et al., 2024; Myung et al.,
2024; Alam et al., 2025). Complementing these
efforts, Arabic-focused benchmarks have begun
to appear: ARADICE targets dialect comprehen-
sion and cultural QA (Mousi et al., 2024), while
other resources probe cultural values and regional
knowledge via translated survey instruments and
Wikipedia-derived questions (Al-Matham et al.,
2025). Despite these advances, converging evi-
dence indicates that general-purpose LLMs still un-

derperform on culturally grounded reasoning and
Arabic commonsense, underscoring the need for
benchmarks, resources, and model-development
methods explicitly tailored to Arabic cultural and
dialectal contexts (Sadallah et al., 2025b; Yakhni
and Chehab, 2025; Qian et al., 2024).

PalmX 2025 (Alwajih et al., 2025a) advances
this research area with a curated, competition-
driven evaluation of Arabic cultural capabilities
in Modern Standard Arabic, spanning General Cul-
ture and Islamic Culture. QAs are designed to
cover all Arab countries and key Islamic concepts,
providing a focused MCQ testbed and strong base-
lines (e.g., NileChat-3B) (Mekki et al., 2025; Al-
wajih et al., 2025b). Our work aligns with this
direction by adapting an instruction-tuned LLM
to PalmX via parameter-efficient fine-tuning and
expert-persona prompting, and by analyzing re-
maining performance gaps relative to culturally
trained baselines.

3 Dataset

PalmX 2025 provides two Modern Standard Arabic
(MSA) multiple-choice (four-option) datasets that
target complementary facets of cultural knowledge.

Task 1: General Culture comprises 4,500 ques-
tions spanning Arab culture across 22 countries,
with official splits of 2,000 training, 500 develop-
ment, and 2,000 test items.

Task 2: Islamic Culture contains 1,900 ques-
tions focused on Islamic cultural knowledge, split
into 600 training, 300 development, and 1,000 test
items. All experiments in this work use the orga-
nizers’ official splits without external data augmen-
tation.

Both subtasks follow a consistent data distri-
bution structure, previously unseen questions for
blind testing, with accuracy serving as the primary
evaluation metric (see in figure 1).

4 System Overview

We experimented with different open sources
LLM such as NileChat-3B (Mekki et al., 2025),
LLaMA3.1 8B (Touvron et al., 2023), Fanar-
1-9B-Instruct (Team et al.) and Qwen2.5-7B-
Instruct (Team, 2025). Qwen2.5-7B-Instruct out-
performed over other LLM and so we adapt
Qwen2.5-7B-Instruct to Arabic cultural understand-
ing via parameter-efficient fine-tuning with Low-
Rank Adaptation (LoRA) (Hu et al., 2022).
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Figure 1: Dataset statistics in two subtasks.

4.1 Training Methodology
Prompting and supervision: We formatted
training examples using a structured instruction-
following template for Arabic cultural question-
answering. Each instance comprises a system mes-
sage, the user turn containing the question and the
four labeled options, and an assistant turn with
only the correct option letter. We implement this
using the model’s native chat template markers
(<|im_start|> / <|im_end|>) to delimit turns.
Explicitly constraining the target to the option let-
ter suppresses verbosity, improves label consis-
tency, and simplifies answer extraction at evalu-
ation time; supervision is via standard next-token
cross-entropy over the assistant turn.

Optimization setup: We train for three epochs
(selected via development-set performance) with
a learning rate of 2 × 10−4 and a linear warmup
of 100 steps. We use an effective batch size of 16
via per-device batch size = 4 and gradient accumu-
lation ×4. Mixed precision uses bfloat16 where
supported (falling back to fp16), and the maximum
sequence length is 512 tokens, which comfortably
covers all MCQ contexts in our data.

Memory efficiency: To enable fine-tuning on
commodity GPUs, we combine 4-bit NF4 quan-
tization of the base weights with gradient check-
pointing, trading additional compute for a reduced
activation footprint. In practice, this configura-
tion supports single-GPU training with ∼8 GB of
memory. During preprocessing, we tokenize in
mini-batches (size 100) to avoid holding the entire

tokenized corpus in memory, and we periodically
release cached CUDA memory to mitigate frag-
mentation during longer runs.

Multi-task adapters: For the two PalmX sub-
tasks, we train separate LoRA adapters on the
same quantized backbone to avoid negative transfer
across cultural domains while retaining a unified
deployment artifact. The General Culture adapter
is fine-tuned on ∼2,000 instances, and the Islamic
Culture adapter on ∼600 instances. This modu-
lar design permits task-specific specialization and
lightweight “hot-swapping” at inference time with-
out reloading the base model.

4.2 Ablation Study
To better understand the contribution of different
components in our system, we conducted compre-
hensive ablation experiments examining the impact
of LoRA hyperparameters, and prompt engineering
choices.

LoRA Rank Analysis: We investigated the ef-
fect of LoRA rank on model performance and com-
putational efficiency. Table 1 presents results for
different rank configurations while keeping other
hyperparameters constant (α = 32, dropout=0.1).

The results reveal a clear performance improve-
ment from rank 4 to 16, with diminishing returns
beyond rank 16. Our chosen rank of 16 represents
the optimal balance.

Target Module Selection: We evaluated differ-
ent combinations of target modules for LoRA adap-
tation. Table 2 shows the impact of different mod-
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Rank Task 1 Task 2 Params Time
(%) (%) (M) (h)

4 63.2 69.8 5.24 2.1
8 65.8 72.1 10.49 2.4
16 67.6 74.1 20.97 3.0
32 67.9 74.3 41.94 3.8

Table 1: Effect of LoRA rank on performance on test
dataset

ule combinations. Targeting all projection matrices
yields the best performance, with attention modules
alone outperforming Feed-Forward Neural (FFN)
Network modules, suggesting that adapting atten-
tion patterns is more crucial for cultural understand-
ing.

Target Modules Task 1 (%) Task 2 (%)

Attention (q, v) 64.3 70.2
Attention (q, k, v, o) 66.1 72.5
FFN only 63.7 69.4
All (Attn + FFN) 67.6 74.1

Table 2: Performance of different target module config-
urations

Prompt Engineering Variations: We tested sev-
eral prompt variations to identify the most effective
format for Arabic cultural questions.

Prompt Strategy Task 1 (%) Task 2 (%)

English system 64.7 71.2
Arabic system 66.3 72.8
Expert framing 67.6 74.1
Expert + few-shot 66.9 73.5

Table 3: Effect of prompt engineering strategies

The expert framing prompt that positions the
model as "an expert in Arabic culture and Islamic
studies" yields the best results. Adding chain-of-
thought or few-shot examples slightly decreased
performance.

5 Result

In Table 4, we report the performance of different
models for both tasks before and after fine-tuning.
Across both subtasks, performance varies markedly
by model and adaptation strategy. The fine-tuned
Qwen2.5-7B-Instruct yields the strongest overall
results, attaining (67.55%) accuracy on Task 1:
General Culture and (74.13%) on Task 2: Islamic

Culture. Fine-tuning provides substantial improve-
ments for all models except Fanar 7B on Task 2,
with gains ranging from 7.8 to 12.2 percentage
points on Task 1. Notably, Qwen2.5-7B demon-
strates the most consistent improvement, gaining
7.75 points on Task 1 and 8.73 points on Task
2. Relative to the task with top ranked system
(72.15%) and (84.22%), respectively, this places
our best system within (4.60) percentage points on
General Culture and (10.09) points on Islamic Cul-
ture, indicating substantial room for improvement,
especially for the latter.

A cross-task comparison reveals a general trend
of improved accuracy on the Islamic subtask af-
ter fine-tuning. For Qwen2.5-7B, the gain from
Task 1 to Task 2 is (+6.58) percentage points.
The NileChat-3B baseline is comparatively sta-
ble at (≈64%) on both tasks after fine-tuning,
while Llama 3.1 8B-Instruct exhibits a modest up-
lift over this baseline on Islamic Culture (about
(+4.9) points). An exception to the broader trend
is Fanar 7B, which performs competitively on
General Culture (66.0%) but declines on Islamic
Culture (62.4%) compared to its baseline perfor-
mance (49.6%), suggesting that while fine-tuning
improves its general performance, domain- or data-
mismatch effects persist that merit further analysis.

These results demonstrate three key observations.
First, parameter-efficient fine-tuning confers clear
benefits over off-the-shelf models for culturally
grounded question answering in Arabic, with con-
sistent improvements observed across most model-
task combinations. Second, the effectiveness of
fine-tuning varies by model architecture and task
domain, as evidenced by the differential improve-
ments across models. Third, the persistent gap to
the subtask best scores—particularly on Islamic
Culture—highlights the difficulty of capturing nu-
anced, domain-specific knowledge and the need
for richer supervision and/or targeted knowledge
integration beyond instruction tuning alone.

General Culture Islamic Culture

Model Before fine
tuning(%)

After fine
tuning(%)

Before fine
tuning(%)

After fine
tuning(%)

NileChat-3B 52.30 64.50 51.80 64.00
LLaMA3.1 8B 58.40 65.90 61.70 69.20
Fanar 7B 54.20 66.00 49.60 62.40
Qwen2.5L-7B 59.80 67.55 65.40 74.13

Table 4: Performance comparison of language models
on test dataset before and after parameter-efficient fine-
tuning. All scores represent accuracy percentages.
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Computational efficiency. Our approach is com-
putationally lightweight: training Task 1 (2,000
samples) completes in approximately three hours
on a single NVIDIA RTX 3090; with 4-bit quanti-
zation, fine-tuning fits within 8 GB of GPU mem-
ory. At inference, throughput is about ∼2 s per
question on GPU and ∼8 s on CPU. The resulting
LoRA checkpoint occupies ∼1.2 GB, compared to
∼15 GB for the full model,

6 Error Analysis

To better understand the limitations and failure
modes of our fine-tuned models, we conducted a
comprehensive error analysis on a stratified sam-
ple of 200 incorrect predictions from our best-
performing model (QWEN2.5L-7B). Our analysis
reveals distinct error patterns across tasks: for Gen-
eral Culture, the primary failure modes include
factual knowledge gaps (42%), cultural context
misunderstanding (28%), and ambiguous question
interpretation (18%). For Islamic Culture, errors
predominantly stem from religious text interpreta-
tion challenges (35%), difficulty handling sectarian
variations (24%), and historical timeline confusion
(21%).

When comparing errors across tasks, we also
observed common problems such as relying on
surface-level patterns instead of deeper understand-
ing, showing overconfidence in culturally ambigu-
ous cases, and favoring Western or standardized
views over regional cultural perspectives. These
findings suggest that while parameter-efficient fine-
tuning improves performance, the models still face
challenges in handling complex cultural reasoning
that requires deeper context and sensitivity to local
variations.

7 Conclusion

This paper presented MarsadLab’s approach to the
PalmX 2025 shared task on Arabic Islamic and Cul-
tural understanding. Through parameter-efficient
fine-tuning using LoRA adaptation of Qwen2.5-
7B-Instruct, we achieved competitive performance
across both tasks. Our work demonstrates that
parameter-efficient methods can effectively adapt
LLMs for culturally-nuanced tasks without requir-
ing extensive computational resources. By training
only 0.27% of model parameters through LoRA
while employing 4-bit quantization, we reduced
memory requirements by approximately 75% com-
pared to full fine-tuning, making our approach ac-

cessible to researchers with limited GPU resources.
Future work includes investigating low-compute
and minimal-data regimes for such tasks.
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Appendix

Model Architecture
We employ Qwen2.5-7B-Instruct, a 7.61B-
parameter causal LLM comprising 28 transformer
layers with Grouped Query Attention (GQA) and
a context window of up to 131,072 tokens. For
our setting, we use the instruction-tuned vari-
ant—optimized to follow complex prompts via su-
pervised fine-tuning and RLHF. To reduce mem-
ory footprint, the base model is loaded with
4-bit NF4 quantization (with double quantiza-
tion) while retaining bfloat16 compute through
bitsandbytes; we enable k-bit training using
prepare_model_for_kbit_training. Tokeniza-
tion relies on the Qwen tokenizer with right
padding; when a pad token is not defined, we map
<pad> to <eos>.

LoRA Adaptation Strategy
To specialize both attention patterns and intermedi-
ate representations for culturally grounded reason-
ing, we attach LoRA adapters to the attention pro-
jections q_proj, k_proj, v_proj, and o_proj, as
well as to the feed-forward projections gate_proj,
up_proj, and down_proj. After development-set
tuning, we adopt a rank r = 16, scaling α = 32,
dropout = 0.1, and no bias, a configuration that
yields approximately 20.97M trainable parameters
(≈0.27% of the base model). In practice, this
supports single-GPU fine-tuning with ∼8 GB of
memory while preserving sufficient capacity for
the target tasks.

Hyperparameters
After empirical evaluation on the development set,
we selected the following LoRA hyperparameters:

• Rank (r): 16 - Balancing expressiveness with
parameter efficiency

• Scaling factor (α): 32 - Controlling the mag-
nitude of LoRA updates

• Dropout: 0.1 - Preventing overfitting on the
limited training data

• Bias: None - Following standard LoRA prac-
tice

This configuration results in approximately 20.97M
trainable parameters (0.27% of total model pa-
rameters), enabling fine-tuning with only 8GB of
GPU memory while maintaining model expressive-
ness for cultural reasoning tasks.
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Abstract

We present a two-stage framework for enhanc-
ing Arabic cultural understanding in small lan-
guage models, specifically designed for PalmX
2025(Alwajih et al., 2025) Shared Task 1: Gen-
eral Culture Evaluation. Our approach com-
bines continuous pretraining on a culturally-
enriched Arabic corpus spanning 10 Arab coun-
tries and different cultural domains, followed
by supervised fine-tuning on cultural question-
answering data. Using Parameter-Efficient Fine-
Tuning (PEFT) (Zhang et al., 2025) with LoRA
on the Qwen3-4B base model, we achieve 74%
accuracy on the development set and 64% on
the blind test set, ranking our team ninth in the
competition. Our system demonstrates the ef-
fectiveness of targeted cultural pretraining for
improving Arabic language models’ cultural
competency while maintaining computational
efficiency.

1 Introduction

Arabic cultural understanding represents a criti-
cal challenge in natural language processing, as
existing large language models often lack the nu-
anced cultural knowledge necessary to serve Arabic-
speaking communities effectively. The PalmX 2025
Shared Task 1 focuses on evaluating models’ abil-
ity to understand and reason about Arabic cultural
concepts, traditions, and knowledge across diverse
Arab regions.

Our main system strategy employs a two-stage
training paradigm: (1) continuous pretraining on
culturally-diverse Arabic content to build founda-
tional cultural knowledge. (2) supervised fine-
tuning on structured cultural question-answering
data to enhance reasoning capabilities. This ap-
proach addresses the fundamental challenge of cul-
tural representation in language models while main-
taining computational efficiency through parameter-
efficient techniques.

Key findings from our work include achieving

competitive performance (74% development accu-
racy, 64% test accuracy) while using only 4B pa-
rameters, demonstrating that targeted cultural pre-
training significantly improves performance over
baseline models, and identifying that multi-domain
cultural coverage is essential for robust cultural
understanding. The main challenge discovered
was balancing broad cultural coverage with deep
domain-specific knowledge within computational
constraints.

2 Literature Review

The PalmX 2025 Subtask 1 presents a multiple-
choice question-answering challenge focused on
Arabic cultural knowledge. The input consists
of cultural questions in Modern Standard Arabic
(MSA) with four possible answers (A, B, C, D), and
the output is the correct answer choice.

Example:

Question:
؟ةيوملأاةلودللةيخيراتلاةمصاعلايهام

Choices:
A. دادغب B. قشمد C. ةرهاقلا D. ةكم

Answer: B

2.1 Dataset Details
Our pretraining corpus was constructed from Ara-
bic Wikipedia articles covering 10 Arab coun-
tries (Bahrain, Egypt, UAE, Iraq, Kuwait, Jordan,
Lebanon, Palestine, Syria, Saudi Arabia) and cul-
tural domains like (Media, Sport, Transport, Health-
care, Education, Religion, Economy, History, Festi-
vals, Tourism).

The coverage was limited to these 10 countries
due to data availability and quality constraints:
some Arab countries had very limited or incom-
plete Wikipedia content across the chosen domains,
which would have introduced imbalance and spar-
sity into the corpus. Focusing on countries with
richer and more representative cultural data ensured
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both consistency and reliability of the pretraining
resource.

The dataset for instruction fine tuning stage com-
prises cultural questions covering various aspects
of Arab heritage, including history, literature, tradi-
tions, geography, and social customs. The training
set contains 2,000 examples, with a development
set of 500 examples for validation. Questions are
formulated in MSA and span knowledge from mul-
tiple Arab countries and cultural domains.

2.2 Related Work
Previous work in Arabic NLP has focused primar-
ily on general language understanding tasks like
(El Mekki et al., 2025; Bari et al., 2024; Sengupta
et al., 2023). Cultural understanding in language
models has been explored for various languages
(Pawar et al., 2025; Nayak et al., 2024), but lim-
ited work exists specifically for Arabic cultural
knowledge. Our work bridges this gap by com-
bining cultural corpus pretraining with parameter-
efficient fine-tuning (LoRA/PEFT) to enhance cul-
tural awareness in small LMs. To the best of our
knowledge, this is the first contribution focusing
specifically on Arabic cultural evaluation within
the PalmX framework.

3 System Overview

3.1 Architecture
Our system builds upon the Qwen3-4B (Yang et al.,
2025) base model, selected for its strong multilin-
gual capabilities and computational efficiency. We
employ Low-Rank Adaptation (LoRA)(Singhapoo
et al., 2025) for parameter-efficient fine-tuning, en-
abling effective adaptation while minimizing com-
putational overhead.

The LoRA adaptation is applied to multiple at-
tention and feed-forward layers:

h = W0x+∆Wx = W0x+BAx (1)

whereW0 represents the frozen pre-trained weights,
∆W = BA is the low-rank adaptation with matri-
ces B ∈ Rd×r and A ∈ Rr×d, and r � d is the
rank.

3.2 Two-Stage Training Framework
3.2.1 Stage 1: Cultural Pretraining
We perform continuous pretraining (Tack et al.,
2025)on a curated Arabic cultural corpus to inject
domain-specific knowledge into the model. The

pretraining objective follows the standard causal
language modeling loss:

Lpretrain = −
T∑

i=1

logP (xi|x<i; θ) (2)

3.2.2 Stage 2: Supervised Fine-tuning

Following cultural pretraining, we fine-tune the
model on the PalmX cultural QA dataset using a
chat-based instruction format. The fine-tuning pro-
cess employs response-only training, where gradi-
ents are computed only on assistant responses:

Lfinetune = −
∑

i∈R
logP (xi|x<i, context; θ)

(3)
whereR denotes response tokens.

3.3 Cultural Corpus Construction

Our pretraining corpus spans 10 Arab countries
(Bahrain, Egypt, UAE, Iraq, Kuwait, Jordan,
Lebanon, Palestine, Syria, Saudi Arabia) and cul-
tural domains like (Media, Sport, Transport, Health-
care, Education, Religion , Economy, History , Fes-
tivals, Tourism). Articles were systematically col-
lected via Wikipedia API as shown in figure [1]
and processed through a comprehensive cleaning
pipeline including:

Algorithm 1 Cultural Corpus Processing Pipeline
1: Input: Raw Wikipedia articles D =
{d1, d2, ..., dn}

2: Initialize: Clean corpus C = ∅
3: for each article di in D do
4: Remove HTML tags and formatting
5: Filter by language (Arabic content only)
6: Apply deduplication using content hashing
7: Chunk into sequences ≤ 4096 tokens
8: Attach article title as metadata (marker for

cultural/contextual grounding)
9: C = C ∪ {processed_chunks}

10: end for
11: Return: C
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Figure 1: Data Collection Pipeline

4 Experimental Setup

4.1 Data Splits

We utilized the official PalmX dataset splits: 2,000
training examples for supervised fine-tuning, 500
development examples for validation, and a blind
test set for final evaluation. For cultural pretraining,
we created a development split (3% of cultural cor-
pus) to monitor pretraining progress.The training
set contains 4480 examples, with a development set
of 139 examples for validation.

4.2 Implementation Details

Our implementation leverages the Unsloth(Han
et al., 2023) framework for efficient and scalable
training. We summarize the Low-Rank Adaptation
(LoRA) configuration and training hyperparameters
in table [1].

Parameter Value
Rank (r) and Alpha 128
Target modules q_proj,k_proj

v_proj,o_proj
gate_proj,up_proj
down_proj,lm_head
embed_tokens

Dropout 0.05
Maximum sequence
length

4096

Table 1: LoRA Configuration

Figure 2: Full Training Pipeline

The configuration adopts a rank and alpha of
128, applies LoRA to multiple attention and projec-
tion layers, and supports long-context training with
sequences up to 4096 tokens.

The training pipeline consists of two phases: cul-
tural pretraining and cultural QA fine-tuning. Each
phase is optimized using the AdamW optimizer
with a cosine learning rate schedule and a weight
decay of 0.01, with learning rates, epochs, and batch
sizes adjusted per phase to balance performance and
convergence as shown in table [2].

4.3 Evaluation Metrics

The primary evaluation metric is the accuracy on
the MMLU (Nacar et al., 2025). We employ ex-
act match evaluation where the model’s predicted
letter (A, B, C, D) must exactly match the gold an-
swer. We use MMLU since the competition itself is
based on this benchmark because it is widely used
to test broad knowledge ability, making it suitable
for evaluating general-purpose language models.

4.4 System Pipeline

Our complete training pipeline consists of three
sequential stages as shown in figure [2]:

1. Cultural Pretraining: Train on cultural cor-
pus for 3 epochs

2. Cultural QA Fine-tuning: Train on PalmX
cultural dataset for 2 epochs
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Task Hyper- parameters Other Settings

Cultural Pretraining LR: 2e-5,Emb. LR: 5e-6,

Epochs: 3, Batch: 16

AdamW, cosine schedule,

weight-decay:0.01

Cultural QA Fine-tuning LR: 2e-5,

Epochs: 2, Batch: 16

Same as above

Table 2: Training Hyperparameters

5 Results

5.1 Quantitative Results
Table [3] presents our official evaluation results on
the PalmX 2025 Shared Task 1.

Dataset Accuracy (%)

Development Set 74.0

Blind Test Set 64.0

Table 3: Official evaluation results on PalmX 2025 Sub-
task 1

5.2 Ablation Studies
We conducted ablation studies to assess the contri-
bution of each training stage:

Configuration Dev Accuracy (%)

Base Model Only 64.0

Star Model 74.0

Table 4: Ablation study showing contribution of each
training stage

The results demonstrate that each training stage
contributes significantly to final performance, with
cultural pretraining providing the largest single im-
provement (10%) over the base model as shown in
table [4].

5.3 Error Analysis
To better understand the behavior of the model, we
performed a manual analysis of randomly sampled
errors. We identified three major error types:

• Ambiguous Knowledge: The model strug-
gled when multiple answers appeared plausi-
ble due to overlapping cultural concepts. For
example, when asked about the founder of
a specific Arab media outlet, the model con-
fused the chief editor with the original founder.

• Reasoning Gaps: Some questions required
multi step reasoning across history and re-
ligion, where the model failed to integrate
knowledge.

• Data Coverage Limitations: Errors arise
from missing representation of certain coun-
tries (e.g., Mauritania, Yemen) or underrep-
resented domains (e.g.„ folk traditions). This
highlights the importance of broader cultural
coverage in pre-training.

Overall, the errors suggest that while pretraining
enriched the model with domain knowledge, deeper
reasoning capabilities and broader cultural coverage
remain key challenges.

5.4 Response Generation Quality
Our model successfully generates concise, accurate
responses in the required format. Example model
outputs demonstrate proper Arabic language usage
and cultural sensitivity:

Input:
برغملايفرهشلأايديلقتلاقبطلاوهام

؟يبرعلا

Generated: B
Gold: B ( سكسكلا )

6 Conclusion

We presented a systematic approach to enhancing
Arabic cultural understanding in language mod-
els through targeted pretraining and efficient fine-
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tuning. Our two-stage framework achieved com-
petitive performance (74% development accuracy)
while maintaining computational efficiency through
LoRA adaptation.

Key contributions:

• A comprehensive cultural pretraining corpus
spanning 10 Arab countries and more than 10
domains

• Demonstration that cultural pretraining signif-
icantly improves cultural QA performance

• An efficient training pipeline suitable for
resource-constrained environments

Limitations:

• Limited coverage of dialectal variations across
Arab regions

• Focus on factual knowledge may not capture
implicit cultural understanding

• Performance gap between development and
test sets suggests potential overfitting

Future Work: Future research directions in-
clude expanding corpus coverage to include di-
alectal content, investigating few-shot learning ap-
proaches for cultural adaptation, and developing
more sophisticated evaluation metrics that capture
cultural nuance beyond factual accuracy.
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Abstract

Culture fundamentally shapes human percep-
tion and reasoning, while religion—often em-
bedded within cultural contexts—provides co-
hesive moral frameworks and a sense of com-
munity. The PalmX 2025 shared task intro-
duced two subtasks aimed at evaluating the ca-
pability of large language models (LLMs) to
capture and represent culturally and Islamically
grounded knowledge. In this paper, we present
our participation in this shared task, leverag-
ing parameter-efficient fine-tuning (PEFT) tech-
niques in conjunction with targeted data aug-
mentation strategies. We further conducted ex-
tensive zero-shot evaluations across a range
of Arabic-centric and multilingual models to
establish strong baselines and guide model se-
lection. Our submitted system achieved com-
petitive performance on the blind test sets,
ranking 3rd in Subtask 1 with an accuracy of
71.45% and 1st in Subtask 2 with an accuracy
of 84.22%.

1 Introduction

Culture is the shared system of meanings—values,
norms, language, and rituals—that organizes how
people perceive, decide, and relate (Hofstede,
2011). Religion, often a core strand of culture,
provides moral frameworks, practices, and com-
munities that guide conduct and purpose (Geertz,
2013). Attending to cultural and religious as-
pects improves communication, trust, and legit-
imacy, while reducing unintended harm and in-
equity across groups (Betancourt et al., 2003).
Without culturally and religiously grounded priors,
LLMs misinterpret idioms and taboos, amplify tox-
icity, and encode systematic biases, including doc-
umented anti-Muslim stereotypes (Gehman et al.,
2020; Blodgett et al., 2020; Abid et al., 2021). Re-
cent studies also show Western-leaning value bi-

* The contribution was made while the author was intern-
ing at the Qatar Computing Research Institute.

ases and uneven cultural performance, demonstrat-
ing the need to encode diverse cultural and Islamic
values in training data, safety policies, and evalua-
tion suites (Li et al., 2024; Hasan et al., 2025).

To encode cultural, religious, and everyday
knowledge, recent work has developed resources,
methods, language-centric models, and bench-
marks (Pawar et al., 2024). For Arabic, several
LLMs have been pre-trained, including Jais (Sen-
gupta et al., 2023), AceGPT (Huang et al., 2024),
ALLaM (Bari et al., 2025), and Fanar (Team et al.,
2025). While these models exhibit strong genera-
tive capabilities, many instruction-tuned variants
rely heavily on synthetic or machine-translated data
(e.g., Jais, AceGPT), which limits cultural knowl-
edge and coverage. Moreover, most evaluations
remain confined to general NLP and capability-
oriented benchmarks (Abdelali et al., 2024; Mousi
et al., 2025), with comparatively little attention to
cultural and religious dimensions (Alwajih et al.,
2025a). To advance the encoding of cultural and
religious knowledge in Arabic-centric LLMs, the
PalmX 2025 shared task (Alwajih et al., 2025b)
introduced a benchmark targeting Arabic cultural
and islamic knowledge at both general and domain-
specific levels, thereby enabling more inclusive and
representative evaluations for the Arabic language
and its diverse heritage. The shared task offered
two subtasks. The annotated datasets for each sub-
task consists of human-validated multiple-choice
question–answer pairs in MSA, ensuring both lin-
guistic precision and cultural authenticity.

In this work, we benchmark multiple instruction-
tuned LLMs across four configurations for both
subtasks: (i) base, (ii) domain-specific fine-tuning,
(iii) combined fine-tuning across subtasks, and (iv)
data augmentation. Fine-tuning consistently im-
proves performance on both subtasks: Fanar-1-9B-
Instruct attains the higher accuracy on the cultural
subtask (Subtask 1) under combined fine-tuning
(80.8%), while ALLaM-7B-Instruct achieves the
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best accuracy on the Islamic subtask (Subtask 2)
with augmented data (77.33%). Accordingly, we
select the LoRA-based, combined fine-tuned Fanar
model for Subtask1 and the ALLaM model with
augmentation for Subtask 2 as our final systems.
To summarize, our main contributions are:
• We present extensive baseline results for multiple

LLMs under a zero-shot learning setup.
• Our proposed models achieved 3rd place in Sub-

task 1 and 1st place in Subtask 2.
• We show that paraphrase-based data augmenta-

tion yields notable performance gains for the
islamic culture subtask.

2 Related Work

Recent advances in LLMs have demonstrated re-
markable capabilities across a wide spectrum of
natural language processing (NLP) tasks (Bubeck
et al., 2023; Touvron et al., 2023; Abdelali et al.,
2024; Dalvi et al., 2024). Beyond sheer model size,
instruction tuning and preference optimization en-
hance both generalization and alignment, enabling
models to follow user intent while delivering strong
zero- and few-shot performance.

2.1 Cultural Knowledge

Recent work has begun to move beyond general
Arabic capability benchmarks toward explicit eval-
uation of cultural competence. AraDiCE intro-
duces a fine-grained dialect–culture suite spanning
Gulf, Egypt, and Levantine, enabling targeted as-
sessment of cultural awareness alongside dialec-
tal understanding (Mousi et al., 2025). Country-
specific evaluation is advancing as well: SaudiCul-
ture focuses on regionally grounded cultural knowl-
edge within Saudi Arabia (Ayash et al., 2025). An-
other recent effort proposed a framework, which
highlights the significance of benchmarking LLMs
with culturally embraced data, underlining the per-
formance disparity between high and low resource
language (Alam et al., 2025; Hasan et al., 2025).
These efforts complement broader Arabic bench-
marks such as LAraBench, which established multi-
task capability evaluations but did not directly tar-
get cultural facets (Abdelali et al., 2024).

2.2 Islamic Knowledge

In contrast to the breadth of general cultural eval-
uation, Islamic/religious benchmarking remains
limited in scale and linguistic coverage. QUQA
evaluates GPT-4 on Classical-Arabic Qur’anic QA

and reports modest exact-match and F1 scores, re-
vealing limits even for state-of-the-art models in
scripture-centric settings (Alnefaie et al., 2023). A
cross-lingual Qur’anic QA effort expands a small
Arabic set to 1,895 Arabic–English pairs and as-
sesses pre-trained LMs/LLMs mainly with retrieval
metrics (MAP@10, MRR, Recall@10), offering
a first but narrow bilingual baseline (Oshallah
et al., 2025). Retrieval-augmented studies over
Qur’anic summaries examine faithfulness and ci-
tation via human ratings for open-source LLMs,
but remain English-only and task-specific (Khalila
et al., 2025). Multimodal cultural VQA bench-
marks include religious practices and iconography
across many languages; however, they target vi-
sion–language models and do not provide text-only,
source-grounded Islamic QA suitable for doctrinal
assessment (Vayani et al., 2025).

On the resource side, Hajj-FQA offers a human-
annotated QA set over Hajj fatwas (Aleid and
Azmi, 2025); Fatwaset compiles a large Arabic
fatwa corpus with rich metadata for downstream
NLP (Alyemny et al., 2023); and Qur’anic QA
resources—such as the Qur’anic Reading Com-
prehension Dataset (QRCD) and subsequent re-
trieval/QA studies—provide task-specific testbeds
while exposing issues of hallucination and do-
main brittleness (Basem et al., 2025). Collectively,
these works lay important groundwork for Islamic-
knowledge evaluation in Arabic; nevertheless, cov-
erage remains narrow (few languages beyond Ara-
bic/English), datasets are modest, and critical schol-
arly dimensions—madhhab/fiqh context, hadith au-
thenticity, tafsı̄r grounding, awareness of abroga-
tion (naskh), and dialectal/diacritic variation—are
largely unencoded, leaving a clear gap relative to
the methodological rigor now common in broader
multicultural evaluation.

3 Tasks and Dataset

3.1 Tasks

The PalmX 2025 Shared Task evaluates Arabic
General culture and Islamic knowledge through
multiple-choice question answering in Modern
Standard Arabic. It consists of two subtasks:

• Subtask 1 – General Culture Evaluation:
This subtask evaluates the ability of LLMs
to comprehend and reason about diverse as-
pects of Arabic general culture, including tra-
ditional customs, social etiquette, cuisine, his-
torical events, notable figures, geography, arts,
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and dialectal expressions across different Arab
countries. The focus is on assessing models’
capacity to apply broad cultural knowledge
that is relevant across the Arab world.

• Subtask 2 – General Islamic Evaluation:
This subtask measures models’ understand-
ing of core elements of Islamic culture, which
forms a foundational component of many Ara-
bic societies. It covers topics such as Is-
lamic rituals and practices (e.g., prayer, fast-
ing), Quranic knowledge, Hadith literature,
major historical developments in Islam, and
religious holidays. Models are evaluated on
multiple-choice questions designed to test
both religious literacy and contextual sensi-
tivity, ensuring they can handle culturally and
theologically significant content with accu-
racy and respect.

3.2 Dataset

We used the dataset released as a part of PalmX
2025 Shared Task. For both subtasks the datasets
has been formulated as MCQ format.

Data Augmentation. We employed paraphrase-
based data augmentation to increase the diversity
and robustness of the questions in the training data.
In this approach, original questions were reworded
into semantically equivalent variants while strictly
preserving their intended meaning and correct an-
swers. The resulting augmented dataset introduced
controlled variations in phrasing, complexity, and
syntactic structure, thereby encouraging better gen-
eralization. We used the GPT-4.1 model to para-
phrase the questions. Listing 1 shows the exact
prompt we used.

In Table 1, we report the detail distribution of the
dataset. As reported in the Table, for both subtasks
we applied data augmentation to increase training
set size. As for the development and test set we
have used same dataset released as a part of the
shared task. Test set in the table refers to the blind
test set. Note that in our initial set of experiments
we have used dev set as a test set to evaluate models’
performance.

Listing 1: Prompt for paraphrase based data augmenta-
tion.
system_prompt = (

"You are a high-quality data augmentation
assistant for Arabic multiple-choice
question answering. "
"Your job is to create adversarial variants
of questions: rephrase or make the question

more challenging "
"or tricky, but do not alter its meaning or
change which answer is correct. "
"The answer options and the correct answer
must remain valid for the new question."
)

user_prompt = (
"Below is an Arabic multiple-choice
question with options and the correct
answer indicated. "
"Rewrite the question to make it
slightly more challenging or confusing
for test-takers "
"(e.g., use more complex language, add
subtle ambiguity, or require deeper
understanding), "
"but do not change its intended meaning
or the correct answer. "
"Return your answer as a JSON object
with the new question, all original
options, and answer letter
preserved.\n\n"
f"Question: {data['question']}\n"
f"A: {data['A']}\n"
f"B: {data['B']}\n"
f"C: {data['C']}\n"
f"D: {data['D']}\n"
f"Answer: {data['answer']}"

)

Subtasks Train Dev Test

Culture 2,000 500 2,000
Culture + Islamic 2,600 500 2,000
Culture + Aug 4,000 500 2,000

Islam 600 300 1,000
Islam + Aug 1,200 300 1,000

Table 1: Dataset statistics for PalmX 2025 subtasks.
Aug refers to data augmentation.

4 Experiments

4.1 Models
We have selected several instruction-tuned LLMs
for the zero-shot evaluation and fine-tuning mod-
els on two subtasks – General Cultural and Is-
lamic Cultural – under four configurations: base,
fine-tuned, combined fine-tuning (culture + Is-
lamic), and augmented data. The models consid-
ered included Qwen2.5-7B-Instruct (Wang et al.,
2024), Jais-13B-Chat (Sengupta et al., 2023),
Miraj Mini,1 Llama-3.1-8B-Instruct (Tou-
vron et al., 2023), NileChat-3B (Mekki et al.,
2025), ALLaM-7B-Instruct (Bari et al., 2025),
Gemma-7b-it2 and Fanar-7B-Instruct (Team
et al., 2025).

1https://huggingface.co/arcee-ai/Meraj-Mini
2https://huggingface.co/google/gemma-7b-it
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4.2 Training
We fine-tuned the models using the LoRA approach.
The LoRA configuration used a rank (r) of 16, an
alpha value of 32, a base learning rate of 2e-4 and
a dropout rate of 0.05, a maximum sequence length
of 512 tokens, trained for three epochs, targeting
the query and value projection layers of the trans-
former architecture. LoRA adapters were loaded
from a prior checkpoint and the implementation of
attention was set to ‘eager’ for compatibility. The
tokenizer for the base model was used, with the
padding token aligned with the end-of-sequence
token. The evaluation was performed with a batch
size of 4 to accommodate the memory requirements
of the 9B parameter model. The prompts were for-
matted for multiple choice answer with predefined
choice prefixes (A, B, C, D).

Evaluation We evaluated models using accuracy,
calculated as the percentage of correctly answered
questions. For model training and internal evalua-
tion, we were limited to the development dataset.
Final evaluation and ranking were carried out by
the organizers on the blind test set.

5 Results

The evaluation results across the PalmX subtasks
demonstrate notable improvements through fine-
tuning and data combination.
Cultural Subtask. In Table 2, we report the perfor-
mance of cultural evaluation on the development
set. For the PalmX General Cultural subtask, the
ALLaM-7B-Instruct model improved from a base
accuracy of 63.8 to 75.8 after fine-tuning, maintain-
ing the same performance when combined with the
Islamic dataset. Fanar-1-9B-Instruct outperformed
ALLaM on this subtask, achieving 72.4 at base and
improving to 80.2 after fine-tuning, with a slight
increase to 80.8 using the combined data.
Islamic Subtask. In Table 3, we report the perfor-
mance of Islamic evaluation on the development set.
In the PalmX Islamic Culture subtask, ALLaM-7B
showed a base accuracy of 72.7, which improved
to 76.33 after fine-tuning and further to 77.33 with
additional Islamic data augmentation. On the final
hidden test set, Fanar-1-9B achieved an accuracy
of 71.45 on the General Culture evaluation, while
ALLaM-7B attained 84.22 on the General Islamic
evaluation, indicating strong performance in their
respective domains.
Error analysis. Figure 1, in Appendix, presents
the confusion matrix for Subtask 1 on the hidden

Model Base Train Set Comb. Aug.

Gemma-7B-it 49.6 67.6 39.6 49.6
ALLaM-7B 63.8 75.8 75.8 70.6
Llama3.1-8B 66.6 66.6 66.6 66.6
Qwen2.5-7B 69.2 69.2 69.2 69.2
NileChat-3B 70.0 76.0 72.8 70.0
Fanar-1-9B 72.4 80.2 80.8 79.2

Table 2: Results on development set with a comparison
of different models on PalmX General Cultural subtask.
FT: Fine-tuned only on the PalmX training set, Comb.:
Combined (Culture + Islamic), Aug.: Cultural + Aug-
mented.

Model Base Train Set Comb. Aug.

Gemma-7B-it 40.0 40.0 25.3 25.3
Qwen2.5-7B 57.3 57.3 57.3 57.3
NileChat-3B 64.0 64.0 64.0 63.7
Fanar-1-9B 67.0 66.0 70.3 67.0
ALLaM-7B 72.7 76.3 76.3 77.3

Table 3: Performance comparison of different models
on PalmX Islamic Cultural subtask. Comb.: Culture +
Islamic, Aug.: Islamic + Augmented.

Subtasks Model Acc

Culture Fanar-1-9B 71.5
Islamic ALLaM-7B 84.2

Table 4: Performance on final hidden test set.

test set. The raw confusion matrix shows the pro-
portion of correct and incorrect predictions per true
label. Off-diagonal entries reveal misclassification
patterns, with slightly higher confusion between
classes A and B as well as C and D. Overall, the
model demonstrates balanced accuracy across cat-
egories, with no single class dominating the error
distribution.

Figure 2, in Appendix, illustrates the confusion
matrix for Subtask 2 on the hidden test set. The
model correctly predicted 127, 483, 179, and 54
instances for classes A, B, C, and D, respectively.
The largest proportion of correct predictions oc-
curred for class B, with relatively low misclassi-
fication rates. Notable confusion patterns include
A → B (32 instances) and D → B (10 instances).
While diagonal dominance is evident, indicating
that the model captures the underlying class dis-
tinctions well, performance on class D is compara-
tively lower, suggesting a need for more targeted
learning on that category. Overall, the results re-
flect strong performance, with class B exhibiting
the highest classification accuracy in the Islamic
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Figure 1: Confusion matrices for Subtask 1 (General
Cultural Evaluation) on the hidden test set.

Figure 2: Confusion matrices for Subtask 2 (Islamic
Cultural Evaluation) on the hidden test set.

cultural knowledge domain.

6 Conclusions and Future Work

In this paper, we presented our system devel-
oped for the Palmx 2025 Shared Task on MSA
multiple-choice question answering in the Cultural
and Islamic Evaluation. Our approach focused
on fine-tuning state-of-the-art large language mod-
els, specifically ALLaM-7B-Instruct and Fanar-1-
9B-Instruct, with data augmentation on domain-
specific datasets, leveraging combined cultural and
Islamic data to enhance performance. The Fanar-
1-9B-Instruct model achieved the highest accuracy
on the General Cultural subtask with 80.8 after fine-
tuning and data combination, while ALLaM-7B-
Instruct showed strong results in the Islamic sub-
task, reaching 77.33 accuracy with augmented data.

On the final hidden test set, Fanar-1-9B-Instruct
scored 71.45 on the General Culture evaluation,
and ALLaM-7B-Instruct achieved 84.22 accuracy
on the General Islamic evaluation. These results
demonstrate the effectiveness of fine-tuning and
data augmentation strategies in improving perfor-
mance across different subtasks.

7 Limitations

While our experiments provide valuable insights
into cultural and Islamic evaluation tasks, several
limitations remain. Despite dataset variations (com-
bined Islamic + General Cultural data and augmen-
tation), some models such as google/gemma-7b-it
and Qwen2.5-7B-Instruct showed nearly identical
accuracy across settings, indicating limited sensitiv-
ity to data scale or diversity. We also observed accu-
racy decreases when training on combined datasets.
However, performance overall across training se-
tups is better than the base (unfine-tuned) model.
These findings highlight the need for deeper error
analysis, improved fine-tuning methods, and more
robust data integration to better adapt language
models for nuanced cultural understanding.
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Abstract

Large Language Models (LLMs) have demon-
strated impressive multilingual capabilities;
however, their reasoning often reflects English-
centric perspectives, which can limit accuracy
in culture-specific contexts. Arabic, with its
diverse dialects, rich historical heritage, and
complex socio-cultural norms, presents a par-
ticularly challenging setting for such evalua-
tion. To address this gap, we participated in
the PalmX 2025 shared task, which bench-
marks cultural reasoning in Arabic through
multiple-choice questions covering traditions,
social norms, history, geography, arts, and di-
alectal expressions. By applying parameter-
efficient adaptation and culturally informed
prompt formatting, we aligned model outputs
with both linguistic correctness and cultural rel-
evance. Our approach achieved an accuracy
of 71.65%, securing second place overall and
closely matching the top system. These results
demonstrate that targeted adaptation can sig-
nificantly enhance cultural reasoning in LLMs,
paving the way for more culturally aware Arti-
ficial Intelligence.

1 Introduction

Large Language Models (LLMs) have transformed
natural language processing, excelling in multilin-
gual understanding, reasoning, and text generation
(Brown et al., 2020; Chowdhery et al., 2023; Tou-
vron et al., 2023). Yet, their reasoning often reflects
predominantly English-centric worldviews (Bang
et al., 2023; Piqueras and Søgaard, 2022), lead-
ing to gaps in interpreting culture-specific knowl-
edge, norms, and perspectives. Cultural reason-
ing—integrating linguistic comprehension with
contextual understanding of traditions, values, and
social practices—is essential for fair, contextually
appropriate AI systems (Tao et al., 2024).

∗ The final fine-tuned model is available at https://
huggingface.co/Pulkit-28/PalmQA-3B-Arabic.

Arabic, with its diverse dialects, historical depth,
and socio-cultural richness, is a particularly chal-
lenging testbed. Despite the growth of Arabic NLP
resources, most models remain optimized for syn-
tactic and semantic accuracy rather than capturing
the implicit socio-cultural knowledge needed to in-
terpret idioms, customs, and worldview-specific
references. As Marcus and Davis emphasize,
LLMs are powerful pattern recognizers but lack
genuine understanding and grounded reasoning, of-
ten reproducing correlations without true compre-
hension (Marcus and Davis, 2019). Recent work
also shows that “models tend to exhibit Western
bias even when prompted in non-English languages
like Arabic” (Naous et al., 2023), underscoring per-
sistent cultural blind spots.

Addressing this challenge requires moving be-
yond language correctness toward genuine cultural
alignment—where models reason in ways consis-
tent with the target community’s norms and context.
This work examines whether parameter-efficient
adaptation can improve the cultural reasoning capa-
bilities of Arabic LLMs, bridging the gap between
linguistic competence and culturally grounded in-
telligence.

2 Related Work

Arabic Natural Language Processing (NLP) has
advanced notably in recent years, driven by
transformer-based architectures, culturally aligned
datasets, and resource-efficient adaptation meth-
ods.

AraBERT (Antoun et al., 2020) pioneered
Arabic-specific BERT pre-training, achieving state-
of-the-art results in sentiment analysis, named en-
tity recognition, and question answering. ARBERT
and MARBERT (Abdul-Mageed et al., 2020) ex-
tended this to Modern Standard Arabic (MSA) and
dialects, accompanied by ARLUE, a benchmark
for multi-dialectal understanding. These works un-
derscore the value of Arabic-specific pre-training.
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Culturally grounded datasets have emerged
to address linguistic and cultural biases.
CIDAR (Alyafeai et al., 2024) is the first
open Arabic instruction-tuning dataset curated
for cultural relevance, improving alignment of
large language models (LLMs) with Arabic
norms. Other domain-specific benchmarks include
AraSTEM (Mustapha et al., 2024) for STEM
knowledge and AlGhafa (Almazrouei et al.,
2023) for diverse Arabic MCQs. Beyond Arabic,
the Survey of Cultural Awareness in Language
Models (Pawar et al., 2025) reviews methods
for integrating cultural sensitivity into text and
multimodal LLMs, with discussion of datasets,
benchmarking, and ethics.

Resource-efficient fine-tuning has also gained
traction. Low-Rank Adaptation (LoRA) (Hu et al.,
2022) reduces trainable parameters while main-
taining performance, and Quantized Low-Rank
Adaptation (QLoRA)-based adaptation for Ara-
bic (Aryan, 2024) achieves high-quality results
with minimal hardware. Parameter-efficient meth-
ods have also been applied to dialect identifica-
tion (Radhakrishnan et al., 2023) with competitive
accuracy.

Large-scale Arabic foundation models like Jais
and Jais-chat (Sengupta et al., 2023) set records
in Arabic reasoning tasks, while LAraBench (Ab-
delali et al., 2023) offers a comprehensive bench-
marking suite for Arabic NLP and speech, reveal-
ing gaps between general-purpose and specialized
Arabic models. Beyond Arabic, Beyond English-
Centric LLMs (Zhong et al., 2024) shows multilin-
gual models may rely on multiple latent languages,
stressing the need to study internal representation
dynamics for better cultural adaptation.

In summary, advances in Arabic NLP arise from
the synergy of specialized pre-training, culturally
relevant datasets, efficient fine-tuning, and robust
benchmarking—together enhancing accuracy, cul-
tural sensitivity, and efficiency in Arabic-focused
LLMs.

3 Problem Statement

We participated in the PalmX 2025 shared task (Al-
wajih et al., 2025), which evaluates large lan-
guage models (LLMs) on their ability to com-
prehend and reason about Arabic general cul-
ture—including traditions, social norms, history,
geography, arts, and dialectal variations. For-
mally, let Q = {q1, . . . , qn} be a set of culturally

grounded questions in Modern Standard Arabic,
each with candidate answersAi, where exactly one
a∗i is correct. An LLM, modeled as fθ : Q → A,
aims to maximize:

1

n

n∑

i=1

⊮{âi = a∗i }.

Unlike traditional benchmarks that focus
on P (âi = a∗i | linguistic knowledge),
this task emphasizes P (âi = a∗i |
linguistic knowledge, cultural knowledge), ensur-
ing models are both linguistically accurate and
culturally grounded.

4 Dataset

The dataset provided for the PalmX 2025 shared
task (Alwajih et al., 2025) was specifically curated
to evaluate cultural reasoning capabilities in Arabic
LLMs. It consists of three partitions, each balanced
across domains such as traditions, social norms,
history, geography, arts, and dialectal expressions
from diverse Arab countries. The statistics of the
dataset are summarized in Table 1, and an example
from the training set is shown in Figure 1.

Partition Number of MCQs

Training set 2,000
Development set 500
Blind test set 2,000

Table 1: Summary statistics of the dataset provided for
the PalmX 2025 shared task

5 Methodology

This section delineates the modeling framework
employed to adapt a large Arabic language model
for the PalmX 2025 cultural reasoning task. Recog-
nizing that the task entails selecting the appropriate
option from multiple culturally grounded choices,
we formulate it as a causal language modeling prob-
lem augmented with structured prompts. This ap-
proach not only facilitates the model’s acquisition
of reasoning patterns encompassing both factual
and cultural knowledge but also leverages the in-
herent generative capabilities of language models
to handle nuanced, context-dependent queries ef-
fectively.
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Figure 1: Sample culturally grounded MCQ from the
training set.

5.1 Base Model

Our framework is built upon the NileChat-3B
checkpoint (Mekki et al., 2025), a 3B-parameter
decoder-only transformer specifically optimized
for Arabic dialogue and general-purpose text gen-
eration. This model was selected due to its ro-
bust pre-training on a diverse corpus of Arabic
text, which includes dialectal variations and cul-
tural contexts, making it particularly suitable for
tasks requiring deep linguistic and sociocultural un-
derstanding. The architecture adheres to an autore-
gressive GPT-style design, comprising 24 stacked
multi-head self-attention layers interspersed with
feed-forward blocks, all geared toward efficient left-
to-right token prediction. The tokenizer, derived
from the same checkpoint, utilizes byte-pair en-
coding (BPE) with a vocabulary size of 50,000 to-
kens to accommodate both Arabic and non-Arabic
scripts, with the end-of-sequence (EOS) token re-
purposed as the padding token to ensure seamless
compatibility with causal modeling paradigms.

5.2 Fine-Tuning Strategy

For efficient adaptation, we leverage Low-Rank
Adaptation (LoRA) (Hu et al., 2022), a parameter-
efficient fine-tuning technique that introduces train-
able low-rank decomposition matrices into the
transformer’s projection layers while keeping the

original weights frozen. This method allows us
to fine-tune fewer than 1% of the total parame-
ters, achieving an optimal trade-off between com-
putational overhead and expressive capacity, which
is especially beneficial for resource-constrained
environments and multilingual models where full
fine-tuning could lead to catastrophic forgetting of
pre-trained knowledge. The specific LoRA config-
uration adopted in this study is as follows:

• Rank (r): 16

• Scaling factor (α): 32

• Target modules: q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj, down_proj

• Dropout rate: 0.05

• Bias: none

Figure 2: Schematic illustration of the Low-Rank Adap-
tation (LoRA) mechanism integrated into the fine-tuning
process.

5.3 Prompt Formatting
To optimize the model’s performance on the
multiple-choice cultural reasoning task, each
dataset instance is converted into a carefully de-
signed prompt structure. This includes the question
stem, four labeled options (A through D), and a
clear instruction to generate only the letter of the
correct choice. An illustrative prompt template is
as follows:

Question: [Question text]
Options:
A) [Option A]
B) [Option B]
C) [Option C]
D) [Option D]
Output only the correct letter:
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This structured format reduces output variability
during inference, promotes focused discriminative
reasoning by the model, and ensures tight align-
ment between the training objective and prevalent
evaluation paradigms in cultural reasoning, such as
zero-shot or few-shot settings.

5.4 Training Procedure
The fine-tuning process is executed via the
Transformers library’s Trainer API, incorporat-
ing mixed-precision training in bfloat16 to en-
hance computational efficiency and reduce mem-
ory footprint. We utilize a per-device batch size
of 2 on a single NVIDIA A100 GPU, augmented
by gradient accumulation across 4 steps, result-
ing in an effective batch size of 8. A fixed learn-
ing rate of 2 × 10−4 is applied without schedul-
ing, with training spanning three epochs to bal-
ance convergence and overfitting prevention. The
DataCollatorForLanguageModeling is config-
ured with mlm=False to uphold the causal autore-
gressive training objective, ensuring that the model
learns to generate responses conditioned on the full
prompt context. Throughout training, we monitor
validation loss to confirm generalization to unseen
cultural reasoning examples.

5.5 Adapter Merging and Deployment
Upon completion of fine-tuning, the LoRA
adapters are integrated into the base model
weights through the merge_and_unload() proce-
dure, yielding a consolidated checkpoint devoid of
external dependencies and maintaining the origi-
nal model’s inference speed. This merging step
is crucial for production environments, as it elimi-
nates the need for additional adapter loading during
deployment. The resultant model, designated as
NileChat-3B-Arabic-QA-Merged-v2, is primed
for seamless inference and deployment in practical
applications, such as interactive cultural education
tools or multilingual question-answering systems.

6 Results

6.1 Evaluation
The official metric for the PalmX 2025 shared task
was accuracy, measuring the proportion of correct
predictions across all test questions. Given a test
set of N questions, accuracy is calculated as:

Accuracy =

∑N
i=1 (ŷi = yi)

N
× 100%, (1)

where ŷi denotes the predicted answer for ques-
tion i, yi represents the gold standard label, and (·)
is the truth indicator returning 1 if the argument is
true and 0 otherwise. This metric equally weights
all questions, ensuring that performance reflects
general reasoning capabilities rather than domain-
specific biases.

6.2 Leaderboard Performance

Our system obtained an overall accuracy of
71.65%, securing the second rank among all
participating teams. This performance demon-
strates that our parameter-efficient LoRA fine-
tuning method can effectively adapt a large Arabic
LLM to culturally grounded multiple-choice rea-
soning with limited task-specific data.

Rank Team Score (%)
1 HAI research group 72.15
2 Our Result 71.65
3 AYA_Team 71.45
4 Phoenix 71.35
5 CultranAI 70.50
6 ISL-NLP 67.60
7 Rafiul Biswas 67.55
8 Hamyaria 65.90
9 Star 64.05

Table 2: Leaderboard results from the PalmX 2025
shared task.

6.3 Discussion

The narrow margin between the top three
teams—less than one percentage point—indicates
that small architectural or fine-tuning choices can
substantially influence outcomes in culturally nu-
anced reasoning tasks. Our approach’s ability to
match and even surpass larger-scale fine-tuning ef-
forts highlights the efficiency of targeted LoRA
adaptation for Arabic cultural QA, while suggest-
ing broader implications for resource-efficient mul-
tilingual NLP.

7 Future Work

Promising directions for extending this work in-
clude adapting the proposed framework to other
low-resource languages, thereby assessing its ef-
ficacy in cross-lingual cultural reasoning tasks.
Furthermore, integrating multimodal capabili-
ties—such as fine-tuning on Visual Question An-
swering (VQA) datasets enriched with culturally
pertinent images—could substantially improve
model performance by synergistically combining
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visual and textual cues for more nuanced cultural
understanding.
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Abstract

Large Language Models (LLMs) have become
central to natural language processing, but their
performance in low-resource cultural domains
remains limited, mainly due to the dominance
of English data in training. This limitation is es-
pecially evident in open small models. Evaluat-
ing and improving LLMs’ performance in Ara-
bic culture is therefore necessary. This paper
presents Phoenix and PhoenixIs, two models
fine-tuned for the Palmx 2025 general culture
and Islamic culture subtasks. Phoenix uses the
Palmx-GC and Palmx-IC datasets as seed data
and applies diverse data augmentation strate-
gies to construct an enriched fine-tuning dataset.
Phoenix achieves an accuracy of 71.35% on
the general culture subtask, while PhoenixIs
reaches 83.82% on the Islamic culture subtask.

1 Introduction

Culture refers to the shared knowledge, beliefs,
values, practices, and traditions that shape how
a community understands and interacts with the
world. Although Large Language Models (LLMs)
have achieved strong performance across a wide
range of natural language processing tasks, they
have been shown to exhibit cultural bias toward
Western culture (Cecilia Liu et al., 2024; Navigli
et al., 2023; Cao et al., 2023). Such bias arises
from the dominance of English data in their pre-
training and post-training corpora. This limitation
may affect their ability to adapt and generate cul-
turally appropriate responses for diverse commu-
nities. To tackle this bias, efforts have been made
to align LLMs with different cultures (Joshi et al.,
2025; Mekki et al., 2025; Li et al., 2024) and to
assess their cultural knowledge on specific domains
(AlKhamissi et al., 2024; Alwajih et al., 2025a). Be-
yond cultural adaptation, progress in Arabic NLP
has been supported by benchmarks and resources

*Equal Contribution.

across a variety of tasks, including machine trans-
lation (Akallouch and Fardousse, 2025), named
entity recognition (Yahia et al., 2024; Jarrar et al.,
2024), and question answering (Mozannar et al.,
2019).

In this context, the Palmx 2025 shared task was
introduced to evaluate the ability of LLMs to cap-
ture Arabic cultural knowledge and to promote the
development of culturally aware systems for the
Arab world (Alwajih et al., 2025b). It includes
two subtasks, General Culture and Islamic Culture,
each based on datasets of multiple-choice ques-
tions in Modern Standard Arabic (MSA), namely
Palmx-GC and Palmx-IC.

In this paper, we present our participating sys-
tems for the General Culture subtask (Phoenix)
and the Islamic Culture subtask (PhoenixIs) of
Palmx 2025. Starting from Palmx-GC as seed
data, we applied three data augmentation strate-
gies: question paraphrasing, which generates se-
mantically equivalent variants of existing questions,
sample-based augmentation, which produces new
multiple-choice questions by conditioning on in-
dividual question–answer pairs, and dataset-based
augmentation, which creates thematically related
questions by leveraging the full dataset (Section
4.1). For the Islamic Culture subtask, we only ex-
plored question paraphrasing. The augmented data
was then used to fine-tune dedicated models for
each subtask. Our experiments demonstrate that
the proposed augmentation strategies improve per-
formance on both subtasks. Phoenix obtains an
accuracy of 71.35% on the General Culture sub-
task, and PhoenixIs attains 83.82% on the Islamic
Culture subtask.

Our contributions in this work are: (1) we
present Phoenix and PhoenixIs, two systems devel-
oped for the General Culture and Islamic Culture
subtasks, respectively. (2) We design and evaluate
three data augmentation strategies that enrich the
available training data and improve model perfor-
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mance. (3) We provide an extensive analysis of
these strategies, showing that they enhance accu-
racy on both subtasks.

2 Related Work

Although large language models have achieved
strong performance across a variety of languages,
adapting them to specific cultural contexts, particu-
larly those that are low-resource, remains a signifi-
cant challenge, as they often display a bias toward
Western culture (Cecilia Liu et al., 2024; Navigli
et al., 2023; Cao et al., 2023; Naous et al., 2024).
To mitigate this issue, several adaptation strate-
gies have been explored, including continuous pre-
training (Mekki et al., 2025), prompt tuning (Ma-
soud et al., 2024), prompt engineering (Shen et al.,
2024; Tao et al., 2024; AlKhamissi et al., 2024),
and supervised fine-tuning (Li et al., 2024). All of
these approaches rely, to varying degrees, on the
availability of well-constructed cultural datasets,
which remain scarce. In response, a growing body
of work has focused on building resources that cap-
ture cultural knowledge across different languages
and communities (Alwajih et al., 2025a; Myung
et al., 2024).

Since the manual annotation of cultural data is
resource-intensive and difficult to scale, researchers
have increasingly turned to data augmentation to
expand training sets (Liu et al., 2025; Li et al., 2024;
Joshi et al., 2024). Nonetheless, this approach re-
quires careful design to ensure that the generated
data maintains quality and reliability (Liu et al.,
2024).

The limited representation of Arabic in pretrain-
ing corpora has motivated a growing effort to de-
velop LLMs specifically designed for the Arab
world. One approach has been to rely on transla-
tion, where large volumes of English data are trans-
lated into Arabic to supplement training resources
(Sengupta et al., 2023). Other work has empha-
sized the inclusion of native Arabic data without
translation in order to better capture the linguistic
and cultural features of the language (Huang et al.,
2024). To address the bias toward English and the
resulting cultural misalignment, some approaches
have relied on continual pretraining with carefully
curated cultural data (Mekki et al., 2025), while
others have explored training models entirely from
scratch (Bari et al., 2024; Team et al., 2025). In
this work, we build on these efforts by finetuning
such models for the Palmx shared task subtasks.

3 Palmx

The Palmx shared task was established to eval-
uate the ability of LLMs to capture Arabic cul-
tural knowledge and to encourage the creation of
systems that are culturally aware within the Arab
world. It is divided into two subtasks: General
Culture and Islamic Culture. The General Cul-
ture subtask examines the ability of LLMs to rea-
son about different aspects of Arabic culture. Its
questions span a wide range of domains such as
customs, etiquette, and arts from across Arab coun-
tries, including Palestine, Morocco, Egypt, and
others. The Islamic Culture subtask is designed to
evaluate models’ understanding of central elements
of Islamic culture. The questions address topics
including religious practices, Quranic knowledge,
and Hadith literature.

3.1 Datasets

The Palmx shared task provides two datasets,
Palmx-GC for the General Culture subtask and
Palmx-IC for the Islamic Culture subtask. Both
datasets consist of multiple-choice questions in
MSA and are split into training, development, and
blind test sets. Table 1 presents the detailed statis-
tics for each split.

Split Palmx-GC Palmx-IC
Training 2000 600
Development 500 300
Blind Test 1000 1000

Table 1: Distribution of samples in Palmx-GC and
Palmx-IC.

4 Phoenix

We propose two systems for the Palmx shared
task: Phoenix for the General Culture subtask and
PhoenixIs for the Islamic Culture subtask. Both
systems build on the official provided datasets, and
each incorporates data augmentation to expand the
training data before finetuning task-specific mod-
els. An overview of the augmentation strategies is
presented in Figure 1.

4.1 Data Augmentation

4.1.1 Question Paraphrasing
In the paraphrasing setup, the LLM was provided
with a single question and instructed to generate
n1 semantically equivalent variants. This strategy
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Figure 1: Overview of Phoenix data augmentation strate-
gies

increases data diversity while preserving the origi-
nal meaning, thereby helping the model generalize
to different phrasings of the same cultural concept.
We employed Gemini 2.5 Pro for this augmenta-
tion.

4.1.2 Sample-based Augmentation
In sample-based augmentation, the LLM was given
an original question together with its multiple-
choice answers and asked to generate new the-
matically and structurally similar multiple-choice
questions. This approach expands the dataset by
producing additional questions that maintain the
original format while introducing controlled varia-
tion. We used Gemini 2.5 Flash for sample-based
augmentation.

4.1.3 Dataset-based Augmentation
For dataset-based augmentation, the LLM was pro-
vided with the full Palmx-GC dataset of 2,000 sam-
ples and prompted to generate n3 new multiple-
choice questions that are thematically related. Un-
like the previous strategies, this method leverages
the dataset as a whole, encouraging the model
to create questions that capture broader patterns
across domains. Gemini 2.5 Pro was used for this
setup. To ensure quality and cultural fidelity, a
random subset of the LLM-generated questions
from each augmentation strategy was manually in-
spected by human annotators. This verification step
helped confirm semantic correctness and adherence
to cultural context before including the data in train-
ing (see Appendix B for a detailed error analysis).

4.2 Finetuning Data

For finetuning, we constructed task-specific
datasets by combining the original seed data with
the augmented questions. In the General Cul-
ture subtask, Phoenix was finetuned on a total of

18,742 questions, consisting of 2,000 from Palmx-
GC, 6,000 from question paraphrasing, 6,411
from sample-based augmentation, and 4,331 from
dataset-based augmentation. For the Islamic Cul-
ture subtask, PhoenixIs was finetuned on 4,400
questions, including 600 from Palmx-IC, 1,800
from question paraphrasing, and 2,000 from Palmx-
GC.

4.3 Model Pre-selection

To identify suitable base models for finetuning,
we first evaluated several state-of-the-art Arabic-
focused LLMs in a zero-shot setting on the Palmx-
GC and Palmx-IC validation sets. The results are
summarized in Table 2. Based on this evaluation,
we selected Fanar-1-9B-Instruct (Team et al., 2025)
for Phoenix and ALLaM-7B-Instruct (Bari et al.,
2024) for PhoenixIs.

Model Accuracy (%)

Category: General Culture (GC)

Fanar-1-9B-Instruct 72.40
ALLaM-7B-Instruct 70.60
NileChat-3B 70.00
AceGPT-v2-8B-Chat 65.00
Falcon-H1-7B-Instruct 39.20

Category: Islamic Culture (IC)

ALLaM-7B-Instruct 73.00
Fanar-1-9B-Instruct 67.00
NileChat-3B 64.00
AceGPT-v2-8B-Chat 63.67
Falcon-H1-7B-Instruct 34.00

Table 2: Zero-shot accuracy of different LLMs on the
Palmx-GC (GC) and Palmx-IC (IC) validation sets. The
top-performing model in each category is highlighted.

5 Experiment and Results

5.1 Experimental Setup

Experiments were conducted on the Palmx shared-
task datasets for General Culture (GC) and Islamic
Culture (IC). Fanar-1-9B-Instruct was selected as
the base model for GC, and ALLaM-7B-Instruct
for IC, following the pre-selection analysis in Sub-
section 4.3. Model performance was evaluated us-
ing accuracy on the validation and blind test splits.
For GC, the fine-tuning corpus combined the origi-
nal Palmx data with progressively applied augmen-
tation strategies: paraphrasing (PA), sample-based
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(SA), and dataset-based (DA). For IC, augmenta-
tion was deliberately restricted to paraphrasing in
order to safeguard the theological fidelity of re-
ligious material. All results are reported on the
validation set, with the exception of the official
leaderboard scores, which are based on the blind
test set. All experiments were repeated three times
with different random seeds, and we report the av-
erage accuracy. We use Lora (Hu et al., 2022) to
finetune both models with a learning rate of 0.0002,
an effective batch size of 128, and LoRA hyperpa-
rameters R = 64, α = 16, and dropout 0.1. All
experiments were conducted on one NVIDIA A100
GPU.

5.2 Official Leaderboard Results

Table 3 presents the official Palmx 2025 leader-
board. Phoenix achieved fourth place in GC with
an accuracy of 71.35%, performing within one per-
centage point of the leading system. PhoenixIs
achieved 83.82% in the Islamic Culture subtask,
ranking second among all submitted systems.
These results indicate that our augmentation strate-
gies enabled competitive performance across both
subtasks.

Rank Team Accuracy (%)

Category: General Culture (GC)

1 HAI 72.15
2 Pulkit Chatwal 71.65
3 AYA_Team 71.45
4 Phoenix (ours) 71.35
5 CultranAI 70.50
6 ISL-NLP 67.60
7 Rafiul Biswas 67.55
8 Hamyaria 65.90
9 Star 64.05

Category: Islamic Culture (IC)

1 AYA Team 84.22
2 PhoenixIs (ours) 83.82
3 HAI 82.52
4 Rafiul Biswas 74.13
5 Hamyaria 70.83
6 TarnishedLab 62.84

Table 3: Official Palmx 2025 results. Our team’s entries
are highlighted.

Fine-tuning data Acc.

General Culture (GC)

Palmx 77.73± 1.21
Palmx + PA 80.07± 1.21
Palmx + PA + SA 80.60± 1.06
Palmx + PA + SA + DA 80.93± 0.76

Islamic Culture (IC)

Palmx Islamic 73.73± 2.92
Palmx Islamic + PA 75.11± 1.91
Palmx Islamic + PA + Palmx-GC 78.56± 0.78

Table 4: Ablation on validation sets (mean ± std over
three runs). GC uses Fanar-1-9B-Instruct; IC uses
ALLaM-7B-Instruct.

5.3 Ablation Study: Impact of Augmentation
To assess the contribution of each augmentation
strategy, controlled ablations were performed on
the validation sets (Table 4). In GC, performance
improved consistently with each additional aug-
mentation step, reaching 80.93% with the full com-
bination of PA, SA, and DA. This trend illustrates
that diversity introduced at both the question and
dataset level substantially enhances generalization.
In IC, we explored the effect of paraphrasing and
the inclusion of Palmx-GC in the finetuning mix-
ture. The base model achieved 73.73% accuracy.
Incorporating paraphrasing increased performance
to 75.11%, and adding Palmx-GC further raised
accuracy to 78.56%. Overall, our study shows
that each component of the proposed augmenta-
tion strategy contributed to the final performance.

6 Conclusion

In this work, we presented Phoenix and PhoenixIs,
two systems developed for the Palmx 2025 shared
task on Arabic cultural understanding. By leverag-
ing the Palmx-GC and Palmx-IC datasets and ap-
plying a range of data augmentation strategies, we
constructed enriched fine-tuning sets. Our experi-
ments showed that our proposed data augmentation
strategies enabled consistent improvements across
both General Culture and Islamic Culture subtasks.

Limitations.

Our approach relies on synthetic augmentation for
the General Culture task, which, while effective,
may introduce distributional biases or artifacts.
Human verification was applied to sampled aug-
mented data, but the majority of generated content
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remained unreviewed. For the Islamic Culture task,
augmentation was deliberately restricted to para-
phrasing to preserve theological fidelity, which lim-
ited the exploration of richer augmentation strate-
gies.
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A Effectiveness Analysis

We investigated the effect of increasing the size of
augmented data on model performance, as gen-
erating too many samples can hurt the perfor-
mance. For Phoenix, we fine-tuned the model with
2,000, 8,000, 15,000, and 18,742 samples, with
results shown in Figure 2. The best performance
was achieved with 18,742 samples. Similarly, for
PhoenixIs, we fine-tuned with 2,600, 3,200, 3,800,
and 4,400 samples, as shown in Figure 3, where
4,400 samples yielded the strongest results. The
composition of each set is detailed in Tables 5 and
6.

S1 S2 S3 S4
Palmx-GC 2,000 2,000 2,000 2,000
PA 0 2,000 4,000 6,000
SA 0 2,000 4,000 6,411
DA 0 2,000 3,000 4,331
Total 2,000 8,000 13,000 18,742

Table 5: Composition of the dataset for each experiment
on Phoenix.

S1 S2 S3 S4
Palmx-IC 600 600 600 600
Palmx-GC 2000 2000 2000 2000
PA 0 600 1200 1800
Total 2600 3200 3800 4400

Table 6: Composition of the dataset for each experiment
on PhoenixIs.
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Figure 2: Influence of the number of fine-tuning samples
on Phoenix.

B Human Verification and Error Analysis

To ensure the reliability of the augmented data, we
conducted a manual verification of randomly sam-

2,750 3,000 3,250 3,500 3,750 4,000 4,250
Number of questions for Fine-tuning
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78.6%

Figure 3: Influence of the number of fine-tuning samples
on PhoenixIs.

pled questions from each augmentation strategy:

• Sample-based Augmentation (SA): From a
random set of 100 generated questions, we
identified 10 problematic cases. Of these, 3
were factually incorrect, while the remain-
ing 7 deviated from instructions (e.g., not
strictly following the required format or ask-
ing about tangential topics). Importantly, most
of these still produced valid question–answer
pairs despite the inconsistencies.

• Dataset-based Augmentation (DA): From
a random set of 100 generated questions, we
found 3 issues, all of which were culturally
valid but referenced non-Arab countries.

Overall, the error rate across both strategies was
relatively low. The main sources of error were for-
mat deviation and domain drift rather than factual
inaccuracies. This indicates that our augmentation
pipeline is broadly reliable.

ما هي المدينة التي تعرف بأنها "مدينة الجسور
المعلقة" في الجزائر؟

أ. وهران
ب. عنابة

ج. قسنطينة
 د. تلمسان

ما هي أعلى قمة جبلية في الوطن العربي وتقع في   
المغرب؟

أ. جبل سانت كاترين
ب. جبل توبقال
ج. جبل شمس
 د. جبل النبي

Figure 4: Cases from our generated data where the gen-
eration was correct. The proposed answer is highlighted
in blue.
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يُعرف الفنان السوداني الكبير محمد وردي بلقب 'فنان    
أفريقيا الأول'. ما هو اللقب الآخر الذي ارتبط به بشكل وثيق

ويعكس مكانته في الغناء السوداني؟
أ. بلبل السودان

ب. عنقريب الفن
ج. فنان الشعب
د. فنان الوادي 

ما هو أعلى جبل في اليابان؟
أ. جبل كيتا

ب. جبل هوتاكا 
ج. جبل فوجي

د. جبل أينو

Figure 5: Cases from our generated data where the
generation was incorrect (or deviated from instructions).
The proposed answer is highlighted in blue.

C Error Analysis on Validation Set

We inspected a small sample of incorrect validation
set predictions to illustrate typical failure cases.
Figure 6 shows four representative errors, where
the ground truth is marked in green and the model’s
predictions are in red.

ما هي الدولة التي تحتل المرتبة الثالثة في مساحة
الأراضي في إفريقيا والعالم العربي؟

أ. السودان
ب. الجزائر
ج. نيجيريا

د. مصر

متى يُحتفل بيوم الرياضة الوطني في قطر؟
أ. في الثلاثاء من الأسبوع الثاني من فبراير

ب. في 1 مايو
ج. في 10 ذو الحجة

د. في 18 ديسمبر

اً؟ اً ليبي أي من الشخصيات التالية يُعتبر روائي
أ. هشام مطر

ب. محمد الفيتوري
ج. جمال خشتة

د. عزالدين شكري الفيلالي

ما هو الدين الذي يعتنقه النوبيون والبجا بشكل تقليدي في
السودان؟

أ. المسيحية
ب. اليهودية

ج. الهندوسية
د. الإسلام

Figure 6: Cases from the Palmx-GC validation set where
the model’s prediction was incorrect. Ground truth is
marked in green, predictions in red.

أي من هذه الأنهار يشكل الحدود بين الأردن
وفلسطين؟

أ. نهر اليرموك
ب. نهر الليطاني

ج. نهر الأردن
 د. نهر العاصي

Dataset-based Augmentation

من هو الكاتب الفلسطيني المعروف بقصصه
القصيرة التي تناولت القضية الفلسطينية وعُرفت

بأسلوبها الواقعي والرمزي؟
أ. محمود درويش
ب. سميح القاسم

ج. إبراهيم نصر الله
 د. غسان كنفاني

Sample-based Augmentation

من أي لونين تتألف الكوفية الفلسطينية؟
أ. أزرق وذهبي

ب. أحمر وأخضر
ج. أبيض وأسود
 د. بني ورمادي

Paraphrasing

Figure 7: Examples of augmented question–answer
pairs generated using the three strategies: paraphrasing,
sample-based augmentation, and dataset-based augmen-
tation. The proposed answer is highlighted in blue.
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Abstract

This paper provides a comprehensive overview

of the QIAS 2025 shared task, organized as

part of the ArabicNLP 2025 conference and

co­located with EMNLP 2025. The task was

designed for the evaluation of large language

models in the complex domains of religious and

legal reasoning. It comprises two subtasks: (1)

Islamic Inheritance Reasoning, requiring mod­

els to compute inheritance shares according to

Islamic jurisprudence, and (2) Islamic Knowl­

edgeAssessment, which covers a range of tradi­

tional Islamic disciplines. Both subtasks were

structured as multiple­choice question answer­

ing challenges, with questions stratified by vary­

ing difficulty levels. The shared task attracted

significant interest, with 44 teams participat­

ing in the development phase, from which 18

teams advanced to the final test phase. Of these,

6 teams submitted entries for both subtasks, 8
for Task 1 only, and two for Task 2 only. Ulti­
mately, 16 teams submitted system description

papers. Herein, we detail the task’s motivation,

dataset construction, evaluation protocol, and

present a summary of the participating systems

and their results.

1 Introduction

The emergence of Large Language Models (LLMs)

has transformed NLP, enabling state­of­the­art per­

formance in tasks requiring deep linguistic under­

standing, complex reasoning, and coherent text gen­

eration. Trained on large­scale general­purpose

corpora, LLMs have demonstrated strong perfor­

mance across a variety of benchmarks, including

question answering, summarization, and dialogue.

However, LLMs still face challenges in specialized

domains, particularly those requiring high informa­

tion accuracy, and sensitivity to cultural or religious

contexts. In the Islamic contexts, LLMs must rea­

son over authoritative and structured sources such

as the Qur’an, Hadith, and fatwas. They must also

consider differences in interpretation across schools

of thought, including variations within Sunni Islam

across the four major legal schools: Ḥanafī, Mālikī,

Shāfi’ī, and Ḥanbalī.

To evaluate LLMs’capabilities in both Islamic legal

reasoning and specialized religious knowledge, we

introduce the QIAS 2025 Shared Task. This bench­

mark presents a diverse set of question­answering

challenges across multiple domains, difficulty lev­

els, and jurisprudential perspectives. The task in­

cludes two subtasks: (1) Islamic Inheritance Rea­

soning, which requires precise, rule­based reason­

ing grounded in classical Islamic jurisprudence.

Task 2 focuses on general Islamic knowledge, in­

corporating questions curated by experts from key

disciplines. Each question is labeled by difficulty

and assesses knowledge of religious concepts, legal

reasoning, and interpretive differences.

In this paper, we present an overview of the QIAS

20251 Shared Task, which represents an important

step toward developing NLP models capable of

addressing complex challenges in Islamic knowl­

edge. This includes inheritance calculation tasks

requiring precise reasoning and rule­based compu­

tation grounded in Islamic jurisprudence. To our

knowledge, no previous dataset has been specifi­

cally designed for fine­tuning models on Islamic

inheritance reasoning at this scale. The second task

focuses on question answering covering diverse ar­

eas of Islamic scholarship. Unlike many existing

datasets relying on general cultural or surface­level

questions, our dataset is curated and annotated by

domain experts to reflect a deeper understanding

of jurisprudential and theological concepts.

2 Related Work

Recent LLMs such as GPT­4 (Achiam et al.,

2023), Gemini2.5 (Comanici et al., 2025), and

DeepSeek­R1 (Guo et al., 2025) have achieved

state­of­the­art performance across diverse stan­

1https://sites.google.com/view/qias2025/
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dard NLP benchmarks. In parallel, several Arabic­

focused LLMs have been developed to better cap­

ture linguistic, cultural, and domain­relevant needs

of Arabic­speaking communities, including Fal­

con(Almazrouei et al., 2023), Jais (Sengupta et al.,

2023), AceGPT(Huang et al., 2023), ArabianGPT

(Koubaa et al., 2024), ALLaM (Bari et al., 2024),

and Fanar (Abbas et al., 2025). These efforts have

motivated growing interest in applying LLMs to

tasks involving Islamic content and knowledge.

The application of LLMs to Islamic texts has re­

cently gained increasing attention within the NLP

community. (Malhas et al., 2022) (Malhas et al.,

2023) organized shared tasks focused on advanc­

ing Islamic information retrieval, with a partic­

ular focus on understanding Qur’anic passages.

These tasks included a Qur’anic passage retrieval

task—requiring models to retrieve relevant verses

from the Qur’an given a question, and a reading

comprehension task, where expected to extract ac­

curate answers from a provided passage. More

recently, (Sayeed et al., 2025) explored QA sys­

tems for ṭibb nabawī (Prophetic medicine) using
LLaMA­3, Mistral­7B, and Qwen­2 combined with

RAG, while (Alan et al., 2024) proposed Mufas­

sirQAS, a RAG­based system trained on Turkish Is­

lamic texts to improve transparency and reduce hal­

lucinations in religious QA. (Rizqullah et al., 2023)

introduced QASiNa QAdataset, derived from Sirah

Nabawiyah texts in Indonesian, comparing tradi­

tional multilingual transformers (XLM­R, mBERT,

IndoBERT) with GPT­3.5 and GPT­4. (Qamar et al.,

2024) introduced a dataset of 73,000 question–an­

swer pairs has been introduced, focusing on non­

factoid QA for Quranic Tafsir and Hadith. The

study revealed a critical gap between automatic

evaluation metrics (such as ROUGE) and human

judgments. These results show that automatic eval­

uation metrics alone are not sufficient, and high­

light the need for more robust evaluation methods

that can better reflect the complexity and interpre­

tive nature of Islamic religious texts. In (Aleid

and Azmi, 2025), the authors released Hajj­FQA, a

benchmark of 2,826 QA pairs extracted from 800

expert­annotated fatwas concerning the Hajj pil­

grimage. Despite these efforts, several studies have

identified significant limitations in this LLMs. For

instance, (Mohammed et al., 2025) show that even

advanced models like GPT­4 tend to produce fac­

tually incorrect or misleading answers when ap­

plied to Islamic content. They identify three main

issues: (i) misinterpretation of religious context,

(ii) generation of answers that are unclear or not

based on reliable Islamic sources like the Qur’an

or Hadith, and (iii) high sensitivity to slight varia­

tions in question phrasing, leading to inconsistent

responses. Similarly, (Alnefaie et al., 2023) ob­

served that GPT­4 has difficulty answering Quranic

questions accurately, due to difficulties with classi­

cal arabic, semantic ambiguity, and misinterpreta­

tion of contextual meaning.

Early research on automating Islamic inheritance

began with expert systems focused on calculat­

ing basic inheritance shares (Akkila and Naser,

2016). Later works incorporated intricate adjust­

ments such as ḥ ajb, ʿawl, and radd (Tabassum et al.,

2019). (Zouaoui and Rezeg, 2021) proposed a Ara­

bic ontology for identifying heirs and d calculating

their inheritance shares (Tabassum et al., 2019).

Most recently, (Bouchekif et al., 2025) evaluated

seven LLMs on Islamic inheritance. The results

reveal that models with strong reasoning capabil­

ities, such as Gemini 2.5 and o3, achieved high

performance, with accuracy rates of 90.6% and

93.4%, respectively. In contrast, models lacking

advanced reasoning abilities—such as Jais, Mistral,

and LLaMA—performed significantly worse, with

accuracy rates below 50%, highlighting their limi­

tations in handling complex legal reasoning tasks.

3 Task1: Islamic Inheritance Reasoning

3.1 Task Description

The task1 focuses on the domain of 'lm al­mawārīth,

the Islamic science of inheritance. The goal is to

assess the ability of LLMs to accurately apply Is­

lamic inheritance rules in realistic scenarios. Solv­

ing inheritance problems requires a combination of

cognitive, legal, and computational skills, includ­

ing:

1. Identifying familial relationships and consid­

ering legal conditions such as debts, bequests,

and the sequence of deaths among relatives.

2. Determining eligible heirs, including fixed­

share heirs (aṣ ḥ āb al­furūḍ ) and residuaries

(’aṣ abāt), and correctly applying exclusion

rules (ḥ ajb) based on valid justifications and

authentic scriptural evidence.

3. Computing shares by deriving a common de­

nominator and adjusting the distribution when

necessary:

• Radd (redistribution) is used when a surplus

remains after initial allocation. This sur­

plus is proportionally redistributed among
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the heirs, excluding spouses. — Example:

Wife (1/4) and full sister (1/2), leaving a
surplus of 1/4; after redistribution, the wife
receives (1/4) and the sister receives (3/4).

• ʿAwl (proportional reduction) is applied when
the sum of assigned shares exceeds the estate.

All shares are scaled down proportionally. —

Example: Father (1/6), mother (1/6), wife
(1/8), and four daughters (2/3); the total
exceeds 1. The denominator is adjusted to

27, and then the wife receives 3/27 = 1/9.
4. Addressing complex and exceptional cases,

such as consecutive death (munāsakha) or juris­

tic disputes like the Akdariyya case involving

grandparents and siblings.

5. Numerical precision in the final distribution,

including the correct adjustment and fractional

allocation2.

3.2 Data

The dataset contains 22,000 MCQs, including

10,446 generated from IslamWeb fatwas and 11,554

constructed from inheritance case resolutions us­

ing the calculator of the Almwareeth website3, of­

fers a specialized tool that algorithmically solves

all types of mirath (Islamic inheritance) problems.

The IslamWeb­based MCQs were derived from Is­

lamic religio­ethical rulings (fatwas)4, which were

automatically converted into question­answer for­

mat using Gemini 2.5 Pro. Each generated question

was then reviewed by four experts in Islamic stud­

ies to ensure both legal soundness and linguistic

clarity. As part of the preprocessing phase, am­

biguous questions were rephrased to guarantee a

single, unambiguous interpretation. The answer

choices were also revised to eliminate semantic

and numerical redundancies, such as equivalent op­

tions (e.g 1/2 and 2/4). The dataset has two levels
of difficulty: Beginner and Advanced, reflecting

increasing complexity in both legal reasoning and

mathematical computation.

Participants are also provided a collection of 3,165

fatwas (question–answer pairs) from IslamWeb is

available. These fatwas cover a broad spectrum

of Islamic legal, ethical, and social issues and can

serve as a valuable supplementary knowledge base.

2For more details about the terminology and rules of Is­
lamic inheritance law, see “Irth,” in Al­Mawsū’a al­Fiqhiyya
(The Kuwaitan Encyclopedia of Fiqh). Kuwait: Wazārat al-
Awqāf wa­al­Shuʾūn al­Islamiyya. 45 Vols. 1984­2007. Vol.
3, Pp. 17­79.

3https://almwareeth.com/
4https://www.islamweb.net/

Example – Level Beginner

مع2و،قيقشخأنبا1و،قيقشخأ2و،بأنعيفوت

بيصنوهام،ةجوز1و،تنب2و،مأو،بأللقيقش

؟مألا

He was survived by his father, two full
brothers, one nephew (son of a full
brother), two paternal uncles, his mother,
two daughters, and his wife. What is the
share of the mother?

(One­third) ثلثلا □
(One­quarter) عبرلا □
(One­sixth) سدسلا ■
(One­eighth) نمثلا □
(One­half) فصنلا □
(Nothing) ءيشال □

Example – Level Advanced

وهام.مهرد12000ةكرتلاو،قيقشخأونيتنبوةجوزنعيفوت

؟ةكرتلانمثراولكليئاهنلابيصنلا

He was survived by his wife, two daughters, and
one full brother. The estate is 12,000 dirhams. What
is the final share of each heir from the estate?

�
خألا،مهرد8000:ناتنبلا،مهرد1500:ةجوزلا

مهرد2500:قيقشلا

Wife: 1500 dirhams, Two daughters: 8000
dirhams, Full brother: 2500 dirhams

�
خألا،مه8000:ناتنبلا،مهرد3000:ةجوزلا

مهرد1000:قيقشلا

Wife: 3000 dirhams, Two daughters: 8000
dirhams, Full brother: 1000 dirhams

�
خألا،مهرد6000:ناتنبلا،مهرد1500:ةجوزلا

مهرد4500:قيقشلا

Wife: 1500 dirhams, Two daughters: 6000
dirhams, Full brother: 4500 dirhams

�
خألا،مهرد8000:ناتنبلا،مهرد1500:ةجوزلا

مهرد3000:قيقشلا

Wife: 1500 dirhams, Two daughters: 8000
dirhams, Full brother: 3000 dirhams

�
خألا،مهرد7500:ناتنبلا،مهرد2000:ةجوزلا

مهرد2500:قيقشلا

Wife: 2000 dirhams, Two daughters: 7500
dirhams, Full brother: 2500 dirhams

�
خألا،مهرد8500:ناتنبلا،مهرد1000:ةجوزلا

مهرد2500:قيقشلا

Wife: 1000 dirhams, Two daughters: 8500
dirhams, Full brother: 2500 dirhams

4 Task2: Islamic Assessment

4.1 Task Description

The task2 evaluates general Islamic knowledge

across a wide range of topics within Islamic knowl­

edge, including ʿulūm al­Qurʾān (Quranic studies),
ʿulūm al­Ḥadīth (hadith criticism), fiqh (jurispru­

dence), uṣ ūl al­fiqh (legal theory), sīrah (Prophetic
Biography). It is organized into three progressively
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Task Split Levels Total

Beg. Int. Adv.

Task 1

Task 1

Training 10000 — 10000 20000

Dev 500 — 500 1000

Test 500 — 500 1000

Total 11000 — 11000 22000

Task 2

Task 2

Training — — — —

Dev 350 175 175 700

Test 700 150 150 1000

Total 1050 325 325 1700

Table 1: Unified distribution of MCQs across dataset splits and difficulty levels for Task 1 (Inheritance Reasoning)

and Task 2 (Islamic Knowledge Assessment). “—” indicates not available.

challenging difficulty levels: beginner, intermedi­

ate, and advanced.

4.2 Data

The dataset was constructed from collection of 25

relevant classical Islamic books that are widely rec­

ognized by scholars as authoritative. It consists of

1,400 MCQs (700 for training and 700 for testing),

all rigorously reviewed and validated by five ex­

perts in Islamic studies. Each question has been

carefully designed to elicit a single, unambiguous

correct answer, thereby ensuring clarity and consis­

tency in the evaluation process.

The answers to the MCQs in the validation and

test sets are derived from a selection of classical

Islamic texts, which we provide to participants. As

such, this corpus can be leveraged either as part of a

Retrieval­Augmented Generation (RAG) system to

enhance themodel’s ability to generate accurate and

contextually grounded responses, or to fine­tune

language models on Islamic studies.

Example of MCQ Level Beginner

؟ميقمللنيفخلاىلعحسملاةدمام

What is the duration of wiping over the leather socks for a
resident?

One day and one night ةليلوموي

�

Three days and their nights نهيلايلبمايأةثالث

�

Two days and two nights ناتليلوناموي

�

A full week لماكعوبسأ

�

Example of MCQ Level Intermediate

؟سايقلايفلصألاطورشنم

Which of the following is a condition for the base case (al­aṣ l)

in analogical reasoning (qiyās)?
�

عرفلصألانوكينأ

ً

لصألا

ٍ

رخآ

That the base case (al­aṣ l) is itself a branch (farʾ) of
another base case.

�
تباثمكحلانوكيالأ

ً

قيرطبلصألايفا

ٍ

يعمس

ٍّ

يعرش

That the ruling in the base case is not established by a
revealed textual proof.

�
لصألانوكيالأ

ُ

عرف

ً

لصألا

ٍ

رخآ

That the base case (al­aṣ l) is not a branch (farʾ) of another
base case.

�
تالأ

ُ

رع

َ

ةقيرطف

ُ

طابنتسالا

That the method of derivation is unknown.

Example of MCQ Level Advanced

؟بجاولادوجوتابثإلءامكحلاقيرطوهام

What is the method of the philosophers to prove the existence

of the necessary Being (al-Wājib)?
�

ميدقملاعلارابتعاقيرطنع

ً

.ا

By positing the world as eternal.

�
.هتاذلبجاوملاعلانأتابثإقيرطنع

By claiming the world is necessary in itself.

�
.رودلاولسلستلاعانتماقيرطنع

By the impossibility of infinite regress (tasalsul) and
circular causation.

�
.ملاعلاثودحتابثإقيرطنع

By demonstrating that the world is originated.
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Team Name Task 1 Task 2 Affiliations

Gumball (Elrefai et al., 2025) 4 4 Alexandria University, Ain Shams Uni­

versity, Benha University

PuxAI (Phuc and Đặng Văn,

2025)

4 4 VNU‑HCM University of Information

Technology

NYUAD (AlDahoul and Zaki,

2025)

4 New York University Abu Dhabi

HIAST (Hamed et al., 2025) 4 4 Higher Institute for Applied Sciences

and Technology

MorAI (R’baiti et al., 2025) 4 Mohammed VI Polytechnic University

CVPD (Bekhouche et al., 2025) 4 University of the Basque Country, Sor­

bonne University Abu Dhabi

QU­NLP (AL­Smadi, 2025) 4 4 Qatar University

CIS­RG (Zaki et al., 2025) 4 Sinai University

ANLPers (Sibaee et al., 2025) 4 4 Prince Sultan University

Athar (Noureldien et al., 2025) 4 4 University of Khartoum, University

Malaysia

SHA (Altammami, 2025) 4 King Saud University

SEA (Alowaidi et al., 2025) 4 University of Leeds

HAI (Hossain and Afli, 2025) 4 ADAPT Centre

IWAN 4 King Saud University

Transform_Tafsir (Abu Ahmad

et al., 2025)

4 University of Osnabrück, German Re­

search Center for Artificial Intelligence

N&N (Alangari and AlShenaifi,

2025)

4 King Saud University

Teams60 4 MBZUAI

Tokenizers United (Samy et al.,

2025)

4 Nile University, Ain Shams University

Table 2: The participating teams: tasks and affiliations.

5 Results and Discussion

A total of 17 teams participated in the Test phase.
Among these, 6 teams submitted systems for both

subtasks, 7 teams participated in Task 1 only, and

2 teams in Task 2 only. Table 2 summarizes the

participating teams and their affiliations. The Dev

phase lasted approximately one and a half months,

followed by a 5­day test phase. During the test

phase, participants made a total of 127 submissions

for Task 1 and 50 for Task 2. We use accuracy to

evaluate models, calculated as the percentage of

questions for which the model’s prediction exactly

matches the correct answer. We provide a baseline

implementation using Fanar, a modernArabic large

language model accessible via API. This baseline

relies exclusively on prompting techniques, without

any fine­tuning. The goal is to provide a simple

yet effective reference point for evaluating model

performance. The dataset and baseline code are

publicly available. 5

5.1 Participating Teams and Results

Table 3 presents the leaderboard rankings and accu­

racy scores for both subtasks. In Subtask 1 (Islamic

Inheritance Reasoning), the best­performing sys­

5https://gitlab.com/islamgpt1/qias_shared_
task_2025
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Task 1 Task 2

Rank Team Accuracy Rank Team Accuracy

1 Gumball 0.972 1 PuxAI 0.9369

2 PuxAI 0.957 2 Athar 0.9272

3 NYUAD 0.927 3 HIAST 0.9259

4 HIAST 0.895 4 N&N 0.8984

5 MorAI 0.880 5 Tokenizers United 0.8738

6 CVPD 0.876 6 SEA 0.8601

7 QU­NLP 0.859 7 Teams60 0.8491

8 CIS­RG 0.763 8 Transformer_Tafsir 0.7970

9 ANLPers 0.707 9 CIS­RG 0.7874

10 Athar 0.704

11 SHA 0.624

12 SEA 0.599

13 HAI 0.547

14 Baseline 0.515

15 IWAN 0.496

16 Transform_Tafsir 0.447

Table 3: Accuracy performance of teams on Task 1 and Task 2.

tem reached an accuracy of 97.2%, showcasing

strong capabilities in handling complex jurispru­

dential computations. In Subtask 2 (Islamic Knowl­

edge Assessment), the top score was 93.7%, re­

flecting the broader challenge of covering multiple

Islamic disciplines.

The Gumball team (Elrefai et al., 2025) secured

first place in Subtask 1 with a Qwen3­4B model

fine­tuned through a two­stage pipeline combining

classical inheritance texts with supervised MCQ

training. Their system achieved 97.2% accuracy,

outperforming all other submissions.

The PuxAI team (Phuc and Đặng Văn, 2025),

ranked second, introduced a hybrid multi­agent ar­

chitecture. For inheritance, they developed a Vir­

tual Inheritance Expert pipeline combining fatwa

retrieval with rule­based reasoning. For general

knowledge, they designed a Proponent–Critic De­

bate pipeline, where agents engaged in adversarial

reasoning before synthesis. Their system reached

95.7% on Subtask 1 and 93.7% on Subtask 2.

The NYUAD team (AlDahoul and Zaki, 2025),

in third place, evaluated a diverse set of models,

including open­source Arabic LLMs (Falcon3, Fa­

nar, Allam), proprietary systems (GPT­4o, GPT­

o3, Gemini Flash 2.5, Gemini Pro 2.5), and fine­

tuned variants. While Arabic open­source models

remained below 40% accuracy, proprietary models

achieved up to 92.3%. Their final ensemble sys­

tem (GPT­o3, Gemini Flash 2.5, Gemini Pro 2.5)

reached 92.7%.

The HIAST team (Hamed et al., 2025) im­

plemented a lightweight RAG pipeline based on

Claude 4 Opus, retrieving top­ranked sources (of­

ten IslamWeb) and appending them to Arabic few­

shot prompts. This approach improved inheritance

reasoning, achieving 89.5% accuracy.

TheMorAI team (R’baiti et al., 2025) proposed

a collaborative LLM framework combining ma­

jority voting with retrieval­augmented generation.

Their system integrated ALLaM­7B, DeepSeek­

Reasoner, and Gemini­2.5­Flash, each indepen­

dently generating predictions, with a voting mecha­

nism selecting the final answer. Augmented with

TF­IDF retrieval over a curated inheritance case

database, their ensemble achieved 88.0% on Sub­

task 1, compared to 79.5% for ALLaM­7B, 71.8%

for DeepSeek­Reasoner, and 83.5% for Gemini­2.5­

Flash.

The CVPD team (Bekhouche et al., 2025) de­

veloped an encoder­based approach using Arabic

text encoders with an Attentive Relevance Scoring
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(ARS) module. Their best configuration, MAR­

BERT with ARS, achieved 69.9% accuracy, while

commercial LLMs such as Gemini reached up to

87.6%.

TheQU­NLP team (AL­Smadi, 2025) fine­tuned

Fanar­1­9B with LoRA and integrated it into a

FAISS­based RAG pipeline. Their system achieved

85.8% accuracy, outperforming GPT­4.5 (74.0%),

LLaMA­3 (48.8%), Mistral (44.5%), ALLaM­7B

(42.9%), and the Fanar base model (48.1%).

The CIS­RG team (Zaki et al., 2025) com­

bined fine­tuning, chain­of­thought prompting, and

retrieval­augmented generation across multiple

models, including Fanar, LLaMA,Gemini, andMis­

tral. Their hybrid system achieved 76.3% accuracy

on Subtask 1, demonstrating competitive reason­

ing on basic inheritance cases but struggling with

complex scenarios such as ʿawl and ḥ ajb.
The N&N team (Alangari and AlShenaifi, 2025)

developed a system based on few­shot chain­of­

thought prompting combined with ensemble meth­

ods and retrieval­augmented re­prompting (R2P).

Their pipeline consisted of (i) few­shot CoT prompt­

ing with standardized Arabic templates; (ii) a

majority­vote ensemble over GPT­4o, Gemini 2.5,

DeepSeek, and Qwen­plus; and (iii) retrieval­

augmented re­prompting when the ensemble failed

to agree. This design achieved 89.9% accuracy on

Subtask 2, ranking them second overall in this task.

The ANLPers team (Sibaee et al., 2025) focused

on Chain­of­Thought prompting, testing Claude 3.7

Sonnet and GPT­4o with direct­answer and step­

by­step reasoning. Structured reasoning improved

accuracy from 67.0% to 81.0% on Claude 3.7 and

from 63.0% to 74.0% on GPT­4o. Error analysis

revealed persistent difficulties with tasheeh (integer

normalization of shares).

The Athar team (Noureldien et al., 2025) ex­

plored both subtasks with distinct strategies. For

Subtask 1, they employed a zero­shot DeepSeek­

R1 pipeline with constrained prompting and regex­

based label extraction, achieving 70.4% accuracy.

For Subtask 2, they designed a three­stage hybrid

RAG pipeline combining BM25 and dense retrieval

with GPT­based reranking, reaching 92.7% and

ranking second overall. Their analysis highlighted

sensitivity to question length and answer option

complexity in inheritance reasoning, and retrieval

errors as the main limitation in broader knowledge

assessment.

The SHA team (Altammami, 2025) integrated

static and dynamic few­shot prompting with

retrieval­augmented generation. Although some

models showed performance drops when aug­

mented with additional context, their best config­

uration—Gemini with RAG and dynamic prompt­

ing—achieved 62.3% accuracy.

The SEA team (Alowaidi et al., 2025) designed

an Islamic RAG framework with three stages: (i)

knowledge resource preparation, preprocessing fat­

was and Islamic books into 500­token chunks

indexed in FAISS; (ii) retrieval using similarity

search, Keyword­Augmented Two­Stage Retrieval

(K2R), or Multi­Query Reformulation (MQR­K);

and (iii) answer generation with structured prompt­

ing and post­generation validation. Their system

achieved 60.0% accuracy on Subtask 1 and 86.0%

on Subtask 2.

The ADAPT–MTUHAI team (Hossain andAfli,

2025) introduced a dual­expert architecture based

on ALLaM­7B, combining a LoRA fine­tuned in­

heritance specialist with its base model. A con­

strained decoding mechanism enforced valid out­

puts (A–F). Their system achieved 54.7% accuracy,

improving substantially over the 42.9%ALLaM­7B

zero­shot baseline.

The Transformer Tafsir team (AbuAhmad et al.,

2025) developed a hybrid RAG pipeline combin­

ing sparse (BM25) and dense retrieval with cross­

encoder reranking. While gains in inheritance rea­

soning were modest (Fanar: 44.0%→ 45.0%; Mis­

tral: 35.0%→ 39.0%), Subtask 2 showed substan­

tial improvements (Fanar: 55.0%→ 80.0%; Mis­

tral: 69.0%→ 79.0%).

The Tokenizers United team (Samy et al.,

2025) proposed a Retrieval­Augmented Genera­

tion (RAG) pipeline that combinedMuffakir embed­

dings for domain­specific retrieval with the Gemini

2.5 Flash Lite model for lightweight generative rea­

soning. Their design prioritized efficiency, opting

for direct similarity search (Top­K = 8–10) rather

than complex reranking mechanisms. On the de­

velopment set, performance varied between 44.3%

and 84.3%, depending on the configuration. Their

best­performing setup—Qdrant with cosine simi­

larity, a chunk size of 400 characters, and Muffakir

embeddings—achieved 87.4% accuracy on the of­

ficial test set, ranking 5th out of 10 participating

teams in Task 2.

6 Conclusions and Future work

In this paper, we presented the QIAS 2025 Shared

Task, designed to evaluate the capabilities of large
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language models in understanding and reasoning

within Islamic knowledge domains. The task was

divided into two subtasks: Islamic Inheritance Rea­

soning and Islamic Knowledge Assessment, both

formulated as multiple­choice question answering

problems with varying levels of difficulty. The sub­

mitted systems revealed significant performance

gaps between open­source and commercial LLMs,

with commercial models showing notably stronger

results.

As a future direction, we plan to organize a

follow­up edition of the shared task focused more

deeply on Islamic inheritance. Unlike the current

multiple­choice setup, the next edition will involve

end­to­end problem solving—from identifying eli­

gible heirs based on a given scenario to computing

their exact shares. This approach will better reflect

real­world applications and offer a more rigorous

benchmark for legal reasoning tasks. In this con­

text, wewill also encourage researchers to use small

and open­source language models. These models

are easier to deploy, more accessible, and promote

better transparency and reproducibility. We hope

this will empower researchers—especially in low­

resource settings—to develop useful tools and con­

tribute to the field of Islamic studies.
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Abstract

Islamic inheritance domain holds significant
importance for Muslims to ensure fair distri-
bution of shares between heirs. Manual calcu-
lation of shares under numerous scenarios is
complex, time-consuming, and error-prone. Re-
cent advancements in Large Language Models
(LLMs) have sparked interest in their potential
to assist with complex legal reasoning tasks.
This study evaluates the reasoning capabilities
of state-of-the-art LLMs to interpret and ap-
ply Islamic inheritance laws. We utilized the
dataset proposed in the ArabicNLP QIAS 2025
challenge, which includes inheritance case sce-
narios given in Arabic and derived from Islamic
legal sources. Various base and fine-tuned mod-
els, are assessed on their ability to accurately
identify heirs, compute shares, and justify their
reasoning in alignment with Islamic legal prin-
ciples. Our analysis reveals that the proposed
majority voting solution, leveraging three base
models (Gemini Flash 2.5, Gemini Pro 2.5,
and GPT o3), outperforms all other models
that we utilized across every difficulty level.
It achieves up to 92.7% accuracy and secures
third place overall in the challenge1 (Bouchekif
et al., 2025a).

1 Introduction

Islamic inheritance, which is known as “Ilm al-
Mawārı̄th” in Arabic, is an area of jurisprudence
that is highly structured, rule-based, and sensitive
to context (Bouchekif et al., 2025a,b). The Qur’an
introduced various rights and restrictions related
to inheritance, marking significant improvements
in the treatment of women and family relations for
its time2. It also aimed to establish clear and fixed
inheritance laws, contributing to the formation of a
comprehensive legal system.

1https://sites.google.com/view/qias2025/leade
rboards?authuser=0

2https://islamicwillstrust.com/islamic-law-o
f-inheritance/

Islamic inheritance jurisprudence aims to pre-
vent disputes by clearly defining the shares of each
heir2. It ensures fair and equitable distribution,
though Qur’anic verses assign different shares to
specific relatives. Inheritance domain holds sig-
nificant importance for Muslims, as it determines
the rightful heirs, the individuals to be inherited
from, and the specific shares allocated to each
heir (Zouaoui and Rezeg, 2021). Upon a person’s
death, a matter of particular concern is the manage-
ment of all the property left behind. Manual cal-
culation is a complex, time-consuming, and error-
prone task that can be extremely difficult and costly.
Automation of this calculation is convenient to save
time, effort, and cost (Zouaoui and Rezeg, 2021).

Our analyses and experiments center around the
following research questions: RQ1: Do current
Arabic open-source LLMs perform well in Islamic
inheritance reasoning? RQ2: To what extent do
state-of-the-art proprietary base LLMs excel in Is-
lamic inheritance reasoning? and RQ3: Can fine-
tuning LLMs for the inheritance reasoning task
improve performance?

We address RQ1 by running several open-source
Arabic LLMs. To answer RQ2, we utilized APIs
of state-of-the-art proprietary LLMs. Additionally,
to answer RQ3, we fine-tuned several LLMs with
the inheritance multiple-choice questions dataset.

2 Related Work

LLMs have shown impressive performance in a va-
riety of natural language understanding tasks (Al-
Dahoul et al., 2024a; Kuo et al., 2025; AlDahoul
et al., 2024b). When it comes to representing Islam,
it is essential to ensure that its beliefs and teachings
are portrayed accurately and faithfully, grounded
in the Quran and Sunnah (Patel et al., 2023). Addi-
tionally, it is important to prevent hallucination in
Islamic fatwa generation (Mohammed et al., 2025).

Several studies have focused on automating the
inheritance calculation. (Jimoh et al., 2014) used an
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expert system to calculate shares based on Islamic
law. Despite the growing development of auto-
mated knowledge retrieval systems, few leverage
semantic web technologies for Islamic knowledge,
particularly in Arabic. (Zouaoui and Rezeg, 2021)
introduced AraFamOnto, an Arabic ontology-based
system designed to automate Islamic inheritance
calculations by efficiently modeling family rela-
tionships and reducing manual effort.

One work3 examined the capabilities of several
generative AI models in applying the principles
of Islamic inheritance law. In their experiment,
although ChatGPT-44 surpasses other models in
performance, it continues to exhibit notable limi-
tations, including fabricated references and legal
inaccuracies. There is an ongoing effort to trans-
form Islamic studies through generative AI as part
of the 2024–2027 project5. This initiative focuses
on building AI tools to engage with classical and
contemporary Islamic texts.

However, previous efforts to automate inheri-
tance problem solving using generative models
remain limited, both in the number of models
explored and due to the absence of large-scale
datasets encompassing diverse scenarios and dif-
ficulty levels. This study addresses these gaps by
utilizing a comprehensive dataset (Bouchekif et al.,
2025a,b) of inheritance cases to evaluate the per-
formance of state-of-the-art LLMs.

3 Materials and Methods

3.1 Dataset Overview

The QIAS (Question-and-Answer in Islamic Stud-
ies Assessment Shared Task) 2025 (Bouchekif
et al., 2025a,b) dataset for Islamic inheritance rea-
soning contains multiple-choice questions (MCQs)
categorized into three difficulty levels: beginner,
intermediate, and advanced. The primary goal is to
evaluate the reasoning abilities of LLMs within the
domain of Islamic knowledge. Each question has
exactly one correct answer and presents six answer
choices, labeled A through F, each accompanied by
a corresponding textual explanation. The dataset is
annotated using one of six distinct symbols. The
questions are sourced from a corpus of 32,000 fat-

3https://islamiclaw.blog/2025/04/03/roundtabl
e-augmented-learning-generative-artificial-intel
ligence-and-islamic-inheritance-law/

4https://openai.com/index/chatgpt/
5https://www.cilecenter.org/research-publica

tions/funded-projects/transforming-islamic-studi
es-age-generative-artificial

was from IslamWeb and have been validated by
a qualified expert in Islamic inheritance law. The
dataset is divided into 9,446 examples for training,
1,000 examples for validation, and 1,000 examples
for testing in the final test phase.

3.2 Methods

We have evaluated several methods, including base
and fine-tuned LLMs, to find the best solution for
Islamic inheritance reasoning. We utilized two
prompts: Prompt 1 and Prompt 2. While Prompt 1
has simple structure, Prompt 2 has zero-shot Chain-
of-Thought (CoT) style for solving MCQs by think-
ing step-by-step and justifying reasoning clearly.

Prompt 1: Islamic inheritance reasoning

Answer the following question using a single
word only from this list: A, B, C, D, E, F.
Final Answer:

In the first experiment, base open-source
Arabic models such as Falcon3 (Almazrouei
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et al., 2023) (“tiiuae/Falcon3-7B-Instruct”)6,7

, Fanar (“QCRI/Fanar-1-9B-Instruct”)8 (Team
et al., 2025), and Allam (“ALLaM-AI/ALLaM-
7B-Instruct-preview”)9 (Bari et al., 2024) were as-
sessed. Additionally, we utilized “Allam think-
ing” (“almaghrabima/ALLaM-Thinking”)10 , an
advanced Arabic LLM, which was fine-tuned and
optimized specifically for reasoning and math. It
was also prompted to think step-by-step.

Additionally, proprietary models such as Gemini
Flash 2.5, Gemini Pro 2.511 (Team et al., 2023),
GPT-4o (Hurst et al., 2024), and GPT o312, were
evaluated for the Islamic inheritance reasoning task
using the APIs of their base models. All previ-
ous LLMs were assessed in inference mode using
Prompt 2 with temperature set to 0 and top_p set
to 1.

To improve the performance of the LLMs in
reasoning and increase the rate of correct an-
swers to inheritance questions, we fine-tuned
several open-source and proprietary LLMs such
as GPT-4o, Gemini Flash 2.5, and Llama 4
Scout13, 14 (“meta-llama/Llama-4-Scout-17B-16E-
Instruct”). All LLMs were fine-tuned in a super-
vised learning setting, with a training set of 7,000
examples and a validation set of 2,446 examples
used during training. The results of the comparison
between all LLMs, including the base and fine-
tuned, are reported using the 1,000 examples in the
validation set.

Llama 4 was fine-tuned utilizing two prompts:
Prompt 1 and Prompt 2. The fine-tuning was
done using Low-Rank Adaptation (LoRA) (Hu
et al., 2022) as the Parameter-Efficient Fine-Tuning
(PEFT) method. The training was carried out
for seven epochs with a learning rate of 0.0002.

6https://huggingface.co/blog/falcon3
7https://huggingface.co/tiiuae/Falcon3-7B-Ins

truct
8https://huggingface.co/QCRI/Fanar-1-9B-Instr

uct
9https://huggingface.co/ALLaM-AI/ALLaM-7B-Ins

truct-preview
10https://huggingface.co/almaghrabima/ALLaM-T

hinking
11https://blog.google/technology/google-deepm

ind/gemini-model-thinking-updates-march-2025/#e
nhanced-reasoning

12https://cdn.openai.com/pdf/2221c875-02dc-478
9-800b-e7758f3722c1/o3-and-o4-mini-system-card.
pdf

13https://ai.meta.com/blog/llama-4-multimoda
l-intelligence/

14https://huggingface.co/meta-llama/Llama-4-S
cout-17B-16E-Instruct

Both the training and evaluation batch sizes were
set to 1 per device, and the gradient accumula-
tion steps were set to 1. The optimizer used was
paged_adamw_32bit. Additionally, 10 warmup
steps were used to stabilize the initial training
phase. We loaded the model using 4-bit quan-
tization for memory efficiency. The fine-tuned
models have been uploaded to Hugging Face:
https://huggingface.co/NYUAD-ComNets
/NYUAD_Llama4_Inheritance_Solver, and
https://huggingface.co/NYUAD-ComNets/N
YUAD_Llama4_Inheritance_Solver2.

GPT-4o was fine-tuned in two scenarios: without
a system prompt and with system Prompt 2. The
fine-tuning was done on the OpenAI platform for 5
epochs, with a learning rate multiplier of 2 and au-
tomatically selected batch size. Similarly, Gemini
Flash 2 and 2.5 were fine-tuned with system Prompt
2. The fine-tuning was done on the Google AI Ver-
tex platform. The hyper-parameters used for fine-
tuning are 3 epochs and a learning_rate_multiplier
of 5. Flash 2.5 used an adapter size of 1, while
Flash 2 used an adapter size of 8 to train more
parameters. In the inference phase, thinking was
enabled.

3.3 Results and Discussion

Table 1 shows the accuracy of base LLMs for
several open-source Arabic LLMs and proprietary
state-of-the-art LLMs. Among the open models,
Allam demonstrates relatively better performance
(38.8%), indicating it may be more effectively
tuned for this specific task or domain. In contrast,
Falcon3 and Fanar perform worse, likely due to
limited domain understanding. Although “Allam
Thinking” was optimized for reasoning and math,
its accuracy declined compared to the base Allam
model. This set of experiments indicates a lack
of domain knowledge and reasoning in the base
open-source Arabic LLMs, which addresses RQ1.

Additionally, both GPT o3 (92.3%) and Gemini
Flash 2.5 (91.5%) demonstrate the strongest per-
formance, highlighting their advanced capability
in understanding and reasoning about Islamic in-
heritance, which answers RQ2. The small gap in
accuracy may be due to the results being based on
a single run. Therefore, for future work, we should
run each model multiple times and compute the
average and variance. This process can provide a
clearer comparison between the two.

Table 2 shows the prompt sensitivity of each
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LLM Accuracy (%)
Falcon3 24.2
Fanar 31.7
Allam 38.8
Allam think 29.2
Gemini Flash 2.5 91.5
GPT-4o 70.1
GPT O3 92.3

Table 1: Accuracy of different Base LLMs.

LLM using Prompt 1 and Prompt 2. The GPT-4o
model demonstrates a notable sensitivity to prompt
design. When evaluated with Prompt 1, its accu-
racy is relatively low at 57.5%. However, a shift to
Prompt 2 significantly enhances the performance to
70.1%, thereby. Allam also shows the same trend.
On the other hand, Gemini Flash 2.5 exhibits high
accuracy regardless of prompt content, suggesting
strong internal reasoning and understanding.

LLM Prompt Accuracy (%)
Allam think Prompt 1 28.8
Allam think Prompt 2 29.2
Allam Prompt 1 30.4
Allam Prompt 2 38.8
Fanar Prompt 1 28.7
Fanar Prompt 2 31.7
Falcon Prompt 1 24.2
Falcon Prompt 2 22.8
Gemini Flash 2.5 Prompt 1 90.7
Gemini Flash 2.5 Prompt 2 91.5
GPT-4o Prompt 1 57.5
GPT-4o Prompt 2 70.1

Table 2: Prompt sensitivity: Accuracy of LLMs
using two different Prompts.

When GPT-4o was fine-tuned for reasoning us-
ing the training set, its accuracy improved signif-
icantly, reaching over 84% as shown in Table 3.
On the other hand, when no system prompt is used
for tuning, the accuracy reaches 84.7%. When
we added “Prompt 2” as a system prompt, the ac-
curacy improved to 86.6%. On the contrary, the
performance of Gemini Flash 2.5 dropped after
fine-tuning (91.5% –> 74.6%) on this task. This
disparity in the fine-tuning results between GPT-4o
and Gemini Flash 2.5 gives an answer to RQ3.

The reason behind this disparity in performance
after fine-tuning is that GPT-4o is a highly gener-
alist model, not specialized for reasoning. This

makes it more adaptable to niche domains like
Islamic inheritance when given domain-specific
data. Furthermore, GPT-4o may have moderate
prior knowledge about Islamic inheritance laws,
so fine-tuning filled a knowledge gap rather than
conflicting with existing knowledge.

On the other hand, we observed performance
degradation in fine-tuning Gemini Flash 2.5 with
the adapter size set to 1 (tuning fewer parameters).
To confirm our observation, we may consider fine-
tuning the same model with larger adapter sizes.
The reason for degradation may stem from the fact
that Flash 2.5 is optimized for CoT reasoning. If the
fine-tuning dataset has only final labels and lacks
detailed reasoning chains, the model may lose its
reasoning structure. This results in misalignment
between what it’s trained to do and what it’s fine-
tuned to.

Fine-tuning Flash 2 with an adapter size of 8
resulted in degraded performance on this task. This
may be due to the relatively limited size of the
fine-tuning dataset, which was insufficient to train
a larger adapter. As a result, the model likely failed
to generalize well. To validate our observation,
we may consider fine-tuning the same model with
smaller adapter sizes or using the base model.

As shown in Table 3, fine-tuning GPT-4o with
Prompt 2 resulted in a better performance, which
contrasts with the behavior of Llama 4 Scout.

LLM Prompt Accu. (%)
Fine-tuned Llama4
Scout

Prompt 1 84.3

Fine-tuned Llama4
Scout

Prompt 2 82.4

Fine-tuned Gemini
Flash 2

Prompt 2 64.6

Fine-tuned Gemini
Flash 2.5

Prompt 2 74.6

Fine-tuned GPT-4o No system
Prompt

84.7

Fine-tuned GPT-4o Prompt 2 86.6

Table 3: Accuracy of fine-tuned LLMs.

Finally, we ran an experiment to assess the best-
performing base LLMs with the testing set released
in the test phase and included a set of 1000 MCQs.
We ran three base models in the inference mode.
The accuracies of GPT-o3, Gemini Flash 2.5, and
Gemini Pro 2.5 on the testing data were 88.4%,
88.1%, and 87.9%, respectively. We later applied
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a majority voting technique using the predictions
from these three LLMs, resulting in a final accu-
racy of 92.7%, which secured third place overall
in the challenge. Figure 1 presents MCQ example
labeled with the correct answer ’D’. However, both
GPT O3 in Figure 2 and Gemini Pro 2.5 in Figure
3 selected option ’E’ and provided step-by-step
reasoning to justify their choice.

Limitations

The limitation of this work is that LLMs often lack
comprehensive knowledge of all inheritance sce-
narios, which leads even the best reasoning mod-
els to occasionally select incorrect answers. Fine-
tuning can help address this issue. However, a
new problem arises: in the original dataset, answer
choices were labeled without detailed reasoning
for each option, which complicated the fine-tuning
of reasoning-based models. To solve this, a sec-
ond version of the dataset was released recently,
including the reasoning behind each selected an-
swer. This may show potential for increasing the
accuracy.
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A Appendix

A.1 Reasoning Analysis
Figure 1 presents MCQ example labeled with the
correct answer ’D’. However, both GPT O3 in Fig-
ure 2 and Gemini Pro 2.5 in Figure 3 selected op-
tion ’E’ and provided step-by-step reasoning to
justify their choice.

Figure 1: MCQ Example

Figure 2: Generated output from Gemini Pro 2.5 for
MCQ Example

Figure 3: Generated output from GPT O3 for MCQ
Example
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Abstract
This paper presents our system for SubTask
1: Islamic Inheritance Reasoning in the QIAS
2025 Shared Task, which evaluates large lan-
guage models (LLMs) on (ilm al-mawārīth)
(Islamic science of inheritance) using a bench-
mark of Arabic multiple-choice questions
(MCQs) derived from expert-reviewed fat-
was. We explore static and dynamic few-
shot prompting, retrieval-augmented genera-
tion (RAG) with a large fatwa corpus, and a
progressive n-gram overlap retrieval method.
The n-gram method is applied both to select
the top five most similar MCQs for dynamic
prompting and to retrieve the most relevant
fatwa answer as additional context during in-
ference. We evaluate proprietary and open-
source LLMs individually and in ensemble
form. Results show that dynamic prompt-
ing and RAG consistently improve accuracy
across our best performing model, Gemini,
achieving 62.26% accuracy on the test set.

1 Introduction

Large Language Models (LLMs) have achieved
impressive advances in reasoning and problem
solving(Plaat et al., 2024; Zhao et al., 2023), yet
their performance often varies across languages
and domains (Matarazzo and Torlone, 2025).
While most prior work has focused on English, a
growing body of research has examined Arabic, re-
vealing mixed results in comprehension and com-
plex reasoning (Khondaker et al., 2024).
One underexplored domain is (ilm al-mawārīth)

(Islamic science of inheritance), which requires
mapping textual descriptions of heirs to precise
share distributions — a task demanding multi-step
reasoning and domain-specific accuracy. To en-
able systematic evaluation in this underexplored
domain, the QIAS 2025 Shared Task offers a large-
scale benchmark of Arabic multiple-choice ques-
tions (MCQs) on (ilm al-mawārīth) (Bouchekif
et al., 2025a,b).

In this paper, we describe our system for the
shared task, which integrates static and dynamic
few-shot prompting, retrieval-augmented genera-
tion (RAG) using a large fatwa corpus, and a pro-
gressive n-gram overlap retrieval method. The n-
gram method is employed in two ways: (1) to re-
trieve the top five most similar MCQs from the
training set for dynamic prompting, and (2) to iden-
tify the most relevant fatwa question and extract its
answer as contextual input for inference.
We evaluate both proprietary and open-source

models, individually and in an ensemble config-
uration. Results show that dynamic prompting
and RAG provide consistent improvements, with
our best-performing model, Gemini, achieving
62.26% accuracy on the test set.

2 Related Work

LLMs have demonstrated strong performance on
text-based multiple-choice questions (MCQs), par-
ticularly in factual recall and reading comprehen-
sion tasks(Matarazzo and Torlone, 2025). Pro-
prietary models such as GPT-4 and Gemini con-
sistently achieve high accuracy on knowledge-
based and standardized exam questions, with doc-
umented success on domains such as the Dental
Admission Test (DAT) (Hou et al., 2025). Simi-
larly, large open-sourcemodels like LLaMA3-70B
perform competitively in natural sciences and read-
ing comprehension domains (Hou et al., 2025).
However, these models consistently struggle with
higher-order cognitive skills, multi-step reason-
ing, and advanced mathematical problem solving,
with hallucination remaining a persistent issue, es-
pecially in complex reasoning scenarios (Saxena
et al., 2024).
Although most prior work has focused on evalu-

ating models in English, some studies have exam-
ined Arabic. Existing research shows that LLMs
demonstrate mixed performance in comprehend-
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ing Arabic content and solving complex reason-
ing tasks. Proprietary models such as GPT-4 and
GPT-3.5 perform competitively but are often out-
performed by smaller, fine-tuned Arabic models
on domain-specific tasks (Khondaker et al., 2023).
In contrast, open-source models like LLaMA-3-
70B still lag behind both ChatGPT and specialized
Arabic models, partly due to limited Arabic repre-
sentation in large pretraining corpora and high sen-
sitivity to input phrasing (Khondaker et al., 2024).
The closest relevant evaluation is the Qur’an

Question Answering shared task (Malhas et al.,
2022, 2023), which addressed Machine Reading
Comprehension (MRC) over Classical Arabic text.
It highlighted the Qur’an’s linguistic complexity
and topic diversity. Their results emphasize the
gap between general Arabic NLP progress and the
sensitive religious domains..
Despite this growing body of work, there is a

clear research gap: no empirical studies have sys-
tematically evaluated LLMs’ accuracy in answer-
ing questions across diverse areas of Islamic schol-
arship. Current literature focuses on general NLP
benchmarks and professional examinations, leav-
ing domain-specific tasks such as Islamic jurispru-
dence (fiqh) and inheritance law (ilm al-mawarith)
largely unexplored.

3 Task Description

The shared task focuses on evaluating LLMs in
the Islamic domain, with a particular emphasis on
their ability to reason about inheritance-related sce-
narios (ilm al-mawārīth). In this subtask, each
multiple-choice question (MCQ) presents a spe-
cific inheritance case describing a set of heirs, and
the proposed model must determine the correct
distribution outcome by selecting the right option
from a predefined set of answers. The evaluation
is based on classification accuracy over a held-out
test set, ensuring an objective comparison ofmodel
performance.

4 Dataset

Experiments were conducted using the official
dataset provided for the Islamic Inheritance Rea-
soning task. The dataset comprises multiple-
choice questions (MCQs) drawn from authentic Is-
lamic jurisprudential sources and are designed to
test not only factual recall but also the model’s
ability to apply complex, rule-based reasoning
grounded in Islamic law. Also a supplementary

fatwa corpus is provided which we used for the
retrieval-augmented generation (RAG)-based in-
ference.

MCQ Dataset
• Training Set: 20,000 MCQs, distributed
across three difficulty levels: 500 Beginner,
300 Intermediate, and 200 Advanced.

• Validation Set: 1,000 MCQs, distributed
across three difficulty levels: 500 Beginner,
300 Intermediate, and 200 Advanced.

• Test Set: 1,000 MCQs with hidden labels,
balanced between 500 Beginner and 500 Ad-
vanced questions.

Each MCQ includes 4 to 6 answer options (A–
F), with exactly one correct label. The questions
span a wide range of inheritance scenarios requir-
ing precise application of Islamic legal principles
(ilm al-mawārīth).

Fatwa Corpus
In addition to the MCQ dataset, we used a cor-
pus of 3,165 fatwas from IslamWeb to support
retrieval-augmented generation (RAG). Stored as
JSON files, each fatwa contains a user-submitted
question and an expert legal response, offering
rich, domain-specific context to enhance model
reasoning.

5 Methodology

As baseline models, we fine-tuned the top-
performing model from the Qur’an Question An-
swering shared task (Malhas et al., 2022, 2023),
AraBERTv2 (Antoun et al., 2020), on the 20,000-
question training set, achieving an accuracy of
47.4% on the validation (development) set. An-
other baseline( code was provided by the shared
task organizers) involved prompting the Fanar
LLM with two few-shot MCQ examples, which
yielded 49.7% accuracy on the same validation (de-
velopment) set. Building on the best-performing
baseline, we consulted the literature and identified
key areas for improvement.

5.1 Few-Shot In-Context Learning
Few-shot prompting has proven effective in elicit-
ing structured reasoning from LLMs (Brown et al.,
2020; Kojima et al., 2022). Static few-shot ex-
amples provide a general template for reasoning,
whereas dynamic example selection can improve
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performance by aligning examples with the test in-
stance (Liu et al., 2022). In this work, we explore
both static and dynamic prompting strategies. In
the static approach, five examples are included in
the prompt for every question. In the dynamic
approach, the five most similar questions are re-
trieved from the training set and included in the
prompt. Similarity is determined using an n-gram
overlap strategy previously introduced in Altam-
mami et al. (2019), originally developed for seg-
menting and annotating Hadith corpora. The al-
gorithm has been adapted for the current task, as
explained in Section 5.3.

5.2 Retrieval-augmented generation
We utilized Retrieval-Augmented Generation
(RAG), a widely recognized and effective ap-
proach for improving NLP tasks (Lewis et al.,
2020; Wu et al., 2024), particularly in knowledge-
intensive and domain-specific scenarios (Xiong
et al., 2024). RAG consistently enhances answer
accuracy, factuality, and adaptability compared to
language models that rely solely on pre-trained
knowledge (Siriwardhana et al., 2023).
Initial experiments using vector-based semantic

similarity methods (e.g., FAISS) yielded subopti-
mal results. These approaches often failed to dis-
tinguish between conceptually distinct heirs (e.g.,
son vs. daughter), treating them as similar due to
surface-level embedding similarities. This limita-
tion is particularly problematic in the domain of
Islamic inheritance law, where precise legal roles
carry significant implications.
To address this, our system identifies the most

similar fatwa question from a large corpus using
the n-gram approach described in Section 5.3. The
corresponding fatwa answer is then extracted and
incorporated as additional context for the language
model during inference.

5.3 Progressive n-gram Overlap
To support both dynamic few-shot prompting and
retrieval-augmented generation (RAG), we devel-
oped a custom progressive n-gram overlap match-
ing function. This method is used in two key
places: (1) to select the most similar five MCQ
questions from the training set for dynamic prompt-
ing, and (2) to identify the most relevant fatwa
question from the Fatwa Corpus in order to extract
its answer as additional context during inference.
Given a new inheritance question, the system

iterates through the relevant dataset (training set

or Fatwa Corpus) and compares the input question
against all available questions using the progres-
sive n-gram overlap function. The matching func-
tion follows a fallback strategy: It first computes
trigram overlap, and if no sufficient match is found,
it falls back to bigram or unigram overlap. We
assign higher weights to longer n-grams to prior-
itize more specific matches: trigrams w3 = 1.0,
bigrams w2 = 0.5, and unigrams w1 = 0.2.
For dynamic prompting, the top five questions

with the highest similarity scores from the training
set are selected and included in the prompt. For
RAG, the single highest-scoring fatwa question is
selected from across all fatwa JSON files, and its
Answer field is extracted and supplied to the lan-
guage model as contextual input, as illustrated in
Algorithm 1.
This approach ensures that retrieved examples

and contextual fatwas are both semantically and
structurally aligned with the input question, avoid-
ing misleading matches that often occur with
purely embedding-based similarity methods.

6 Experimental Design

6.1 Models
Four LLMs were evaluated in this study. Infer-
ence was configured to favor deterministic, short
outputs by setting the temperature to 0.0 and the
maximum output length to 2 tokens (sufficient to
return a single uppercase letter).

• Gemini-1.5-pro: Google’s generative lan-
guage model, accessed via the Google Vertex
AI API.

• GPT-4: OpenAI’s GPT-4o model, accessed
through the OpenAI API.

• LLaMA: Meta’s LLaMA-3.3-70b model, ac-
cessed via the Groq API.

• Fanar: A domain-specific Arabic language
model, accessed through a custom API.

6.2 Prompt Engineering
Three prompt engineering strategies were de-
signed to evaluate their impact on model perfor-
mance in Islamic inheritance reasoning:

• Trial 1: Static Few-Shot In-Context Learn-
ing
A baseline configuration using five manually
selected MCQ examples from the training
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Model Trial 1 Trial 2 Trial 3
Dev Test Dev Test Dev Test

Gemini 60.50 57.30 60.10 61.40 61.80 62.26
GPT-4 58.30 55.55 57.60 47.90 54.10 46.30
Fanar 57.27 40.24 54.06 38.49 56.27 38.74
LLaMA 46.40 49.40 46.60 46.10 45.65 47.40
Ensemble 62.60 55.80 61.90 56.40 63.40 57.30

Table 1: Performance (%) of different models across three trials on the Islamic inheritance MCQ development and
test datasets. Best results are shown in bold.

Algorithm 1: Progressive N-gram Match-
ing for Fatwa Retrieval
Input : Question Q;

Set of Fatwa Files F (each
containing Question, Answer fields)
Output : Best matching fatwa answer A∗

Initialize:
best_score← −∞, A∗ ← None
foreach fatwa file f ∈ F do

Load all questions Qf and answers Af

from f ;
foreach candidate question q ∈ Qf do

Normalize Q and q by removing
punctuation, extra spaces;

score← 0;
for n ∈ {3, 2, 1} do

Extract n-grams from Q and q;
Compute overlap←
intersection of n-grams;
Update score←
score+ wn × |overlap|;
Remove matched n-grams from
further consideration;

if score > best_score then
best_score← score;
A∗ ← corresponding answer to
q;

return A∗

set. These examples were appended to each
prompt uniformly, without regard to question
similarity.

• Trial 2: Dynamic Few-Shot In-Context
Learning
Few-shot examples were dynamically se-
lected for each input question using n-gram
similarity from the training set. This ensured
structural and semantic relevance between the
input and the few-shot examples.

• Trial 3: Dynamic Few-Shot In-Context

Learning and RAG
In addition to dynamic example selection, the
most similar fatwa question was retrieved us-
ing n-gram overlap, and the corresponding
fatwa answer was appended to the prompt as
context.

Model performance was assessed using accu-
racy of correctly answered 1,000 MCQs testing
questions.

6.3 Results
Table 1 reports development and test accuracies
across three independent trials. Gemini consis-
tently outperforms other single models, achieving
the highest test accuracy in Trial 3 (62.26%). GPT-
4 performs competitively in Trial 1 but its accuracy
declines sharply in later trials. Fanar and LLaMA
lag behind, though LLaMAgenerally surpasses Fa-
nar on the test set.
The ensemble method, based on majority vot-

ing, yields the best development accuracy in Trial
3 (63.40%) and consistently competitive results
overall. Its improvements are more pronounced on
development data than on test data, reflecting dif-
ferences in dataset composition: The dev set con-
tains beginner, intermediate, and advanced items,
while the test set excludes intermediate items. This
mismatch reduces the ensemble’s generalization
strength.
Gemini’s steady gains suggest that it leverages

additional retrieved context effectively, whereas
GPT-4 appears more prone to “distraction,” with
the same context introducing noise and lowering
accuracy. These contrasting behaviors highlight
model-specific sensitivities to retrieval-augmented
prompting, and further analysis is needed in future
work to better understand how such distractions
arise.

7 Conclusion

This paper presented our system for SubTask
1: Islamic Inheritance Reasoning in the QIAS
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2025 Shared Task, where we evaluated static
few-shot prompting, dynamic few-shot prompting,
and dynamic prompting combined with retrieval-
augmented generation, supported by a progressive
n-gram overlap method. Evaluation on propri-
etary and open-source LLMs revealed that while
some models experienced performance drops—
suggesting that additional context can sometimes
distract the model—others achieved consistent
gains. Our best configuration (Gemini with RAG
and dynamic prompting) reached 62.26% accuracy
on the test set. Further analysis is required to bet-
ter understand how retrieval context may distract
certain models and how to design strategies that
mitigate this effect.
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Abstract

This paper presents a Chain-of-Thought (CoT)
prompting approach for Islamic inheritance
reasoning in multiple-choice question answer-
ing. We address the QIAS 2025 SubTask 1,
which requires complex legal reasoning to de-
termine correct inheritance shares according to
Islamic jurisprudence. Our system employs
two prompting strategies: direct answer ex-
traction and step-by-step reasoning with regex-
based answer extraction. We evaluate our ap-
proach using Claude 3.7 Sonnet and GPT-4o
on Islamic inheritance MCQ tasks. Results
demonstrate significant performance improve-
ments when incorporating the thinking step:
Claude 3.7 improved from 0.67 to 0.81, and
GPT-4o from 0.63 to 0.74. Error analysis re-
veals that while models perform well in ba-
sic reasoning, they struggle with complex cor-
rection procedures (Tasheeh1) in inheritance
calculations. Our findings confirm that struc-
tured reasoning substantially enhances LLM
performance on complex Arabic legal reason-
ing tasks without requiring additional training
or retrieval-augmented generation.

1 Introduction

The task of Islamic Inheritance Reasoning is a
significant challenge in natural language process-
ing and algorithmic systems due to the long pro-
cess and mathematical operations needed to reach
the final results. Current state-of-the-art models,
such as those by (Sibaee et al., 2025), often strug-
gle with answering a full hard inherence question
such as: "Divide this inheritance according to Is-
lamic law: The deceased left behind a father, a
mother, the father’s mother (paternal grandmother),
a full brother, a full sister, a paternal half-brother,
a paternal half-sister, a maternal half-brother, a

1Tasheeh is the correction procedure applied when initial
fractional shares of heirs do not divide evenly into whole num-
bers. It ensures integer shares while preserving proportional
rights.

maternal half-sister, and a nephew (son of full
brother)." Sonnet-3.5 model did not show full logi-
cal thoughts. Sometimes, it reasoned correctly, but
the final answer was wrong. This was also shown
in (Abdulrahman and Walusimbi, 2024).

To address these limitations, we propose a new
system based on showing the thought process of
the model before answering the question. Our ap-
proach is novel because the type of problem is
MCQ and this is an open field to show the logical
thinking before answering. We hypothesize that
this method will improve the performance obtained
by (Wei et al., 2023). Our main contribution is
showing the effectiveness of thinking and Chain of
thoughts in answering hard and complex Islamic
inheritance MCQ and this approach can help in
using this SOTA models in these kind of tasks with-
out adding any blocks to the pipeline e.g. RAG or
finetuning.

2 Background

This study addresses QIAS 2025 – SubTask 1:
Islamic Inheritance Reasoning (Bouchekif et al.,
2025a), which focuses on answering multiple-
choice questions (MCQs) related to the distribution
of inheritance according to Islamic jurisprudence.
The task inherently requires dual competencies:
(1) comprehension of Arabic textual problem state-
ments, and (2) the application of complex legal-
mathematical reasoning to determine the precise
share for each heir (Bouchekif et al., 2025b).

As an illustrative example, consider the scenario:
"A woman died leaving two sons, three daughters,
a husband, a father, and a mother. What is the hus-
band’s share?" with answer choices ranging from
(A) Half to (F) Two-thirds. The correct answer, as
prescribed by Islamic law, is (E) Quarter.

Previous research has explored various strate-
gies for this domain. For instance, (Abdelazim
et al., 2024) investigated the use of Chain-of-
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Thought (CoT) prompting to enhance performance
in complex Arabic question-answering tasks, while
(Zouaoui and Rezeg, 2021) employed ontology-
based frameworks to model and solve Islamic inher-
itance problems, and (Sibaee et al., 2025) examined
the LLMs on multiple topics including inheretince
and showed a very low preformence in all of them.

Building upon these works, our approach in-
tegrates CoT reasoning to systematically decom-
pose and solve inheritance problems step-by-step,
followed by the application of regular expression
(regex) techniques to accurately extract the final
answer from the reasoning output. This combina-
tion is designed to address both the linguistic and
jurisprudential complexity of the task, ensuring
logically coherent reasoning and precise answer
selection within the MCQ framework.

It is important to note that one of the most error-
prone stages for existing models is the Tasheeh
process, which requires adjusting fractional shares
into integer values while maintaining proportional
correctness. Our approach is designed to handle
this step effectively within the CoT framework,
thereby addressing a critical source of error in Is-
lamic inheritance reasoning.

3 System Overview

Our system depends on calling an LLM to answer
the given question in two ways: The first is to ask
the question as is with the choices and ask the LLM
to give the answer letter. The second method is to
ask the model to explain the answer before select-
ing it, which is extracted using formatted regex.

4 Experimental Setup

We conducted the experiments using two SOTA
LLMs. The first prompt is shown in Figure 1.

System Role: <You are a strict grader for multiple-choice
exams.>

Task: <You must return only the correct choice letter (e.g., A, B,
C...) without any explanation.>

Question: <question>

Options: <(options)>

Figure 1: LLM Prompt for Multiple Choice Answering

For the detailed (thinking) answer, the used
prompt is displayed in Figure 2. The generic pro-
cedure for extracting the final answers from model
outputs is described in algorithm 1.

System Role: <You are an expert tutor who solves multiple-
choice questions by reasoning step by step.>

Task: <Explain the solution process step-by-step...>

Final Answer: [Letter]

Question: <question>

Options: <chr(10).join(options)>

Figure 2: LLM Prompt for Step-by-Step MCQ Explana-
tion

Algorithm 1: Extracting Final Answers Us-
ing Prompt and Regex

Input: A set of multiple-choice questions
with their choices

Output: Final answers extracted from
model responses

1 foreach question in questions do
2 Get the question text and its

corresponding choices
3 Create the full prompt by embedding

the question and choices into the
template

4 Send the prompt to the language model
5 Extract the final answer using regex

(e.g., match Final Answer: [A-F])

In addition to the two main prompting strate-
gies, we experimented with integrating Retrieval-
Augmented Generation (RAG) using the available
in-dataset context. Specifically, each chunk in the
retrieval index consisted of a question–answer pair
from the training data. At inference time, for each
test question, the most similar chunk was retrieved
and appended to the LLM prompt as supporting
context.

We also estimated the inference cost of our ap-
proach. Running the full QIAS benchmark with
step-by-step reasoning required approximately 10
USD in API costs.

In addition to the CoT prompting strategy, we
experimented with a retrieval-augmented gener-
ation (RAG) setup. We built the retrieval in-
dex directly from the training split, where each
chunk was a concatenation of the original ques-
tion and an expanded, detailed answer (i.e.,
question + enriched answer) to provide richer
signals. Chunks were stored in a ChromaDB
vector index. We evaluated several embed-
ding models, including Omartificial-Intelligence-
Space/Arabic-Triplet-Matryoshka-V2, sentence-
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transformers/all-MiniLM-L6-v2, and Begm3;
among these, Begm3 yielded the strongest re-
trieval quality in our setting. At inference time,
for each test question we retrieved the top-3 near-
est chunks and appended them to the step-by-step
reasoning prompt, then used Claude 3.7 in CoT
mode to select the final answer.

5 Results

The performance of the language models was eval-
uated with and without the application of a "think-
ing" step. Without thinking, Claude 3.7 achieved a
score of 0.67, while GPT-4o scored slightly lower
at 0.6312. When the thinking step was incorpo-
rated, performance significantly improved for both
models. Claude 3.7 (with thinking) reached a score
of 0.81, GPT-4o (with thinking) achieved a score of
0.74, which is similar to the RAG + Claude score.
These results suggest that structured reasoning or
"thinking" substantially enhances the capabilities
of both models.

Model Score
Claude 3.7 0.67
GPT-4o 0.63
Claude 3.7 (Thinking) 0.81
GPT-4o (Thinking) 0.74
RAG (context + Claude 3.7 Thinking) 0.737

Table 1: Performance scores of models with and without
the thinking step, on the dev dataset

Model Score
Claude 3.7 0.71
GPT-4o 0.55

Table 2: Performance scores of models with the thinking
step, on the test dataset

The RAG+CoT configuration produced accu-
racy close to, but lower than, our CoT-only base-
line on the dev set (0.737 with RAG+CoT vs. 0.81
with CoT-only using Claude 3.7). While competi-
tive, the RAG pipeline introduced additional com-
plexity (sensitivity to embedding choice) and in-
creased hallucination risk from injecting three re-
trieved passages (occasional reliance on partially
relevant context). Given these trade-offs, and since
CoT-only already outperformed it, we did not adopt
RAG in the final system.

Figure 3: Comparison of model performance with and
without thinking.

5.1 Error Analysis
Understanding the reasoning process and underly-
ing thought patterns can reveal valuable insights
and promising directions in the study of Chain of
Thought reasoning (Wei et al., 2023). The follow-
ing examples highlight specific instances where
errors occur in the reasoning steps:

• First example: A person passed away and was
survived by the following heirs: three full
brothers, three sons of full brothers (nephews),
four daughters, one wife, and five full sisters.
The question is: what is the wife’s share from
the corrected total of the estate (al-tarkeha al-
musahhah)?

The model (Claude) answer with thoughts was:

• Let us solve this inheritance problem step by
step. First, we identify the heirs and their re-
spective shares: the wife receives one-eighth
(1/8) of the estate due to the presence of chil-
dren; the four daughters collectively receive
two-thirds (2/3) because they are multiple; the
remaining estate goes to the full brothers and
full sisters by way of residuary inheritance
(tas. ı̄b); while the sons of the full brothers are
excluded due to the presence of closer male
heirs. Next, we determine the original estate
denominator, which is 24, since it accommo-
dates both one-eighth and two-thirds. The dis-
tribution then becomes: 3 shares to the wife
(1/8 of 24), 16 shares to the daughters (2/3 of
24), and the remaining 5 shares to be divided
among the full brothers and sisters. However,
since these 5 shares are to be divided among
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eight people (3 brothers and 5 sisters), the divi-
sion is not exact, so we must correct the estate
by finding a common multiple. We multiply
the original 24 by 8 (the number of residuary
heirs), resulting in a corrected estate of 192.
The adjusted distribution is as follows: the
wife receives 24 shares (3 × 8), the daughters
receive 128 shares (16 × 8), and the full sib-
lings receive 40 shares (5 × 8). Finally, since
the question asks about the wife’s share from
the original estate before correction, her share
is 3 out of 24. Thus, the correct answer is: A.

Analysis: The model answer was completly correct
until reaching the ’Tasheeh’ part where it did not
write the shares after ’Tasheeh’ so it chooses the
before ’Tasheeh’ answer.

• Second Example: A man died leaving: 3 sons,
a mother, and 3 daughters. How many shares
does each son receive?

The model (Claude) answer with thoughts was:

• Okay, let’s solve this problem step by step:
(1) Identify the heirs and their shares: the
mother — one-sixth (because there are descen-
dant heirs); the sons — the residue by ta‘sı̄b
(residuary), males receive twice the share of
females; the daughters — together with the
sons they inherit by ta‘sı̄b with the male re-
ceiving twice the female’s share. (2) Base of
the calculation = 6 (the denominator for the
sixth). (3) Distribution of shares: mother: 1
share (the sixth); the remainder 5 shares go
to the sons and daughters by ta‘sı̄b. (4) Cal-
culate the number of portions: each son = 2
portions, each daughter = 1 portion, total =
(3×2) + (3×1) = 9 portions. (5) Value of one
portion: 5 (remaining shares) × 6 = 30 shares;
30 ÷ 9 = 10 shares per portion. (6) Each son’s
share: 2 × 10 = 20 shares. Looking at the
available choices, we find each son’s share is
20 shares. Final answer: F.

Analysis: Here the model did multiple errors from
the first step of explaining the shares on this simpler
question.

6 Future Work

Our RAG pilot with in-dataset QA context showed
only limited improvements over CoT-only prompt-
ing, mainly due to coverage and retrieval granular-
ity issues. To strengthen system robustness, future

work will focus on three directions: (i) building a
domain-specific inheritance corpus from authorita-
tive sources to reduce retrieval sparsity, (ii) explor-
ing structure-aware chunking and hybrid retrieval
strategies to better capture fiqh-specific rules, and
(iii) integrating RAG with CoT under context con-
straints to improve reasoning quality without incur-
ring the overhead of fine-tuning.

7 Conclusion

In this paper, we presented our Chain-of-Thought
prompting system for Islamic inheritance reason-
ing in the QIAS 2025 shared task. We introduced a
dual-prompting approach that effectively addresses
the complexity of Islamic jurisprudence reasoning
through step-by-step explanation before answer se-
lection. Our experiments demonstrate that incor-
porating a "thinking" step significantly improves
model performance, with Claude 3.7 and GPT-4o
achieving 21% and 17% relative improvements re-
spectively. Through error analysis, we identified
inheritance correction procedures (Tasheeh) as a
primary area for future improvement, where mod-
els correctly perform initial calculations but fail to
apply final correction steps. Our work confirms
the difficulty of Islamic inheritance reasoning tasks
but also shows that structured prompting can sub-
stantially enhance SOTA language models’ perfor-
mance on complex Arabic legal reasoning without
additional model modifications or training.
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Abstract

We present our system developed for the
Question-and-Answer in Islamic Studies As-
sessment Shared Task on Evaluating LLMs
for Islamic Knowledge (QIAS 2025), which
focuses on answering Arabic multiple-choice
questions (MCQs) derived from classical Is-
lamic texts. Our methodology integrates few-
shot chain-of-thought prompting across mul-
tiple LLMs, enhanced by a majority-vote en-
semble mechanism. In situations of ensemble
uncertainty, we deploy a retrieval-augmented
re-prompting module that extracts contextu-
ally relevant passages from digitized Islamic
sources to refine model predictions. Our final
system achieves an accuracy of 89.8% on the
hidden test set.

1 Introduction

Recent advancements in large language models
(LLMs) have significantly enhanced their capa-
bilities in understanding and reasoning across di-
verse knowledge domains. However, their perfor-
mance on specialized, culturally-rich content such
as classical Islamic texts remains less explored.
Classical Islamic texts—covering jurisprudence,
creed, exegesis, and hadith—pose distinctive chal-
lenges: they are primarily in Arabic, employ spe-
cialized terminology, encode subtle doctrinal dis-
tinctions across legal schools, and often require
multi-step reasoning (e.g., analogical and numer-
ical reasoning in inheritance) to reach a correct
answer (Bouchekif et al., 2025b). In this con-
text, we present our system for the Question-and-
Answer in Islamic Studies Assessment Shared Task
on Evaluating LLMs for Islamic Knowledge (QIAS
2025) (Bouchekif et al., 2025a), which involves an-
swering Arabic multiple-choice questions (MCQs)
drawn specifically from classical Islamic litera-
ture. Our proposed approach integrates few-shot
chain-of-thought prompting across several promi-
nent LLMs, coupled with a robust majority-vote en-

semble strategy. When the ensemble fails to reach
consensus, our retrieval-augmented re-prompting
(R2P) module dynamically retrieves relevant tex-
tual evidence from digitized Islamic resources, en-
abling models to produce refined and contextu-
ally grounded predictions. Our final submission
achieves an accuracy of 89.8% on the hidden test
set. The remainder of this paper is structured as
follows: Section 2 reviews related work. Section 3
describes the QIAS 2025 task and dataset. Section
4 presents the system overview. Section 5 details
the experimental setup. Section 6 reports and an-
alyzes results. Section 7 concludes and outlines
future work. An Appendix includes prompt tem-
plates and additional examples.

2 Related work

Large Language Models (LLMs) have shown re-
markable advancements in zero-shot and few-shot
reasoning tasks (Al Nazi et al., 2025) (Meshkin
et al., 2024). Chain-of-thought (CoT) prompting
has emerged as a powerful strategy to guide LLMs
through intermediate reasoning steps before pro-
ducing a final answer. Introduced by Wei et al.
(Wei et al., 2022), CoT prompting significantly
improved performance on tasks requiring logical
reasoning, arithmetic, and commonsense inference.
Later, Wang et al. (Wang et al., 2022) enhanced
this framework with self-consistency sampling,
where multiple reasoning paths are sampled, and
the most consistent final answer is selected result-
ing in more robust predictions. While these tech-
niques have been extensively evaluated on general-
domain tasks in English, their application to Arabic
particularly domain-specific Arabic such as clas-
sical Islamic jurisprudence and theology remains
limited. Retrieval-augmented generation (RAG),
introduced by Lewis et al. (Lewis et al., 2020), com-
bines external document retrieval with generation-
based models to inject relevant background knowl-
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edge into the reasoning process. RAG has shown
utility in open-domain QA, but few studies have
adapted this method to classical Arabic corpora
with domain-specific embeddings and passage re-
ranking (Omoush and Ghnemat, 2025) (Bazzi and
Gaith, 2025). Our contribution is novel in its ap-
plication of CoT ensembles with on-demand re-
trieval for domain-specific Arabic MCQs—a set-
ting that requires precise integration of theological
and jurisprudential sources. This combination of
retrieval-augmented CoT and ensemble majority
voting is particularly impactful for advanced ques-
tions requiring deeper contextual grounding.

3 Task Description

3.1 Task setup

The QIAS 2025 Subtask 2 involves answering clas-
sical Islamic multiple-choice questions (MCQs) in
Arabic. Each input consists of a question stem and
four possible answers (labeled A–D), with a sin-
gle correct option. For example, a typical input
might present a jurisprudential question derived
from classical Islamic texts and require the system
to output the correct choice label. This task requires
deep semantic understanding, domain-specific ex-
pertise—particularly within Islamic contexts—and
a keen ability to discern subtle linguistic nuances
in the Arabic language.

3.2 Dataset

The dataset employed in this task comprises 1,400
Arabic multiple-choice questions (MCQs), evenly
divided into 700 for validation and 700 for test-
ing. These questions are meticulously curated from
authoritative classical Islamic texts and cover a
range of domains, including Fiqh (Islamic jurispru-
dence), Sı̄rah (the prophetic biography), Ulūm al-
Qur’ān (Qur’anic sciences), and Ulūm al-Hadith
(Hadith studies). To assess the system’s reason-
ing capabilities, the questions are categorized into
three levels of difficulty—Beginner, Intermediate,
and Advanced—each reflecting a progressively
deeper level of conceptual and analytical com-
plexity (Bouchekif et al., 2025a). Additionally,
well-known Islamic e-books such as Ar-Rah. ı̄q al-
Makhtūm (The Sealed Nectar) and Al-Itqān fı̄
Ulūm al-Qur’ān (The Perfect Guide to the Sciences
of the Qur’an) are provided as supplementary re-
sources, serving as foundational references for the
task. Figure 1 presents a sample multiple-choice
question (MCQ) from the QIAS 2025 Shared Task

Example:
�A§� �w} ¨� ¨`�AKl� �§dq�� �wq�� w¡ A�

?�§rKt��
A) .¾AqlW� Ah�w} Ew�§ ¯
B) �� ©dh�� �d� �Ð� �tmtml� Ah�w} Ew�§

.���� ¨� Tb��w�� T�®��� �A§±�
C) .Xq� ©dh�� d�§ �� �m� Ah�w} Ew�§
D). Xq� r�Asml� Ah�w} Ew�§

Figure 1: A sample MCQ from QIAS 2025 Subtask 2.

(Subtask 2: Islamic Assessment), which evaluates
language models’ understanding of classical Is-
lamic knowledge.

3.3 Track Participation

We participated in the QIAS 2025 Shared Task
(Subtask 2: Islamic Assessment), part of the Ara-
bicNLP 2025 conference held in conjunction with
EMNLP 2025. This subtask centers on evaluat-
ing large language models (LLMs) in the domain
of classical Islamic knowledge through multiple-
choice questions. As one of the first benchmarks
specifically designed for Arabic MCQs in religious
and jurisprudential contexts, it provides a struc-
tured and rigorous framework for assessing deep
semantic understanding and domain-specific rea-
soning in Islamic studies.

4 System Overview

Our pipeline, illustrated in (Figure 2), consists of
three main stages designed for robust Arabic Is-
lamic multiple-choice question answering:

1. Prompt Sampling and Few-Shot CoT
Prompting: In the first stage, we leverage
few-shot chain-of-thought (CoT) prompting
techniques. Five carefully selected demon-
stration examples from the QIAS validation
MCQs are embedded into a standardized Ara-
bic prompt template.

2. Majority Ensemble: In the second stage,
we employ a majority voting ensemble us-
ing the top three performing models selected
from GPT-4o, Qwen-Plus, Gemini 2.5, and
DeepSeek. For each instance, we collect the
predictions from these three models and deter-
mine the final output based on majority agree-
ment—specifically, a label is selected only
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Figure 2: Overview of our ensemble-RAG pipeline combining LLMs and classical Islamic texts for answering
QIAS 2025 MCQs.

if it is endorsed by at least two of the three
models.

3. Retrieval-augmented re-prompting (R2P):
For cases where the ensemble stage results
in uncertainty (i.e., no option reaches the
required majority), we apply a retrieval-
augmented re-prompting strategy. This ap-
proach involves:

• Dense-only retrieval over classical Is-
lamic texts: Arabic-LaBSE (768-d,
mean-pooled, L2-normalized; inner-
product) + FAISS IndexFlatIP on chunks
180–220 tokens (overlap 40–50) retriev-
ing the top-10 relevant passages.

• Re-ranking these retrieved passages us-
ing a hybrid BM25 and cross-encoder
scorer to select the top 3 most relevant
passages.

• Re-prompting the GPT-4o model with
these carefully selected passages to pro-
duce a refined final prediction.

5 Experimental Setup

Data splits. We used the official dataset provided
by the organizers, comprising 700 validation items
and 700 test items, without additional splitting.

Hyper-parameters. To promote diversity while
maintaining coherence in generation, we adopt the
following settings: temperature = 0.2, top-p = 0.95,
and a maximum of 512 output tokens.

Models considered. We evaluate the following
models: GPT-4o, Gemini 2.5-Flash, Qwen-Plus,

and DeepSeek-V3 1. Only the top three performers
are included in the ensemble.

Evaluation metrics. We evaluate performance
solely based on accuracy, measured as the percent-
age of questions for which the model’s prediction
exactly matches the correct answer, using the offi-
cial Task2_MCQ_Test_gold_labels provided by
the organizers.

6 Results

The performance of the evaluated models under
different learning scenarios (zero-shot, 3-shot, and
5-shot) is summarized in Table 1. GPT-4o consis-
tently demonstrated strong results across all set-
tings, with a slight improvement observed in the
5-shot scenario. Gemini 2.5 exhibited a substantial
performance increase when moving from zero-shot
to few-shot learning conditions. This notable im-
provement can be attributed mainly to Gemini’s
initial difficulty in strictly adhering to task instruc-
tions in the zero-shot setting. Despite clear direc-
tives—such as prompts explicitly stating, “Final
Answer (letter only [A, B, C, D]) DO NOT
output your thinking process or any other
text except [A, B, C, D]:"—Gemini often
generated excessively detailed outputs, frequently
exceeding the maximum token limit, leading to in-
complete or empty responses. However, providing
few-shot examples substantially improved Gem-
ini’s ability to comply with the task requirements,
resulting in competitive accuracy. DeepSeek and
Qwen-Plus also showed consistent improvement
with the increase in examples provided, though

1All models were accessed via their official APIs between
15 - 20 July 2025.
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their overall performance lagged slightly behind
GPT-4o and Gemini, particularly in the few-shot
scenarios. Our proposed system achieved an ac-
curacy of 0.90 in the 5-shot setting, surpassing all
individual models tested. This highlights the effec-
tiveness of integrating few-shot prompting, model
ensembling, and retrieval-augmented re-prompting.
By combining the complementary strengths of mul-
tiple models and addressing uncertainty through
targeted retrieval and refined prompting, our sys-
tem demonstrates greater accuracy and robustness
than any single model operating independently.

Model Zero-shot 3-shot 5-shot

GPT-4o 0.85 0.85 0.86
Gemini 2.5 0.59 0.87 0.87
DeepSeek-V3 0.79 0.80 0.84
Qwen-Plus 0.77 0.77 0.78

Our Model 0.898

Table 1: Performance comparison of four models un-
der zero-shot, 3-shot, and 5-shot settings. Scores are
approximated to two decimal places.

7 Conclusion

In this study, we effectively combined few-
shot chain-of-thought prompting, a majority-vote
ensemble strategy, and retrieval-augmented re-
prompting to address the challenging task of an-
swering classical Arabic Islamic multiple-choice
questions (MCQs). Our proposed system achieved
superior performance, demonstrating the effective-
ness of integrating ensemble strategies with re-
trieval methods for domain-specific knowledge
tasks.
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tasked with solving multiple-choice
questions. Think step-by-step, carefully
justify your reasoning, and then select
the correct answer clearly.Here are some
examples to follow:
¨`�AKl� �§dq�� �wq�� w¡ A� :��¥s�� :1 �A��

?�§rKt�� �A§� �w} ¨�
:��CAy���

A) .¾AqlW� Ah�w} Ew�§ ¯
B)�A§±� �� ©dh�� �d� �Ð� �tmtml� Ah�w} Ew�§
C)�m� Ah�w} Ew�§ .���� ¨� Tb��w�� T�®���
D)r�Asml� Ah�w} Ew�§ .Xq� ©dh�� d�§ ��

.Xq�
:rykft�� ��wW�

�w§ ¨l� ¨t�� T�®��� �A§±� ¨¡ �§rKt�� �A§�
.���� �Fw� ¨� (Y�R±� dy� �w§) r�n��

�¤±� ¢§�C Y�� ryK§ ¨`�AKl� �§dq�� �wq��
�lt�§ d�¤ ,d§d��� ¢�w� ¢yl� �Ì�ru§  � �b�

.�¶Asm�� {`� ¨� ¢n�
w¡ Ty`�AK�� dn� dmt`m��¤ d§d��� �wq��
�tmtml� Yt� ,¾AqlW� �§rKt�� �A§� �w} �§r��
¢yl� ©@�� �wq�� w¡ �@¡¤ ,©dh�� d�§ �� �Ð�

.¨`�AK�� 
A�}� ��  ¤r��tm��
r�@u§ ,¨`�AK�� 	¡@m�� Yl� ¢qf�� 	t� ¨�
�§rKt�� �A§� �Ay} E�w� Tm§dq�� ¢��w�� ��  �

.T}wO�� �¯A� ¨�
©�) A¾A`tmt� �A���  wk§  � :�¯A��� �l� ��
�� ­d��¤ ­rfF ¨� ����¤ ­rm`�� �y� �m�
�A§� T�®� �Ay} ¢�zly� ,©dh�� d�§ ��¤ ,(�}A�
.�§rKt�� �A§� ¨� Ah�AyO� ¢� �msu§¤ ,���� ¨�
	¡@m�� 	t� ¨� �¤r`�¤ ��w� �wq�� �@¡
�§dq�� �y�wq�� �®t�� �� �§d��� dn�

.¨`�AKl� d§d���¤
B :Ty¶Ahn�� T�A�³�
...
... the other 4 examples...
...

Now answer the question below by
selecting the appropriate answer:
Question: {question}
Choices: {formatted_options}
Final Answer (letter only [A, B, C, D])
DO NOT output your thinking process:"
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Abstract
We describe our participation in the QIAS 2025
Shared Task on Islamic Studies Question An-
swering, comprising two subtasks: (1) Islamic
Inheritance Reasoning and (2) General Islamic
Knowledge Assessment. Both were solved us-
ing the Claude 4 Opus LLM via API with
tailored prompting. For Subtask 1, we im-
plemented a lightweight Retrieval-Augmented
Generation (RAG) pipeline, which retrieves
the top Google Search result (often from Is-
lamWeb), preprocesses it, and appends it to
a structured few-shot Arabic prompt, thereby
boosting reasoning accuracy. For Subtask 2,
where web-retrieval was not feasible due to
closed-book sources, we applied topic-diverse
few-shot prompting to leverage the model’s in-
ternal knowledge. Our systems achieved 4th/15
(0.895) in Subtask 1 and 3rd/10 (0.9259) in Sub-
task 2, demonstrating the effectiveness of tar-
geted retrieval in open-web contexts and struc-
tured prompting in closed-domain Arabic QA.

1 Introduction
The QIAS 2025 Shared Task (Question and An-
swer in Islamic Studies Assessment) serves as a
benchmark for evaluating large language models
(LLMs) on domain-specific reasoning in Islamic
knowledge (Bouchekif et al., 2025a). It consists
of two multiple-choice subtasks: (1) Islamic In-
heritance Reasoning (ʿIlm al‑Mawārīth) and (2)
Islamic Knowledge Assessment (covering Fiqh,
al‑Ḥadīth, Tafsīr, uṣūl al-fiqh, etc.), with MCQs
spanning beginner, intermediate, and advanced lev-
els—designed to assess reasoning accuracy in both
retrieval-supported and retrieval-free settings.

The task is conducted entirely in Arabic, reflect-
ing the primary language of Islamic scholarship
and presenting a significant challenge for LLMs
given the language’s morphological richness and
syntactic complexity.

The two subtasks differ in their source and the
feasibility of web-based retrieval. Subtask 1 draws

primarily from online fatāwā, making retrieval from
the open web practical and often effective. Sub-
task 2, by contrast, is based on classical and modern
Islamic closed books that are generally not available
through open web indexing; although retrieval may
be beneficial in this task, we opted to approach it
using the internal knowledge of the language model.

Our submission addresses both QIAS sub-
tasks using LLM-based pipelines built around the
Claude Opus 4 API. For Subtask 1 (Retrieval-
supported QA), we adopted a single-document
retrieval approach using the Google Search API,
appending the top-ranked result, often from Is-
lamWeb, to a structured few-shot prompt. This pro-
vided the model with both contextual exemplars and
relevant retrieved knowledge, substantially enhanc-
ing rule-based reasoning in inheritance scenarios.
Across various strategies and LLMs, supplement-
ing questions with retrieved content from reliable
sources yielded accuracy improvements exceeding
14% over using the model’s internal knowledge
alone.

For Subtask 2 (Zero-retrieval QA), where the
data source comprised offline books, no external
retrieval was performed. Instead, we employed a
structured few-shot prompt with curated exemplars,
leveraging the model’s internal knowledge and rea-
soning capabilities. This strategy achieved compet-
itive accuracy, demonstrating the model’s ability
to recall domain-specific information and perform
sophisticated reasoning even in the closed-book set-
ting.

In general, our findings underscore the effective-
ness of structured web-retrieval in low-resource do-
mains, such as Islamic law. QIAS offers a valuable
benchmark for testing such approaches. We report
the leaderboard results 1, along with the implemen-

1https://sites.google.com/view/qias2025/
leaderboards
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tation details 2.

2 Background

2.1 Task Setup
We participated in both subtasks of the QIAS 2025
Shared Task on evaluating multilingual LLMs in
Islamic reasoning and knowledge, as described in
the task overview (Bouchekif et al., 2025a).

Subtask 1: Islamic Inheritance Reasoning (ʿIlm
al‑Mawārīth) Each item in Subtask 1 frames a de-
tailed family fact pattern involving heirs such as
wife, parents, full or half siblings, children, or de-
ceased heirs. A multiple‑choice question (6 op-
tions; exactly one correct) asks for the appropriate
heir‑share(s) based on fixed‑rule Islamic jurispru-
dence (farāʾiḍ).
Example of Beginner level in Arabic, from the
official dataset:

مع2و،قيقشخأنبا1و،قيقشخأ2و،بأنعيفوت

؟مألابيصنوهام،ةجوز1و،تنب2و،مأو،بأللقيقش

A)ثلثلا,B)عبرلا,C)سدسلا,D)نمثلا,E)فصنلا,F)

ءيشال

Subtask 2: Islamic Knowledge Assessment Sub-
task 2 contains knowledge-based exam MCQs on
topics such as ʿulūm al‑Qurʾān, al‑Ḥadīth, fiqh, uṣūl
al-fiqh, sīrah, and Aqīdah, designed to elicit doctri-
nal, doctrinal‑reasoned, or interpretive recall. The
questions come in 4-option MCQ format, with ex-
actly one correct answer.
Example of Beginner level in Arabic, from the
official dataset:

؟ميقمللنيفخلاىلعحسملاةدمام

A)ةليلوموي,B)نهيلايلبمايأةثالث,C)ناتليلوناموي,D)عوبسأ

لماك

2.2 Dataset Details
Subtask 1: The dataset comprises ∼20,000 train-
ing, 1,000 validation, and 1,000 test MCQs (six
options each), generated from curated IslamWeb
fatwas via Gemini 2.5 and validated by domain ex-
perts. Pre-processing involved deduplication and
disambiguation. An auxiliary corpus of 3,165 orig-
inal fatwas was also provided as an optional knowl-
edge base (Bouchekif et al., 2025a).

Subtask 2: A collection of classical Islamic
texts was provided as unsupervised data to fine-
tune or as part of a Retrieval-Augmented Genera-

2https://gitlab.com/Moatasem444/
qias2025-hiast-submission/

tion (RAG) (Lewis et al., 2020). From 25 reference
texts, 1,400 MCQs (700 validation, 700 test) were
created in seven disciplines (beginner-advanced),
each with four answer choices, and validated by five
experts.

2.3 Prior Work
Recent advances in Arabic LLMs, such as Jais (Sen-
gupta et al., 2023), AceGPT (Huang et al., 2023),
ALLaM (Bari et al., 2024), Kuwain (Hennara et al.,
2025), and Fanar (Abbas et al., 2025) have expanded
the ability to understand religious texts by pretrain-
ing large-scale corpora, including Quran, Hadith,
and fatwa archives. Shared tasks have emerged
to benchmark Islamic NLP, including Quranic
QA (Malhas et al., 2022, 2023), Islamic knowl-
edge retrieval (Qamar et al., 2024), and most re-
cently QIAS 2025 (Bouchekif et al., 2025a), which
evaluates LLMs on Islamic inheritance reasoning
and general religious knowledge. Prior work in
automating Islamic inheritance (IRTH) largely re-
lied on expert systems (Akkila and Naser, 2016;
Tabassum et al., 2019; Zouaoui and Rezeg, 2021)
that encoded symbolic rules, or on RAG-based QA
pipelines for Islamic texts (Alan et al., 2024; Sayeed
et al., 2025). However, the performance of LLM
on Islamic content remains constrained by factual
errors, misinterpretation of context, and sensitiv-
ity to question phrasing (Mohammed et al., 2025;
Alnefaie et al., 2023; Bouchekif et al., 2025b).

In Subtask 1, we used a lightweight, single-
document retrieval-augmented generation setup,
grounding ClaudeOpus 4with authoritative sources
retrieved via the Google Search API. This light-
weight approach avoids handcrafted rules and in-
stead provides juristic context for in-context reason-
ing. By contrasting this retrieval-supported config-
uration with a zero-retrieval baseline in Subtask 2,
we enable a controlled comparison of retrieval-
augmented versus unsupported Islamic-domain rea-
soning.

3 System Overview

Our QIAS 2025 submission adopts two distinct con-
figurations, each tailored to its subtask, both pow-
ered by the Claude Opus 4 API.

3.1 Subtask 1: Islamic Inheritance Reasoning
(Lightweight RAG)

We implemented a single-document Retrieval-
Augmented Generation (RAG) pipeline. Each ques-
tion was paired with the top-ranked Google Search
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(Web-Retrieval-supported QA)

MCQ Question

Formulate Arabic query

Retrieve top-ranked docu-
ment from Google Search API

Preprocess document

integrate prompt with retrieved context

Inference with Claude Opus 4

Answer prediction

Figure 1: Web-Retrieval pipeline for Subtask 1.

result (primarily from IslamWeb3, pre-processed
to remove boilerplate and appended (in Arabic) to
the questions and answer choices. This method
provided high-quality domain-specific grounding
while avoiding the latency and complexity of multi-
document vector retrieval. The complete retrieval
pipeline is provided in figure 1.

3.2 Subtask 2: Islamic Knowledge Assessment
(Zero-Retrieval Few-Shot)

Since web-retrieval was not possible, we adopted
a few-shot prompting strategy. Three to four rep-
resentative MCQs, covering different topics and
difficulty levels, were inserted into a fixed Arabic
prompt template before the test question. This few-
shot configuration leveraged the LLM’s internal
knowledge for doctrinal and interpretive reasoning.
Detailed work examples are provided in figure 2.
The detailed prompt formulations corresponding to
the two subtasks are provided in Appendix A.

3.3 Challenges Addressed

We address several challenges in our approach,
including Arabic morphology and orthography,
where queries preserve diacritics to improve re-
trieval precision; input length control, with re-
trieved passages truncated to !max = 2000 char-
acters to fit model limits; and knowledge coverage,
where few-shot examples are selected for topical
diversity to reduce bias toward frequent topics.

3https://www.islamweb.net

Few-Shot Workflow (Subtask 2)

Select 3 diverse MCQs

Insert into fixed Arabic prompt

Inference with Claude Opus 4

Answer prediction

Figure 2: Few-shot pipeline for Subtask 2.

4 Experimental Setup

4.1 Data Sources and Preprocessing

For Subtask 1, we performed real-time retrieval
from publicly available web sources, primarily Is-
lamWeb, using the Google Custom Search API, in-
stead of using the 3,165 IslamWeb fatwas provided.
The retrieved documents were cleaned by removing
HTML tags and boilerplate text and truncated to
!max = 2000 UTF-8 characters.

For Subtask 2, the large corpus of classical Is-
lamic texts was not used. Instead, we applied a
few-shot prompt with : = 3 examples drawn from
the validation set (to prevent data leakage). The few-
shot MCQs were normalized to a consistent tem-
plate format comprising an Arabic question stem
and four labeled options.

4.2 Task Evaluation Metrics

We followed the official QIAS 2025 evaluation pro-
tocol (Bouchekif et al., 2025a), using only the val-
idation and test sets provided. The precision in
the test set, calculated as the proportion of exact
matches between the predictions and the gold an-
swers, was the only ranking metric. The outputs
were normalized to choice letters. The source code
is available online4.

4.3 Implementation Details

Hyperparameters. Both configurations used the
default Claude Opus 4 API parameters, with tem-
perature set to 0.0 for deterministic outputs and
max_tokens fixed at 1000. For Subtask 2, the
number of few-shot exemplars was set to : = 3
based on preliminary validation and the number of
difficulty levels.

4https://gitlab.com/Moatasem444/
qias2025-hiast-submission/
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External Tools and Libraries. We employed the
Claude Opus 4 API (Anthropic, May 2025 release)
as the primary LLM, accessed via its paid subscrip-
tion tier. Live web-retrieval for Subtask 1 was per-
formed using the Google Custom Search API5, also
under a paid usage plan. All API integration and
pre-processing were implemented in Google Colab.

5 Results

5.1 Official Leaderboard Performance
We achieved strong results in test data for both sub-
tasks, placing 4th/15 in Subtask 1 (Accuracy: 0.895)
and 3rd/10 in Subtask 2 (Accuracy: 0.9259). De-
tailed scores and rankings are shown in Table 5
(Appendix B).

5.2 Comparative Analysis and Error Patterns
For Subtask 1, we compared our lightweight Google
Search API pipeline with:
(a) the same LLM without retrieval,

(b) the same LLM with its built-in “web search”
mode.

Our approach consistently outperformed all base-
line methods in a wide range of models, includ-
ing closed-source systems such as Claude 4 Opus
(C4O), GPT 4.1 Mini (G4.1M), and Gem-
ini 2.5 Flash (G2.5F), as well as the open-source
model like Fanar (Table 1). In particular, even min-
imal, yet high-quality retrieval yielded substantial
gains in accuracy.

In contrast, for Subtask 2, where sources are
closed-book, web-retrieval offered no benefit; struc-
tured few-shot prompting proved most effective (Ta-
ble 2).

Table 1: Validation results for Subtask 1 under different
models and retrieval settings.

Model No Ret. Built-in WS Ours
C4O 0.785 0.812 0.924
G2.5F 0.700 N/A 0.871
G4.1M 0.580 0.690 0.822
Fanar 0.574 N/A 0.645

Error analysis on 50 random misclassifications
per task revealed:
• Task 1: Failures occurred when the retrieval was
missing or contained partial matches, forcing re-
liance on internal knowledge of LLM. Some mod-
els (e.g., Gemini) deviated from the format by
5https://developers.google.com/custom-search

Table 2: Validation results for Subtask 2 on Gem-
ini 2.5 flash, showing no gain from web-retrieval
(WebR).

Method Acc. Δ vs. Few-Shot
Few-Shot only 0.875 —
Few-Shot + WebR 0.805 −7%

including explanations. Other causes included
ambiguous fatwā phrasing, missing numeric de-
tails, and context length limits (!max = 2000).

• Task 2: Most errors stemmed from fine-grained
doctrinal differences and narrations that required
exact recall. It should be noted that error rates are
distributed inversely between difficulty levels.

5.3 Similarity and Prediction Accuracy
We computed the similarity score between text and
the result of the top hits on the Web using the Muf-
fakir Embedding model 6. We then analyzed the
relationship between the similarity score and the
prediction precision. The results do not indicate
significant relevance: the average similarity for in-
correct predictions was 0.645, while for correct
predictions it was 0.653, with a correlation of only
0.027. Importantly, it also indicates that retrieving
only the top-ranked search result is sufficient: If
the answer is present in the retrieved context, it is
most likely in the first result, and additional results
are unlikely to improve accuracy. This further sup-
ports the effectiveness of Google Search’s ranking
in providing the most relevant information for this
task.

5.4 Error Analysis
We examined the relationship between the avail-
ability of the retrieved web context and the system
error rates (Table 3). Although the number of cases
with the retrieved web context (923) is substantially
higher than those without (77), the relative error
rate is lower (7.37% vs. 9.09%). This demonstrates
the effectiveness of web-retrieval; If comparable
contextual information had been available for the
remaining instances, the overall error rate could
have been reduced by up to 1.7%. In contrast, the
absence of such context correlates with increased
error rates. In particular, the system fails to retrieve
relevant context in approximately 8.3% of the total
cases, which directly limits the attainable perfor-
mance limit. Reducing this retrieval failure rate is

6https://huggingface.co/mohamed2811/Muffakir_
Embedding
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therefore critical to achieving consistently higher
accuracy.

Table 3: Subtask 1 error rates with/without web context
(NW = No Web).

Context #Q #Wrong Err. (%)

With Web 923 68 7.37
NW 77 7 9.09

We also analyzed incorrect predictions by diffi-
culty level of the questions in the validation sets for
both tasks (Table 4). In task 1, the majority of er-
rors occurred at the advanced level (45 errors, 60%),
followed by the beginner level (30 errors, 40%). In
Task 2, errors were more evenly distributed: the
beginner level questions accounted for 40 errors
(43%), intermediate for 31 errors (33.3%), and ad-
vanced for 22 errors (23.7%). These results suggest
that in Task 1, advanced-level questions are dispro-
portionately challenging, while in Task 2, errors are
less skewed toward a single difficulty level, indicat-
ing a more balanced difficulty distribution.

Table 4: Wrong predictions by difficulty level in valida-
tion data. Percentages relative to total wrong predictions
per task.

Level Task 1 Task 2

Wrong % Wrong %

Beginner 30 40.0 40 43.0
Intermediate – – 31 33.3
Advanced 45 60.0 22 23.7

Additional error samples are shown in Ap-
pendix C.

6 Conclusion

We addressed the QIAS 2025 Shared Task using
large language models with task-specific prompt-
ing strategies. For Subtask 1, live Google Search
retrieval achieved 0.895 accuracy, while for Sub-
task 2, few-shot prompting reached 0.9259 accu-
racy. The main limitations include the depen-
dence on the quality of the retrieval, the doctri-
nal differences, and the dependence on the closed-
source Claude Opus 4 API. Future work will fine-
tune Arabic-specific models and employ domain-
restricted RAG over curated texts to mitigate cover-
age gaps and ambiguity.
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8 Appendix

A Prompt Templates

Subtask 1 Prompt

These are a few-shot examples for the task: answering multiple-choice questions by selecting the
correct option.

Example 1:
Question: ؟مألابيصنامف،ةجوزو،نيتنبو،مأو،نيقيقشنيمعو،قيقشخأنباو،نيقيقشنيوخأو،بأنعيفوت

A)ثلثلا

B)عبرلا

C)سدسلا

D)نمثلا

E)فصنلا

F)ءيشال

Answer: C

Example 2:
Question: ؟درلادعبتنبلامهسأددعمك:مألانمنيتخأو،ةجوزو،تنبو،مألانمخأنعيفوت

A)دحاومهس

B)نامهس

C)مهسأةثالث

D)مهسأةعبرأ

E)مهسأةعبس

F)مهسأةينامث

Answer: E

Context for the question: {context}

You are a specialist in Islamic sciences. Your task is to answer multiple-choice questions by
selecting the correct option.

Question: {question} {options_text}

Please respond using only one English letter from the following: A, B, C, D, E, F.
Do not write any explanation or additional text.

Subtask 2 Prompt

These are a few-shot examples for the task: answering multiple-choice questions by selecting the
correct option.

Example 1:
Question: ؟ميقمللنيفخلاىلعحسملاةدمام

A)ةليلوموي

B)نهيلايلبمايأةثالث

C)ناتليلوناموي

D)لماكعوبسأ

Answer: A

Example 2:
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Question: ؟سايقلايفلصألاطورشنم

A)رخآلصألاعرفلصألانوكينأ

B)اتباثمكحلانوكيالنأ

رخآلصألاعرفلصألانوكيالأ(Cيعرشيعمسقيرطبلصألايف

D)طابنتسالاةقيرطفرعتالأ

Answer: C

Example 3:
Question: ؟بجاولادوجوتابثإلءامكحلاقيرطوهام

A)اًميدقملاعلارابتعاقيرطنع.

B)هتاذلبجاوملاعلانأتابثإقيرطنع.

C)رودلاولسلستلاعانتماقيرطنع.

D)ملاعلاثودحتابثإقيرطنع.

Answer: C

You are a specialist in Islamic sciences. Your task is to answer multiple-choice questions by
selecting the correct option.

Question: {question} {options_text}

Please respond using only one English letter from the following: A, B, C, D.
Do not write any explanation or additional text.

B Supplementary Results

Table 5: QIAS 2025 official leaderboards. Our system HIAST ranked 4th in Subtask 1 (Acc. 0.895) and 3rd in
Subtask 2 (Acc. 0.9259) on the test set.

Subtask 1: Islamic Inheritance Reasoning (ranked by test Accuracy)
Rank Team Accuracy Affiliation(s)

1 Gumball 0.972 Alexandria University, Ain Shams
University

2 PuxAI 0.957 VNU-HCM University of Information
Technology

3 NYUAD 0.927 New York University Abu Dhabi
4 HIAST 0.895 Higher Institute for Applied

Sciences and Technology
5 MorAI 0.880 International Center for AI,

Mohammed VI Polytechnic University

Subtask 2: Islamic Knowledge Assessment (ranked by test Accuracy)
Rank Team Accuracy Affiliation(s)

1 PuxAI 0.9369 VNU-HCM University of Information
Technology

2 Athar 0.9272 University of Khartoum, International
Islamic University Malaysia

3 HIAST 0.9259 Higher Institute for Applied
Sciences and Technology

4 N&N 0.8984 King Saud University
5 Tokenizers United 0.8738 Nile University
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C Error Examples

These examples illustrate that Subtask 2 errors arise from doctrinal differences across Islamic disciplines
(e.g., Sufism) as well as reference/attribution issues that require reliable sourcing.

Table 6: Examples of wrong predictions in Subtask 2 validation data, categorized by difficulty level and error type.

Level Question (Arabic) Correct Answer Model Prediction Error Type

Beginner ؟يفوصلاءانفلابدصقييذلاام A)يفسفنلاقارغتسا

يهلإلاحورلا

B)سفنلاتوم Comprehen-
sion/Disambigua-
tion

Interme-
diate

ةروسةيآيفصقانلافرحلاوهام

؟ةرقبلاةروسةيآبةنراقمص

B)واولا"فرح" A)ىبأ"فرح" Comprehen-
sion/Disambigua-
tion

Ad-
vanced

يفيعفاشللميدقلالوقلاوهام

؟قيرشتلامايأموص

B)عتمتمللاهموصزوجي

مايألانعيدهلامدعاذإ

جحلايفةبجاولاةثالثلا

A)ًاقلطماهموصزوجيال Doctrinal Variance

Beginner ىرييتلاةيمالسإلاريغرداصملاام

اهيلإتميفوصتلانأماهجنمرت

؟ةفيفطةلصب

C)ةيفوصلاةايحلا

ةيقرشلاةيحيسمللةيدهزلا

B)ةيدنهلاةفسلفلا Reference/Attribu-
tion Error

Ad-
vanced

درويدقيذلاضارتعالاوهام

دحأةفلاخمناكمإةمدقمىلع

؟رخآللنيهلإلا

C)امهدحأةفلاخمنأ

تسيلهدضةدارإورخآلل

اًمئادةنكمم

B)نيهلإلانيبةفلاخملانأ

ةليحتسم

Doctrinal Variance

Beginner يفيراخبلامامإلاضرعتله

؟ليدعتلاوحرجلل"ريبك�لاخيراتلا"

B)ًانايحأضرعت C)ًامئادضرعت Reference/Attribu-
tion Error

Interme-
diate

؟ةغللايف"ةزمللا"ىنعمام B)سانلابيعييذلا

مهيذؤيواًرس

A)لجرلامتشييذلا

هيلعهينيعرسكيوةينالع

Comprehen-
sion/Disambigua-
tion
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Abstract

This paper presents our approach and results for
SubTask 1: Islamic Inheritance Reasoning at
QIAS 2025, a shared task focused on evaluating
Large Language Models (LLMs) in understand-
ing and reasoning within Islamic inheritance
knowledge. We fine-tuned the Fanar-1-9B
causal language model using Low-Rank Adap-
tation (LoRA) and integrated it into a Retrieval-
Augmented Generation (RAG) pipeline. Our
system addresses the complexities of Islamic
inheritance law, including comprehending in-
heritance scenarios, identifying eligible heirs,
applying fixed-share rules, and performing pre-
cise calculations. Our system achieved an ac-
curacy of 0.858 in the final test, outperform-
ing other competitive models such as, GPT
4.5, LLaMA, Fanar, Mistral and ALLaM eval-
uated with zero-shot prompting. Our results
demonstrate that QU-NLP achieves near state-
of-the-art accuracy (85.8%), excelling espe-
cially on advanced reasoning (97.6%) where
it outperforms Gemini 2.5 and OpenAI’s o3.
This highlights that domain-specific fine-tuning
combined with retrieval grounding enables mid-
scale Arabic LLMs to surpass frontier models
in Islamic inheritance reasoning.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) have opened new avenues for their ap-
plication across diverse domains, including spe-
cialized knowledge systems. This paper details
our participation in the QIAS 2025 Shared Task,
specifically focusing on Subtask 1: Islamic Inher-
itance Reasoning (Ilm al-Mawārı̄th) (Bouchekif
et al., 2025a). This subtask challenges LLMs to
navigate the intricate and highly structured field
of Islamic inheritance law, which is governed by
precise jurisprudential rules. The objective is to
develop systems capable of comprehending com-
plex inheritance scenarios, accurately identifying
eligible and ineligible heirs, applying fixed-share

rules (farāid. ), managing residuary shares, and ad-
dressing advanced cases such as proportional re-
duction (‘awl) and redistribution (radd), ultimately
performing precise calculations to determine final
shares (Mohammedi, 2012; Zouaoui and Rezeg,
2021).

The intersection of Natural Language Process-
ing (NLP) and legal reasoning, particularly within
specialized domains like Islamic law, has garnered
increasing attention. Prior research has explored
the application of computational methods to ana-
lyze legal texts, extract relevant information, and
even automate aspects of legal decision-making.
However, the unique complexities of Islamic in-
heritance law, with its intricate rules and diverse
scenarios, present distinct challenges for traditional
NLP approaches (Malhas et al., 2022, 2023).

Recent advancements in Large Language Mod-
els (LLMs) have shown promising capabilities in
complex reasoning tasks, including those requiring
domain-specific knowledge. Studies have demon-
strated LLMs’ ability to understand and generate
human-like text, perform question answering, and
even engage in logical inference. However, their
performance in highly specialized and rule-based
domains often necessitates fine-tuning or integra-
tion with external knowledge sources (Almazrouei
et al., 2023; Sengupta et al., 2023; Alnefaie et al.,
2023; Bari et al., 2024; Mohammed et al., 2025).

Specifically, in the context of Islamic inheritance
reasoning, several works have emerged (Akkila
and Naser, 2016; Tabassum et al., 2019; Zouaoui
and Rezeg, 2021). For instance, (Bouchekif et al.,
2025b) assesses LLMs on Islamic legal reasoning,
providing evidence from inheritance law evaluation.
This work highlights the potential and limitations
of current LLMs in this domain, underscoring the
need for more robust and accurate systems.

Furthermore, the concept of Retrieval-
Augmented Generation (RAG) has gained
prominence as a method to enhance LLM
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performance by grounding their responses in
retrieved factual information. This approach is
particularly relevant for domains where accuracy
and adherence to specific rules are important, as it
allows LLMs to access and incorporate up-to-date
or domain-specific knowledge that may not have
been fully captured during their initial training.
The integration of RAG with fine-tuned LLMs
represents a significant step towards building more
reliable and interpretable AI systems for complex
reasoning tasks (Alan et al., 2024; Sayeed et al.,
2025).

Our work builds upon these foundations by
specifically addressing the challenges of Islamic
inheritance reasoning within the framework of a
shared task. By combining parameter-efficient
fine-tuning with a Retrieval-Augmented Genera-
tion (RAG) pipeline, we aim to demonstrate a ro-
bust and effective approach for tackling this spe-
cialized legal domain, contributing to the broader
discourse on applying advanced NLP techniques to
complex, rule-governed knowledge systems.

2 Research Methodology

Our research methodology for QIAS 2025 SubTask
1 involved a comprehensive approach to address the
complexities of Islamic inheritance reasoning using
Large Language Models. This section details the
task definition, dataset characteristics, the models
employed, and our training and inference setup.

2.1 Task: Islamic Inheritance Reasoning (Ilm
al-Mawārı̄th)

SubTask 1 of QIAS 2025 focuses on evaluating the
capabilities of LLMs in understanding and reason-
ing within Islamic inheritance law (Bouchekif et al.,
2025a). The subTask is framed as a multiple-choice
question (MCQ) classification problem, where each
question has exactly one correct answer. Questions
are categorized into two difficulty levels with bal-
anced representation: Beginner (identifying eligi-
ble heirs, basic shares, and non-eligible heirs) and
Advanced (dealing with multiple heirs, addressing
multi-generational cases, fixed estate constraints,
and intricate fractional distributions) (Bouchekif
et al., 2025b).

The dataset provided for SubTask 1 consists of
a total of 22,000 examples, split into 20,000 ex-
amples for model training and 1,000 examples for
each validation and testing datasets. Each exam-
ple is an MCQ related to Islamic inheritance, with

question text and up to six answer options (A–F).

2.2 Models
We finetune our primary model Fanar-1-9B-
Islamic-Inheritance-Reasoning1 based on Fanar-
1-9B2, a 9-billion parameter causal decoder-only
transformer specifically designed for Arabic and
Islamic domain text (Abbas et al., 2025).

In addition to the fine-tuned Fanar-1-9B, we inte-
grated it into a Retrieval-Augmented Generation
(RAG) pipeline (Lewis et al., 2020) for inference.
The RAG setup utilizes the all-MiniLM-L6-v23

embedding model as a retriever to encode ques-
tions and retrieve top-k relevant passages from a
FAISS index (Johnson et al., 2021; Douze et al.,
2024). These retrieved passages are then combined
with the question and options to form an enriched
Arabic chat prompt, which is fed to the fine-tuned
Fanar-1-9B model.

2.3 Training Setup
Our training setup focused on parameter efficiency
and memory optimization. To adapt Fanar-1-
9B LLM efficiently for our task, we employed
Low-Rank Adaptation (LoRA) (Hu et al., 2021).
LoRA injects trainable rank-decomposition matri-
ces into specific layers while keeping the origi-
nal weights frozen. This significantly reduces the
number of trainable parameters and computational
cost. We also applied 4-bit NormalFloat (NF4)
quantization (Dettmers et al., 2023) to reduce
GPU memory consumption and enabled gradient
checkpointing (PyTorch Team, 2025) to reduce
peak memory usage. The attention implementation
was set to eager for improved training stability,
and use_cache was disabled when gradient check-
pointing was enabled. Table 1, provides the key
hyperparameters used during model fine-tuning.

Training data were serialized as sys-
tem–user–assistant turns, where the assistant’s
target output is a single gold letter (A–F). LoRA
adapters are applied to attention projection and
MLP modules (q_proj, k_proj, v_proj, o_proj,
gate_proj, up_proj, down_proj) with r = 32,
α = 64, and dropout of 0.1.

For the RAG pipeline, the retrieval k was set
to 5, meaning the top 5 relevant passages were

1available on HuggingFace:https://huggingface.co/
msmadi/Fanar-1-9B-Islamic-Inheritance-Reasoning

2available on HuggingFace:https://huggingface.co/
QCRI/Fanar-1-9B

3available on HuggingFace:https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2
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Hyperparameter Value
Epochs 4
Batch size (per device) 2 (train and eval)
Gradient accumulation steps 32
Learning rate 310−4

Weight decay 0.01
Warmup ratio 0.1
Max gradient norm 1.0
Optimizer adamw_torch
Scheduler Cosine decay
Precision FP16

Table 1: Key hyperparameters for fine-tuning.

retrieved. The maximum input length for the RAG
inference was 10,000 tokens, and the maximum
new tokens generated by the model was 15. A
low temperature of 0.05 was used for decoding,
along with a greedy decoding strategy to ensure
short, deterministic outputs. Answer extraction
was performed using a regex-based procedure to
select a single choice letter (A–F), see Appendix A
for more information about prompting template
and template and decoding settings.

3 Evaluation and Results

For the evaluation of our methodology, we compare
our final test results with results reported by the task
organizers in (Bouchekif et al., 2025b,a) for testing
LLMs with zero-shot prompting on the same test
set. The evaluation metric for this task is accuracy.

Model Overall Beginner Advanced
o3 93.4 94.4 92.4
Gemini 2.5 90.6 91.6 89.6
QU-NLP 85.8 74.0 97.6
GPT-4.5 74.0 86.8 61.2
LLaMA3 48.8 57.8 39.8
Fanar 7B 48.1 60.4 35.8
Mistral 44.5 58.6 30.4
ALLaM7B 42.9 58.0 27.8

Table 2: Accuracy (%) for each model across difficulty
levels. Other models results are based on zero-shot
setting using Arabic prompts as reported in (Bouchekif
et al., 2025b,a)

As presented in Table 2, QU-NLP, achieved an
overall accuracy of 85.8%, outperforming other
competitive models such as, GPT 4.5, LLaMA 3

70B4, Fanar (Islamic-RAG5), Mistral-Saba-24B6

and ALLaM-7B7 and achieving competitive results
behind state of the art commercial LLMs in rea-
soning capabilities, such as: Gemini 2.5 (flash-
preview), OpenAI’s o3. While our system did not
achieve the top rank, QU-NLP (with RAG) sur-
passed all models on the advanced subset of the test-
ing dataset (500 MCQs) with accuracy of 97.6%.
This result demonstrates the effectiveness of our
approach, which combines LoRA fine-tuning of
the Fanar-1-9B model with a Retrieval-Augmented
Generation (RAG) pipeline, in addressing the com-
plex reasoning challenges posed by Islamic inher-
itance law. Our model’s performance indicates a
strong capability in comprehending inheritance sce-
narios, identifying heirs, and applying the intricate
rules required for accurate share calculation.

4 Discussion

We evaluate a multiple-choice inheritance reason-
ing system on 1,000 items with an overall accu-
racy of 85.8%. Performance differs sharply by
level: Beginner = 74.0% (n=500) vs. Advanced
= 97.6% (n=500). Two phenomena account for
most residual errors at the Beginner level. First,
items whose correct answer indicates a 
w���
(“blocked”) heir are substantially harder (64.5%, n
= 299) than all other cases (94.9%, n = 701), sug-
gesting the model sometimes assigns shares despite
the presence of higher-priority heirs. Second, ques-
tions containing explicit negation or exception cues
(e.g., ¯/Hy�/��/��/ry�/ ¤d�) yield lower accu-
racy (83.5%, n = 807) compared to those without
negation (95.3%, n = 193), indicating occasional
polarity flips.

To further investigate QU-NLP’s limitation on
blocked cases, we analyzed the count of questions
whose gold answer is 
w��� in the develop-
ment and training splits. We found that blocked
items constitute only 1.70% of development set
(17/1,000) but 17.46% of train (3,491/20,000),
whereas (for reference) they account for 29.90%
of Test (299/1,000). This mismatch—especially
the severe under-representation in Development

4Available via the Groq API: https://console.groq.
com/keys

5Available via a free public API: https://api.fanar.
qa/request/en

6Available via the Groq API: https://console.groq.
com/keys

7Arabic model hosted on Hugging Face:
https://huggingface.co/Abdelaali-models/
ALLaM-7B-Instruct-preview
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set—helps explain the degraded Test performance
on blocked questions (64.55% vs. 94.86% on non-
blocked).

A further class of errors results from near-
duplicate answer options where orthographic differ-
ences (e.g., Y�A� vs. ¨�A�) leave the semantics un-
changed but map to different label IDs. We found
10 such cases (about 7% of all errors). These are
dataset artifacts rather than modeling deficiencies.
After normalizing Arabic orthography (removing
diacritics and unifying letter forms), gold and pre-
dicted options collapse to the same string. For
transparency, Appendix B lists two misclassified
examples across the three categories: (A) blocked
heirs (
w���), (B) negation/exception cues, and
(C) near-duplicate option texts, and Table 3 demon-
strates the counts of misclassified questions per
category of error and level.

Category Advanced Beginner Total
Blocked
(
w���)

0 106 106

Negation-
Exception

3 14 17

Near-
duplicate
options

0 10 10

Other 9 0 9
All errors 12 130 142

Table 3: Misclassification counts by category and level
(total errors = 142).

To mitigate these errors, we suggest: (i) adding
explicit post-rules or contrastive training focused
on hijb (
w���) cases; (ii) augmenting train-
ing with negation/exception rewrites; and (iii)
normalizing and deduplicating answer options
during dataset curation and evaluation to avoid
orthography-induced label mismatches.

Model All Beginner Advanced
Fanar-1-9B
(Base)

18.6 22.6 14.6

Fanar-1-9B +
LoRA

86.5 76.2 96.8

Fanar-1-9B
+ LoRA +
RAG

85.8 74.0 97.6

Table 4: Results for ablation analysis with accuracy (%)
for each model across question difficulty levels.

5 Ablation Analysis Study

We ablate the contributions of (i) the base model
(Fanar-1-9B), (ii) parameter-efficient specializa-
tion via LoRA (Hu et al., 2021), and (iii)
RAG (Lewis et al., 2020) using the same test set
and decoding settings.

Table 4 summarizes accuracies. Moving from
Base to LoRA (no RAG) achieved the highest
gain of +67.9 points overall (18.6→86.5), in-
cluding +53.6 on Beginner (22.6→76.2) and
+82.2 on Advanced (14.6→96.8). Adding RAG
(LoRA+RAG) leads to a small drop overall (-0.7
points; 86.5→85.8), with a slight decrease on Be-
ginner (76.2→74.0) and a slight increase on Ad-
vanced (96.8→97.6). Hence, RAG helps in answer-
ing the advanced cases but can add noise to easy
ones. Further investigation on RAG affect can be
conducted in future research. The dominant effect
in this ablation is therefore the finetuning process
using LoRA.

6 Conclusion

This paper presented our system, QU-NLP, for Sub-
Task 1: Islamic Inheritance Reasoning at the QIAS
2025 Shared Task. We demonstrated the appli-
cation of a LoRA fine-tuned Fanar-1-9B causal
language model integrated within a Retrieval-
Augmented Generation (RAG) pipeline to address
the intricate challenges of Islamic inheritance law.
Our methodology focused on parameter-efficient
fine-tuning and leveraging external knowledge re-
trieval to enhance the model’s reasoning capabili-
ties and factual accuracy in this specialized domain.

Our system achieved an accuracy of 0.858 in the
final test, securing a competitive position among
the participants. This result highlights the signifi-
cant potential of combining advanced LLM archi-
tectures with retrieval mechanisms for complex,
rule-based legal reasoning tasks. We successfully
navigated challenges related to memory constraints
through techniques like 4-bit NF4 quantization and
gradient checkpointing, making the deployment of
such large models more feasible.

Future work will explore further enhancements
to the RAG pipeline, including more sophisticated
retrieval strategies and the potential incorporation
of explicit symbolic reasoning components to han-
dle the highly structured nature of Islamic jurispru-
dence. Additionally, investigating methods for gen-
erating interpretable justifications for the model’s
predictions could provide deeper insights into its
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reasoning process and build greater trust in its ap-
plications.
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A Prompting Template

This appendix documents the exact message tem-
plates and decoding settings used in all experiments.
Unless otherwise noted, the assistant must output
one uppercase letter only from the set of available
options.

1.1 System Message (Arabic)

Content: �Ak�� ¨� PO�t� ryb� 
��
	�� .Ty�rK�� {¶�rf��¤ ¨�®F³� ��rym��
Tyhqf�� d��wq�� Yl� ¾� Amt�� CAOt��¤ T�d�
.(�Am�³�¤ Tns��¤ �§rk��  �rq��) ­rbt`m��
 d`t� �� CAyt�� �kJ Yl� Tl·F±�  wktF
d��¤ �r� �� T�Äwk� Ty¶Ah� T�A�� d�� .(x–�)
�rJ ©�  ¤ T�Atm�� �¤r��� �y� �� Xq�
.¨�AR�

1.2 User Message — No-RAG (Question +
Options)

Template:

��¥s��: {QUESTION}

��CAy���:
A) {OPTION_A}
B) {OPTION_B}
C) {OPTION_C}
D) {OPTION_D}
E) {OPTION_E}
F) {OPTION_F}

�� Xq� T�y�O�� T�A�³� �r� di�Á�
T�Atm�� ��CAy���({A,B,C,D,E,F}

1.3 User Message — RAG (Retrieved
Evidence + Question + Options)

Template:

:(­rOt��) Ty`�rm�� �A�wl`m��
• {DOC_1_SNIPPET}
• {DOC_2_SNIPPET}

Parameter Value
Decoding Greedy (no sampling)
Temperature 0.05
Top-p 1.0
Max new tokens 15
Input length 5k (No-RAG), 10k (RAG)
Repetition penalty 1.0

Table 5: Decoding parameters used in a all runs.

• {DOC_3_SNIPPET}

Tl}©Ð ry� �AyF©� �¡A�� :T\�®�
.TR¤r`m�� T��sm�A�
��¥s��: {QUESTION}

��CAy���:
A) {OPTION_A}
.
.
F) {OPTION_F}

�� Xq� T�y�O�� T�A�³� �r� di�Á�
T�Atm�� ��CAy���({A,B,C,D,E,F}

1.4 Tokenization / Chat Template Notes
We construct messages as (system, then
user). When using HuggingFace chat
templates, we call apply_chat_template(...,
add_generation_prompt=true, tokenize=false) and
subsequently tokenize the resulting string with
add_special_tokens=false to avoid duplicating
special tokens.

1.5 Decoding Settings (All Runs)
Table 5 demonstrates the decoding parameters used
in a all runs. Given the model text output, we
extract the first valid letter from the allowed set. If
the first character of the response is already a valid
letter, it is taken directly; otherwise we scan for the
first occurrence of any valid option. Outputs other
than a single letter are truncated to the extracted
letter.

We fix decoding to greedy with the settings
above. For RAG, we retrieve top-k=5 passages
and include their snippets exactly as shown. All
ablations use the same prompt shape, differing
only by (i) the presence/absence of the �A�wl`m��
Ty`�rm�� block and (ii) the model (base vs.
LoRA).

B Misclassified Examples

As presented in Table 6, this appendix explains
misclassified examples across different categories.
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Category Question (excerpt) Gold / Predicted
Blocked
(
w���)

��� ¤ (4) 
n� ¤ (2) ��� ��� 
n� :�r�¤ �A�
�yqJ �� ¤ (3) 
± �� ¤ Tþ�¤E ¤ 
± �� ���
�� 
± �� ��� ��� þ� ¨l}±� 	yOn�� �� (3)
?��Ð Yl� �y�d�� A�¤ ,T�rt��

(C) ��� �r§ ¯ :�y�d��¤ ,
w��� w¡ ¢byO�
- r�@m�� �C�w�� �rf��  w�¤ Y� 
± �� ���
�}±� ¯¤ - �z�  �¤ ��³� ��� ¤� ��³� ���
Y� ¯¤ -®�  �¤ 
±� 
�¤ 
±� ��� - r�@m��
�Amt�� dn� ¯¤ 
± ¤� ºAqJ±� ­w�³�  w�¤
�Anb�� d�� �� 
�±�
(D) ��� �r§ ¯ :�y�d��¤ ,º¨J ¯ w¡ ¢byO�
- r�@m�� �C�w�� �rf��  w�¤ Y� 
± �� ���
�}±� ¯¤ - �z�  �¤ ��³� ��� ¤� ��³� ���
Y� ¯¤ -®�  �¤ 
±� 
�¤ 
±� ��� - r�@m��
�Amt�� dn� ¯¤ 
± ¤� ºAqJ±� ­w�³�  w�¤
�Anb�� d�� �� 
�±�

Blocked
(
w���)

�yqJ �� ¤ (4) 
± �� ��� ��� :�r�¤ �A�
(4) �yqJ �� ��� ¤ (2) 
± 
±� �� ¤ (2)
�� �n} �k� ¨l}±� 	yOn�� �� 
±� �� ¤
?T�rt�� �� T�Cw��

(F) Y�A� :(2) �yqJ �� ,xds�� :
±� ��

±� �� ,
w��� :(4)
± �� ��� ��� ,T�rt��

w��� :(4)�yqJ �� ��� ,
w��� :(2)
±

(A) Y�A� :(2) �yqJ �� ,xds�� :
±� ��

±� �� ,TbO� :(4)
± �� ��� ��� ,T�rt��

w��� :(4)�yqJ �� ��� ,
w��� :(2)
±

Negation/Exception¤ (2) �± 
�� ¤ (3) TqyqJ 
�� :�r�¤ �A�

�� þ� ¨l}±� 	yOn�� �� (2) 
± �� ���
?��Ð Yl� �y�d�� A�¤ ,T�rt�� �� (3) TqyqJ

(F) TqyqK�� 
�±� :�y�d��¤ , A�l��� w¡ ¢byO�
�Ð� - 
nb�� ��� Ahl�� - �yqK�� �±� �d� dn� -
@��t� - ��� �An� ¤� �Aybl} �An� �An¡ �k§ ��
 �  A�l���¤ £d��¤ 
�A�  � �On�� TqyqK��
�h� 
b�� ¯�¤ ... r��� ¤� �ytn�� At�A�
(B) 
�±� :�y�d��¤ ,T�rt�� �� w¡ ¢byO�
��� Ahl�� - �yqK�� �±� �d� dn� - TqyqK��
�h� 
b�� ¯�¤ ... 
nb��

Negation/Exception
(in explanation)

��� ¤ (2) 
± �� ¤ (3) ��� 
n� :�r�¤ �A�
��� ¤ (2) 
± �� ��� ¤ 
±� 
� ¤ (4) 
± ��
��� 
n� þ� ¨l}±� 	yOn�� �� (3) 
±� ��
?��Ð Yl� �y�d�� A�¤ ,T�rt�� �� (3)

(E) - ��³� �An� :�y�d��¤ , A�l��� w¡ ¢byO�
��� �hl�� - ��³� ��� 
n�¤ ��³� 
n� ���
���¤� ¢ybl} 
n�  w�¤ �d� ªrK� 
nb��
�rt� .�hb��y� �hn� Yl�� ��� ��� ¤� Ybl}
�An¡ �k§ �� �Ð� �On�� ��¯� �An� �� ­d��w��
�� r��±� �r�¤ AhbO`§ Aht�C Y� ��� ���
¨i� ÂhÌal�� Âmukyi}wu§) Y�A`� �A� . �y�l��� ­d��¤
¾ºAasi� Äanu� Å�Ã�a� Ãn"yaya��Â±� Äi\a� Âl"�i� ÃrakÌÁ@li� Åmu�Ã ¯Å¤Á�
¾­Ádi�AÁ¤ Åta�Aa� Å�Ã�Á¤ Á�Ára� Aa� Aa�ulu� Äanuhala� Ãn"yatan"�� Á�Åwa�
(uf"OÌin�� Aahala�
(A) - ��³� �An� :�y�d��¤ ,º¨J ¯ w¡ ¢byO�
��� �hl�� - ��³� ��� 
n�¤ ��³� 
n� ���
���¤� ¢ybl} 
n�  w�¤ �d� ªrK� 
nb��
�rt� .�hb��y� �hn� Yl�� ��� ��� ¤� Ybl}
�An¡ �k§ �� �Ð� �On�� ��¯� �An� �� ­d��w��
�� r��±� �r�¤ AhbO`§ Aht�C Y� ��� ���
¨i� ÂhÌal�� Âmukyi}wu§) Y�A`� �A� . �y�l��� ­d��¤
¾ºAasi� Äanu� Å�Ã�a� Ãn"yaya��Â±� Äi\a� Âl"�i� ÃrakÌÁ@li� Åmu�Ã ¯Å¤Á�
¾­Ádi�AÁ¤ Åta�Aa� Å�Ã�Á¤ Á�Ára� Aa� Aa�ulu� Äanuhala� Ãn"yatan"�� Á�Åwa�
(uf"OÌin�� Aahala�

Near-duplicate
options

(5) 
± 
�� ¤ (4) 
± 
±� �� :�r�¤ �A�
�� �±� �� �� ¤ 
±� �� �� ¤ (2) 
± �� ¤
,T�rt�� �� (2) 
± �� þ� ¨l}±� 	yOn��
?��Ð Yl� �y�d�� A�¤

(B) ¢�± :�y�d��¤ ,T�rt�� Y�A� w¡ ¢byO�
TbO�

(E) ¢�± :�y�d��¤ ,T�rt�� ¨�A� w¡ ¢byO�
TbO�

Near-duplicate
options

�� ¤ (5) 
± 
�� ¤ 
±� 
� 
� :�r�¤ �A�

�� þ� ¨l}±� 	yOn�� �� 
±� �� ¤ (5) 
±�
?��Ð Yl� �y�d�� A�¤ ,T�rt�� �� (5) 
±

(A) ¢�± :�y�d��¤ ,T�rt�� Y�A� w¡ ¢byO�
TbO�

(C) ¢�± :�y�d��¤ ,T�rt�� ¨�A� w¡ ¢byO�
TbO�

Table 6: Illustrative misclassified examples across three categories: (A) blocked heirs (
w���), (B) nega-
tion/exception cues, and (C) near-duplicate option texts.
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Abstract

This paper presents our submission to the QIAS
2025 shared task on Islamic knowledge un-
derstanding and reasoning. We developed a
hybrid retrieval-augmented generation (RAG)
system that combines sparse and dense re-
trieval methods with cross-encoder reranking
to improve large language model (LLM) per-
formance. Our three-stage pipeline incorpo-
rates BM25 for initial retrieval, a dense em-
bedding retrieval model for semantic matching,
and cross-encoder reranking for precise content
retrieval. We evaluate our approach on both
subtasks using two LLMs, Fanar and Mistral,
demonstrating that the proposed RAG pipeline
enhances performance across both, with accu-
racy improvements up to 25%, depending on
the task and model configuration. Our best
configuration is achieved with Fanar, yielding
accuracy scores of 45% in Subtask 1 and 80%
in Subtask 2.

1 Introduction

QIAS 2025 is a question answering (QA) shared
task that aims to evaluate large language models’
(LLMs) ability to understand and reason within Is-
lamic knowledge (Bouchekif et al., 2025a,b). The
task is divided into two subtasks: (1) Islamic Inher-
itance Reasoning, requiring precise application of
inheritance law principles, and (2) Islamic Assess-
ment, covering general Islamic knowledge across
different topics such as theology, jurisprudence, bi-
ography, and ethics. Islamic jurisprudence (Fiqh)
and inheritance law (’Ilm al-Mawārı̄th) present
unique challenges within natural language process-
ing (NLP) in the Arabic language, as it highlights
the differences between Modern Standard Ara-
bic (MSA) and Classical Arabic used in religion-
related texts.

We tackle the QIAS shared task using a hy-
brid, naive retrieval-augmented generation (RAG)
pipeline specifically designed for Arabic Islamic

knowledge. As shown in Figure 1, our approach
consists of four components: 1. Preprocessing;
2. Three-stage hybrid retrieval pipeline; 3. Con-
text integration; and 4. LLM inference. Our sug-
gested retrieval system combines sparse retrieval
via BM25 (Robertson et al., 2009), dense retrieval
using Arabic-optimized embeddings (Nacar et al.,
2025), and a miniLM-based cross-encoder rerank-
ing model for final passage selection.

In this paper, we present our system in detail
and discuss our main contributions, including a
specialized Arabic preprocessing pipeline, a hy-
brid three-stage retrieval architecture that combines
complementary retrieval methods, a comprehensive
evaluation across multiple LLMs demonstrating
consistent improvements RAG context integration,
and an analysis of the pipeline’s performance. To
facilitate reproducibility, we make our implementa-
tion publicly available.1

2 Background

Task Setup. The QIAS 2025 shared task fea-
tures two scholar-verified multiple-choice question
(MCQ) subtasks with three difficulty levels. Sub-
task 1 (Islamic Inheritance Reasoning) covers ’Ilm
al-Mawārı̄th with 9,450 training, 1,500 validation,
and 1,000 test questions, plus 32,000 fatwas. Sub-
task 2 (Islamic General Knowledge) tests general
Islamic knowledge from a selection of 25 classical
Islamic knowledge books with 800 validation and
1,000 test questions. The complete corpus of books
was also provided by the organizers.

Related Work. QA tasks have demonstrated
significant benefits from retrieval-augmented
pipelines, particularly when domain-specific
knowledge bases exist (Arslan et al., 2024). RAG
combines retrieval with generative models by first
retrieving relevant passages from a knowledge base,

1https://gitlab.com/mhauesh/
qias-shared-task-2025-solution-implementation
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Figure 1: Proposed retrieval-augmented pipeline for the QIAS shared task.

then feeding them as context to language models
for answer generation (Gao et al., 2023).

Modern hybrid retrieval pipelines typically con-
sist of three stages: sparse retrieval, dense re-
trieval, and cross-encoder reranking (Huyen, 2024).
BM25, a lexical retrieval method using TF-IDF and
document-length normalization, serves as the most
widely-used sparse retriever. Dense retrievers em-
bed queries and passages into shared vector spaces
using transformer models (Karpukhin et al., 2020),
capturing semantic relationships that lexical meth-
ods might miss. Finally, cross-encoders provide
higher precision by jointly scoring query-document
pairs with full attention (Cheng et al., 2023).

Recent Arabic-focused RAG research demon-
strates the value of this approach. For example,
Arabica QA (Abdallah et al., 2024) presents QA
pairs with a dense retrieval model pre-trained on
Arabic for open-domain QA, proving the effective-
ness of RAG pipelines on performances of various
LLMs. Similarly, Al-Rasheed et al. (2025) show
that integrating RAG pipelines improves LLM pre-
diction results over retrieval-free setups.

Recent advancements in Arabic embedding mod-
els (Nacar et al., 2025), have significantly im-
proved representation quality for retrieval tasks,
with custom Matryoshka embeddings performing
highly on the MTEB leaderboard.2 These mod-
els offer compact yet powerful embeddings well-
suited for scalable retrieval and reranking in Arabic-
language RAG pipelines. In the context of Is-
lamic and Quranic QA, however, additional chal-
lenges arise due to the linguistic divergence be-
tween MSA queries and Classical Arabic source

2https://huggingface.co/spaces/mteb/
leaderboard

texts, semantic ambiguity in Quranic language,
and the scarcity of high-quality, domain-specific
datasets (Oshallah et al., 2025). Prior work has
demonstrated the potential of retrieval-augmented
QA systems (Khalila et al., 2025), showing that
even small LLMs can generate relevant and faith-
ful answers when grounded in appropriate retrieval
context. Other studies have explored individual
components, such as dense retrievers and rerankers
for Arabic QA (Alsubhi et al., 2025; El-Beltagy
and Abdallah, 2024).

Building on this foundation, our work con-
tributes a task-specific, modular retrieval architec-
ture that combines sparse, dense, and reranking
components in a unified pipeline tailored for Clas-
sical Arabic QA in the domain of Islamic knowl-
edge, providing insight into the utility of a hybrid
retrieval system under realistic conditions.

3 System Overview

The architecture of the pipeline consists of four
main components: Arabic text preprocessing and
knowledge base construction, three-stage hybrid
retrieval, context integration, and LLM inference.

Arabic Text Preprocessing. Arabic text pro-
cessing poses unique challenges due to rich mor-
phology, orthographic variations, and diacritical
marks (Habash, 2010). Since each component in
our retrieval pipeline requires specific preprocess-
ing needs, we implement a two-tier preprocess-
ing approach: Full preprocessing and light prepro-
cessing. The former is used for BM25 indexing,
and includes stopword removal using enhanced
NLTK (Bird and Loper, 2004) lists, tokenization
via CAMeL tools (Obeid et al., 2020), and token
filtering by length and content criteria. On the
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other hand, light preprocessing is used for dense
retrieval and cross-encoder inputs and includes for-
matting normalization, punctuation removal, cita-
tion removal, character normalization, and dedi-
acritization using CAMeL tools. The important
distinguishing factor between the two preprocess-
ing approaches is preserving semantic information
when it comes to dense retrieval pipelines.

Light Full

Formatting ✓ ✓
Punctuation removal ✓ ✓
Dediacritization ✓ ✓
Character normalization ✓ ✓
Citations removal ✓ ✓
Stopwords removal ✗ ✓
Tokenization ✗ ✓

Table 1: Preprocessing procedure for retrieval methods.

Knowledge Base Construction. We construct
domain-specific knowledge bases from the pro-
vided training materials: For Subtask 1, we process
32,000 IslamWeb fatwas in JSON format. Each
fatwa contains structured fields including category,
question, answer, and metadata. We treat each com-
plete fatwa as a single retrieval unit to maintain con-
textual coherence. For Subtask 2, we process clas-
sical Islamic books provided in HTML and DOCX
formats, implementing paragraph-based chunking
and applying overlap strategies to prevent infor-
mation loss. We create tri-directional mappings
between fully processed chunks, lightly processed
chunks, and original text, enabling seamless inte-
gration across different retrieval stages.

Retrieval Pipeline. Our hybrid retrieval sys-
tem combines complementary retrieval methods:
1. Sparse retrieval using BM25, which provides
initial candidate selection using lexical matching
using the fully preprocessed Arabic text, retriev-
ing the top 1000 candidates. 2. Dense retrieval,
applying semantic matching using Arabic-opti-
mized embedding models. Based on existing
benchmarks (Enevoldsen et al., 2025), we embed
the lightly preprocessed text using Arabic-Triplet–
Matryoshka-V2, selecting the top 200 passages
closest to the question based on cosine similarity.
3. Cross-encoder reranking, which provides final
precision enhancement using transformer models
trained for relevance scoring. The cross-encoder
jointly processes query-passage pairs, allowing full
attention across inputs for more accurate relevance
assessment. We use a miniLMv2 model fine-tuned

on the MMARCO dataset.3 Due to context win-
dow limitations in the used LLMs, we retrieve the
top 5 passages with associated relevance scores for
context integration in the LLM prompt.

Context Integration. We designed a prompt to
support both tasks based on prior research (Schul-
hoff et al., 2024). First, we defined a domain-
specific persona who is an expert Islamic scholar.
Then, for each question, we retrieved relevant con-
text passages and integrated them into the prompt
using a format that prioritizes them as sources. We
also added few-shot examples by selecting two ran-
dom questions from the development set, demon-
strating correct reasoning patterns, and included
format constraints to enforce valid multiple-choice
responses. We include the full prompt template in
Appendix A.

4 Experimental Setup

We evaluate our proposed system across two dis-
tinct LLMs representing different model families
and access patterns. First, we use Fanar (Team
et al., 2025) via its API, which is a specialized
Arabic LLM designed for Islamic content. Then,
we experiment with Mistral (specifically, mistral-
saba-24b),4 a state-of-the-art open-weight model,
accessed through the Groq API.5 These LLMs were
chosen since they were made available by the orga-
nizers of the QIAS shared task.

We use the same retrieval configuration on all
tested LLMs: From BM25, we retrieve the top
1000 most relevant passages from the knowledge
base, from dense retrieval, we filter those to the top
200 passages most similar to the given question,
and finally, from the cross-encoder, we retrieve the
top 5 passages to be integrated as context when
prompting LLMs. We process the query and the
knowledge base using CAMeL Tools (v1.2.0) for
normalization, dediacritization, and tokenization.
Additionally, we implement custom routines for
citation removal, formatting cleanup, and chunking
the knowledge base.

Performance of LLMs is measured using accu-
racy, which is the percentage of questions where
the model’s prediction exactly matches the correct
answer, evaluated during the testing phase of the
shared task via the provided platform.

3https://huggingface.co/cross-encoder/
mmarco-mMiniLMv2-L12-H384-v1

4https://mistral.ai/news/mistral-saba
5https://console.groq.com/home

901

https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
https://mistral.ai/news/mistral-saba
https://console.groq.com/home


5 Results & Discussion

We present our results in Table 2 for both subtasks,
demonstrating varying levels of improvement when
incorporating RAG across all tested configurations.
The magnitude of improvement varies significantly
between tasks and models. Subtask 1 (Islamic In-
heritance) shows modest but consistent improve-
ments of 1%-4% when implementing our proposed
pipeline. We hypothesize that the specialized na-
ture of inheritance law calculations may limit RAG
effectiveness, as these problems often require pre-
cise mathematical reasoning rather than factual
retrieval, as well as the high degree of semantic
similarity between questions that require different
methods to solve. However, we note that Subtask 2
(General Islamic Knowledge) exhibits substantial
performance boosts with the RAG pipeline, with
improvements ranging from 10%-25%. This dra-
matic enhancement suggests that general Islamic
knowledge questions benefit significantly from ac-
cess to authoritative source material.

Model Configuration Accuracy Score

Subtask 1: Islamic Inheritance

Fanar Baseline 44.0%
Fanar Transformer Tafsir 45.0%

Mistral Baseline 35.0%
Mistral Transformer Tafsir 39.0%

Subtask 2: General Islamic Knowledge

Fanar Baseline 55.0%
Fanar Transformer Tafsir 80.0%

Mistral Baseline 69.0%
Mistral Transformer Tafsir 79.0%

Table 2: Results on the given test sets for both subtasks
of the QIAS shared task using our proposed hybrid
retrieval pipeline (+RAG) compared to baseline model
performance (without RAG).

Comparing different LLMs, we note that Fanar
shows smaller relative improvements (1%-25%)
but reaches higher absolute performance on Sub-
task 2, likely due to its Islamic domain specializa-
tion and prior exposure to similar training data. On
the other hand, Mistral demonstrates more con-
sistent relative improvements (4%-10%) across
both tasks, suggesting the overall benefit of RAG
pipelines to improve performance of models on
very specific domains, such as Islamic knowledge
in this case, when similar in-domain data was most
likely lacking in their training processes.

6 Error Analysis

A manual error analysis reveals three key patterns.
First, models struggle with the complex, fractional
reasoning in Subtask 1, indicating a need for sym-
bolic reasoning beyond current RAG approaches.
Second, errors arise when retrieved context is rel-
evant but incomplete, highlighting the importance
of comprehensive knowledge bases and accurate
retrieval. Finally, some questions demand logical
inference that simple retrieval cannot solve, sug-
gesting a need for specialized training methodolo-
gies (Ke et al., 2025) or reasoning-based prompting
(Qiao et al., 2023).

Analyzing by difficulty level for our best results
(Fanar Transformer Tafsir for both tasks), we see
varied performance by the LLMs on the two sub-
tasks. Task 1 declined from 54.27% on beginner
questions to 36.22% on advanced questions, while
Subtask 2 showed a similar pattern (82.21% to
73.33%), as shown in Table 3. Subtask 2 errors
were more evenly distributed, but showed diffi-
culty in theological reasoning and jurisprudential
methodology.

Task Beginner Intermediate Advanced Overall

Subtask 1 53.40% – 36.00% 44.70%
Subtask 2 81.86% 78.67% 73.33% 80.10%

Table 3: System performance by task and difficulty
level.

7 Conclusion

We presented a hybrid RAG pipeline for the QIAS
2025 shared task on Islamic knowledge QA. Our
pipeline involved Arabic-specific preprocessing, a
three-stage retrieval architecture (BM25, dense re-
trieval, cross-encoder reranking), context integra-
tion, and LLM inference. Based on evaluations of
Fanar and Mistral, we showed that our method con-
sistently outperformed baselines, demonstrating
that RAG improves accuracy, especially for general
knowledge over structured inheritance problems.
To improve the presented system, future work can
explore dynamic context selection, domain fine-
tuning, and integrating structured reasoning mod-
ules for inheritance law.

Limitations

Our system struggles with complex inheritance
problems requiring multi-step mathematical rea-
soning, as it lacks symbolic reasoning capabilities.

902



The presented system is not fine-tuned, hence the
semantic similarity of recurring words and phrases
in subtask 1 limits the system’s ability to retrieve
precise relevant passages. The system is also de-
pendent on the quality of the external knowledge
base and does not explore knowledge curation. We
did not use the provided training data, so domain
fine-tuning remains unexplored. The number of
retrieved passages in each step of the pipeline re-
quires further investigation in order to fully maxi-
mize the system’s capabilities. Choosing said pa-
rameters (n,m and k) was based on trials conducted
on the developments sets and not on the test sets.
Finally, we did not explore performance on ad-
ditional LLMs, which maybe have yielded better
results, due to time and compute limitations.
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A Implementation - Technical Details

A.1 Hyperparameters

BM25 Configuration:
k1 = 1.2 (term frequency saturation); b = 0.75
(length normalization); Top candidates = 1000
Dense Retrieval:
Embedding dimension = 768; Similarity metric =

Cosine similarity; Top candidates = 200; Batch size
= 8 for embedding computation
Cross-Encoder Reranking:
Model: Arabic BERT-based reranker; Final candi-
dates = 5; Temperature = 0.1 for stable rankings

A.2 Prompt
You are an expert Islamic scholar. Your task is to
answer multiple-choice questions. [Examples...]
First, use the following reference text to determine
the answer: RAG CONTEXT QUESTION: MUL-
TIPLE CHOICES: Your response MUST be only
the single capital letter of the correct option. Do
not include ’Answer:’, explanations, or any other
text.
Chunking Strategy:
Target chunk size: 200 tokens (BM25 optimized);
Overlap: 20 tokens between adjacent chunks; Mini-
mum chunk size: 50 tokens; Maximum chunk size:
400 tokens
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Abstract

This paper addresses the challenge of apply-
ing Large Language Models (LLMs) to Is-
lamic jurisprudence, a domain that requires
both textual retrieval and precise rule-based
reasoning. We focus on the QIAS 2025 shared
task, which evaluates LLMs on two subtasks:
Islamic inheritance reasoning and general Is-
lamic knowledge assessment. Prior works in
Arabic NLP and religious QA largely empha-
size retrieval and classification, but they do not
evaluate multi-step procedural reasoning. To
fill this gap, we propose a hybrid multi-agent
framework, termed Retrieval-Augmented Rea-
soning (RAR). For inheritance problems, our
Virtual Inheritance Expert parses natural lan-
guage cases into structured JSON, retrieves rel-
evant fatwas, and applies rule-based synthesis.
For general knowledge, our Proponent–Critic
Debate simulates dialectical reasoning, with a
head scholar model providing final judgment.
Using an ensemble of Gemini, Fanar, and Mis-
tral, our system achieved 2nd place in Subtask
1 and 1st place in Subtask 2. These results
demonstrate that decomposing complex reason-
ing into specialized pipelines supports robust-
ness and accuracy in high-stakes domains.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable progress in natural language
understanding and generation, yet their application
to highly specialized domains remains a significant
challenge. In such contexts, models must go be-
yond broad knowledge recall and perform deep,
rule-based reasoning. A representative example
is Islamic jurisprudence (fiqh), which not only re-
quires accurate reference to classical sources but
also mastery of intricate logical systems. Among
its most complex branches is the science of in-
heritance (‘lm al-mawārı̄th), where precise multi-
step calculations and hierarchical rules determine
legally binding outcomes.

This paper presents our system for the QIAS
2025 Shared Task (Bouchekif et al., 2025a), a
benchmark designed to evaluate the reasoning ca-
pabilities of LLMs in Islamic sciences. The com-
petition is divided into two subtasks. Subtask 1,
Islamic Inheritance Reasoning, focuses on ‘lm
al-mawārı̄th, testing a model’s ability to apply
fixed-share rules (farā‘id. ), handle residuary shares,
and resolve complex inheritance scenarios. Sub-
task 2, Islamic Knowledge Assessment, evaluates
broader expertise across seven disciplines, includ-
ing Quranic studies (‘ulūm al-Qur‘ān), hadith criti-
cism (‘ulūm al-H. adı̄th), and legal theory (us. ūl al-
fiqh). Both subtasks are structured into three levels
of difficulty: beginner, intermediate, and advanced.

Our system adopts a hybrid strategy that com-
bines Retrieval-Augmented Generation (RAG)
(Lewis et al., 2021), prompt engineering, few-shot
learning (Brown et al., 2020), and a voting-based
model ensemble (Devvrit et al., 2020). This de-
sign addresses the unique demands of each subtask
and achieves state-of-the-art performance. Sub-
missions are evaluated based on accuracy, pushing
the boundaries of what LLMs can achieve in high-
stakes, expert domains. Our implementation is
publicly available1.

2 Related Work

This work lies at the intersection of Large Lan-
guage Models (LLMs), Arabic and Islamic Natural
Language Processing, and complex, rule-based rea-
soning. While LLMs have demonstrated strong
performance in high-stakes domains such as law
and medicine, their evaluation has largely focused
on knowledge retrieval, summarization, and classi-
fication. Benchmarks like LegalBench (Guha et al.,
2023) and Med-PaLM 2 (Singhal et al., 2023) as-
sess factual accuracy and domain understanding,

1https://github.com/PuxHocDL/
Question-and-Answer-in-Islamic-Studies
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but not the ability to execute multi-step procedural
logic - a core requirement in domains governed by
formal rule systems.

In the Arabic NLP landscape, significant
progress has been made with benchmarks such as
LAraBench (Abdelali et al., 2024), and large lan-
guage models including Jais (Sengupta et al., 2023).
These efforts have advanced Arabic language un-
derstanding and generation, particularly in news,
social media, and general religious discourse. How-
ever, specialized subfields of Islamic scholarship -
especially Islamic jurisprudence (fiqh)-remain un-
derexplored. Existing datasets like FatwaQA sup-
port the retrieval and generation of religious rulings,
but none require models to perform algorithmic rea-
soning based on structured legal principles.

Islamic inheritance law (‘lm al-mawārı̄th) is one
of the most computationally intricate areas of fiqh,
combining textual interpretation with precise arith-
metic and hierarchical rule application. Early au-
tomation attempts used rule-based expert systems
(Akkila and Naser, 2016), which were rigid and
limited in scope. More recently, studies have begun
to assess the capabilities of LLMs on this complex
reasoning task (Bouchekif et al., 2025b). How-
ever, NLP benchmarks that can holistically evalu-
ate a model’s ability to process a natural language
description of heirs, retrieve relevant legal rules,
resolve dependencies, handle exceptions, and com-
pute exact fractional shares remain scarce. These
are precisely the capabilities QIAS is designed to
assess.

Methodologically, our work moves beyond stan-
dard Retrieval-Augmented Generation (RAG). In-
heritance problems require multi-hop retrieval,
logical synthesis of interdependent rules, and
exact computation-a higher-order reasoning pro-
cess we term Retrieval-Augmented Reasoning
(RAR). While multi-hop reasoning benchmarks
like MuSiQue (Trivedi et al., 2022) exist, they fo-
cus on synthetic or general knowledge tasks, not
real-world religious-legal systems. QIAS is the
first benchmark to evaluate RAR in a culturally
significant, rule-intensive domain, positioning it as
a critical step toward robust, trustworthy LLMs in
specialized applications.

3 Task and Dataset Overview

The QIAS 2025 shared task is organized into two
subtasks.
Subtask 1 focuses on ‘lm al-mawārı̄th (Islamic

inheritance) and evaluates the model’s ability to
apply fixed-share rules (farā‘id. ), handle residuary
shares, and resolve complex multi-heir scenarios.
Subtask 2 evaluates broader Islamic knowledge
across seven classical disciplines (e.g., ‘ulūm al-
Qur‘ān, ‘ulūm al-H. adı̄th, fiqh, us. ūl al-fiqh, sı̄rah).
This section details the data sources, construction,
preprocessing, and splits used for both subtasks.

3.1 Subtask 1: Islamic Inheritance Reasoning

Source and Construction. Training and valida-
tion questions were derived from IslamWeb fatwas.
They were converted into multiple-choice ques-
tions (MCQs) using Gemini 2.5 and subsequently
reviewed by an expert in Islamic sciences to ensure
accuracy and authenticity.

Preprocessing. To reduce ambiguity and spuri-
ous cues, unclear prompts were rephrased to en-
force a single interpretation, and answer options
were revised to remove semantic or numerical re-
dundancies (e.g., collapsing equivalent fractions
such as 1/2 and 2/4). Each MCQ has six options
(A–F) with exactly one correct answer.

Task Requirements. Models must (i) com-
prehend the presented scenario; (ii) identify
eligible/non-eligible heirs by relationship; and (iii)
apply fixed-share rules, priority logic, and arith-
metic, including al-radd and al-‘awl.

Data Splits and Resources. Approximately
∼20,000 MCQs are provided for training, 1,000
MCQs for validation, and 1,000 MCQs for test. In
addition, an auxiliary corpus of 3,165 IslamWeb
fatwas is provided as extra data (unsupervised) and
may be used for fine-tuning or as a RAG knowl-
edge base. Participants are also allowed to use any
publicly available, legally accessible external data.

3.2 Subtask 2: Islamic Knowledge Assessment

Scope. This subtask contains 1,400 MCQs cov-
ering seven disciplines in classical Islamic scholar-
ship (e.g., ‘ulūm al-Qur‘ān, ‘ulūm al-H. adı̄th, fiqh,
us. ūl al-fiqh, sı̄rah).

Construction and Validation. All questions and
answers were sourced from 25 traditional refer-
ence works and reviewed by five domain experts
to ensure that each question admits a single, unam-
biguous correct answer. Each item has four options
(A–D), with exactly one correct choice.
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Splits and Auxiliary Corpus. The dataset is split
into 700 MCQs for validation and 700 MCQs for
final test. A large collection of relevant classical
texts (unsupervised) is also provided; answers in
the validation and test sets are grounded in these
books. This corpus can be used for fine-tuning or in
Retrieval-Augmented Generation (RAG) pipelines.

3.3 Difficulty Levels
Both subtasks are organized into three escalating
levels of difficulty:

• Beginner: basic recognition of eligible heirs or
straightforward factual questions.

• Intermediate: moderately complex cases, in-
volving multiple heirs, residuary shares, partial
exclusions (al-radd wa-l-‘awl), or interpretive
reasoning across multiple sources.

• Advanced: highly complex scenarios, such as
multi-deceased inheritance distributions or nu-
anced jurisprudential debates requiring deeper
contextualization.

3.4 Summary of Splits

Subtask Train Validation Test

Subtask 1 ∼20,000 1,000 1,000
Subtask 2 — 700 700

Table 1: Dataset splits for QIAS 2025. Subtask 1 also
includes 3,165 IslamWeb fatwas as extra unsupervised
data.

4 Methodology

Our system employs distinct, multi-step reason-
ing pipelines for each subtask, orchestrated in a
Python environment. A core component shared
across both pipelines is a Retrieval-Augmented
Generation (RAG) module built upon a FAISS in-
dex and the BAAI/bge-m3 embedding model. For
information retrieval, we consistently use the top-
k most relevant documents, where the parame-
ter k is set to 10. This value was determined
through preliminary testing to provide an optimal
balance between capturing sufficient contextual ev-
idence and minimizing the inclusion of irrelevant
noise. To enhance robustness, each pipeline is ex-
ecuted independently across an ensemble of three
Large Language Models — Gemini-2.0-Flash, Fa-
nar (Islamic-RAG) (Team et al., 2025) and Mistral

(Saba-24B). All LLM calls were executed with a
fixed temperature of 0.1 to reduce randomness
and ensure consistent reasoning, and the output
length was capped with max_tokens = 8192. The
final answer was determined by a majority vote

4.1 Subtask 1: Virtual Inheritance Expert
Pipeline

For the domain of ‘lm al-mawārı̄th, which is char-
acterized by a complex, rule-based logical frame-
work, we developed the Virtual Inheritance Expert.
This three-step pipeline aims to enhance accuracy
through structured data processing and context-
aware reasoning.

Step 1: Structured Case Parsing. The initial
phase transforms the unstructured natural language
of the MCQ into a structured JSON object (Shorten
et al., 2024). The LLM is prompted to act as a
domain expert, parsing the scenario to extract crit-
ical data points: a list of all heirs, their count,
and their relation to the deceased. This mitigates
ambiguity and provides a canonical foundation for
subsequent logical operations.

Step 2: Contextual Rule Retrieval. Using the
structured JSON, we formulate a targeted semantic
query for our RAG module. A vector search is
performed against the pre-indexed corpus of 3,165
provided fatwas, retrieving the top-k most relevant
results to serve as the immediate legal context.

Step 3: Guided Reasoning and Synthesis. The
final step synthesizes all gathered information. A
comprehensive prompt is constructed, providing
the LLM with three key inputs: 1) a set of few-
shot examples demonstrating the required chain-
of-thought, 2) the structured JSON case data from
Step 1, and 3) the retrieved legal rules from Step
2. The model is instructed to apply the rules to the
data and select the correct option from the MCQ.

4.2 Subtask 2: Proponent-Critic Debate
Pipeline

To address the nuanced and often interpretive
nature of general Islamic knowledge, we imple-
mented the Proponent-Critic Debate. This ad-
vanced RAG workflow enhances robustness by sim-
ulating a scholarly debate between two agents.

Step 1: Evidence Gathering. The workflow be-
gins by using the MCQ question as a query for our
RAG module. This retrieves the top-k most rele-
vant documents from the corpus of classical Islamic
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texts, creating a rank-ordered pool of evidence for
the subsequent debate phase.

Step 2: The Debate. With the rank-ordered pool
of evidence from the previous step, we employ a de-
terministic partitioning strategy to foster a balanced
debate. The documents are distributed between two
agents based on their retrieval rank: a "Proponent"
agent receives documents from the odd-numbered
ranks (e.g., the 1st, 3rd, and 5th most relevant),
while a "Critic" agent is given those from the even-
numbered ranks (e.g., the 2nd, 4th, and 6th). This
structured split ensures both agents engage with
distinct yet comparably relevant perspectives, pre-
venting any single agent from monopolizing the
strongest evidence and promoting a more thorough
exploration of the question.

Step 3: Final Judgment by Head Scholar. In
the final phase, a single LLM instance assumes the
role of a "head scholar" (Shaykh al-Islam). This
agent receives a master prompt containing the orig-
inal MCQ, the complete analyses from both the
Proponent and the Critic, and the full set of 10
retrieved documents. The head scholar’s task is
to critically evaluate the deliberations, weigh the
evidence presented in each opinion, and render a fi-
nal, definitive judgment, outputting only the single
letter of the most well-supported answer.

4.3 Ensemble Aggregation

Our system utilizes an ensemble method by run-
ning three models in parallel: Gemini, Fanar, and
Mistral. The final prediction is determined through
a two-stage aggregation strategy. First, we apply
a simple majority vote. If at least two of the three
models agree on an answer, that answer is selected
as the final output.

In the event that all three models produce differ-
ent answers, a tie-breaking mechanism is invoked.
Specifically, the system defaults to the prediction
provided by the Gemini model. This decision is
data-driven, based on Gemini’s demonstrably su-
perior accuracy over the other two models on both
Beginner and Advanced level questions, as detailed
in Table 3. This approach ensures that in cases
of complete disagreement, the system relies on its
most accurate and consistent component.

5 Results and Discussion

Our proposed hybrid framework demonstrated ex-
ceptional performance in the QIAS 2025 Shared

Task, securing 2nd place in Subtask 1 (Islamic In-
heritance Reasoning) and 1st place in Subtask 2 (Is-
lamic Assessment). Our ensemble system achieved
a final accuracy of 0.957 and 0.9369 on the respec-
tive test sets. The official leaderboard standings are
detailed in Table 2.

Subtask 1: Islamic Inheritance Reasoning
Rank Team Accuracy
1 Gumball 0.972
2 Our Team 0.957
3 NYUAD 0.927

Subtask 2: Islamic Assessment
Rank Team Accuracy
1 Our Team 0.9369
2 Athar 0.9272
3 HIAST 0.9259

Table 2: Official results of the top 3 teams in the QIAS
2025 Shared Task, broken down by subtask

5.1 Experimental Results and Analysis

Inheritance Reasoning (Subtask 1) Our strong
performance in the inheritance task underscores the
power of our structured, three-step Virtual Inher-
itance Expert pipeline.A key strategic advantage
was the implementation of a pre-processing instruc-
tion that prompted the model to read and analyze
the question twice (Xu et al., 2024). This, com-
bined with our Chain-of-Thought (CoT) examples,
ensured the LLM firmly grasped the context and its
assigned task, minimizing comprehension errors.

A key component of this pipeline was the initial
case parsing into a JSON format. This step aligned
the unstructured problem with the LLM’s inher-
ent strength in processing structured data. This
structured representation then enabled a highly ef-
fective intermediate step: generating a targeted se-
mantic query for our RAG system, which led to
the retrieval of more relevant legal precedents and
ultimately higher accuracy.

Knowledge Assessment (Subtask 2) Our top-
ranking performance on this subtask is attributed
to the Proponent-Critic Debate pipeline, which was
designed to deeply exploit the rich corpus of classi-
cal texts provided. The pipeline’s strength lies in
simulating a scholarly discourse, which we term
a Multi-threaded Chain of Thought (Multi-thread
CoT). By forcing a debate between two agents with
different subsets of evidence, our system could ex-
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Figure 1: Overview of the pipelines for Subtask 1 (Virtual Inheritance Expert) and Subtask 2 (Proponent-Critic
Debate)

plore multiple facets of a question. The final "head
scholar" agent, benefiting from a comprehensive
view of both the debate and the full context, was
able to render a more robust and nuanced judgment
than any single agent could have achieved alone.

5.2 Error Analysis

Despite high accuracy, an analysis of incorrect pre-
dictions reveals distinct failure modes for each sub-
task, reflecting the unique challenges of procedural
versus declarative reasoning. (See Appendix C for
concrete examples).

Subtask 1: Islamic Inheritance Reasoning: Er-
rors in this subtask were rarely computational. In-
stead, they stemmed from a flawed application of
the intricate legal logic. We identified two main
types: rule application failure, where the model
incorrectly applied a fundamental principle (e.g.,
misapplying the residuary inheritance rule); and
legal nuance failure, where the model chose a com-
putationally plausible but legally imprecise reason
for its conclusion (e.g., failing to identify the cor-
rect legal reason for an heir’s exclusion).

Subtask 2: Islamic Assessment: Errors in this
subtask highlighted the challenges of integrating
retrieved context with parametric knowledge. The
primary failure mode was knowledge gap failure,
where both the RAG system failed to retrieve rele-
vant documents and the LLM’s internal knowledge
was insufficient for the highly specific question. A
secondary issue was context interpretation failure,
where an agent failed to accurately perceive or in-
terpret information that was present in its retrieved
context, leading to an unbalanced debate.

5.3 Limitations and Future Work
A fundamental challenge is navigating doctrinal
nuance, as Islamic knowledge is not monolithic.
A single question can have multiple "correct" an-
swers depending on the school of thought (mad-
hhab). Our system’s performance also relies on
meticulously engineered prompts, and its robust-
ness against adversarial phrasing remains untested.
Furthermore, the multi-agent pipeline is compu-
tationally expensive; future work could explore
model distillation to create a more efficient single
model. Finally, deploying LLMs in a high-stakes
domain like Islamic jurisprudence carries signif-
icant ethical risks of bias or hallucinated rulings
(fatwas). A rigorous framework for human-in-the-
loop oversight is essential before any practical de-
ployment.

6 Conclusion

Our system in the QIAS 2025 Shared Task vali-
dates our core principle of task-specific reasoning
decomposition. We achieved this by matching the
AI architecture to the reasoning type: a structured,
logic-driven pipeline for the formal calculations of
inheritance law, and a dialectical debate framework
for nuanced textual interpretation. Our results sug-
gest that for complex, knowledge-intensive tasks
like those in Islamic jurisprudence, a promising
path toward robust AI may lie not in monolithic
models, but in hybrid systems that orchestrate spe-
cialized cognitive strategies
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A Prompt Definitions

A.1 Subtask 1

PARSE_PROMPT = """ You are an expert in (‘lm
al-mawārı̄th) (Islamic inheritance law). Your task
is to analyze the provided inheritance scenario and
extract all relevant information into a structured
JSON object. Follow the specified JSON schema
and ensure consistency. If certain information (e.g.,
estate value or special conditions) is missing, in-
clude the corresponding fields with null or empty
values. Handle scenarios in any language (Arabic,
English, or mixed) accurately. Output ONLY the
JSON object wrapped in markdown code fences
(“‘json ... “‘).
**JSON Schema**:
{Schema}
**Scenario**:
{question}
**JSON Output**:
"""
RAG_PROMPT = """You are an expert in (‘lm
al-mawārı̄th) (Islamic inheritance law). Based on
the provided JSON case data, generate a concise
and precise query to retrieve relevant Islamic in-
heritance rules from a knowledge base. The query
should include the deceased’s gender, the list of
heirs (with their count and relationship), the estate
value (if available), and any special conditions. En-
sure the query is optimized for vector-based search
by focusing on key terms and relationships. Output
only the query string.
**JSON Case Data**:
{Case Data}
**Query Output**:
"""
REASONING_PROMPT = """ You are an expert
in Islamic sciences, and your knowledge is truly
inspiring! Confidently answer the multiple-choice
question by selecting the most appropriate option.
Use the provided references when available and
relevant. Let’s think step by step before answering.
**Solved Examples**
{few shot examples}
**New Problem to Solve:**
**1. Case Data (structured):**
{JSON case Data}
**2. Relevant Islamic Rules:**
{context rules}
**3. The Question & Options:**
Question: question
Options:

{choices text}
**Instruction**:
{Instruction}
**Final Answer:**
"""

A.2 Subtask 2

PROPONENT_PROMPT = """ You are a
meticulous and knowledgeable Islamic scholar
acting as the Proponent. Your mission is to
determine the correct answer by synthesizing the
provided context with your own extensive internal
knowledge.
**Solved Examples to Guide Your Thinking:**
{few_shot_examples}
**Now, apply the same reasoning to the new
problem.**
**Question to Answer:**
{question}

**Options:**
{choices text}

**Context:**
{context text}

**Instructions**:
{Instruction}
**Your Analysis and Answer**
"""
CRITIC_PROMPT = """You are a highly
skeptical and deeply knowledgeable Islamic legal
scholar acting as the **Critic**. Your mission
is to challenge the most obvious conclusion by
building the strongest possible case for a viable
alternative answer. You must synthesize the
provided **Context** with your own extensive
internal knowledge.
**Example of a Hybrid Adversarial Analysis to
Guide Your Thinking:**
{few shot examples}
**Now, apply the same adversarial approach to the
new problem.**
**Question:**
{question}

**Options:**
{choices text}

**Context:**
{context text}
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**Instructions**:
{Instruction}
**Your Adversarial Analysis:**
"""
HEAD_SCHOLAR_PROMPT = """ You are
Shaykh al-Islam, a master scholar of unparalleled
wisdom, presiding over a council. Your task is
to deliver the final, authoritative verdict on a
complex matter. Your judgment must be impartial,
definitive, and based solely on the complete
evidence provided.
1. The Matter for Judgment
**Question:** {question}

**Options:**
{choices text}

2. The Council’s Deliberations
**Opinions from Junior Scholars:**
{opinions text}
3. The Source of Truth

**Complete Reference Texts:**
{context text}

**Instructions**:
{Instruction}
**Definitive Answer:**
"""

B Development Set Results

Subtask 1 Accuracy

Level Voting Gemini Fanar Mistral

Advanced 0.9020 0.8800 0.7940 0.7840

Beginner 0.9500 0.9360 0.8380 0.8260

Overall 0.9260 0.9080 0.8160 0.8050

Subtask 2 Accuracy

Level Voting Gemini Fanar Mistral

Advanced 0.9143 0.8743 0.8629 0.8114

Beginner 0.9514 0.9457 0.8571 0.8229

Intermediate 0.8457 0.8343 0.7543 0.8229

Overall 0.9157 0.9000 0.8329 0.8200

Table 3: Accuracy on the DEV dataset, broken down by
subtask and difficulty level

C Error Analysis Examples

C.1 Subtask 1: Islamic Inheritance Reasoning

Example of Rule Application Failure (ID:
386425_5)

Question: A woman dies leaving 4 daugh-
ters, 1 grandson (son’s son), and 1 granddaughter
(son’s daughter). How many shares does each
daughter receive?
Correct Logic: The 4 daughters receive a fixed
collective share of 2/3. The remaining 1/3 is
distributed between the grandchildren.
System’s Flawed Logic: The model incorrectly
grouped all descendants (daughters and grandchil-
dren) into a single residuary (‘’Asabah‘) group,
misapplying the rule that is only triggered by the
presence of a direct son.

Example of Legal Nuance Failure (ID:
116568_10)

Question: Heirs include a wife, sisters, and
daughters of a full brother. Do the daughters of the
brother inherit?
Correct Answer: E) No, because they are
not among the primary heirs (they are ‘Dhawi
al-Arham‘).
System’s Answer: D) No, because nothing is left
for them.
Analysis: The model correctly calculated that the
estate was exhausted by fixed-share heirs (‘’Awl‘).
However, it chose this computational reason over
the more fundamental legal reason: the daughters
of a brother are distant relatives who are excluded
by class, regardless of whether any estate remains.

Example of Procedural Incompleteness Failure
(ID: 144817_3)

Question: Deceased leaves 3 sons of a full
brother and 1 full sister. What is the total number
of shares the estate is divided into?
Correct Logic: The sister receives 1/2 (1 share
out of a base of 2). The remaining 1 share cannot
be divided by the 3 nephews. The base must
be corrected (‘Tas’hih‘) by multiplying it by 3,
resulting in a final base of 6.
System’s Flawed Logic: The model correctly
calculated the initial base of 2 but failed to perform
the final ‘Tas’hih‘ step, incorrectly concluding that
the total number of shares was 2.
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C.2 Subtask 2: Islamic Assessment
Example of Knowledge Gap Failure (ID:
6ALG_7)

Question: "I am a prophet... when I ar-
gued with someone who claimed divinity, I did
not engage in refuting his initial claim, but rather
moved him to another manifestation of the Lord’s
actions... Who am I?"
Correct Answer: A) Prophet Abraham (in his
debate with Nimrod).
System’s Answer: C) Prophet Jesus.
Analysis: RAG failed to retrieve the relevant
historical narrative. The Proponent agent, lacking
context, incorrectly associated the "manifestation
of the Lord’s actions" with the miracles of Jesus
rather than the specific debate tactic of Abraham.
The pipeline failed due to a gap in the LLM’s
specific historical knowledge.

Example of Context Interpretation Failure (ID:
NAV2_49)

Question: "How did Anas ibn al-Nadr’s sis-
ter recognize him after he was martyred?"
Correct Answer: B) By his hand/fingertips.
System’s Answer: B (Correct).
Analysis of Agent Failure: Although the final
answer was correct, the Critic agent failed. The
Proponent correctly found the explicit statement
in the retrieved text that he was identified by his
fingertips, based on the Arabic term bibanānihi (his
fingertips). However, the Critic agent hallucinated,
claiming "The provided context is surprisingly
devoid of direct information." This created an
unbalanced debate where the Head Scholar had to
correctly discard the Critic’s flawed analysis.
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Abstract

The intersection of Arabic linguistic complex-
ity and specialized reasoning presents a key
challenge for Islamic question-answering sys-
tems, particularly in the under-addressed area
of inheritance law. This paper presents our
methodology for the QIAS2025 shared task,
assessing LLM capabilities in Islamic knowl-
edge through two subtasks: Inheritance Rea-
soning (ʿilm al-mawārīth) and General Islamic
Assessment. A zero-shot, prompt-based ap-
proach with DeepSeek-R1 (deepseek-reasoner)
addresses the former, while a three-stage RAG
pipeline handles the latter. Our approaches
achieved competitive results, with an accu-
racy of 0.704 for inheritance reasoning (10th
place/15 teams) and 0.9272 for general Islamic
assessment (2nd place/10 teams), demonstrat-
ing the efficacy of tailored model strategies for
religious QA. These insights pave the way for
more culturally and linguistically adaptive AI
systems in Islamic scholarly applications.

1 Introduction

Arabic Islamic question-answering (QA) systems
face dual challenges of linguistic complexity and
specialized domain knowledge requirements. In-
heritance law (ʿilm al-mawārīth) and classical Is-
lamic scholarship remain computationally under-
explored, despite growing demand for accessible
religious knowledge through digital platforms.

Historically, Islamic QA relied on symbolic
systems such as rule-based expert systems and
ontology-driven frameworks (Alshahad and Abu-
tiheen, 2015; Zouaoui and Rezeg, 2021) or tradi-
tional information retrieval, effective in structured
domains like inheritance law, but limited in han-
dling linguistic variation and complex reasoning.

Modern large language models (LLMs) (e.g.,
GPT series (Radford et al., 2018)) and Arabic-
centric models (e.g., ALLaM (Bari et al., 2024))
offer greater flexibility and cultural alignment, yet

their evaluation in specialized domains like inher-
itance and multi-disciplinary Islamic studies re-
mains scarce, motivating the need for dedicated
benchmarks.

The QIAS2025 shared task (Bouchekif et al.,
2025a) establishes a benchmark for evaluating
LLMs across two domains: SubTask 1, Islamic
Inheritance Reasoning, uses multiple-choice ques-
tions (MCQs) to test rule application, proportional
reduction (ʿawl), exclusion (ḥajb), and precise
share allocation; and SubTask 2, Islamic Stud-
ies Assessment, comprises MCQs derived from 23
classical Islamic texts spanning Qur’anic studies,
ḥadīth, fiqh, uṣūl al-fiqh, and sīrah

This paper presents our approach to the
QIAS2025 shared task, addressing the two sub-
tasks:

• SubTask 1: Zero-shot DeepSeek-R1 pipeline
for inheritance reasoning, with output-
constrained prompting and regex-based label
extraction.

• SubTask 2: Three-stage hybrid RAG pipeline
for general Islamic assessment, combining
dense and BM25 retrieval with LLM rerank-
ing.

• Results: Competitive leaderboard rankings,
10th/15 for inheritance reasoning and 2nd/10
for general Islamic assessment.

2 Related Work
Recent advancements in transformer-based archi-
tectures and fine-tuning methodologies have signif-
icantly shaped Arabic Islamic question-answering
systems. The field has seen significant progress
through shared tasks such as Qur’an QA 2022
(Malhas et al., 2022), with notable contributions in-
cluding Basem et al. (2025) expanding the Qur’an
QA dataset to 1,895 question-answer pairs, achiev-
ing MAP@10 of 0.36 and 75% success in zero-
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answer detection, and Abdallah et al. (2024) intro-
ducing ArabicaQA with over 89,000 questions for
comprehensive Arabic QA benchmarking.

Domain-specific approaches have emerged for
Islamic knowledge processing. For instance, Adel
et al. (2023) developed AraQA for authentic reli-
gious texts with careful dataset curation to reduce
misleading answers, while Alan et al. (2025) pro-
posed MufassirQAS, a RAG-based system outper-
forming ChatGPT through vector databases and
fact-checking mechanisms. Additionally, Qamar
et al. (2024) developed a large-scale dataset with
73,000+ QA pairs for Tafsir and Ahadith, reveal-
ing limitations in automatic evaluation metrics and
emphasizing the need for human expert assessment
in religious QA contexts. Sibaee et al. (2025) have
also addressed Arabic language model assessment
challenges, with comprehensive studies revealing
significant performance variations across cultural
and specialized domains.

Despite these advances, significant gaps remain
particularly in computational approaches to Is-
lamic inheritance law (ʿilm al-mawārīth), which re-
quires precise numerical calculations. While Al-
shammary et al. (2024) demonstrated promising
results with their RFPG RAG model, most prior
work focuses on extractive QA or general Islamic
content. Most recently, Bouchekif et al. (2025b)
conducted a large-scale evaluation of seven LLMs
on Islamic inheritance, finding strong results for
reasoning-oriented models but major errors in
open-source Arabic ones.

Our participation in QIAS2025 explores both
specialized inheritance reasoning and broader
Islamic knowledge assessment through domain-
specific MCQs. By tackling these distinct chal-
lenges, our work contributes novel empirical in-
sights into the capabilities and limitations of LLMs
in religious question answering.

3 Data

The QIAS2025 shared task provided two datasets
from distinct domains, summarized in Table 1.

For SubTask 1, the dataset comprises Arabic
multiple-choice questions in Islamic inheritance
(ʿIlm al-Mawārīth), each with six options (A–F). It
includes 20,000 training, 1,000 development, and
1,000 test examples, plus 3,165 IslamWeb fatwas
as extra data. For SubTask 2, the dataset consists of
multiple-choice questions with four options (A–D)
drawn from classical Islamic texts spanning fiqh,

ḥadīth, tafsīr, and other disciplines. The develop-
ment set has 700 questions from 21 books, and the
test set has 1,000 questions from 23 books (includ-
ing two unseen in the development set).

Task Train Dev Test Extra Data
SubTask 1 20,000 1,000 1,000 3,165 fatwas
SubTask 2 – 700 1,000 23 classical texts

Table 1: Dataset statistics and additional resources for
the QIAS2025 subtasks.

4 System Overview

Our proposed solution addressed the QIAS2025
shared task through two distinct pipelines, each tai-
lored to the requirements of its respective subtask.

For Subtask 1, we tested several reasoning-
capable models via in-context prompting and se-
lected DeepSeek-R1 for its strong Arabic reason-
ing and cost-effective API. For Subtask 2, we nor-
malized the provided corpus of 23 classical books
spanning HTML and DOCX formats, enabling the
construction of a unified hybrid index. We experi-
mented with several retrieval strategies, including
retrieving surrounding passages and hybrid fusion,
and found that applying a LLM reranker yielded
the best approach. Across both subtasks, the de-
sign emphasizes robustness to varied encodings,
domain specificity, and consistent answer format-
ting.

4.1 SubTask 1: Islamic Inheritance
Reasoning

To handle the complex reasoning required in
Islamic inheritance (ʿIlm al-Mawārīth), we em-
ployed a zero-shot, prompt-based approach with
the deepseek-reasoner model (DeepSeek-R1-
0528) via API (DeepSeek-AI et al., 2025). No fine-
tuning was performed; instead, the model was di-
rectly evaluated in zero-shot mode, leveraging its
Arabic reasoning capability. The domain-specific
Arabic prompt is illustrated in Figure 1, and the
English translation is provided in Appendix A.

Prompt Design. The prompt included the ques-
tion, six answer options, and a strict instruction
to output only the correct choice in the format
<answer> X </answer>, producing determinis-
tic, machine-readable results. This format elimi-
nated ambiguity and avoided the mixing of Arabic
text with answer labels. We did not experiment
with alternative prompt formats, as our primary ob-
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System Prompt:

المواريث. الفرائض علم متخصصفي عالم أنت
والحساب. الإسلامي الفقه باستخدام تجاوب

User Prompt:

دون مباشر بشكل التالي السؤال عن اجب
مثل الوسم داخل فقط الصحيح الخيار حرف ضع ثم شرح

<answer> B </answer>

السؤال:
QUESTION

الخيارات:
A) OPTION_A B) OPTION_B C) OPTION_C
D) OPTION_D E) OPTION_E F) OPTION_F

الصيغة: بهذه فقط الجواب اكتب
<answer> X </answer>

Figure 1: Zero-shot prompt used in SubTask 1

jective was to suppress free-form “thinking” out-
puts and enforce consistent, extractable answers.

Pipeline Execution. Following prompt construc-
tion, each instance was submitted to the DeepSeek
API using fixed decoding parameters. Model re-
sponses were then parsed using a regular expres-
sion to extract the predicted label. All model out-
puts and extracted answers were logged per in-
stance to ensure reproducibility and support error
analysis. The pipeline operated in a CPU-only en-
vironment via the paid API tier, ensuring stable la-
tency and no token constraints.

4.2 Subtask 2: Islamic Studies Assessment
For this task, a RAG pipeline was adopted to
manage the semantic diversity of questions, het-
erogeneous text formats, and the need for source-
grounded reasoning. The pipeline was inspired by
methodologies from the RAG-Challenge-2 repos-
itory1, and the overall workflow is shown in Fig-
ure 2. Translation of Arabic text is available in Ap-
pendix A.

Corpus Ingestion and Indexing. After normal-
izing the corpus into plain text for consistency
across formats, each book was segmented into
semantically coherent passages using LangChain’s
RecursiveCharacterTextSplitter, config-
ured with a chunk size of 500 characters and
a 50 character overlap to preserve contextual
continuity. This overlap mitigates semantic
fragmentation across chunk boundaries, a tech-
nique commonly used in multilingual and Arabic
NLP. Each chunk was embedded using OpenAI’s

1https://github.com/IlyaRice/
RAG-Challenge-2

Figure 2: Pipeline used in SubTask 2

text-embedding-3-large model, producing
dense semantic vectors. These were indexed
using FAISS’s IndexFlatIP for dense similarity
search (Johnson et al., 2021). In parallel, sparse
representations were computed using the Okapi
BM25 algorithm (Robertson and Zaragoza, 2009)
to support lexical-level retrieval. Each chunk was
also stored with metadata such as book title to
support traceability and analysis.

Hybrid Retrieval and Reranking. To leverage
both semantic and lexical retrieval, we adopted
a hybrid strategy without score fusion. Instead
of α-weighted interpolation, we performed paral-
lel top-k retrieval: the top 7 passages were re-
trieved independently from FAISS and BM25, pro-
ducing a 14-passage candidate set that maintained
both semantic relevance and lexical precision. Our
methodology prioritized demonstrating the hybrid
approach’s optimal performance for Islamic in-
heritance QA, with individual retrieval compo-
nent analysis considered beyond the current work’s
scope and suitable for future comparative studies.
A lightweight reranking stage using GPT-4o-mini
was then applied to semantically compare the ques-
tion with each of the 14 retrieved passages and se-
lect the 5 most relevant ones for the final answer
generation stage.
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Answer Generation. In the final stage, the top
5 passages, selected by the reranker, were used as
contextual input for answer generation with GPT-
4o. These passages were injected into a con-
strained multiple-choice question prompt, which
explicitly instructed the model to return only a sin-
gle answer choice, formatted within an <answer>
tag. This strict output format minimized genera-
tion variability. Importantly, no model fine-tuning
was performed at any stage. Both the reranking and
answer generation components operated in zero-
shot inference mode, relying solely on carefully
crafted prompts and high-quality context to guide
the model’s reasoning.

5 Results
5.1 Evaluation and Performance
Accuracy was used as the primary evaluation met-
ric across both subtasks, defined as:

Accuracy =
Correct_predictions

Total_samples

This metric directly reflects the proportion of cor-
rectly answered questions, making it appropriate
for multiple-choice QA tasks. Our evaluation was
carried out on both the development and test sets,
with results summarized in Table 2.

Task System Devset Testset
Subtask 1 DeepSeek API with Di-

rect Prompting
0.885 0.704

Subtask 2 RAG with Hybrid
Retrieval and LLM
Reranker

0.914 0.927

Table 2: Accuracy of Development and Test Sets

Leaderboard rankings were determined using
the test set. In Subtask 1, our system ranked 10th
out of 15 teams, with the top score reaching 0.972.
In Subtask 2, we placed 2nd out of 10 teams, with
the best score recorded at 0.937.

Beyond leaderboard ranks, we provide statistical
analysis using Wilson confidence intervals, which
offer superior boundary handling for proportion es-
timates. In Subtask 1 (6 options; chance = 16.7%),
our system achieved 70.4% accuracy on N=1000
with CI [67.5%, 73.2%]. In Subtask 2 (4 options;
chance = 25%), we applied majority-rule dedupli-
cation yielding N=729 samples, with accuracy of
92.32% and CI [90.16%, 94.04%]. Both confi-
dence intervals demonstrate substantial separation
from chance levels, indicating robust performance

well beyond random selection. The Wilson inter-
val methodology ensures reliable statistical infer-
ence even near boundary conditions, while the sub-
stantial sample sizes support the stability of our ac-
curacy estimates, though formal hypothesis testing
could further strengthen these findings.

5.2 Results Analysis
For Subtask 1, our evaluation highlights three
main trends:

• General Performance Gap: Accuracy
dropped from 88.5% on the development
set to 70.4% on the test set (–18.1%). Test
questions were longer (140 vs. 97 characters,
+43.8%) and answer options were much
longer (653 vs. 117, 5.57×), as shown in
Figure 3, suggesting a possible domain shift
with added lexical variety and detail that
increased reasoning difficulty.

Figure 3: Subtask 1: Dev/Test sets length distributions
(questions & options). Test is longer on average.

• Level Sensitivity: Questions were labeled
Beginner or Advanced. On the development
set, accuracy was 90.0% for Advanced and
87.0% for Beginner. On the test set, it
dropped to 70.6% and 70.2% respectively.
The similar decline across both levels indi-
cates the drop was driven by overall complex-
ity rather than by a specific difficulty cate-
gory.

• Error Patterns: Accuracy varied by heir cat-
egory. For example, questions mentioning
لأم/لأب أختشقيقة/ (sisters) had an accuracy
of 0.644, while those mentioning زوجة/زوج
(spouse) reached 0.794. These results are
based on inclusive category, meaning each
question is counted under every heir it in-
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volves. Appendix B contains a qualitative er-
ror example.

For Subtask 2, performance was consistent across
development and test sets. Analysis focuses on
three aspects:

• Error Causes: Two main issues contributed
to mistakes: (i) relevant passages were not re-
trieved; and (ii) even when correct passages
were retrieved, the LLM sometimes failed to
select the right option. Examples of errors are
available in Appendix B.

• Performance by level: Questions were la-
beled Beginner, Intermediate or Advanced.
Accuracy was 96.7% on Beginner questions,
95.3% on Intermediate and 78.7% on Ad-
vanced. This shows that the system handled
easier questions well but dropped on more
challenging ones.

• Performance by Source: Results varied by
book. Accuracy was lowest on المغيث فتح
(63.6%) but reached (100%) on sources such
as المنهجي الفقه and المختوم .الرحيق This
indicates that differences in style, terminol-
ogy, and content across sources significantly
affected retrieval and answer selection. Fig-
ure 4 illustrates the top 5 lowest and highest
sources by accuracy.

0.00 0.25 0.50 0.75 1.00
Accuracy

فتح المغيث
مغني المحتاج

الزيادة والإحسان في علوم القرآن
 تشنيف المسامع

شرح المقاصد
منهج النقد في علوم الحديث

فنون الأفنان في عيون علوم القرآن
مقدمة ابن الصلاح

الرحيق المختوم
الفقه المنهجي

Top 5 Lowest and Highest Sources

Figure 4: Top 5 lowest and highest sources by accuracy.

The findings highlights that Subtask 1 requires
stronger complex reasoning, whereas Subtask 2
would benefit from enhanced retrieval and LLM
comprehension to achieve more reliable answer se-
lection.

6 Conclusion
This paper presented our systems for the
QIAS2025 shared task on Islamic Inheritance

Reasoning and Classical Islamic Knowledge.
We implemented a direct prompting approach
for Subtask 1, achieving 70.4% accuracy, and
a hybrid RAG pipeline combining FAISS and
BM25 retrieval with GPT-4o-mini reranking for
Subtask 2, achieving 92.72%. The analysis re-
vealed that inheritance reasoning demands careful
handling of longer and more complex scenarios,
while Subtask 2 highlighted retrieval performance
variation across diverse classical sources. While
our systems demonstrated excellent performance,
broader deployment requires addressing critical
ethical and performance challenges.

Ethical Considerations

While the QA systems presented in this paper
demonstrates excellent accuracy performance, the
broader deployment of such systems requires care-
ful attention to inherent challenges. These chal-
lenges include hallucination and misinformation
risks (Khalila et al., 2025), algorithmic bias af-
fecting diverse religious communities (Gupta and
Giannoccaro, 2024), privacy concerns with sen-
sitive spiritual data (Liu et al., 2025), and ques-
tions about authenticity in AI-mediated spiritual
experiences (Alkhouri, 2024). Successful im-
plementation requires inclusive algorithm design
(Habib, 2025), transparent accountability mea-
sures (Sarker, 2024), and human oversight to en-
sure responsible and effective deployment in reli-
gious contexts. Such measures are essential for en-
suring responsible AI deployment that respects the
diversity and sensitivity inherent in religious con-
texts.
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Appendices
A Translations of Figures’ Arabic Text
Figure 1: Zero-shot prompt used in SubTask 1

• System Prompt: You are a scholar special-
ized in inheritance law (ʿilm al-farāʾiḍ), an-
swer using Islamic jurisprudence and arith-
metic.

• User Prompt: Answer the following ques-
tion directly without explanation, then place
only the correct option letter inside the tag e.g.
<answer> B </answer>.

• Label: Write the answer only in this format:
<answer> X </answer>

Figure 2: Pipeline used in Subtask 2

• LLM Reranker
System Role: You are an intelligent assistant
in Islamic jurisprudence.
User Input: Question + Passage.
Output: score: 0-1

• LLM Answerer
System Role: You are an expert assistant.
User Input: Question + 5 Passages + 4 Op-
tions.
Output: (A/B/C/D)

B Qualitative Errors Examples
Subtask 1 (Inheritance Reasoning):

• Multiple-choice inheritance question in
which Gold = D, Pred = A ( Figure B1).

Subtask 2 ( Islamic Studies Assessment):

• Answer-absent: the correct answer is missing
from hybrid retrieval and thus absent from
the reranked context; the model guessed in-
correctly. Gold = B, Pred = A (Figure B2).

• Evidence-present: The correct option is sup-
ported in the reranked context, but the model
chose a different option. Gold = C, Pred = A
(Figure B3).

Figure B1: Example Error from Subtask 1
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Figure B2: Example Error from Subtask 2 (Answer-absent)
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Figure B3: Example Error from Subtask 2 (Evidence-present)
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Abstract

We present ADAPT–MTU HAI’s submission to
Subtask 1 of the QIAS 2025 shared task, which
focuses on Arabic multiple-choice question answer-
ing (MCQ) for Islamic inheritance law. This do-
main presents unique challenges, requiring models
to navigate precise fractional computations, exclu-
sion rules, and doctrinal nuances under strict for-
mat constraints. Our system employs a dual-expert
architecture based on ALLaM-7B, integrating a
LoRA-fine-tuned model specialised for inheritance
reasoning with its generalist base counterpart. A
custom constrained decoding mechanism ensures
output compliance, while arbitration between the
two models enhances answer stability. Our system
achieves 60.0% accuracy on the development set
and 54.7% on the official blind test set—substan-
tially improving upon the baseline. We analyse
common failure modes and discuss implications
for structured legal reasoning using large language
models.

1 Introduction

Islamic inheritance reasoning (Mohammedi, 2012),
or ilm al-mawārīth, is a formalised branch of Is-
lamic jurisprudence that governs the distribution of
a deceased person’s estate among legally entitled
heirs (Ajani et al., 2013; Chebet et al., 2014). Its
rules involve fixed fractional shares (fara iḍ)1, eligi-
bility conditions, and precedence mechanisms such
as exclusion (ḥajb), redistribution (radd), and pro-
portional adjustment ( awl) (Rahman et al., 2017;
Samia and Khaled, 2018; Tabassum et al., 2019).
These provisions demand precise arithmetic and
deep doctrinal understanding—posing significant
challenges for large language models (LLMs), es-
pecially in Arabic and under strict formatting con-
straints.

1https://ir.uitm.edu.my/id/eprint/44401/

Subtask 1 of QIAS 2025 (Bouchekif et al.,
2025a)2 evaluates LLMs on Modern Standard Ara-
bic multiple-choice inheritance problems. Each
question presents a scenario with six options (A–F),
of which only one is correct. The dataset spans
Beginner cases (e.g., eligibility and basic share
allocation) and Advanced scenarios (e.g., multi-
decedent cases and complex fractional reasoning).
Final leaderboard rankings are based on accuracy
over a 1,000-item hidden test set.

Our system addresses two core challenges: (i)
producing legally and numerically grounded re-
sponses within a linguistically and culturally faith-
ful framework, and (ii) enforcing strict single-letter
output compliance despite inherent generative vari-
ability. We implement a dual-expert architecture
built on the ALLaM-7B model family (Bari et al.,
2024)3, combining a LoRA-fine-tuned model (Hu
et al., 2021) specialised for inheritance reasoning
with its original base variant. This is paired with
deterministic constrained decoding to ensure output
validity without compromising reasoning fidelity.
Experiments confirm strong performance on de-
velopment data, laying a foundation for broader
application and extension.

2 Related Work

Research on automating farā iḍ (Muhammad, 2020)
has explored expert systems, rule-based reason-
ing, and ontologies to encode inheritance rules.
Forward-chaining approaches4 have demonstrated
how heir eligibility and share allocation can be de-
rived deterministically from case facts, though such
systems scale poorly to complex scenarios. Onto-
logical frameworks like AraFamOnto (Zouaoui and
Rezeg, 2021) represent kinship relations and con-

2https://sites.google.com/view/qias2025/
home?authuser=0

3https://huggingface.co/ALLaM-AI/
ALLaM-7B-Instruct-preview

4https://ir.uitm.edu.my/id/eprint/44401/
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straints explicitly, enabling more generalisable in-
ference. These symbolic systems offer transparency
and correctness but lack flexibility. Mathematical
treatments further highlight the difficulty of exact
fractional reasoning—an open challenge for purely
neural models (Rahman et al., 2017)—which mo-
tivates hybrid approaches that combine symbolic
logic with LLM outputs.

Parallel efforts in Arabic question answering
(QA) have produced increasingly sophisticated re-
sources. The Qur’an QA shared task (OSACT
20225) advanced reading comprehension over scrip-
ture, prompting adaptations of Arabic BERT for
retrieval and extraction tasks (Malhas et al., 2022,
2023). Datasets such as HAQA and QUQA support
supervised QA for Hadith and Qur’an texts (Al-
nefaie et al., 2023a), while Hajj-FQA (Aleid and
Azmi, 2025) contains over 2,800 QA pairs based
on fatwas about the Hajj pilgrimage. Large-scale
efforts like Tafsir QA and Hadith QA (Qamar et al.,
2024) illustrate the difficulties of long-context rea-
soning. As noted in surveys (Samia and Khaled,
2018), challenges in Arabic QA persist—including
dialect variation, sparse annotations, and domain
sensitivity—all of which affect legal-religious do-
mains.

The application of large languagemodels (LLMs)
(Team et al., 2025; Sengupta et al., 2023; Huang
et al., 2024; Bari et al., 2024) to Islamic inheri-
tance is still emerging. Bouchekif et al. (2025b) and
Samia and Khaled (2018) have benchmarked GPT-
3.5 and GPT-4 on Sunni inheritance cases involving
ḥajb, residuary rules, and disqualifications. Their
results highlight key limitations: hallucinated logic,
vague or ungrounded reasoning, and high sensitiv-
ity to prompt phrasing (Mohammed et al., 2025;
Alnefaie et al., 2023b). Abbasi (2025) extended
this evaluation to Sunni and Shi i rules using GPT-
4, Gemini, and DeepSeek, finding that domain-
aligned prompting and arbitration strategies im-
prove reliability. Broader guidance for building
domain-faithful LLMs (Patel et al., 2023) stresses
curated data, evaluation rigour, and culturally con-
sistent output constraints. Symbolic approaches,
such as the formal rule-based method in (Abdelwa-
hab et al., 2016), remain a useful complement for
improving doctrinal accuracy.

Recent work onArabic cultural and dialectal eval-
uation (Hossain et al., 2025; de Francony et al.,

5https://sites.google.com/view/
quran-qa-2022

2019) and benchmarks like CamelEval (Qian et al.,
2024) and AraDiCE (Mousi et al., 2024) have
highlighted the importance of dialectal robustness,
cultural sensitivity, and domain awareness—fac-
tors critical to inheritance reasoning. Our work
builds on these insights, framing the task as a
constrained Arabic MCQ problem and leveraging
domain-specific prompting, deterministic decod-
ing, and dual-expert arbitration to ensure both legal
validity and output conformity.

3 Dataset

We use the official SubTask 1 dataset, consisting
of 20,000 training MCQs, plus 1000 development
and 1000 test questions. Each item has six options
(A–F) with one correct answer, spanning two diffi-
culty levels (beginner and advanced) and covering
diverse inheritance scenarios, including fractional
share computation, heir eligibility, and monetary
allocation.

4 Methodology

Our SubTask 1 system is designed to maximise ac-
curacy on Arabic multiple-choice inheritance rea-
soning questions while guaranteeing strict compli-
ance with the required output format. We adopt
a dual-expert inference framework built on the
ALLAM-7B family, integrating parameter-efficient
fine-tuning, domain-specific prompt design, and
deterministic constrained decoding.This section de-
tails the architecture, training methodology, and
inference workflow.

4.1 System Overview

The core principle of our approach is to leverage the
complementary strengths of two model variants: a
domain-specialised fine-tuned model and its unmod-
ified base counterpart. The fine-tuned model (FT-
ALLAM-7B) is optimised for Islamic inheritance
reasoning, learning task-specific patterns from cu-
rated training data. The base model (ALLaM-7B-
Instruct-preview) (Bari et al., 2024)6preserves the
generalisation capacity of the original pre-trained
model. By running both in parallel and reconcil-
ing their outputs via an arbitration mechanism, we
aim to reduce systematic biases while retaining the
accuracy benefits of domain adaptation.

6https://huggingface.co/ALLaM-AI/
ALLaM-7B-Instruct-preview
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4.2 Prompt Engineering
Each instance is wrapped in a fixed template aligned
with our fine-tuning setup. We prepend four few-
shot exemplars drawn from the official training set,
curated to cover eligibility determination (ḥajb),
fixed-share allocation, residual ( aṣaba) distribu-
tion, and least-common-multiple (LCM) normal-
ization for fractional shares. Exemplars follow a
reason-then-answer pattern to provide procedural
signals while preserving a concise, single-letter tar-
get format. The test item is then presented with
six options (A–F) and an explicit Answer: cue,
which constrains the model to a one-letter, format-
compliant output.

INSTRUCTION_EN:
"You are an expert in Islamic inheritance law.
Think step-by-step; output ONE uppercase letter (A--

F)."

SHOTS (k=4; TRAIN-only; fixed order; reason->answer)
SHOT 1

Question_AR: {EX1_Q_AR}
Options_AR: A){...} B){...} C){...} D){...} E){...} F){...}
Steps_AR: {EX1_STEPS_AR}
Answer: {EX1_LABEL} # A--F

SHOT 2 ... SHOT 4 (same fields)

TARGET
Question_AR: {Q_AR}
Options_AR: A){...} B){...} C){...} D){...} E){...} F){...}
Steps_AR: {REASONING_CUE_AR} # no gold label
Answer: # model outputs ONE letter only

Figure 1: Few-shot prompt schema used at inference.

4.3 Fine-Tuning Procedure
FT-ALLAM-7B is trained using Low-Rank Adapta-
tion (LoRA) applied to the attention projection lay-
ers (q_proj, k_proj, v_proj, o_proj) with rank
r = 16, scaling factor α = 32, and dropout of 0.05.
The model is fine-tuned on 20k MCQs from the
official dataset using a causal language modelling
(CLM) objective, concatenating the prompt and the
gold answer letter. Training runs for 5 epochs with
an effective batch size of 16 (via gradient accumu-
lation), learning rate 3 × 10−5 with cosine decay,
weight decay of 0.01, and bf16 precision. The se-
quence length is capped at 512 tokens, and gradient
checkpointing is enabled to manage memory. The
best checkpoint is selected based on accuracy over
the 1k-item development set.

4.4 Constrained Decoding
To enforce the requirement of single-letter predic-
tions (A–F), we implement a custom logits pro-
cessor that masks all vocabulary tokens except
the six valid options at each decoding step. We
fix max_new_tokens=1, temperature=0.0, and

Figure 2: Dual-expert inference pipeline for SubTask 1.
Prompts are constructed from the test set, processed in-
dependently by FT-ALLAM-7B and Base-ALLAM-7B
under constrained decoding, and reconciled via arbitra-
tion to produce the final submission.

do_sample=False to ensure deterministic, format-
compliant outputs. This replicates logit_bias-
style behaviour in a Hugging Face–compatible
framework.

4.5 Dual-Expert Arbitration
At inference, both FT-ALLAM-7B and Base-
ALLAM-7B process each question using identical
prompts and decoding constraints. If both models
agree, their answer is accepted; in the case of dis-
agreement, the FT-ALLAM-7B prediction is cho-
sen, as it consistently outperforms the base model
on the development set. This arbitration strategy
preserves the fine-tuned model’s domain-specific
precision while allowing the base model to act as a
corrective filter.

4.6 Pipeline Summary
As shown in Figure 2, the pipeline operates in
five steps: (1) parse the test CSV to extract ques-
tion–option pairs; (2) format each instance using
the few-shot template; (3) generate predictions from
FT-ALLAM-7B and Base-ALLAM-7B under con-
strained decoding; (4) apply arbitration to resolve
disagreements; (5) export final answers in the sub-
mission format. This compact, modular setup en-
sures reproducibility and allows easy integration of
additional experts or symbolic verifiers.

5 Experimental Setup

We retain the original Arabic text with minimal
cleaning (e.g., removing option prefixes) and embed
each instance in the fixed few-shot template. FT-
ALLAM-7B, derived from ALLAM-7B via LoRA
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(r = 16, α = 32, dropout 0.05), is fine-tuned
on ∼20k MCQs for 5 epochs (batch size 16, LR
3×10−5, cosine schedule, weight decay 0.01, bf16,
max length 512, gradient checkpointing). Inference
is constrained to A–F via a custom logits processor,
with tie-breaks favouring the fine-tuned model. All
experiments run on NVIDIA A100 (80GB) using
Hugging Face Transformers and PEFT.

6 Results and Analysis

6.1 Overall Performance

Our Dual-Expert ALLaM-7B system attains
60.0% accuracy on the official SubTask 1 develop-
ment set and 54.7% on the test set. For reference,
Bouchekif et al. (2025b) evaluate ALLaM-7B as
a base, zero-shot model and report an overall ac-
curacy of 42.9% (aggregate over Beginner+Ad-
vanced); they do not report separate dev/test splits.

System Dev Acc (%) Test/Overall
(%)

Dual-Expert ALLaM-
7B (Ours)

60.0 54.7

ALLaM-7B(Base,
Zero-Shot)

– 42.9

Table 1: QIAS SubTask 1 accuracy. Baseline score
(42.9%) is reported by Bouchekif et al. (2025b) as an
overall aggregate; dev/test splits are not provided.

6.2 Error Analysis

A qualitative examination of the system’s incorrect
predictions reveals several recurring error types:

• Eligibility errors: In some cases, the model
fails to correctly determine heir eligibility, par-
ticularly when multiple residuaries are present
and certain heirs should be excluded under
ḥajb rules.

• Fractional calculation errors: The model
occasionally miscomputes aggregated shares,
especially in scenarios involving awl adjust-
ments where the expansion of denominators
is required.

• Redistribution errors: In instances requir-
ing radd, residual shares are sometimes re-
distributed incorrectly, resulting in deviations
from proportional allocation.

• Numerical confusion: The model is occa-
sionally misled by distractor options that are

numerically close to the correct answer, of-
ten due to minor inaccuracies in intermediate
computations.

Among these, fractional calculation errors and
numerical confusion were the most prevalent, ac-
counting for the majority of observed mistakes.
These error types were particularly impactful in
Advanced questions, where multiple layers of arith-
metic reasoning and legal constraints interact, am-
plifying the effect of even minor computational de-
viations.

Although the absolute accuracy of our system
(60.0% dev, 54.7% test) is below the current leader-
board peak, the results validate the robustness of
our dual-expert architecture in a challenging reason-
ing domain. The approach achieves a substantial
gain over the random baseline, maintains consistent
performance across evaluation splits, and guaran-
tees strict output-format compliance. Moreover, the
modular design offers a clear path toward further
enhancements, such as the integration of symbolic
share calculators or retrieval-augmented prompts,
which are expected to address the advanced frac-
tional reasoning errors identified in our analysis.

7 Conclusion and Future Work

We introduced a dual-expert large language model
system for structured Islamic inheritance reason-
ing in Arabic, combining parameter-efficient fine-
tuning with deterministic output control. Our archi-
tecture, based on ALLaM-7B, achieved competitive
performance in QIAS Subtask 1 and demonstrated
strong generalisability across question types. The
system’s strengths include strict output compliance,
modular design, and reproducibility, while limita-
tions remain in handling complex fractional arith-
metic and legal exclusions. In future work, we plan
to incorporate rule-based verifiers, enrich training
with curated and synthetic edge cases, and explore
retrieval-augmented and multi-agent frameworks to
further enhance reasoning accuracy and robustness
in domain-specific applications.
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Abstract

Islamic inheritance law (’Ilm al-Mawārı̄th) re-
quires precise identification of heirs and cal-
culation of shares, which poses a challenge
for AI. In this paper, we present a lightweight
framework for solving multiple-choice inher-
itance questions using a specialised Arabic
text encoder and Attentive Relevance Scoring
(ARS). The system ranks answer options ac-
cording to semantic relevance, and enables fast,
on-device inference without generative reason-
ing. We evaluate Arabic encoders (MARBERT,
ArabicBERT, AraBERT) and compare them
with API-based LLMs (Gemini, DeepSeek)
on the QIAS 2025 dataset. While large
models achieve an accuracy of up to 87.6%,
they require more resources and are context-
dependent. Our MARBERT-based approach
achieves 69.87% accuracy, presenting a com-
pelling case for efficiency, on-device deploya-
bility, and privacy. While this is lower than the
87.6% achieved by the best-performing LLM,
our work quantifies a critical trade-off between
the peak performance of large models and the
practical advantages of smaller, specialized sys-
tems in high-stakes domains.

1 Introduction

Large Language Models (LLMs) such as GPT-4
(OpenAI, 2023), Gemini (Team et al., 2023), and
Deepseek-v3 (Liu et al., 2024) have advanced nat-
ural language processing, and show strong reason-
ing capabilities on many topics. However, as they
were mainly trained on general web data, they of-
ten struggle in specialised domains with high ac-
curacy (Bubeck et al., 2023). Islamic inheritance
law (’Ilm al-Mawārı̄th) is one such area, which is
based on fixed rules from the Qur’an and Sunnah
and requires a precise understanding of the law
and accurate mathematical proportion calculations
(Esmaeili, 2012; Phillips and Wilson, 1995). The
complexity arises from rules such as farā'id. (fixed
shares), ’awl (reduction of shares if more than one),

and radd (increase of shares if less than one) (El-
Far, 2011), where errors can cause serious legal
and financial problems. General LLMs often fail at
such tasks due to the multi-step reasoning and strict
numerical precision, especially in Arabic contexts
(Arabi and Hassan, 2023). Reinforcing this point,
a recent comprehensive study by (Bouchekif et al.,
2025b) specifically assessed LLMs on Islamic in-
heritance law, providing empirical evidence of their
limitations in this domain. Therefore, the QIAS
2025 SubTask 1 becomes a valuable benchmark for
the assessment (Bouchekif et al., 2025a). This pa-
per presents a lightweight framework developed for
Islamic inheritance reasoning to address these chal-
lenges. Our approach combines a pre-trained Ara-
bic text encoder with an Attentive Relevance Scor-
ing (ARS) module. Instead of generating step-by-
step generative answers, the system measures how
strongly each possible answer relates to the ques-
tion. The ARS module then ranks the options and
selects the correct legal and mathematical outcome.
This design focuses on accuracy and efficiency, pro-
viding a more feasible solution than large LLMs re-
quiring high computational resources. We compare
our specialised model with several leading general-
purpose LLMs, including Gemini and DeepSeek,
using the official QIAS 2025 dataset. Our experi-
ments show that large models are prone to certain
types of errors, especially under specific inference
conditions. Our targeted approach, while not per-
fect, presents an alternative with a different perfor-
mance and error profile, prioritizing consistency
and efficiency. The primary contributions of this
work are threefold:

1. We present an efficient, specialized frame-
work that applies an attentive relevance scor-
ing mechanism to pre-trained Arabic encoders
for Islamic inheritance reasoning.

2. We provide a comparative analysis compar-
ing our specialized model with SOTA general-

929



2 سهم
2 سهم

Answers Embeddings

🔄 Text Preprocessing
MiniBERT Tokenizer

MiniBERT
Text-Encoder 

🔄 Text Preprocessing
MiniBERT Tokenizer

مات وترك: ابن ابن عم شقيق و بنت )5( و

أم الأم و ابن عم الأب، كم عدد الأسهم التي
تحصل عليها بنت )5( قبل تصحيح

المسألة؟

MiniBERT
Text-Encoder 

Question Embeddings

Attentive Relevance
 Scoring

Output: Final Relevance
Score

2 سهم

Shared weights

Figure 1: The proposed architecture. Parallel Text En-
coders convert a question and answer into Question
Embeddings and Answer Embeddings. An Attentive
Relevance Scoring module then compares these embed-
dings to output a Final Relevance Score

purpose LLMs, highlighting the significant
impact of inference strategies (batched vs. sin-
gle input) on LLM performance.

3. We provide empirical evidence of the practical
advantages (efficiency, privacy, deployability)
of domain-specific models, offering a viable
alternative to resource-intensive LLMs despite
a performance trade-off.

The remainder of this paper is organised as fol-
lows: Section 2 describes our approach in detail;
Section 3 presents results and discussion; and Sec-
tion 4 concludes with future research directions.

2 Methodology

This section describes our proposed hybrid archi-
tecture that combines an Arabic text encoder with
a scoring mechanism called Attentive Relevance
Scoring (ARS) (Bekhouche et al., 2025). We eval-
uate several Arabic text encoders in this setup. The
method aims to improve question answering for
Islamic inheritance law by capturing complex se-
mantic relationships while keeping computation
lightweight, making it suitable for low-resource en-
vironments and edge devices without cloud access.
A key design choice is that our approach does not
rely on explicit reasoning. Instead, it focuses on
providing a fast and low-cost inference solution
directly on the device. The text encoder processes

both the question and candidate answers, produc-
ing dense vector embeddings. The ARS module
then scores each candidate answer by assigning
higher weights to terms that are contextually im-
portant, enabling the system to capture fine-grained
details in legal terminology. As shown in Figure 1,
the system operates in two stages: (1) the encoder
generates semantic embeddings for the question
and answers, and (2) ARS refines the ranking by
computing a final relevance score. It is important
to clarify that our approach does not perform ex-
plicit, step-by-step symbolic reasoning. Instead, it
is designed to solve this complex reasoning task by
learning to identify the candidate answer with the
highest semantic relevance to the question.

2.1 Text Encoder
We experiment with five Arabic text encoders:
ArabicBERT-Mini (Safaya et al., 2020), Ara-
bicBERT (Safaya et al., 2020), AraBERT (An-
toun et al., 2020), MARBERT (Abdul-Mageed
et al., 2020), and QARiB (Abdelali et al., 2021).
Given a question q and a candidate answer c, the
encoder processes each independently, producing
two types of representations: (1) Sequence-level
representations, denoted as Hq ∈ RB×L×d and
Hc ∈ RB×L×d, which capture contextual embed-
dings for each token in the question and the answer.
(2) Pooled representations from the final-layer
[CLS] token.

Here, B is the batch size, L is the input length,
and d is the hidden dimension of the model. For
all models, L = 512. The hidden size d is 256 for
ArabicBERT-Mini and 768 for the other encoders.
For global semantic representation, we extract the
[CLS] token embedding from the final layer and
apply ℓ2 normalization:

qemb = Norm(E(q)[CLS]) ∈ Rd,

cemb = Norm(E(c)[CLS]) ∈ Rd,
(1)

where Norm(·) is ℓ2 normalization. This normaliza-
tion projects embeddings onto the unit hypersphere,
improving stability in similarity computations.

2.2 Attentive Relevance Scoring
The ARS module (Bekhouche et al., 2025) com-
putes adaptive semantic similarity between the
question and candidate embeddings via a trainable
interaction model. First, both embeddings are pro-
jected into a shared latent space:

hq = Wqqemb, hc = Wccemb, (2)
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where Wq,Wc ∈ Rh×d are learnable projection
matrices and h is the shared hidden dimensional-
ity. Next, element-wise multiplication is applied,
followed by a non-linear activation to compute the
interaction vector vint:

vint = tanh(hq ⊙ hc), (3)

where ⊙ denotes element-wise multiplication and
tanh(·) is the hyperbolic tangent function. Finally,
the relevance score r is obtained using an attention
vector watt ∈ Rh:

r = σ
(
w⊤

attvint

)
, (4)

where σ(·) is the sigmoid function.

2.3 Training Objective

To train the model effectively, we employ a com-
posite training objective designed to optimize for
both semantic representation and accurate ranking.
This objective is composed of three distinct loss
functions, each with a specific goal:

• Contrastive Loss (Lcons): Aligns the embed-
dings of correct question-answer pairs while
pushing them apart from incorrect pairs.

• Dynamic Relevance Loss (Ldyn): Directly su-
pervises the final ARS scores to ensure the
model produces confident and well-calibrated
rankings.

• Relevance Score Logit Regularization (Lreg):
Stabilizes training by encouraging variance
in the pre-activation logits, preventing score
collapse.

The total loss, Ltotal, is a weighted sum of these
components, formulated as:

Ltotal = αLcons + βLdyn + γLreg (5)

We empirically set the balancing weights to α =
0.4, β = 0.4, and γ = 0.2. A detailed mathemati-
cal formulation for each component is provided in
Appendix A.

3 Results and Discussion

3.1 Dataset

The dataset in this study is from the official release
of SubTask 1: Islamic Inheritance Reasoning in the
QIAS 2025 challenge. It covers the rule-based field

of Islamic inheritance law, where systems must un-
derstand scenarios, identify heirs, apply fixed-share
rules, handle diminution and radd return, and calcu-
late exact shares. All questions are multiple-choice
with one correct answer, grouped into Beginner, In-
termediate, and Advanced levels. The training set
has 9,446 samples (5,095 Beginner, 3,431 Interme-
diate, 920 Advanced), the validation set has 1,000
samples (500 Beginner, 300 Intermediate, 200 Ad-
vanced), and the test set has 1,000 samples (500
Beginner, 500 Advanced, no labels). Training and
validation have six labels (A–F), with C most com-
mon; the test set is unlabeled. Beginner questions
involve simple share identification, Intermediate
include adjusted shares after radd, and Advanced
require full monetary distribution. This dataset is
well-suited for testing both language understanding
and precise numerical reasoning in Islamic law.

3.2 Experimental Setup

Experiments were performed on a system with
seven NVIDIA L4 GPUs, each with 24 GB of
VRAM, using a distributed multi-GPU training
strategy. Mixed-precision training was not used,
and the gradient accumulation step was set to 1 for
stability. Optimization was done with the AdamW
optimizer, starting at 1×10−4 and ϵ = 1×10−8. A
cosine annealing scheduler was employed to adjust
the learning rate, which was warmed up to 10% of
its target before decaying. Gradient clipping with a
maximum norm of 0.5 was applied for numerical
stability.

3.3 Results and Discussion

Table 1 summarizes the performance and computa-
tional costs of various Arabic text encoders in our
framework. MARBERT achieved the highest vali-
dation and test sets accuracy, showcasing its strong
ability to capture the linguistic and domain-specific
nuances needed for Islamic inheritance reasoning.
Previous research supports that MARBERT, which
is trained on extensive Arabic social media data,
effectively handles complex morphology and se-
mantic variations. While this analysis primarily
compares our models with state-of-the-art (SOTA)
large language models (LLMs), future work should
benchmark against traditional non-neural baselines
(e.g., TF-IDF with cosine similarity) to quantify the
advantages of deep learning methods, especially
for lower-parameter encoders. We also tested API-
based LLMs using two inference strategies to as-
sess the impact of context size on performance. The
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Model Params (M) ↓ GFlops ↓ Results
Valid ↑ Test ↑

ArabicBERT-Mini (Safaya et al., 2020) + ARS 11.6 10.3 65.62% 64.23%
ArabicBERT (Safaya et al., 2020) + ARS 110.7 71.1 69.08% 67.19%
AraBERT (Antoun et al., 2020) + ARS 135.3 96.2 73.85% 68.46%
MARBERT (Abdul-Mageed et al., 2020) + ARS 162.9 124.5 77.32% 69.87%
QARiB (Abdelali et al., 2021) + ARS 135.3 96.2 74.18% 68.63%

Table 1: Performance and computational cost of various Arabic text encoders within our proposed framework on the
QIAS 2025 SubTask 1 validation and test sets. MARBERT achieves the highest accuracy, demonstrating its superior
ability to handle the linguistic nuances of Islamic inheritance law. Bold values indicate the best performance in each
column.

primary method involved a batched approach with
50 questions in a single prompt, which proved effi-
cient but created a large context window. By con-
trast, the single-question method (used for testing
Gemini-2.5-flash) improved accuracy significantly,
from 68.65% to 87.60%. This indicates that larger
context windows can lead to errors due to cross-
question interference. Although API-based models
like Gemini and DeepSeek variants outperform our
locally trained models regarding accuracy, their
high computational requirements prevent direct de-
ployment on edge devices. While running them
through cloud services is viable, it entails recurring
costs, latency issues, and privacy concerns, making
local solutions more attractive in constrained or
sensitive environments. Ultimately, these findings
reveal a trade-off between performance and deploy-
ability. A model with around 70% accuracy is best
suited as an assistive tool for legal experts rather
than an autonomous decision-maker, facilitating
rapid analysis or verification of simple cases, while
human oversight remains essential. This positions
such models as efficient assistants for on-device
or offline scenarios where cloud access is not fea-
sible. Additionally, our experiments demonstrate
that inference setup and input structuring signif-
icantly impact model behavior, highlighting the
importance of evaluation settings when comparing
LLM-based systems.

4 Conclusion

We presented a lightweight framework for au-
tomated Islamic inheritance reasoning (’Ilm al-
Mawārı̄th), combining a specialized Arabic text en-
coder with an Attentive Relevance Scoring (ARS)
mechanism for multiple-choice questions. Our lo-
cal model, using MARBERT, achieved a test accu-
racy of 69.87%, which, while promising, is notably

Base Model Reasoning ACC ↑
deepseek-chat No 66.40%
deepseek-reasoner Yes 69.40%
gemini-2.0-flash No 60.44%
gemini-2.5-flash Yes 68.65%
gemini-2.5-flash* Yes 87.60%

Table 2: Performance of API-based LLMs. All models
were evaluated using a batched input of 50 questions,
except where noted by an asterisk (*).

lower than the 87.60% reached by leading API-
based LLMs like Gemini. This performance differ-
ence stems from our model’s core design, which
forgoes explicit, step-by-step symbolic reasoning
in favor of efficient semantic matching. Despite
this accuracy trade-off, our approach offers signif-
icant advantages in computational efficiency, on-
device deployability, and data privacy, making it a
viable solution for resource-constrained or offline
applications.

These results highlight a critical trade-off be-
tween peak performance and practical usability.
The current accuracy level positions our system
as a valuable assistive tool for legal experts rather
than a fully autonomous decision-maker, underscor-
ing the necessity of human oversight in such high-
stakes, rule-based domains. This demonstrates that
lightweight, domain-adapted models remain highly
relevant for specific use cases. Future work will
directly aim to close the accuracy gap by integrat-
ing symbolic reasoning capabilities to handle the
precise calculations inherent in inheritance law. We
will also explore hybrid approaches that combine
the efficiency of our lightweight model with the rea-
soning power of large models to achieve an optimal
balance of performance and practicality.
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A Detailed Training Objective

This section provides the detailed mathematical
formulation of the three loss components used in
our training objective. The total loss is defined as:

Ltotal = 0.4 · Lcons + 0.4 · Ldyn + 0.2 · Lreg (6)

A.1 Contrastive Loss (Lcons)
We use an InfoNCE-based contrastive loss on the
[CLS] token embeddings. This loss aims to pull
the question embedding (q) closer to the correct
answer embedding (c+) and push it away from the
five incorrect answer embeddings (c−).

Lcons = − 1
B

B∑

i=1

log

(
esim(qi,c

+
i

)

esim(qi,c
+
i

)+
∑5

j=1 e
sim(qi,c

−
i,j

)

)

(7)
where sim(a,b) = (a⊤b)/τ . Here, qi and ci are
the embeddings for the question and answers, and
τ is a trainable temperature parameter.

A.2 Dynamic Relevance Loss (Ldyn)
This loss directly supervises the final ARS scores
(r) to ensure they are well-calibrated. It maximizes
the score for the correct answer and minimizes the
score for a randomly selected incorrect answer.

Ldyn = − 1

B

B∑

i=1

[
log(r+i + ϵ) + log(1− r−i + ϵ)

]

(8)
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Here, r+i and r−i are the sigmoid-activated ARS
scores for the correct and a randomly chosen in-
correct answer. The constant ϵ ensures numerical
stability.

A.3 Relevance Score Logit Regularization
(Lreg)

To improve training stability, we apply a regulariza-
tion loss on the raw, pre-sigmoid relevance scores
(logits, s). This loss maximizes the variance of the
logits within a batch, encouraging the model to use
a wider dynamic range for its scores.

Lreg = −(Std(s+batch) + Std(s−batch)) (9)

where s+batch and s−batch are the sets of logits for all
correct and incorrect answers across the batch. We
minimize the negative standard deviation, which is
equivalent to maximizing the standard deviation.
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Abstract 

The work in this paper is related to the 
shared task QIAS2025. In this paper we 
continue in assessing large language 
models on Islamic legal reasoning. It is a 
challenging task because LLMs have not 
yet evolved (especially the open-source 
models) to solve complex reasoning 
problems or to perform mathematical 
calculations that require several steps. The 
LLMs need to comprehend the problem and 
to generate accurate and justified answers. 
In this paper we confirm the results and the 
analysis given in (Bouchekif, 2024; 
Bouchekif, 2025). However, we 
experiment further with Fine Tuning and 
Chain of Thought (CoT) to improve the 
performance of the reasoning process and 
therefor the results of the LLMs. 

1 Introduction 

This shared task assesses the ability of LLMs to 
accurately answer questions about ʿlm al-
mawārīth (The science of Islamic Inheritance) in 
realistic scenarios. It is a major specialized topic 
in Islamic law. Islamic inheritance’s rules are well 
defined, but it requires a complex reasoning 
mechanism and well-designed and systematic 
calculations procedures. There are mainly three 
computational stages, each includes zero, one or 
more than one step, that required to solve an 
Islamic inheritance case. First stage is to 
comprehend the inheritance scenario presented to 

the system, to identify eligible and the non-
eligible heirs based on their relationship to the 
deceased person, bequests, the distribution of a 
defined amount of money, blocking or exclusion 
of some heirs, and to apply the basic fixed-share 
rules (farāʾiḍ). Second stage is to consider the 
cases where there are multiple heirs, multiple 
deceased individuals, residuary shares, and partial 
exclusion.  Third stage is to consider the intricate 
fractional calculations, adjusting and 
redistribution, exaptational and nuanced cases, 
and juristic disputes. Although those stages seems 
like they can be carried out in sequence they are 
Intertwined  and the system it has go back and 
forward over the rules.    This makes the science of 
inheritance complex due to its diverse situations, 
the  multiplicity of heirs, and the factors 
affecting the calculation of the estate, which 
requires a precise understanding of the texts of 
Islamic law and their correct application to 
prevent disputes and achieve justice in the 
distribution of rights.  

2 System Design Issues 

In (Bouchekif, 2024; Bouchekif, 2025) the 
performance of seven LLMs were assessed using 
a benchmark of 1,000 multiple-choice questions 
covering diverse inheritance scenarios, designed 
to test each model’s ability to solve such 
problems. Gemini 2.5 and o3, demonstrated high 
performance, achieving accuracy above 
90%.  GPT4.5 achieved moderate results. Jais, 
Mistral, and LLaMA showed significantly lower 

CIS-RG at QIAS 2025 Shared Task: Chain of Thought 
Prompting and Finetuning for Enhancing Performance of 
LLMs on Islamic Legal Reasoning and its Mathematical 
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accuracy reflecting their limitations in legal 
reasoning. There is a clear gap between models 
with reasoning abilities and those 
without.  ALLaM, Fanar, LLaMA, and Mistral, 
consistently struggled with identifying complex 
familial relationships, evaluating diverse 
inheritance scenarios, and correctly executing 
corrective calculations.   
 
As shown in the following section we assessed 
four models: Fanar, Llama, Gemini and Mistral. 
The models are further fine-tuned with a well-
defined and large set of 1000 examples.  We also 
recognized that the model architecture plays a 
major role in the result, i.e., being capable of 
performing reasoning or not. Models with 
reasoning capabilities consistently perform better.  
Having stated that, the reasoning capability is 
usually built outside the core of the model it is 
usually build at the application layer, i.e. the 
prompt, being the layer representing both the 
input and the output of the model. Many models 
nowadays claim that they have reasoning 
capability or at least able to respond correctly to 
simple reasoning task, but the challenge however 
among models present when dealing with 
complex reasoning problems. 
 
LLMs evolved from just being a next-token 
prediction task dealing mainly with natural 
language (Zhao, 2023), to code generation 
(Gehring, 2024), and logical reasoning (Webb, 
2023). Techniques such as chain of thoughts 
prompting techniques (Wei, 2022), tree of thought 
(Yao, 2024), trial-and-error search (Luo, 2024), 
Process Reward Models which facilitate 
reinforcement learning for LLMs (Sun, 2024). 
These emergent techniques are based on two main 
concepts in the traditional AI: “search” and 
“learning”. A combination of scaling train-time 
compute and test-time-compute leads to better 
reasoning performance (OpenAI, 2024). To sum 
up, there is main four approaches for reasoning: 
1) chain-of-thought (CoT) prompting which 
increases computational resources during 
inference to improve output quality. 2) Pure 
reinforcement learning (RL) 3) supervised 
finetuning (SFT) 4) combining both RL and SFT 
(Raschka, 2025).   
 
In this paper, CoT prompting combined with 
finetuning is being the focus in our investigation. 
To do that, different finetuning datasets were 
prepared with different sizes (e.g., 100 and 200 
questions) representing two different clusters. The 

first contains samples without any mathematical 
calculations, while the second contains samples 
that require mathematical calculations. As an 
example for the first cluster:  
 

 و )2( بلأ مع و )5( بلأ تخأو )4( بلأ بلأا مع :كرتو تام
 نم )2( بلأ مع ـل يلصلأا بیصنلا مك ملأا مأ مأو بلأا مأ مأ
  ؟كلذ ىلع لیلدلا امو ،ةكرتلا

 
The chain of thought (step-by-step) that should be 
followed is: 

1. The type of actors in the question: 
بلأ بلأا مع  بلأ تخأ , بلأ مع , بلأا مأ مأ , ملأا مأ مأو ,  
2. Those who deserve a fixed share: 

بلأ تخأ بلأ تخأ , ملأا مأ مأو ,  
3. Those who deserve a non-fixed share: 

بلأ مع  
4. Those who are blocked: 

بلأ بلأا مع  
5. From the above,  

 نم يقب ام ثریو ،سفنلاب تابصعلا نم وھ بلأ مع
ضورفلا باحصأ دعب ةكرتلا  

6. The number of actors in each type 
 نینثا ىلع مسقی ةكرتلا نم يقب ام  

 
To list the steps for each question (case) in this 
manner is unrealistic, but it is possible only for 
few shots. However, it still requires considerable 
efforts and skills to integrate CoT with the MCQs 
dataset.  
 
Results of CoT promoting approach is still under 
investigation. In the following section we analysis 
the results of the traditional finetuning approach 
without the implementation of CoT. 

3 Experimental Setup, Results and 
Analysis: 

Four LLMs were fine-tuned: Fanar, Llama, 
Gemini and Mistral. The models were tested on 
the provided dataset by the shared task which 
contains unlabeled 1000 MCQs questions 
(answers is one of the letters: A, B, C, D, E or F, 
i.e. six choices).  
 
The results are Gemini 2.5 and o3, demonstrated 
high performance, achieving accuracy above 
90%.  Fanar, Mistral, and LLaMA achieved 
moderate results 76%, 74%, 73% respectively 
reflecting their limitations in legal reasoning. This 
confirms to the findings in 
 
Four examples form the test dataset are selected to 
demonstrate different scenarios, Table [1]. Our 

936



 
 

analysis shows that the level of the question being 
beginner or advanced has some impact on the 
model, but it is the wording of the question is the 
main reason that makes the model comprehend 
the questions. This means that classifying the 
questions to beginner and advanced are not very 
useful. 
 
 

Question ID Gold Level Fanar Llama Gemini Mistral 
8804_nl1d9s7s_4 E Beginner E C E E 

7398_nf5b3z3e_11 A Advanced D C A C 
8545_ni6z3l6j_12 D Advanced C F D F 
6839_np2c3f4i_4 B Beginner A D A F 

Table 1: Results from Fanar, Llama, Gemini and Mistral 
 
But rather we can classify the questions into 
logical and mathematical problems. It is obvious 
that the commercial models are better pre-trained 
and hence fine-tunned. The generated justification 
and calculations of the commercial models were 
better represented and more detailed. The four 
selected example are (Fanar and Gemini only): 
 
Question 8804_nl1d9s7s_4  

 
 بلأ مع و )5( بلأ تخأ و )4( بلأ بلأا مع :كرتو تام
 بلأ مع ـل يلصلأا بیصنلا مك ملأا مأ مأو بلأا مأ مأ و )2(
  ؟كلذ ىلع لیلدلا امو ،ةكرتلا نم )2(
 وھ ھبیصن","ةبصع ھنلأ :لیلدلاو ،ءيش لا وھ ھبیصن"
 ،بوجحم وھ ھبیصن","ةبصع ھنلأ :لیلدلاو ،ةكرتلا يقاب
 ھنلأ :لیلدلاو ،ةكرتلا لك وھ ھبیصن","ةبصع ھنلأ :لیلدلاو
 ھنلأ :لیلدلاو ،ةكرتلا يقاب وھ ھبیصن","ةبصع
  "ةبصع ھنلأ :لیلدلاو ،فصنلا وھ ھبیصن","ةبصع

Gemini   
 يقب ام ثریو ،سفنلاب تابصعلا نم وھ بلأ مع :لیلعتلا
 .)تادجلاو بلأ تخلأا( ضورفلا باحصأ دعب ةكرتلا نم
 نع لضف ام نوثری تابصعلا نأ ىلع ءاملعلا عمجأ دقو
 ھیلع الله ىلص يبنلا لوقبً لامع ،ضورفلا باحصأ بیصن
 لجر ىلولأف يقب امف ،اھلھأب ضئارفلا اوقحلأ" :ملسو
 ةلأسملا يف نیدوجوملا تابصعلا برقأ انھ وھو ."ركذ
  .يقابلا ذخأیف )بلأ بلأا مع نم برقأ(

Fanar  
 ةبصع دوجو دنعو ،تابصعلا نم بلأ معلا نلأ :لیلعتلا
 يف دجوی لاو ،ضئارفلا دعب ىقبت ام نوذخأی ،روكذلا نم
 ذخأی وھف اذل ،بلأ معلا ریغ ةبصع روكذ ةلأسملا هذھ
 سیل بلأ معلا نأ ھیونتلا بجی نكلو( .ةكرتلا نم يقابلا
 مأو بلأا وخأو دجلاو بلأا دعب يتأی لب ،تابصعلا ىلوأ
 وھ نم دجوی لا ،ةلأسملا هذھ يف نكلو ،بیترتلا يف بلأا
  )يقابلا ذخأی وھف اذل ،ةبصعلا روكذلا نم ھنم ىلوأ

Three models were able to produce the correct 
answer. The Justifications given by Fanar and 
Gemini are also correct, but Gemini style is 
clearer. Although a fault was injected into the 

question (e.g., choices B and E), both exactly have 
the same wording, the three models have not 
detected that and give the answer as E. 
Question 7398_nf5b3z3e_11  
 

 نبا نبا و (2) بلأ خأ نبا نبا و (3) ملأ خأو مأ :كرتو تام"
 ددع يلامجإ مك ، (4) قیقش خأو قیقش خأ نبا نبا و (2)

," 6؟ةلأسملا حیحصت لبق ةكرتلا ھیلع مسقت يذلا مھسلأا
   مھسأ 5,مھسأ 4,مھسأ 8,مھسأ 7,مھس 0,مھسأ

Gemini  

 ،(نبلاا نبا) ثراولا عرفلا دوجول سدسلا ثرت ملأا :لیلعتلا
 نإ كرت امم سدسلا امھنم دحاو لكل ھیوبلأو" :ىلاعت ھلوقل
 ،قیقشلا خلأا) ةوخلإا عیمج بجحی نبلاا نباو ."دلو ھل ناك
 لصأ نوكی ،ھیلع ءًانبو .مھدلاوأو (ملأ خلأاو ،بلأ خلأاو
 . مھسأ 6 وھو ملأا بیصن ماقم نم ةلأسملا

Fanar 

 ھنم جرخی يذلا ةلأسملا لصأ نم مھسلأا باسح أدبی :لیلعتلا
 (دحاو) نمثلا ملأا ذخأت ثیح ،مھسأ ةینامث وھو ،ملأا ضرف
 ً ابیصعت ثراولا عرفلل يقابلاو

Only Gemini was able to generate the correct 
answer for this advanced question. The 
justification given by Gemini is correct and it is 
detailed, while justification from Fanar is 
incorrect. This shows that Fanar didn’t 
comprehend the problem by saying: 

 عرفلل يقابلاو )دحاو( نمثلا ملأا ذخأت ثیح ،مھسأ ةینامث وھو
 ”ً ابیصعت ثراولا

Question 8545_ni6z3l6j_12  

 ددع مك ،(2) قیقش خأ و (3) ملأ خأ و بلأا بأ :كرتو تام
 4,"؟قیقش خأ لكل اھیلع لصحی يتلا حیحصتلا دعب مھسلأا
  نامھس,مھسأ3,مھس1,مھس 0,مھسأ 5,مھسأ

Gemini 
 ةوخلإا )حیحصلا دجلا( بلأا بأ بجحی ،ةلأسملا هذھ يف :لیلعتلا

 بھذم نإف ،دجلا عم ءاقشلأا ةوخلإل ةبسنلاب امأ .عامجلإاب ملأ
 امھیأ( لاملا ثلث ذخأی وأ ةوخلإا مساقی دجلا نأب يضقی روھمجلا
 ،نورخآ ضورف باحصأ دجوی لا ،ةلاحلا هذھ يف .)ھل لضفأ
  .)2 مھددعو( ءاقشلأا ةوخلإا مساقی دجلاف
  :ماھس 3 ةلأسملا لصأ انربتعا اذإ

  .)ةكرتلا نم 1/3( مھس 1 ذخأی دجلا   *
  .)ةكرتلا نم 2/3( مھس 2 ناذخأی ناقیقشلا ناوخلأا   *
  .مھس 1 = خأ 2 / مھس 2 = قیقش خأ لك بیصن   *

 
Fanar  

 قیقشلا خلأاف ،قیقشلا خلأا دوجو عم ملأ خلأا ثری لا :لیلعتلا 
 . بلأ خلأا بجحی

Gemini was able to generate the correct answer 
for this advanced question. The justification and 
the explanation of mathematical steps given by 
Gemini are correct and clear which includes 
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fractional allocation, while the justification from 
Fanar is incorrect which means Fanar has not 
understood this case (question). 

 Question 6839_np2c3f4i_4  

 قیقش مع نبا نبا و ملأا مأ مأ و بلأ بلأا مع :كرتو تام
  (3)قیقش مع نبا نبا ـل يلصلأا بیصنلا مك ةـجوز و (3)

 ," ؟كلذ ىلع لیلدلا امو ،ةكرتلا نم

 لاوأ نوكی تابصعلا بیترت :لیلدلاو ، ةكرتلا يقاب وھ ھبیصن
 ءانبلأا مدقی ةھجلا ثیح نمف ةوقلاب مث ةجردلاب مث ةھجلاب
 نمو ، - لاع نإو بلأا بأو بلأا- لوصلأا ىلع روكذلا

 نبا ىلع نبلإا مدقیف لزن نم ىلع لاع نم مدقی ةجردلا ثیح
 تناك نم مدقی ةوقلا ثیح نمو ، بلأا بأ ىلع بلأاو نبلإا
 ىلع قیقشلا خلأا مدقیف طقف بأب ناك نم ىلع نیوبأب ھتبارق
 لاف ، بلأ خلأا نبا ىلع قیقشلا خلأا نبا مدقیو بلأ ىذلا
 اوقحلا( صلى الله عليه وسلم ھلوقل ، ھنم برقأ عم بیصعتب دعبأ ثری
 ىلوأ انھو )ركذ لجر ىلولأ وھف ىقب امف اھلھأب ضئارفلا

  ,"قیقش مع نبا نبا وھ ركذ لجر
  ..نوكی تابصعلا بیترت :لیلدلاو ،ةكرتلا يقاب وھ ھبیصن "
  ...نوكی تابصعلا بیترت :لیلدلاو ،ةكرتلا يقاب وھ ھبیصن "
  ...نوكی تابصعلا بیترت :لیلدلاو ،ةكرتلا يقاب وھ ھبیصن "
  ...نوكی تابصعلا بیترت :لیلدلاو ،ةكرتلا يقاب وھ ھبیصن "
 نوكی تابصعلا بیترت :لیلدلاو ،ةكرتلا يقاب وھ ھبیصن "

Gemini  

  .تابصعو ضورف باحصأ انیدل ،ةلأسملا هذھ يف :لیلعت
 ،تیملل ثراو عرف دوجو مدعل )1/4( عبرلا ثرت :ةجوزلا
 ٌ"دَلوَ مْكَُّل نكَُی مَّْل نِإ مُْتكْرََت اَّممِ عُُبُّرلا َّنھَُلوَ" :ىلاعت ھلوقل
  .)12 :ءاسنلا(
 دنع )1/6( سدسلا ثرتو ،ةحیحص ةدج يھ :ملأا مأ مأ

  .روھمجلا لوق وھو ،ملأا مدع
 نم امھلاك :بلأ بلأا معو )3( قیقش مع نبا نبا
 مث ،ةھجلا :بیترتلاب تابصعلا میدقت متی .سفنلاب تابصعلا
  .ةوقلا مث ةجردلا
  .ةمومعلا ةھج نم امھلاك
 قیقشلا معلا نبا نبا ،بلأ بلأا معو قیقش مع نبا نبا نیب
 عورف نم وھ قیقشلا معلا نبا نبا .ةوقلاو ةجردلا يف برقأ
 تیملا بأ مامعأ نم وھ بلأ بلأا مع امنیب ،تیملا مامعأ
 عورفف ،مدقی تیملا ةھج نم برقلأا .)دجلا مامعأ يأ(
  .بلأا مامعأ ىلع نومدقم تیملا مامعأ
  .قیقش مع نبا نباب بلأ بلأا مع بجحی ،كلذل
 باحصأ دعب ةكرتلا يقاب )3( قیقش مع نبا نبا ذخأی
  .ضورفلا
  :باسحلا
 رغصلأا كرتشملا فعاضملا( 12 نم ةلأسملا لصأ
  .)6 و 4 تاماقملل
  .مھسأ 3 = 4 ÷ 12 :ةجوزلا بیصن
  .نیمھس 2 = 6 ÷ 12 :ملأا مأ مأ بیصن
  .مھسأ 5 = 2 + 3 :ضورفلا باحصأ مھسأ عومجم
 7 = 5 - 12 :))3( قیقش مع نبا نبا( ةبصعلل يقابلا
  .مھسأ

 اھلھأب ضئارفلا اوقحلأ" :صلى الله عليه وسلم ھلوق وھ تابصعلل ماعلا لیلدلا
 .)ملسمو يراخبلا حیحص( "ركذ لجر ىلولأ وھف يقب امف
  .قیقش مع نبا نبا وھ ركذ لجر ىلوأ انھو

 Fanar  

 ،ةوقلاب مث ةجردلاب مث ،ةھجلاب لاوأ نوكی تابصعلا بیترت :لیلعتلا
 بأو بلأا( لوصلأا ىلع روكذلا ءانبلأا مدقی ةھجلا ثیح نمف
 لزن نم ىلع لاع نم مدقی ةجردلا ثیح نمو ،)لاع نإو بلأا
 ةوقلا ثیح نمو ،بلأا بأ ىلع بلأاو نبلإا نبا ىلع نبلإا مدقیف
 خلأا مدقیف طقف بأب ناك نم ىلع نیوبأب ھتبارق تناك نم مدقی
 ،بلأ خلأا نبا ىلع قیقشلا خلأا نبا مدقیو بلأ يذلا ىلع قیقشلا
 ضئارفلا اوقحلا( صلى الله عليه وسلم ھلوقل ،ھنم برقأ عم بیصعتب دعبأ ثری لاف
 نبا وھ ركذ لجر ىلوأ انھو .)ركذ لجر ىلولأف يقب امف اھلھأب
 . ةكرتلا يقاب ھبیصن نوكی اذل ،قیقش مع نبا

This example demonstrates a basic question, but 
its prompt has some issues. The evidence referred 
to by each choice is identical for all of them. This  

4 Conclusion and Future Work 

Our experiments with finetuning have revealed 
some important points: 1) the classifications of 
questions into two or three categories 
(intermediate, advanced) have not shown 
noticeable impact on the results, 2) the uncleanses 
of the training or the validation dataset has some 
impact on the results, 3) LLMs with no reasoning 
capabilities (mostly the open source LLMs) 
struggle to solve  complex reasoning problems, 4) 
MCQ is not the optimal option to train, validate 
especially when representing an ‘evidence’ with 
the ‘choice’, and this evidence is shared among 
other choices. 
 
However, our initial experiments (ongoing work) 
with CoT have shown some promising results. We 
plan to combine CoT with RL. We intend 
classifying the questions (datasets) into two 
clusters: logical thinking problems and 
mathematical calculations problems.   
 
We also believe a hybrid approach, agentic AI or 
neuro-symbolic systems, which can reason step by 
step, in algorithmic manner, that adhere exactly and 
precisely to legal rules and adapt to complex 
inheritance cases will enhance the performance.  
 
Finally, when dealing with legal and/or religious 
domain such as the Islamic inheritance the LLMs 
responses should be verified by a legal lawyer or in 
a court. 
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Abstract

This paper presents our participation in the QIAS
2025 shared tasks, namely Islamic Inheritance
Reasoning and Islamic Knowledge Assessment
sub-tasks. We propose an Islamic Retrieval-
Augmented Generation (RAG) system that inte-
grates multiple knowledge sources and seman-
tic retrieval methods. Our evaluation compares
multilingual general-purpose models and Arabic-
centric models, using the accuracy metric. Results
show that multilingual models consistently outper-
form Arabic-language models. The Mistral-large
achieved the highest accuracy in Task 1 (72%) us-
ing basic RAG with our augmented knowledge
resource, while GPT-4o with RAG and K2R re-
trieval achieved the best score in Task 2 (87.71%).
These findings highlight the effectiveness of RAG
in enhancing LLM performance for complex Is-
lamic reasoning and knowledge assessment tasks.

1 Introduction

Large language models (LLMs) demonstrate
strong capabilities in understanding, interpreting,
and generating text that is close to human lan-
guage. Several powerful multilingual general-
purpose models have emerged, such as GPT-4o
and Mistral-large. There are several Arabic-
centric models developed recently, including Fal-
con (Almazrouei et al., 2023), ALLaM (Bari
et al., 2024), Mistral SABA, and Fanar (Abbas
et al., 2025), which are trained on specialized
Arabic and Islamic knowledge resources. Arabic
and religious texts present significant challenges
for LLMs due to their linguistic complexity and
the sensitive nature of Islamic teachings. Re-
cently, Retrieval-Augmented Generation (RAG)
has emerged as one of the most effective NLP tech-
niques for question-answering. It enhances LLMs

ability by retrieving relevant information from ex-
ternal knowledge sources and then using it to gen-
erate more accurate responses (Lewis et al., 2020;
Oche et al., 2025). RAG is significant for domain-
specific applications where accuracy and reliabil-
ity are critical (Han et al., 2024).

Prior studies have applied RAG to various Is-
lamic domains, including Quranic teachings, Turk-
ish Islamic knowledge, and historical Islamic med-
ical texts (Alnefaie et al., 2024; Alan et al., 2025;
Sayeed et al., 2025). Moreover, promising re-
search has focused recently on enhancing the re-
trieval stage of the RAG pipeline through query
expansion and reformulation strategies in English
(Yang et al., 2025; Wang et al., 2024).

To the best of our knowledge, RAG techniques
have not yet been evaluated for Islamic inheritance
reasoning or Islamic knowledge assessment. We
address this gap by contributing to Task 1: Islamic
Inheritance Reasoning and Task 2: Islamic Knowl-
edge Assessment, as introduced in the QIAS 2025
shared task (Bouchekif et al., 2025a). Task 1 eval-
uates an LLMs ability to answer questions requir-
ing precise reasoning and calculations based on Is-
lamic jurisprudence. Task 2 assesses the accuracy
of LLMs in answering general Islamic questions
across multiple disciplines. Both tasks are chal-
lenging not only because they require advanced
reasoning, but also because they include questions
of varying difficulty levels that reflect the depth
and complexity of Islamic knowledge. In this pa-
per, we investigate strategies to enhance LLMs
for Islamic QA, addressing the following research
questions: how does the combination of few-shot
prompting and RAG techniques affect the LLMs?
How does the type of LLM, general multilingual
or Arabic-centric, affect the accuracy of RAG?
Does the size of the knowledge resource affect the
performance of the RAG system? What is the ef-
fect of applying semantic retrievals through query
expansions and reformations on LLMs?
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The paper is organized as follows: In Section 2,
related works are reviewed. Section 3 details the
datasets used. Section 4 describes the proposed
system structure, while Section 5 describes the im-
plementation setup. In Section 6, the results are
presented and discussed. Finally, the paper con-
cludes with a summary and suggestions for future
work.

2 Related Works

Several studies have examined the application of
LLMs to Islamic knowledge. Alnefaie et al. (2023)
used GPT for question answering on a Quran
dataset. Bouchekif et al. (2025b) evaluated several
multilingual LLMs and Arabic LLMs with zero-
shot prompting on an inheritance dataset. These
works highlighted key limitations of LLMs, in-
cluding hallucination and misinterpretation. More
recent research has explored using RAG tech-
niques to improve LLM performance. Alnefaie
et al. (2024) applied RAG to the GPT-4 model
in the Quranic Question Answer dataset. Alan
et al. (2025) introduced the MufassirQA system,
which enhances the ChatGPT-3.5 Turbo model
with RAG by using religious knowledge resources
in the Turkish language. Furthermore, Sayeed
et al. (2025) investigated the use of RAG with
LLaMA-3, Mistral-7B, and Qwen-2 to answer
medical questions based on an old Islamic medical
text. These studies found that RAG consistently
outperforms baseline LLMs and emphasized that
its performance is highly dependent on the quality
of the retrieval and knowledge resources. How-
ever, the performance of RAG in Islamic domain-
specific knowledge remains largely underexplored.
Furthermore, promising research has recently fo-
cused on improving the retrieval stage of the RAG
pipeline through query expansion and reformula-
tion strategies in English (Yang et al., 2025; Wang
et al., 2024; Li et al., 2024). In this study, we ex-
tensively explore the RAG in both Arabic and mul-
tilingual LLMs. In addition, study the effect of
different retrieval strategies that incorporate query
expansion and reformulation methods.

3 Datasets

In this paper, we use the four officially published
datasets 1 corresponding to the two subtasks of the
QIAS 2025 shared task.

1https://gitlab.com/islamgpt1/qias_shared_
task_2025

3.1 Task 1: Islamic Inheritance Reasoning
(Ilm al-Mawrth)

The Islamic Inheritance dataset comprises 22,000
multiple-choice questions (MCQs). Each question
includes six answer choices with only one correct
label (Bouchekif et al., 2025b). The questions
are classified into two levels of difficulty: begin-
ner and advanced. The dataset was divided into
20,000 for the training set, 1,000 for the validation
set, and 1,000 for the test set. In addition, the fatwa
dataset is used as a supplementary knowledge re-
source. It consists of 3165 fatwas from Islamic
websites covering general legal, ethical, and social
topics.

3.2 Task 2: General Islamic Knowledge

The first dataset consists of 1700 question pairs in
MCQ format covering Hadith criticism, Quranic
sciences, legal theory, and prophetic biography.
Each question has four answer choices, with one
correct answer. The data distribution is 700 ques-
tion pairs for the validation set and 1,000 for the
test set. The questions are categorized into three
complexity levels: beginner, intermediate, and ad-
vanced. Moreover, a supplementary Islamic cor-
pus was used as an external knowledge resource
for the RAG system. It comprises unsupervised
data of relevant Islamic texts. The corpus includes
approximately 50 Islamic books in MS Word for-
mat, all of which are directly related to the evalua-
tion dataset topics.

4 System Overview

The proposed system adopts the RAG architecture
(Lewis et al., 2020; Wang et al., 2024; Oche et al.,
2025) and consists of three main phases 2: Knowl-
edge Resource Preparation, Retrieval, and Answer
Generation, as illustrated in Appendix A. The
Knowledge Resource Preparation phase is con-
ducted offline, where documents are preprocessed
and converted into vector representations. This
phase includes four modules: loading, chunking,
embedding, and indexing. First, the input docu-
ments are loaded and preprocessed to produce nor-
malized, cleaned text. Next, the chunking module
divides the documents into smaller units. This step
is essential for improving retrieval effectiveness,
enabling embedding storage, and addressing the

2in The code is available in our repository:https://
github.com/S-Alowaidi/SEA-RAG_Enhancing-LLMs
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context-length limitations of LLMs. In our exper-
iments, we used token-aware recursive chunking
to segment documents into semantically coherent
units, ensuring token compatibility with the em-
bedding model’s tokenization. Following the rec-
ommendations in (Wang et al., 2024), we set the
splitter to 500 tokens per chunk with a 50-token
overlap. The embedding module then transforms
each chunk into a high-dimensional dense vector
using OpenAI Embeddings, enabling efficient se-
mantic similarity searches. Finally, the indexing
module stores these embeddings in a FAISS (Face-
book AI Similarity Search) vector database. The
Retrieval and Answer Generation phases are exe-
cuted in real time. At query time, the question is
embedded, and the retrieval module searches for
the most relevant chunks in the vector index. We
propose three semantic retrieval methods: basic
similarity search and two semantically enhanced
strategies. For the enhanced methods, keywords
are extracted offline using GPT-4o. Candidate
keywords are filtered to remove noise by elim-
inating stop words, short terms, and duplicates,
as well as semantically irrelevant items using co-
sine similarity (threshold = 0.3) against the orig-
inal question. Basic Similarity Search: retrieves
chunks in a single pass using the original query.
Keyword-Augmented Two-Stage Retrieval (K2R):
performs parallel retrieval using the original query
and semantically filtered keywords, then merges
and deduplicates the retrieved chunks. Multi-
Query Reformulation with Keywords (MQR-K):
reformulates each keyword with the query into a
complete sub-question in Arabic, retrieves seman-
tically similar chunks in parallel, and merges the
results for diversification. In the Answer Genera-
tion phase, the retrieved context is combined with
the question and its answer choices in a structured
prompt, which is then sent to the LLMs. The out-
put undergoes a post-generation validation step to
ensure compliance with the single-letter MCQ an-
swer format.

5 Experimental Setup

All experiments were run on Google Colab and
used the LangChain framework. Embeddings are
generated using text-embedding-3-large (OpenAI)
and stored in a FAISS flat index with cosine simi-
larity. The retrieval module is configured to return
the top-k = 4 chunks per query. To address the
third research question, in Task 1, we evaluate two

Model 3-Shot Fatwa Expand-K K2R
Fanar 53.3 57.8 62.8 59.5
Mistral-S 43.8 50.1 55.6 53.2
Mistral-L 61.5 66.0 72.0 70.0
ALLaM 47.8 50.6 53.2 43.5
GPT-4o 57.5 58.9 61.6 63.4

Table 1: Task 1 results comparing Few-Shot Prompting,
Basic RAG (Fatwa only), Expanded Knowledge (Fatwa
+ Train), and RAG with K2R.

Model Few-Shot Basic K2R MQR
Fanar 29.43 57.86 54.14 55.71
Mistral-S 66.07 75.86 76.29 72.43
Mistral-L 78.29 83.86 77.57 76.00
ALLaM 71.29 77.29 79.43 77.43
GPT-4o 83.71 83.86 87.71 85.57

Table 2: Task 2 results comparing Few-Shot prompting,
Basic RAG, K2R retrieval RAG, and MQR-K retrieval
RAG.

datasets. The first is the fatwa dataset as a baseline
knowledge resource for RAG. In addition, we pro-
posed an expanded dataset that combines the fatwa
dataset with MCQ training data by including ques-
tion and correct-answer pairs as additional contex-
tual knowledge. In the generation phase, we evalu-
ate several LLMs in three-shot prompting, includ-
ing GPT-4o 3, Mistral-large-latest 4, Fanar Islamic-
RAG 5, Allam-7B 6, and Mistral-SABA-24B 7.

6 Results and Discussion

Task 1: Table 1 shows the results on the de-
velopment set. The Mistral-large model achieved
the highest accuracy 72.0% when using RAG
with the expanded fatwa dataset. Comparing the
fatwa-only dataset to the augmented version, the
Arabic-centric models Mistral-SABA-24B and Fa-
nar Islamic-RAG benefited the most, with gains
of 6.3 and 4.5 points, respectively. ALLaM-7B
showed the least improvement. On the other
hand, Mistral-large had the second-highest gain
6.0 points, while GPT-4o’s improvement was rel-
atively small at 2.7 points. This highlights how
the reasoning ability of multilingual models can
be greatly enhanced by adding domain-specific
knowledge. Test set: For the test set, we selected

3via OpenAI API:https://platform.openai.com/
4via Mistral API:https://mistral.ai/
5via Fanar API:https://fanar.qa/
6via: https://huggingface.co/transformers
7via Groq API

942

 https://platform.openai.com/
 https://mistral.ai/
 https://fanar.qa/
 https://huggingface.co/transformers


Model T1Ed T1K2R T2R T2K2R
Mistral-L 61.1 63.0 87.7 89.1
GPT-4o 59.9 57.1 87.8 89.0

Table 3: Results on test set for Task1: T1Ed refers to
Expanded Knowledge,T1K2R refers to K2R retrieval
RAG. Task2:T2R refers to Basic RAG, T2K2R refers
to K2R retrieval RAG

the best-performing approaches based on the re-
sults from the development set. As presented in
Table 3, Mistral-large achieved the highest accu-
racy using the K2R method, reaching 63%. Unlike
the development set, its performance improved in
the test set. In contrast, GPT’s performance with
the K2R method declined slightly in the test data.
Task2:
Table 2 shows the accuracy results for different re-
trieval methods in answering general Islamic ques-
tions. GPT-4o achieved the highest accuracy of
87.71% using the K2R retrieval method, outper-
forming its baseline RAG. This is expected since
GPT-4o has been trained on a large amount of
data, including Islamic knowledge. Mistral-large
achieved the second-highest accuracy in the base-
line RAG 83.86%. However, its performance
dropped slightly with the K2R and MQR-K re-
trieval methods (77.57% and 76.00%, respectively.
The performance of Arabic-centric models varied
across retrieval methods. ALLaM-7B and Mistral-
SABA performed best with K2R, while Fanar
achieved its best results, 55.71%, with MQR-K.

Test set: For the test set, we chose two strate-
gies based on their performance during the devel-
opment phase. The table 3 indicates that Mistral-
large and GPT-4o achieved very similar results,
both reaching approximately 89% with the K2R
method. Therefore, the expanded query could be
a promising approach to enhancing RAG.

Overall Analysis Based on the results, it is
clear that RAG performance is heavily dependent
on the quality of the retrieved contexts. Enhancing
retrieval with the K2K approach outperformed ba-
sic RAG retrieval for all models. However, the per-
formance continued to fluctuate compared to the
knowledge-enrichment approach and depended on
the nature of the task and the model used. For ex-
ample, in task 1, the nature of inheritance law texts
often shares similar keywords (e.g., wife, paternal
mother, heirs). Hence, refining the query by broad-
ening keywords could produce a wider context that
distracts the LLMs. In the case of multiple-query

reformulation (MQR), we observed a general drop
in performance for most models, except Fanar,
which showed a slight improvement. This may
be due to the static reformulation method used,
which can cause loss of semantic meaning and in-
troduce noise. The results show that, in general,
Arabic-centric models benefit from higher recall
when broadening the context by expanding queries
with keywords. In contrast, stronger models per-
form better with fewer but more relevant contexts.

7 Conclusion

This work presents our contributions to the QIAS
2025 shared task, focusing on Task 1: Islamic In-
heritance Reasoning and Task 2: Islamic Knowl-
edge Assessment. We propose an Islamic RAG
system that leverages multiple knowledge sources
and retrieval methods, utilizing more than five
different LLMs. Our experimental results show
that multilingual general-purpose models outper-
form Arabic-language models in both tasks. For
Task 1, Mistral-large achieved the best perfor-
mance (72%), while for Task 2, GPT-4o delivered
the strongest results in general Islamic knowledge
reaching (87.71%). Among the Arabic models,
Fanar performed best in Task 1 by 62.8%, and
ALLaM-7B led in Task 2 by 79.43%. We also
observed that expanding the knowledge sources
in Task 1 improved the performance of all mod-
els, with the most notable gains for Arabic models
such as Fanar and ALLaM-7B.

Regarding the use of RAG with a semantic
retrieval strategy, results indicate that semantic
retrieval RAG generally outperformed three-shot
prompting across all models and both tasks. How-
ever, its advantage over basic RAG varied accord-
ing to the nature of the task data and the model.

Future research should explore alternative query
expansions and reformulation approaches, such as
using LLMs to generate more semantically rele-
vant queries dynamically. In addition, investigat-
ing other RAG enhancement techniques, includ-
ing re-ranking and document summarization, may
yield further improvements. Finally, we empha-
size the importance of developing high-quality Is-
lamic knowledge sources to improve model re-
learning effectively.

Acknowledgments

The authors would like to thank the competition
organizers. We also thank KAU for its support.

943



References
Ummar Abbas, Mohammad Shahmeer Ahmad, Firoj

Alam, Enes Altinisik, Ehsannedin Asgari, Yazan
Boshmaf, Sabri Boughorbel, Sanjay Chawla, Sham-
mur A. Chowdhury, Fahim Dalvi, Kareem Darwish,
Nadir Durrani, Mohamed Elfeky, Ahmed K. Elma-
garmid, Mohamed Y. Eltabakh, Masoomali Fatehkia,
Anastasios Fragkopoulos, Maram Hasanain, Majd
Hawasly, and 22 others. 2025. Fanar: An arabic-
centric multimodal generative ai platform. arXiv
preprint arXiv:2501.13944.

Ahmet Yusuf Alan, Enis Karaarslan, and Ömer Aydın.
2025. Improving llm reliability with rag in religious
question-answering: Mufassirqas. Turkish Journal
of Engineering, 9(3):544–559.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, Daniele Maz-
zotta, Badreddine Noune, Baptiste Pannier, and Guil-
herme Penedo. 2023. The falcon series of open lan-
guage models. Preprint, arXiv:2311.16867.

Sarah Alnefaie, Eric Atwell, and Mohammad Ammar
Alsalka. 2023. Is GPT-4 a good islamic expert for
answering Quran questions? In Proceedings of the
35th Conference on Computational Linguistics and
Speech Processing (ROCLING 2023), pages 124–
133, Taipei City, Taiwan. The Association for Com-
putational Linguistics and Chinese Language Pro-
cessing (ACLCLP).

Sarah Alnefaie, Eric Atwell, and Mohammed Ammar
Alsalka. 2024. Using the retrieval-augmented gener-
ation technique to improve the performance of gpt-4
in answering quran questions. In 2024 6th Interna-
tional Conference on Natural Language Processing
(ICNLP), pages 377–381.

M Saiful Bari, Yazeed Alnumay, Norah A. Alzahrani,
Nouf M. Alotaibi, Hisham A. Alyahya, Sultan
AlRashed, Faisal A. Mirza, Shaykhah Z. Alsub-
aie, Hassan A. Alahmed, Ghadah Alabduljabbar,
Raghad Alkhathran, Yousef Almushayqih, Raneem
Alnajim, Salman Alsubaihi, Maryam Al Mansour,
Majed Alrubaian, Ali Alammari, Zaki Alawami, Ab-
dulmohsen Al-Thubaity, and 6 others. 2024. Al-
lam: Large language models for arabic and english.
Preprint, arXiv:2407.15390.

Abdessalam Bouchekif, Samer Rashwani, Mohammed
Ghaly, Mutaz Al-Khatib, Emad Mohamed, Wajdi
Zaghouani, Heba Sbahi, Shahd Gaben, and Aiman
Erbad. 2025a. Qias 2025: Overview of the shared
task on islamic inheritance reasoning and knowledge
assessment. In Proceedings of The Third Arabic Nat-
ural Language Processing Conference, ArabicNLP
2025, Suzhou, China, November 5–9, 2025. Associ-
ation for Computational Linguistics.

Abdessalam Bouchekif, Samer Rashwani, Heba Sbahi,
Shahd Gaben, Mutaz Al-Khatib, and Mohammed

Ghaly. 2025b. Assessing large language models on
islamic legal reasoning: Evidence from inheritance
law evaluation. In Proceedings of The Third Arabic
Natural Language Processing Conference (Arabic-
NLP 2025), Suzhou, China. Association for Compu-
tational Linguistics.

Binglan Han, Teo Susnjak, and Anuradha Mathrani.
2024. Automating systematic literature reviews
with retrieval-augmented generation: a comprehen-
sive overview. Applied Sciences, 14(19):9103.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS ’20, Red Hook, NY, USA. Curran
Associates Inc.

Zhicong Li, Jiahao Wang, Zhishu Jiang, Hangyu
Mao, Zhongxia Chen, Jiazhen Du, Yuanxing Zhang,
Fuzheng Zhang, Di Zhang, and Yong Liu. 2024.
Dmqr-rag: Diverse multi-query rewriting for rag.
arXiv preprint arXiv:2411.13154.

Agada Joseph Oche, Ademola Glory Folashade,
Tirthankar Ghosal, and Arpan Biswas. 2025. A sys-
tematic review of key retrieval-augmented genera-
tion (rag) systems: Progress, gaps, and future direc-
tions. arXiv preprint arXiv:2507.18910.

Mohammad Amaan Sayeed, Mohammed Talha Alam,
Raza Imam, Shahab Saquib Sohail, and Amir Hus-
sain. 2025. From rag to agentic: Validating islamic-
medicine responses with llm agents. arXiv preprint
arXiv:2506.15911.

Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran
Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi,
Zhengyuan Wang, Shizheng Li, Qi Qian, Ruicheng
Yin, Changze Lv, Xiaoqing Zheng, and Xuanjing
Huang. 2024. Searching for best practices in
retrieval-augmented generation. In Proceedings of
the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pages 17716–17736, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Qimin Yang, Huan Zuo, Runqi Su, Hanyinghong
Su, Tangyi Zeng, Huimei Zhou, Rongsheng Wang,
Jiexin Chen, Yijun Lin, Zhiyi Chen, and Tao Tan.
2025. Dual retrieving and ranking medical large
language model with retrieval augmented generation.
Scientific Reports, 15(1):18062.

A System Architecture

A comprehensive description of the proposed
RAG system is illustrated in Figure 1.

944

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
https://aclanthology.org/2023.rocling-1.15/
https://aclanthology.org/2023.rocling-1.15/
https://doi.org/10.1109/ICNLP60986.2024.10692797
https://doi.org/10.1109/ICNLP60986.2024.10692797
https://doi.org/10.1109/ICNLP60986.2024.10692797
https://arxiv.org/abs/2407.15390
https://arxiv.org/abs/2407.15390
https://doi.org/10.18653/v1/2024.emnlp-main.981
https://doi.org/10.18653/v1/2024.emnlp-main.981


Figure 1: The proposed RAG system architecture

B Keyword-Augmented Two-Stage
Retrieval (K2R)

The K2R approach retrieves documents using a
multi-query parallel FAISS search. Figure 2 de-
scribes the general steps for RAG based on the
K2R method.

C Multi-Query Reformulation with
Keywords (MQR-K)

This approach is based on reformulating the ques-
tion using a fixed Arabic template to generate one

Model Beg. Int. Adv.
Mistral-L | T2R 90.57 85.33 76.67
GPT-4o | T2R 90.29 90.00 74.00
Mistral-L | T2K2R 92.29 85.33 78.00
GPT-4o | T2K2R 92.57 87.33 74.00
Mistral-L | T1Ed 75.20 – 47.00
GPT-4o | T1Ed 72.60 – 47.20
Mistral-L | T1K2R 78.80 – 47.20
GPT-4o | T1K2R 77.40 – 36.80

Table 4: Accuracy (%) across difficulty levels Begin-
ner (Beg.), Intermediate (Int.), Advanced (Adv.). A
dash (–) indicates an unavailable level. For Task 1:
T1Ed refers to Expanded Knowledge, T1K2R refers to
K2R retrieval RAG. Task 2:T2R refers to Basic RAG,
T2K2R refers to K2R retrieval RAG

Figure 2: RAG based on the Keyword-Augmented
Two-Stage Retrieval (K2R) approach

query per keyword. Figure 3 explains the general
steps for RAG based on the MQR-K method.

D Prompt

Figure 4 demonstrates the prompt used in the ex-
periments. The few-shot examples refer to three
examples specifically for the target task taken from
the training data. The context refers to the docu-
ments retrieved using one of the retrieval methods,
baseline semantic similarity, K2R, or MQR.

E In-depth Analysis

Table 4 presents the performance of various mod-
els on Task 1 and Task 2 across three difficulty
levels: beginner, intermediate, and advanced. The
results indicate that all models generally achieved
high accuracy on beginner-level questions for both
tasks.
In Task 1, the Mistral-large model answered ap-
proximately 75.20% of beginner questions, while
the GPT-4o model answered about 72.60% when
applying the RAG with the expanding knowledge
approach. However, for advanced questions, the
accuracy of most methods in answering these ques-
tions reaches only about 47%, indicating weaker
performance on questions that require complex in-
heritance reasoning compared with simpler ones.
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Figure 3: RAG based on the Multi-Query Reformula-
tion with Keywords (MQR-K) approach

Additionally, the K2R retrieval RAG approach
made substantial improvements on beginner-level
questions. In contrast, for advanced questions,
while the Mistral-large model maintained its accu-
racy in the K2R approach, the performance of the
GPT-4o model decreased when queries were ex-
panded with keywords.
For task 2, which focused on general Islamic
knowledge, most approaches demonstrated excep-
tional performance, achieving accuracy rates of
92.57%, 90%, and 78% at the beginner, interme-
diate, and advanced levels, respectively. It is clear
from the results that the K2R retrieval method
achieved a notable improvement at the beginner
and advanced levels across models. Moreover,
the results show that while Mistral-large and GPT-
4o both performed similarly overall, the Mistral-
large model often slightly outperformed the GPT-
4o model on advanced questions.

Figure 4: The prompt used for the RAG system
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Abstract

Collaborative approaches have proven effec-
tive in addressing complex problems, from hu-
man and socio-economic challenges to multi-
agent systems. These methods rely on the
principle that combining perspectives enhances
problem-solving. In this paper, we propose
a collaborative large language models (LLM)
framework to solve Islamic inheritance prob-
lems, which demand precise mathematical rea-
soning and strict adherence to legal rules for
fair distribution among heirs. The system im-
plements a collaborative voting mechanism
involving multiple LLMs, namely ALLaM-
7B-Instruct-preview, Deepseek-reasoner, and
Gemini-2.5-Flash. Each independently an-
swered multiple-choice inheritance questions.
The final answer is determined by majority vote.
To improve accuracy and domain grounding,
we integrate Retrieval-Augmented Generation
(RAG). A curated database of solved inheri-
tance cases in JSON format is indexed using
TF-IDF. For each query, the most similar cases
are retrieved and appended as contextual in-
formation to the prompt before being submit-
ted to the LLMs. Experimental results demon-
strate that this collaborative RAG-enhanced
framework outperforms individual LLMs. The
ensemble achieved 88% accuracy, surpassing
the best-performing single models: the fine-
tuned ALLaM-7B-Instruct-preview (79.50%),
Deepeek-reasoner (71.80%), and Gemini-2.5-
Flash (83.50%).

1 Introduction

LLMs have rapidly gained a prominent role in
Natural Language Processing (NLP), transform-
ing how machines understand and generate human-
like language. From general-purpose systems
like GPT (Achiam et al., 2023) and Gemini (Co-
manici et al., 2025) to Arabic-focused models such
as Fanar (Team et al., 2025) and ALLAM (Bari

*Corresponding author: jihad.rbaiti@um6p.ma

et al., 2024b), these models have demonstrated
remarkable proficiency across a wide range of
tasks (Demidova et al., 2024; Singhal et al., 2025;
Miah et al., 2024). They are now being used
to solve open-domain problems, answer complex
questions, and support more specialized areas that
require structured knowledge and contextual un-
derstanding—such as legal, medical, or religious
domains. One such domain is Islamic inheritance,
which is based on detailed rules for distributing
assets among heirs. Answering questions in this
area requires an understanding of Islamic sources
and the ability to perform precise calculations in-
volving predetermined shares assigned to each heir.
In many cases, small changes in family composi-
tion can lead to entirely different outcomes. This
makes it a valuable challenge for testing how well
LLMs can handle structured reasoning, numerical
logic, and Arabic-language understanding in a re-
ligious context. To support research in this area,
the Question-and-Answer in Islamic Studies As-
sessment Shared Task (QIAS 2025) (Bouchekif
et al., 2025a) was introduced as a benchmark for
evaluating the reasoning capabilities of LLMs in
the domain of Islamic knowledge. Our focus is on
Subtask 1: Islamic Inheritance Reasoning, which
presents multiple-choice questions (MCQs) in Ara-
bic across three levels of difficulty: beginner, inter-
mediate, and advanced. The questions are designed
to evaluate an LLM’s understanding of Islamic in-
heritance principles and its ability to apply them
accurately to solve practical cases. In our final
submission, we developed an ensemble-based sys-
tem that combines RAG with multiple pretrained
LLMs to tackle the task’s multiple-choice reason-
ing challenges. We used five models—ALLAM,
Fanar, Qween, Gemini, and Deepseek—and ap-
plied prompting with RAG during inference. Each
model independently predicts an answer (from A to
F), and a majority voting strategy is used to select
the final response. This setup leverages the con-
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textual strength of RAG and the diverse reasoning
capabilities of the models, enabling more robust
performance across different question types and
difficulty levels. Our system ranked 5th in Subtask
1 of the QIAS 2025 shared task. The full imple-
mentation is available at 1. This paper is organized
as follows:
Section 2 provides background relevant to our work.
Section 3 describes the dataset, Section 4 presents
our method. Section 5 detail the experimental setup
used for evaluation. Section 6 presents the result
obtained, and Section 7 concludes our work.

2 Background

2.1 Related Work

Recent work has explored the use of LLMs in re-
ligious domains, particularly in the Islamic con-
text. (Mohammed et al., 2025) have proposed an
advanced RAG approach using a re-ranker. This
approach has proven effective, providing increased
response stability, eliminating hallucinations, and
obtaining a more accurate answer compared to both
base LLM and LLM with RAG methodologies.
Similarly, Alan et al. (2025) presented ‘Mufas-
sirQAS’, a system proposed to improve LLM trans-
parency and accuracy using RAG. This system pre-
sented relevant sections from the retrieved database
alongside the LLM’s answers. While Akkila and
Naser (2016) developed an expert system designed
to simplify and automate the calculation of Islamic
inheritance shares based on Sharia law, replacing
the traditional method of calculation, aiming to re-
duce human error and disputes among heirs. In
(Bouchekif et al., 2025b), the authors assess LLMs’
reasoning capabilities in Islamic inheritance law.
The results reveal o3 and Gemini 2.5 as the more
accurate models, surpassing ALLaM, Fanar, and
Mistral in terms of accuracy.

2.2 Islamic inheritance law

Islamic inheritance law (Ilm al-Mawārı̄th) is a rule-
based, mathematical framework derived primarily
from Surah An-Nisā’ in the Qur’an, which specifies
fixed fractional shares for eligible heirs. The frame-
work considers three key factors when distributing
shares:

• Degree of kinship: Closer relatives inherit
larger shares regardless of gender;

1https://shorturl.at/Fev1p

• Generational position: Younger generations
preparing for life’s responsibilities receive
larger shares than older generations relinquish-
ing them;

• Financial responsibility: The only case where
gender-based difference applies, when sons
inherit twice the share of daughters due to life-
long financial support to their wives and fami-
lies, while daughters retain their inheritance
solely for themselves without any spending
obligation.

Verses 4:11–12 and 4:176 outline concise, efficient,
and generalizable distribution principles. Children
inherit with males receiving the share of two fe-
males; parents receive one-sixth each if the de-
ceased has children, with the mother’s share ad-
justed in the presence of siblings; spouses inherit
fixed portions depending on the presence of chil-
dren; and siblings inherit in kalālah, which is the
case when there are no ascendants or descendants,
with males receiving twice the share of females.
These rules are applied only after paying debts and
executing valid bequests, which cannot exceed one-
third of the estate.

3 Data

The approach uses two data sources (Bouchekif
et al., 2025a): a structured dataset and a semi-
structured dataset. The first one consists of MCQs.
It was constructed by converting religio-ethical ad-
vice ‘fatwas’ collected from IslamWeb 2 into a
structured format. The preprocessing included re-
viewing the MCQ by four experts in Islamic stud-
ies, rephrasing ambiguous questions, and eliminat-
ing semantic and numerical redundancies. Each
MCQ has six answer options (A to F), with only
one correct. The dataset design uses an increasing
complexity of three levels of difficulty—beginner,
intermediate, and advanced—to assess LLMs’ ca-
pability across different levels of expertise. The
dataset contains approximately 20000 MCQs for
training, 1000 for validation, and 1000 for testing.
On the other hand, the semi-structured dataset con-
sists of 4 JSON files containing all necessary in-
formation about the problem statements ‘fatwas’,
including ID, URL, category, Gregorian and Hijri
dates, question, and answer. It was sourced from
IslamWeb and provides about 3065 resolved inheri-
tance problem statements. This dataset was used as

2https://www.islamweb.net/
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an external source of knowledge to retrieve perti-
nent similar inheritance cases in our proposed RAG
system.

4 System Overview

The proposed framework integrates a Multi-LLM
Voting Framework with a Retrieval Module to ad-
dress Arabic Islamic inheritance MCQs (Figure 1).
First, a curated JSON knowledge base of solved
inheritance cases ‘Fatwas’ is built and indexed us-
ing TF-IDF. After storing the index, each problem
statement is vectorized as a query for the RAG sys-
tem and projected in the index vector space model
to be compared with the corpus’s documents using
cosine similarity, retrieving the top-k most similar
cases. These retrieved cases are appended to the
original problem statement prompt (Figure 2). This
prompt augmentation enriches the context during
the inference phase. The augmented prompt is then
passed to multiple LLMs, which are the fine-tuned
ALLaM-7B, Gemini-2.5-Flash, and DeepSeek-R1.
The models independently generate their answers.
Finally, the outputs are processed through a vot-
ing mechanism that selects the majority answer
as the final prediction. In cases where no major-
ity is reached, priority is given to Gemini, as it
demonstrated the most reliable performance during
experiments.

5 Experimental Setup

The goal of the shared task was to evaluate the
ability of various LLMs to solve Islamic inheri-
tance reasoning problems, which involve apply-
ing strict legal mathematical rules. Multiple sub-
mission strategies (Table 1) were developed and
evaluated. The first approach involved supervised
fine-tuning of the 7 billion version of the ALLaM
model, which was selected for its reported strong
performance in Arabic (Bari et al., 2024a). The
training data consisted of inheritance cases for-
matted in a question-answering style described in
Section 3. The model was trained using standard
cross-entropy loss to directly predict the correct
inheritance distribution, using the listed hyperpa-
rameters (Figure 2). The second approach uses
zero-shot learning, where a prompt-based inference
was applied without additional fine-tuning. Here,
multiple pretrained LLMs were tested, including
variants of ALLaM, Fanar, Gemini, Qween, and
DeepSeek. Each model was prompted using a fixed
template describing the inheritance case and re-

questing a response in a structured format. Next, a
RAG setup was implemented to provide contextual
fatwa-based information. Relevant fatwas were re-
trieved for each case and appended to the original
prompt. Two retrieval methods were compared:
one using a Neural Embedding for semantic search,
and another using TF-IDF for keyword-based re-
trieval. The same prompting strategy was applied
in both cases. Finally, based on model performance,
the study chose 3 models to construct the pool of
voting to implement the proposed majority voting
collaborative strategy.
During implementation of RAG, we experimented
with different values of top-k voting using k ∈
{3, 5, 7}, to evaluate the effect of the number of
retrieved documents (k) and retrieval method (TF-
IDF vs. Neural Embeddings). The combination
of k=3 using TF-IDF was selected for a balance
between computation, prompt input length, and
model performance. For the inference, we ap-
plied parameter-efficient tuning via LoRA with
rank set to 8, alpha set to 16, and dropout set to
0.05, using a maximum input length of 3000 to-
kens. Decoding was performed with beam search
(num_beams=5) combined with sampling (temper-
ature=0.6, top_p=0.9), and the maximum number
of generated tokens was limited to 20.
This study uses the Mohammed VI Polytechnic
University’s high-performance computing (HPC)
called ‘TOUBKAL’, which provides a cluster of
various types of computational nodes equipped
with NVIDIA A100-SXM4-80GB GPUs. To ac-
cess the HPC, the MobaXterm software is used as
an SSH client for establishing connections to the
HPC. The programming language used is Python
3.10, along with Anaconda, to manage packages
and dependencies in both local and remote environ-
ments.

6 Results and Discussion

Table 1 summarizes the performance of our submis-
sions in terms of accuracy. Initial experiments with
Arabic-specific models, such as Fanar and ALLaM,
showed limited effectiveness in handling Islamic in-
heritance reasoning. The fine-tuned ALLaM model
produced similar results. Subsequent submissions
explored prompt-based inference with larger multi-
lingual models. The reasoning-focused version of
DeepSeek (Deepseek-Reasoner via API) achieved
a significant performance gain, and Gemini-2.5-
Flash further improved accuracy to 78.10%, high-
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Figure 1: Overall workflow of the implemented collaborative LLMs framework

System:
You are a specialist in Islamic sciences. Your task is to answer multiple -choice
questions by selecting the correct option.

User:
Question: {question}

{options_text}

The following fatwas may assist you: {context_text}

Please respond using only one English letter from the following: {valid_letters}
Do not write any explanation or additional text.

Figure 2: Prompt structure in the Collaborative LLM Framework; {question} denotes the original inheritance
problem statement, {options_text} lists answer choices (one correct), {context_text} contains RAG-retrieved Fatwas
for prompt augmentation, and {valid_letters} specifies the expected output format

lighting the benefits of multilingual models over
those optimized for a single or limited set of lan-
guages. The proposed collaborative voting strat-
egy exploits both the diversity of models (ALLaM,
Gemini, DeepSeek), with RAG. This approach
achieved the highest accuracy (88.00%), demon-
strating the effectiveness of model combination and
knowledge retrieval in handling the complex rea-
soning required for Islamic inheritance cases. A
limitation of our voting strategy arises when the
three models produce three different answers. In
such cases, we default to Gemini’s output, given
its stronger capability compared to the candidate
models. While this rule provided a practical solu-
tion in our experiments, it reduces the neutrality
of the ensemble. Future work will explore more
robust strategies, such as weighted voting, where

models’ contributions are scaled according to their
accuracy.

7 Conclusion

In this work, we introduced a collaborative LLM
approach augmented with RAG to tackle Islamic
inheritance problems in Arabic. By aggregat-
ing heterogeneous models, namely Gemini-2.5-
Flash, DeepSeek, and ALLaM-7B, all augmented
with RAG, through a majority-vote approach, the
system was 88.00% accurate, surpassing the top-
performing single model, while achieving stronger
robustness to model-specific faults. Our experi-
ments showed that retrieval configuration affects
model performance, and TF-IDF at k = 3 performs
best, surpassing neural embedding methods un-
der this task. These results report that, for such

950



Table 1: Accuracy of individual models compared to the collaborative voting approach.

Submission Model Accuracy (%)
1 Fanar-1-9B 36.10
2 ALLaM-7B-Instruct-preview 26.50
3 Fine-tuned ALLaM-7B-Instruct-preview 79.50
4 Deepseek-chat 50.90
5 Qwen3-1.7B with RAG 26.10
6 Gemini-2.5-Flash 78.10
7 Gemini-2.5-Flash with RAG 83.50
8 Deepseek-reasoner with RAG 71.80
9 Collaborative Voting 88.00

Table 2: Finetuning Hyperparameters

Hyperparameter Value
Max training steps 300
Batch size 2
Eval batch size 8
Learning rate 5e-5
Max sequence length 1024
Logging frequency 50 steps
Checkpoint frequency 200 steps
Random seed 42
LoRA rank (r) 8
LoRA alpha 16
LoRA dropout 0.05
Optimizer AdamW
Gradient clipping 1.0
Precision bfloat16 (GPU)
Max new tokens (eval) 20
Sampling strategy Greedy

highly structured legal reasoning problems with
explicit rules, conventional lexical retrieval can be
more successful, and that multi-model collabora-
tive LLMs are more trustworthy in output than soli-
tary models. Further work involves incorporating
more extensive and heterogeneous Arabic-specific
models, increasing the dataset, and testing the ap-
proach for low-resource language translation.
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Abstract

In this paper, we present a system for solv-
ing Islamic inheritance problems using large
language models (LLMs), focusing on accu-
rate reasoning in Arabic based on fara’id rules.
Our approach is built on the Qwen3-4B model,
quantized, and trained using the Unsloth frame-
work for efficiency. We explore multiple train-
ing strategies: (1) retrieval-augmented gener-
ation (RAG) using fatwas from Islamweb, (2)
supervised fine-tuning (SFT) on annotated in-
heritance datasets, (3) instruction tuning of a
base Qwen model followed by GRPO training
for multiple choice question solving, and (4) a
two-stage pipeline involving SFT on a classi-
cal Islamic inheritance book followed by MCQ
fine-tuning. Among these, the fourth approach
achieved 97.2% accuracy, outperforming all
other submissions and ranking our team first in
the competition.

1 Introduction

Islamic inheritance laws are complex and highly nu-
anced, and vary significantly depending on factors
such as Islamic sect, national legislation, and cul-
tural practices. Due to this complexity, accurately
determining inheritance shares often requires the
expertise of scholars well-versed in both jurispru-
dence and contextual legal systems. This intricate
structure makes the domain of Islamic inheritance
particularly well-suited for developing reasoning
tasks in the Arabic language, offering a rich and
challenging environment for natural language un-
derstanding and logical inference.

In this work, we present a system that leverages
large language models (LLMs) to solve Islamic in-
heritance problems with high accuracy. We base
our approach on the Qwen3-4B (Yang et al., 2025a)
model, using the Unsloth framework (Daniel Han
and team, 2023) for efficient quantisation and train-
ing. To tackle the complexity of the domain, we

*These authors contributed equally to this work.

explore several strategies: retrieval-augmented gen-
eration using real-world fatwas, supervised fine-
tuning on curated inheritance scenarios, instruction
tuning followed by reinforcement training (GRPO)
(Shao et al., 2024), and a two-stage pipeline that
first fine-tunes on classical texts before solving
multiple-choice questions. Our best-performing
system as of 2025-08-20, which follows the two-
stage pipeline approach, achieved 97.2% accuracy
and ranked first on the leaderboard of the Arabic-
NLP conference (Bouchekif et al., 2025a,b).

2 Related Work

Prior work in automated Islamic inheritance ques-
tion answering has been limited, with most sys-
tems focusing on rule-based reasoning (Powers,
2017). While these approaches achieve perfect ac-
curacy on explicitly encoded cases, they lack gen-
eralisation to unseen problems. Recent advances
in Arabic NLP have enabled transformer-based
models (Antoun et al., 2020) to tackle domain-
specific MCQ tasks, yet most studies address gen-
eral knowledge or educational exams rather than
deep legal reasoning. Our contribution is novel
in two aspects: (1) applying a small language
model fine-tuned on a large-scale, domain-specific
dataset of Islamic inheritance MCQs, and (2) inte-
grating reasoning traces in the training phase (via
the reasoning-augmented subset) to improve inter-
pretability and accuracy in complex cases.

3 Dataset

The dataset used in this work consists of Arabic
multiple-choice questions (MCQs) in the domain
of Islamic heritage. The task involves predicting
the correct answer option (A–F) for each question,
given six possible choices. This problem requires
a combination of reading comprehension, domain-
specific legal knowledge, and numerical reasoning.
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The system takes as input a question q in Modern
Standard Arabic, typically formulated in formal
jurisprudential language, and a set of six possible
answer options {o1, o2, . . . , o6}. The output is the
index of the correct option. For example:

Question:
�I 	�K. ð (5) H.



B@ Ñ« 	áK. @ ð (3) �é�k. ð 	P : ¼Q�Kð �HAÓ

XY« ú
ÍAÔ
g. @
 Õ» ,(5) 	áK. @ �I 	�K. ð (5) H.



B p



@ 	áK. @ ð

? �éË


A�ÖÏ @ iJ
j��� ÉJ. �̄ �é»Q��Ë @ éJ
Ê« Õæ��®�K ø


	YË@ ÑîD�


B@

Options: A. 27 B. 22 C. 25 D. 26 E. 24 F. 23
Answer: E. 24

This setup differs from generic MCQ tasks be-
cause the reasoning process often involves applying
formal rules from Islamic law, understanding ex-
ception cases, and performing share calculations.

3.1 Dataset Splits
The annotated dataset is divided into three splits:

• Training: 20,000 questions (10,000 Beginner,
10,000 Advanced)

• Development: 1,000 questions (500 Begin-
ner, 500 Advanced)

• Test: 1,000 questions (500 Beginner, 500 Ad-
vanced, with gold labels for evaluation)

Each question contains six answer options
(A–F), exactly one of which is correct. The la-
bel distribution in the training set is moderately
imbalanced, with option C being the most frequent
(21.7%) and option F the least frequent (13.4%) as
shown in figure 1 . Table 3 summarises the main
statistics.

Figure 1: Label distribution in the training set.

3.1.1 IslamWeb Dataset
The IslamWeb corpus contained a total of 3,166
questions distributed across four batches. The

dataset was structured as JSON arrays containing
detailed fatwa objects with the following fields:

• ID: Unique identifier for each fatwa; URL:
source link on IslamWeb.

• Category: Jurisprudential classification.

• Dates: Gregorian and Hijri publication dates.

• Question: User query; Answer: scholar’s
response with Quran and Hadith references.

3.2 Label and Difficulty Distributions

The label frequencies and difficulty level propor-
tions are illustrated in Figure 1. These reveal a
slight imbalance in label frequencies, which may
influence model bias toward more frequent options.

This work was conducted in the context of the
QIAS 2025– SubTask 1: Islamic Inheritance Rea-
soning, where participants developed models to
predict the correct answer choice. Our submission
was evaluated which considers both Beginner and
Advanced difficulty levels.

4 System Overview

4.1 Two-Stage Fine-Tuning of SLM
(Continual Pretraining + SFT)

Our end-to-end Figure 2 is organised as three dis-
tinct stages that are executed in a pipeline:

Stage 1: Contin-
ued Pretraining

Fatwa Corpus
Preprocessing

Continued Pretraining
(LoRA on Qwen3-4B)

Stage 2: Instruc-
tion Fine-tuning

Islamic Inheritance MCQ
Preprocessing

Instruction Fine-tuning
(using pretrained model

and raw/cleaned MCQ data)

Final Model
Ready for Evaluation

Figure 2: Two-Stage Fine-Tuning Pipeline for Islamic
Legal Text Modelling.
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1. Domain Continual Pretraining: We perform
LoRA-based (Hu et al., 2022) continual pre-
training of a Qwen3 family base model on
a curated IslamWeb fatwa/article corpus to
adapt the model to jurisprudential registers,
domain phrases, and common reasoning pat-
terns. The pretraining objective is standard
autoregressive next-token likelihood.

2. Supervised Fine-Tuning (SFT). We fine-
tune the adapted model on the MCQ inher-
itance dataset using instruction-style prompts
(question + choices→ answer token or short
explanation). SFT enforces the mapping from
the problem statement to the correct option
and optionally to an intermediate reasoning
trace.

3. Cleanup & Post-processing. A lightweight
script normalises Arabic diacritics (tashkeel),
punctuation, and simple orthographic variants
– both as a preprocessing step for training and
as a post-processing step on model outputs
prior to scoring. This reduces spurious surface
mismatches between model outputs and gold
labels.

4.2 Reinforcement Learning Fine-Tuning

We fine-tuned the base Qwen3-4B model on an
Islamic inheritance reasoning dataset using su-
pervised fine-tuning (SFT) with instruction-style
prompts, where each input was a question and the
output contained step-by-step reasoning.

Following the DeepSeek reasoning framework
(Shao et al., 2024), we applied reinforcement learn-
ing fine-tuning (RLFT) with the GRPO algorithm,
training the model to produce both detailed reason-
ing traces and final multiple-choice answers.

To guide RLFT, we implemented the following
custom reward functions:

• Template Matching (Exact/Approximate) –
enforce reasoning and solution structure using
predefined tokens.

• Answer Format Validation – ensure answers
match valid multiple-choice options.

• Numerical Accuracy Check – reward exact
matches to ground truth values.

• Fuzzy Matching – grant partial credit for
near-correct outputs in format or structure.

These rewards balanced structural consistency,
factual accuracy, and reasoning quality during train-
ing.

4.3 Retrieval-Augmented Generation
We implemented a Retrieval-Augmented Genera-
tion (RAG) system as an initial baseline, combining
the competition-provided domain-specific corpus
with additional external resources to expand cover-
age and improve retrieval quality.

For the retrieval component, we employed
dense vector embeddings and evaluated several
multilingual models: e5-base (Wang et al.,
2024), MiniLM-L12-v2 (Reimers and Gurevych,
2019), and Matryoshka (Nacar and Koubaa, 2024).
Among these, the Matryoshka model consistently
achieved the highest retrieval accuracy in our ex-
periments.

The generation component was powered by
Qwen2.5-7B (Yang et al., 2025b) using the Ollama
v0.11.10 (Ollama Team, 2023) inference frame-
work.

5 Experimental Setup

5.1 Two-Stage Fine-Tuning of SLM Pipeline
Training configuration and hyperparameters:
The key training hyperparameters used across ex-
periments are listed in Table 5 is provided in the
Appendix.

5.1.1 Two-Stage Fine-Tuning Prompt
We used the following prompt format for training
the first stage:
### ¨ñ 	�ñÖÏ @: {}

### È@ 
ñ�Ë@:{}
<think>
###

�éK. Ag. B
 @:{}
</think>

Second stage multiple-choice questions, we for-
matted the prompts as:

System Prompt:

. új� 	®Ë@ �éJ
K. QªË@ �é 	ªÊËAK. �HYj�J�K ú
»
	X Y«A�Ó �I	K



@

. ¼XðXP ú

	̄ @XðXðð A�®J. Ë , A�J
 	JêÓ 	á»

. �èQå��J 	jÖÏ @ XðXQË@ I. 	Jm.�
�'ð ,ÉJ
� 	®�Kð hñ 	�ñK. I. k.



@

User Prompt:
"? ú
ÍA

�JË @ È@ 
ñ�Ë@ úÎ« �éjJ
j�Ë@ �éK. Ag. B
 @ ù
 ë AÓ
.\n\n"
": È@ 
ñ�Ë@ {example[’question’]}\n"
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: �H@PAJ
�J 	kB@
"A. {example[’option1’]}\n"
"B. {example[’option2’]}\n"
"C. {example[’option3’]}\n"
"D. {example[’option4’]}\n"
"E. {example[’option5’]}\n"
"F. {example[’option6’]}\n"
¡�® 	̄ �éjJ
j�Ë@ �éK. Ag. B@ 	QÓQK. H. ðAg.

5.1.2 Hardware Configuration
Experiments were conducted on a system equipped
with an NVIDIA GeForce RTX 3090 Ti GPU with
24GB VRAM. This hardware provided sufficient
memory for efficient training of the 4B parameter
models using the Unsloth framework with LoRA
fine-tuning.

5.2 Reasoning Pipeline
We fine-tuned the Qwen3-4B-Base model using the
Unsloth framework for efficient training and in-
ference. The model was configured with a 2048-
token context window and LoRA rank 32 applied
to projection and feed-forward layers. Gradient
checkpointing and a 70% GPU memory cap were
used to reduce resource usage.

5.2.1 Supervised Fine-Tuning
SFT was performed for 2 epochs with batch size 1
using the AdamW (Loshchilov and Hutter, 2017)
8-bit optimizer, learning rate 2e−4, weight decay
0.01, and linear scheduling with 5 warm-up steps.

5.2.2 Reinforcement Learning Fine-Tuning
We then applied (GRPO) with vllm for fast sam-
pling. Settings included 4 generations per prompt,
temperature 1.0, top_p = 1.0, and learning rate
5e−6 for 100 steps. Multiple reward functions were
used to enforce output format and correctness.

5.3 RAG Pipeline
5.3.1 Data Sources & Preprocessing
We combined the corpus provided by the competi-
tion with external inheritance resources. JSON files
were converted into structured Q&A pairs, while
unstructured documents were segmented using two
strategies:

• Q&A extraction: regex-based identification
of question–answer patterns.

• Semantic chunking: splitting long passages
into 400-token segments with guiding ques-
tions.

All text was normalized through diacritic re-
moval, character unification, stopword filtering,
and whitespace cleanup, reducing noise and im-
proving retrieval quality.

5.3.2 Retrieval
Documents were embedded using dense vec-
tor models from the SentenceTransformers li-
brary. We evaluated e5-base, MiniLM-L12-v2,
and Matryoshka.

The last of these achieved the best retrieval ac-
curacy in our domain. Retrieval employed cosine
similarity, and for the best results, we used a top-3
selection strategy and a minimum similarity thresh-
old of 0.7.

6 Results

6.1 Two-Stage Fine-Tuning of SLM Pipeline
6.1.1 Main results
Table 8 summarises the most relevant submissions
(sorted by test accuracy). For each run, we report
whether the cleanup script was applied (preprocess-
ing and/or post-processing), the development ac-
curacy (noting whether the dev split was cleaned),
and the test accuracy used in the leaderboard sub-
mission.

6.1.2 Ablation: cleanup vs. no-cleanup
We compare matched runs where the only differ-
ence is whether the evaluation is performed on
cleaned or raw data. The most illustrative matched
pair is experiment F (raw training, evaluated on the
cleaned test set) versus experiment H (raw training,
evaluated on the raw test set):

• Exp F (Raw→ Clean Test): Test 95.1%.

• Exp H (Raw→ Raw Test): Test 94.3%.

This indicates that applying the deterministic
cleanup procedure during evaluation yields a mea-
surable improvement in final test accuracy (+0.8
percentage points in this pair).

6.2 Reasoning Pipeline
• Baseline RLFT performance: Applying

RLFT directly to the Qwen3-4B model yielded
15% accuracy.

• Domain-adapted initialisation : Initialising
RLFT (500 steps) from a checkpoint fine-
tuned on the Islamic inheritance MCQ dataset
achieved 57% accuracy.
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Table 1: Accuracy of Different Inheritance Reasoning Pipelines on the test dataset

Pipeline Accuracy (%)
RAG (Qwen2.5-7B + best embedding model) 35.33
Instruction SFT + GRPO 57.00
SFT on Annotated Dataset 87.00
Two-Stage Fine-Tuning of SLM (Continual Pretraining + SFT) 97.20

These results highlight the advantage of starting
from a domain-adapted model for improving rea-
soning performance. Further optimisation of RLFT
was not pursued due to time and resource con-
straints.

6.3 RAG Pipeline

We conducted a two-stage evaluation process on
the development dataset:

1. Pre-RAG Evaluation: As shown in Table 2,
Qwen2.5-7B (Yang et al., 2025b) achieved the
highest standalone accuracy (31.5%), clearly
outperforming both Qwen3-4B and Qwen3-8B.
This established it as the strongest baseline
model prior to retrieval integration.

2. RAG Integration: Building on this supe-
rior baseline, we integrated Qwen2.5-7B with
our retrieval pipeline. Table 4 shows that
combining the model with different embed-
ding backbones led to further improvements,
with the best accuracy (44.0%) obtained using
the Arabic-all-nli-triplet-Matryoshka
embeddings.

The RAG pipeline delivered an absolute gain of
12.5% ( about 39.7% relative) over the standalone
baseline, highlighting the value of targeted retrieval
in knowledge-intensive tasks. While it did not sur-
pass our fine-tuned models, it remains a strong,
resource-efficient option for settings with limited
computational budgets.

7 Analysis of Result

The model demonstrates strong performance over-
all, but a detailed analysis of its failures is crucial
for future improvements. The overall error rate is
low, though it is notably higher for questions cate-
gorised as “Advanced” (5.0%) compared to those
labelled “Beginner” (0.6%). This suggests that the
model struggles more with complex inheritance
scenarios. Such performance gaps align with the
concerns raised by (Fawzi et al., 2025; Sibaee et al.,
2025), who highlight that errors in large language

models in Arabic and religious contexts, particu-
larly in complex reasoning tasks, can have serious
consequences. The following tables 6 and 7 present
representative failure cases, followed by a detailed
analysis of the underlying reasons for the incorrect
predictions.

7.1 Statistics

The model was evaluated on 1000 test questions,
equally split between ’Beginner’ and ’Advanced’
levels. Overall accuracy was 97.2%, with a total
error rate of 2.8%. Errors were more frequent in
’Advanced’ questions (5.0%) compared to ’Begin-
ner’ ones (0.6%), indicating strong performance on
basic rules but reduced accuracy in complex cases
involving multiple heirs, distant kinship, and share
correction (tas’hih).

8 Conclusion

We built an Arabic system for solving Islamic in-
heritance problems using large language models,
achieving first place in QIAS 2025 with 97.2% ac-
curacy. Our two-stage fine-tuning—domain contin-
ual pretraining plus supervised fine-tuning—was
most effective, aided by targeted preprocessing.
While basic cases were nearly flawless, complex
scenarios require improvements in reasoning, sym-
bolic integration, and interpretability for reliable
real-world use.
For reproducibility, the implementation and code
are available at Gumball at QIAS 2025 | GitHub.
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A Appendix

1.1 Tables

Table 2: Performance of different base Qwen Models
on the development dataset

Model Accuracy (%)
Qwen3-4B 10.8
Qwen3-8B 15.0
Qwen2.5-7B 31.5

Table 3: Dataset statistics by split.

Split # Questions Beginner Advanced
Train 20,000 10,000 10,000
Dev 1,000 500 500
Test 1,000 500 500

Table 4: Performance of different embedding models on
the development dataset

LLM Model Embedding Model Accuracy (%)

Qwen2.5-7B
paraphrase-
multilingual-MiniLM-
L12-v2

38.0

multilingual-e5-base 42.6
Arabic-all-nli-triplet-
Matryoshka

44.0

Table 5: Key hyperparameters (representative values).

Hyperparameter Pretraining SFT
Base model Qwen3-4B PreTrain Model Qwen3 with LoRA
LoRA rank (r) 128 128
LoRA α 16 16
Context length 2048 2048
Batch size (per GPU) 12 (accumulation) 12 (accumulation)
Optimizer AdamW AdamW
Learning rate 5e−5 5e−5
Embedding Learning rate 1e−5 1e−5
Warmup steps 5 5
Weight decay 0.01 0.00
Epochs 3 4 (SFT)
Precision bf16 bf16
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Table 6: Analysis of Failure Case 1: Complex Kinship

Failure Case 1: Complex Kinship

ID 4232_nq7p3f6g_18
Level Advanced

Question
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Prediction A: 3 shares
Ground
Truth

F: 1 share

Analysis Key Error: Miscalculated tas’hih
(correction) for agnatic heirs
Reason: Incorrect priority order
determination
Fix: Improve share correction logic

Table 7: Analysis of Failure Case 2: Exclusion Error

Failure Case 2: Exclusion Error

ID 1981_nm1l6g8b_1
Level Advanced

Question
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F: . . . ,�Y�Ë@ :H.
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Analysis Key Error: Excluded grandfather
Reason: Core rule misunderstanding
Fix: Correct exclusion principles

Table 8: Two-Stage Fine-Tuning of SLM pipeline: re-
sults with cleaned vs. raw training data. Base model:
Qwen pretrained on IslamWeb.

Exp Data Pre Steps Cleanup Steps Eval Set Dev (%) Test (%)
A Cleaned 5500 3000 Clean 81.9 97.2
B Cleaned 5500 4500 Clean 82.4 97.0
C Cleaned 5500 4834 Clean 82.5 96.8
D Cleaned 5500 2500 Clean 82.0 96.8
E Cleaned 5500 1500 Clean 80.7 96.4
F Raw 2500 – Clean – 95.1
G Raw 5500 – Raw 80.7 95.8
H Raw 2500 – Raw 78.9 94.3
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Abstract

This paper presents the approach and results
for Sub Task 2: General Islamic Knowledge
Question Answering at QIAS 2025, a shared
task designed to evaluate the capabilities of
Large Language Models (LLMs) in answering
multiple-choice questions across diverse do-
mains of Islamic knowledge, including theol-
ogy, jurisprudence, biography, and ethics. A
Retrieval-Augmented Generation (RAG) sys-
tem powered by the Gemini language model
was developed for this task.

In the proposed system, the retriever module
performs semantic search over curated classi-
cal Islamic sources to identify passages rele-
vant to each input question, while the genera-
tor module leverages the LLM to reason over
the retrieved evidence and generate a final an-
swer. This integration of evidence retrieval
with contextual reasoning enables accurate re-
sponses across diverse knowledge areas.

On the official test set, the system achieved
an accuracy of 87%, ranking 5th out of
10 participating teams in QIAS 2025 Sub
Task 2. These results demonstrate the ef-
fectiveness of combining retrieval-based ev-
idence with generative reasoning in special-
ized religious domains, highlighting the po-
tential of RAG architectures for high-stakes,
knowledge-intensive question answering tasks
and confirming their robustness in the QIAS
2025 benchmark.

1 Introduction

Automated assessment of Islamic knowledge is a
critical task requiring both linguistic proficiency
and deep domain expertise. It faces challenges
from the complexity of Arabic morphology and
orthography, the breadth of Islamic sources, and
the demand for trustworthy responses in educa-
tional contexts.

Within the context of the QIAS2025 Shared
Task (Sub Task 2: Islamic Assesment) , exist-

ing methods based on generic LLMs, classical re-
trieval, or translation pipelines often fail to capture
domain-specific semantics, suffer from hallucina-
tions, and lack grounding in authoritative sources.
This highlights a gap between current capabilities
and the requirements of knowledge- intensive do-
mains such as Islamic studies.

To address this, a Retrieval-Augmented Gener-
ation (RAG) framework is proposed, combining
Muffakir embeddings for evidence retrieval with
Gemini 2.5 Flash Lite for generative reasoning.
Preprocessed texts are segmented into enriched
units for efficient retrieval, ensuring grounded and
accurate responses. Experiments show the system
achieves 84% precision on development data and
87% on the official test set, outperforming base-
lines in the QIAS 2025 evaluation (Bouchekif
et al., 2025a).

The main contributions are: (1) a curated Arabic
knowledge base for Islamic studies, (2) integra-
tion of retrieval with a state-of-the-art LLM, and
(3) empirical validation in high-stakes assessment
tasks under the QIAS 2025 benchmark (Bouchekif
et al., 2025a).

2 Related Work

Several studies have explored the develop-
ment of Islamic Question Answering (QA) sys-
tems, following either retrieval-based methods or
knowledge-based approaches enhanced with se-
mantic processing. An early example is (Mo-
hamed et al., 2015), which introduced Al-Bayan, a
knowledge-based Arabic answer selection system
for Islamic sciences that participated in SemEval-
2015 Task 3. By combining a Quranic ontology
enriched with Tafseer resources, keyword match-
ing, and a decision tree classifier, the system
achieved an accuracy of 74.53% and a macro-F1
score of 67.65%.

A broader perspective is provided in (Alnefaie
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Table 1: Sample of Islamic knowledge assessment questions with answer options (A–D), difficulty level, and
correct label.Latin labels are forced with \textlatin{} to avoid RTL localization.

et al., 2023), which presented a comprehensive
survey of Islamic QA systems drawing on Qur’an,
Hadith, and Fatwa sources. Their evaluation clas-
sified systems into traditional retrieval-based and
knowledge-based categories, with deep learning
models such as AraBERT, AraElectra, and mT5
showing promise but remaining highly dependent
on dataset quality. The survey applied thirteen
evaluation criteria, concluding that most current
systems suffer from limited coverage, lack of pub-
lic availability, and difficulty in handling non-
factoid questions.

Recent contributions have expanded the scope
of Islamic QA to general knowledge domains in-
cluding theology, jurisprudence, biography, and
ethics. (Qamar et al., 2024) introduced a large-
context Islamic QA dataset for non-factoid ques-
tions, derived from Qur’an, Tafsir, and Hadith.
Domain-specific legal reasoning has also been ad-
dressed; for example, (Al-Qurishi et al., 2022)
proposed AraLegal-BERT, a BERT model fine-
tuned on Arabic legal texts to enhance QA in Is-
lamic jurisprudence. Other benchmarks include
(Malhas, 2023), which developed QuranQA for
span selection tasks, and (Premasiri et al., 2022),
which introduced MadinaQA for beginner and in-
termediate Islamic studies. Advances in Retrieval-
Augmented Generation (RAG) were demonstrated
by (Alan et al., 2024), who presented Mufas-
sirQAS, while (Rizqullah et al., 2023) proposed
QASiNa, targeting QA over Sirah Nabawiyah

texts.
Work has also extended beyond Arabic into

Persian, with (Ghafouri et al., 2023), (Etezadi
and Shamsfard, 2021), and (Zeinalipour et al.,
2025) developing QA systems and benchmarks
for multi-hop and multiple-choice reasoning.
Domain-specific applications include Islamic in-
heritance law, where (Bouchekif et al., 2025b) pro-
vided benchmarks and evaluations of large lan-
guage models for legal reasoning.

Taken together, these studies highlight the in-
creasing interest in combining knowledge-based
and deep learning approaches to address the chal-
lenges of Islamic QA. The literature underscores
the importance of multilingual support, robust
reasoning across complex religious texts, and
domain-specific legal knowledge representation,
while also pointing to the potential of modern lan-
guage models and Retrieval-Augmented Genera-
tion to advance the field.

2.1 Task Setup: QIAS 2025 Shared Task

The (Bouchekif et al., 2025a) shared task has
been established as a benchmark competition to
evaluate systems for Islamic Question Answer-
ing. It consists of multiple subtasks designed
to assess models in handling diverse domains
of Islamic knowledge. This work focuses on
(Bouchekif et al., 2025a) Subtask 2: General
Islamic Knowledge QA, which targets multiple-
choice question answering across domains includ-
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ing theology, jurisprudence, biography, and ethics.
Subtask 2 attracted participation from ten in-

ternational teams. Evaluation was based on sys-
tem accuracy in selecting the correct option among
four candidates. The system presented in this
paper ranked 5th out of 10 with an accuracy
of 0.875, demonstrating the competitiveness of
lightweight RAG pipelines against more complex
architectures.

2.2 Dataset

To evaluate the proposed approach, the QIAS
2025 (Bouchekif et al., 2025a) dataset is used.
This benchmark includes multiple-choice ques-
tions on Qur’anic studies, Hadith, Fiqh, Islamic
history, and Arabic linguistics, each annotated
with difficulty level (beginner, intermediate, ad-
vanced) and the correct label. The dataset covers
both factual recall and higher-order reasoning, en-
abling assessment of comprehension and seman-
tic interpretation in Islamic knowledge. Table 1
shows sample questions with answer options, dif-
ficulty levels, and correct labels, highlighting the
diversity of jurisprudential, exegetical, and histor-
ical content.

In addition to the question–answer pairs, the
QIAS organizers provide a collection of classical
Islamic reference works that serve as the textual
backbone for knowledge-intensive tasks. These
include:

• Usul al-Fiqh and Legal Maxims

• Al-Itqan fi Ulum al-Qur’an (The Perfect
Guide to the Sciences of the Qur’an)

• Al-Sirah wa al-Shama’il (Prophetic Biogra-
phy and Characteristics)

• Tashnif al-Masamih bi-Jam‘ al-Jawami‘ (A
Comprehensive Collection of Jurisprudential
Principles)

• Manhaj al-Naqd fi Ulum al-Hadith (Method-
ology of Criticism in the Sciences of Hadith)

These books were segmented into smaller
chunks and indexed to form the system’s knowl-
edge base, allowing retrieval-augmented genera-
tion to ground answers in authoritative Islamic
sources.

3 Methodology

The Islamic knowledge assessment system is de-
signed as a multistage pipeline that combines Ara-
bic text preprocessing, embedding-based retrieval,
and large language model (LLM) generative rea-
soning. The overall workflow is depicted in Fig-
ure 1, which describes the stages from raw docu-
ment ingestion to final response generation. The
system architecture begins with a query question,
followed by query embedding, vector search for
relevant knowledge chunks, prompt construction,
LLM-based reasoning, and ultimately the produc-
tion of an answer.

Figure 1: Proposed pipeline of the Islamic knowledge
assessment system.

Document ingestion is performed by extracting
text from diverse file formats. The extracted con-
tent undergoes cleaning, which involves the re-
moval of diacritics, Tatweel, unwanted symbols,
phone numbers, emails, and URLs. Text normal-
ization for punctuation and whitespace is applied
to ensure consistency. After cleaning, the text is
split into overlapping chunks, which may be based
on words, sentences, or paragraphs. Each chunk is
annotated with metadata such as keywords, posi-
tional information, and unique identifiers.

Embedding-based retrieval constitutes the sec-
ond stage of the pipeline. The preprocessed text
chunks are transformed into dense vector repre-
sentations using the Muffakir Embedding model.
These embeddings are stored in a vector database,
allowing efficient similarity-based retrieval when
a query is introduced. The user query is also
converted into an embedding, which is compared
against the stored vectors to identify the most se-
mantically relevant passages.

Prompt construction serves as the bridge be-
tween retrieval and reasoning. Once relevant
chunks are retrieved, they are assembled together
with the user query into a structured prompt. This
ensures that the LLM receives not only the query
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but also the most contextually aligned passages,
enabling grounded and accurate responses.

Generative reasoning is executed by large lan-
guage models that process the constructed prompt.
Several models were evaluated, including Silma,
Qwen3 1.7B/8B, Aya, and Allam. Among these,
Gemini 2.5 Flash Lite demonstrated supe-
rior performance in generating coherent and con-
textually faithful answers. A flash reranker was
also tested for post-retrieval refinement; however,
direct retrieval combined with Gemini exhibited
more reliable outcomes.

The final architecture integrates these com-
ponents into a Retrieval-Augmented Generation
(RAG) system. Beginning with the query ques-
tion, the process proceeds through query em-
bedding, vector search, prompt construction, and
LLM-based reasoning, which culminates in the
generation of the final answer. This structured
pipeline enables the system to leverage external
knowledge repositories while preserving the flu-
ency and reasoning ability of modern LLMs. Ta-
ble 1 provides illustrative examples of multiple
choice questions (MCQs) produced by the system,
including their correct labels and difficulty levels.

4 Results

in Subtask 2 (Accuracy: 0.93). Detailed scores
and rankings are shown in Table 5 (Appendix B
As part of the QIAS 2025 Shared Task (Bouchekif
et al., 2025a), this system was evaluated on Sub-
task 2. On the development set, accuracies ranged
between 44.29% and 84.29% across different con-
figurations (Table 2). The highest score (84.29%)
was obtained using Gemini 2.5 Flash Lite
with Muffakir_Embedding and direct similarity
search (Top-K = 10), showing that lightweight,
well-aligned components can surpass more com-
plex pipelines.

Model size did not consistently translate
into better results, as the Qwen3 models
showed variable performance across scales
(54.43–78.00%). Embedding choice was the
most decisive factor: Muffakir_Embedding
consistently outperformed other embeddings,
while silma-embedding-matryoshka-v0.1
achieved the lowest accuracy (44.29%). Retrieval
strategy also proved critical, with direct retrieval
outperforming reranking approaches (Flash,
BGE). Chain-of-thought prompting offered only
modest improvements compared to embedding

and retrieval methods.
Overall, the findings highlight that domain-

specific embeddings, lightweight LLMs, and
simple retrieval mechanisms are more effec-
tive than scaling models or adding complex
reasoning layers. Our optimized configura-
tion—Qdrant with cosine similarity, a chunk size
of 400 characters with overlap of 100 char-
acters, Top-10 retrieval, and 768-dimensional
Muffakir_Embeddings—achieved 87.00% accu-
racy on the held-out test set, confirming strong
generalization. The complete set of hyperparam-
eters for this configuration is summarized in (Ta-
ble 3).

A breakdown by difficulty level (Table 4)
shows that performance was highest on begin-
ner questions (89.14%), followed by intermediate
(83.43%), while advanced questions proved more
challenging (75.43%). This suggests that while
the system is robust in handling straightforward
queries, further optimization is needed to improve
reasoning in complex or nuanced scenarios.

5 Conclusion

Within the framework of the QIAS 2025
(Bouchekif et al., 2025a) Shared Task , specif-
ically Subtask 2, this study demonstrates that
effective automated assessment in the domain
of Islamic knowledge can be achieved through a
carefully optimized Retrieval-Augmented Gener-
ation (RAG) pipeline. The experiments confirm
that domain-specific embeddings—particularly
Muffakir_Embedding—when paired with a
lightweight yet capable LLM such as Gemini 2.5
Flash Lite, significantly outperform larger,
general-purpose models. Contrary to common
assumptions, complex reranking strategies and
large-scale models did not yield superior results;
in this case, direct retrieval with cosine similarity
achieved the highest accuracy of 87%.

The findings underscore three key lessons for
high-stakes, domain-specific QA systems: (1)
high-quality, domain-tuned embeddings are crit-
ical for precision, (2) retrieval quality has a
greater impact than advanced reasoning prompts
or reranking layers, and (3) computational effi-
ciency and scalability can be maintained without
sacrificing accuracy.

In the official results of the shared task, the sys-
tem achieved a ranking of 5th out of 10 teams in
(Bouchekif et al., 2025a) Subtask 2, highlighting
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Table 2: Development set accuracies across configurations. “Reranker” indicates post-retrieval reranking. “CoT”
indicates Chain-of-Thought prompting.

LLM Model Embedding model Reranker / CoT Acc (%)
Qwen3 (0.6B) Arabic-Triplet-Matryoshka-V2 - 54.4
Qwen3 (1.7B) Arabic-Triplet-Matryoshka-V2 - 62.4
Gemini 2.5 Flash Lite Muffakir_Embedding - 84.3
Gemini 2.5 Flash Lite Muffakir_Embedding Flash reranker 77.9
Qwen3 (8B) mohamed2811/Muffakir_Embedding - 58.4
Aya (8B) silma-embedding-matryoshka-v0.1 - 44.3
Qwen3 (8B) Muffakir_Embedding - 78.00
Qwen3 (8B) silma-embedding-matryoshka-v0.1 BGE-reranker-v2-m3 69.0
Qwen3 (8B) mohamed2811/Muffakir_Embedding BGE-reranker-v2-m3 + CoT 75.0

Table 3: Key hyperparameters (final configuration).

Component Value
Chunk size 400 characters
Overlap 100 characters
Top-K retrieval 10 (based on cosine similarity)
Embedding dim 768 (Muffakir_Embedding)
Vector count ∼15,000
HNSW: m 64
HNSW: ef_construct 1024
HNSW: full_scan_threshold 0
HNSW: payload_m 96
Optimizers: indexing_threshold 14,000
Optimizers: default_segment_number 40
Optimizers: max_optimization_threads 4

Table 4: Accuracy by difficulty level.

Level Wrong Correct Accuracy (%)
Advanced 43 132 75.43
Beginner 38 312 89.14
Intermediate 29 146 83.43

its competitiveness in a multilingual and domain-
sensitive evaluation setting. Future research direc-
tions include expanding the knowledge base to ad-
ditional Islamic sciences, incorporating multilin-
gual capabilities for cross-lingual assessment, and
integrating adaptive difficulty calibration to fur-
ther enhance learner evaluation.

Limitations

A primary limitation of this work lies in the re-
stricted computational resources, which prevented
extensive experimentation with larger and more
advanced reasoning models that could potentially
achieve higher accuracy. In addition, the evalua-
tion of larger and more precise embedding mod-
els, as well as the use of computationally inten-
sive reranking strategies, was not feasible under
the available setup. These constraints may have
capped the system’s performance ceiling, suggest-

ing that future studies with greater resources could
further enhance both retrieval quality and answer
generation.
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Abstract

Automated Essay Scoring (AES) has emerged
as a significant research problem in natural
language processing, offering valuable tools to
support educators in assessing student writing.
Motivated by the growing need for reliable
Arabic AES systems, we organized the first
shared Task for Arabic Quality Evaluation of
Essays in Multi-dimensions (TAQEEM) held
at the ArabicNLP 2025 conference. TAQEEM
2025 includes two subtasks: Task A on holis-
tic scoring and Task B on trait-specific scor-
ing. It introduces a new (and first of its kind)
dataset of 1,265 Arabic essays, annotated with
holistic and trait-specific scores, including rel-
evance, organization, vocabulary, style, devel-
opment, mechanics, and grammar. The main
goal of TAQEEM is to address the scarcity
of standardized benchmarks and high-quality
resources in Arabic AES. TAQEEM 2025 at-
tracted 11 registered teams for Task A and 10
for Task B, with a total of 5 teams, across
both tasks, submitting system runs for evalu-
ation. This paper presents an overview of the
task, outlines the approaches employed, and
discusses the results of the participating teams.

1 Introduction

Automated Essay Scoring (AES) systems auto-
matically assess the writing quality of essays, pro-
viding holistic scores, trait-specific (i.e., multi-
dimensional) scores, or both. Effective AES sys-
tems have brought benefits, such as saving teach-
ers time and effort, and producing less-biased and
consistent results. This is crucial in large-scale as-
sessments, such as international exams with thou-
sands of participants, making AES a high-stakes
application (Burstein, 2013).

There are two AES paradigms: prompt-specific
and cross-prompt. The dominant prompt-specific
AES trains and tests models on essays from the

same prompt1 (Taghipour and Ng, 2016). This
setup achieves high performance, but requires a
large amount of labeled data for the target prompt.
In contrast, cross-prompt AES trains a model on
a set of source prompts and tests it on unseen tar-
get prompts (Ridley et al., 2021). This approach is
more practical, reducing the reliance on large la-
beled data for every new prompt. However, it faces
challenges in achieving high performance due to
source and target prompt variations.

Despite significant advances in AES for lan-
guages such as English (Klebanov and Madnani,
2022), Arabic AES remains understudied due to
the lack of publicly annotated datasets for Ara-
bic essay scoring, and the language’s complex na-
ture. Nevertheless, there has been some work on
prompt-specific Arabic AES (Gaheen et al., 2021,
2020); however, to the best of our knowledge, no
work has been done on cross-prompt Arabic AES.
This motivated us to organize the first shared Task
for Arabic Quality Evaluation of Essays in Multi-
dimensions (TAQEEM).2 The task focuses on de-
veloping models for the automatic assessment of
Arabic essays, both at a holistic level and across
several traits. Through TAQEEM, we aim to ad-
vance research in Arabic AES by releasing the first
publicly available dataset of 1,265 Arabic essays
annotated with holistic and seven traits: relevance
(¨ñ 	�ñÖÏAK. �éÊ�Ë@), organization (ÐAªË@ É¾J
êË @), vocabu-

lary ( �H@XQ 	®ÖÏ @), style (ù


KA 	JJ. Ë @ ½�AÒ�JË @ð H. ñÊ�



B@), devel-

opment ( 	àñÒ 	�ÖÏ @ð PA¾ 	̄


B@), mechanics (Õæ


�̄Q��Ë @ð ZCÓB
 @),
and grammar (I. J
» @Q

��Ë @ð ZA 	JJ. Ë @).
TAQEEM 20253 focuses on cross-prompt AES

setup, where models are evaluated on their abil-
ity to generalize to unseen prompts by lever-
aging knowledge learned from different labeled

1A prompt is the text of a specific essay writing task.
2Pronounced in Arabic as “Õ �æ
J
�

��®��K”.
3https://sites.google.com/view/taqeem-2025
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Team Tasks Team Size Affiliations
912 (Vu and Ðáng Văn, 2025) A 2 University of Information Technology

(UIT), VNUHCM, Vietnam
MarsadLab (Bessghaier et al., 2025) A 3 University of Kairouan, Northwestern

University, Hamad bin Khalifa University
ARxHYOKA (Alnajjar et al., 2025) B 2 Nara Institution of Science and Technol-

ogy, Tokyo University of Science
Taibah (Almarwani et al., 2025) A,B 3 Taibah University
ANLPers3 A 5 Prince Sultan University

Table 1: Participating teams in TAQEEM 2025.

source prompts, thereby ensuring robustness and
adaptability in real-world applications. TAQEEM
2025 includes two subtasks: (A) Holistic Scoring,
which involves predicting a single overall score for
a given essay reflecting its general quality, and (B)
Trait-specific Scoring, which involves predicting
separate scores for individual traits of the essay.

TAQEEM 2025 attracted registrations by 11
teams for Task A and 10 teams for Task B. How-
ever, in the final evaluation phase, only 4 teams
submitted a total of 9 runs for Task A, while 2
teams contributed 4 runs for Task B. With one
team actively involved in both tasks, this resulted
in a total of 5 unique teams overall participating
in TAQEEM 2025. Table 1 lists the participating
teams, along with their affiliations and team sizes.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work on AES
datasets and systems. Section 3 formally defines
the two tasks, presents the dataset, and describes
the evaluation setup. Section 4 discusses the ap-
proaches adopted by the participating teams along
with their performance results. Finally, Section 5
concludes with final thoughts on future directions.

2 Related Work

This section reviews prior AES research, with par-
ticular emphasis on Arabic datasets and systems.

Datasets Progress in English AES has been
driven by large public datasets such as ASAP4

and ELLIPSE5 with around 13,000 and 6,500 an-
notated essays, respectively. In contrast, Ara-
bic AES lags behind due to the scarcity of anno-
tated datasets, which are often small, limited in
annotations, or not publicly accessible. For in-
stance, the Zayed Arabic English Bilingual Under-

4https://www.kaggle.com/c/asap-aes
5https://github.com/scrosseye/ELLIPSE-Corpus

graduate Corpus (ZAEBUC) (Habash and Palfrey-
man, 2022) contains 214 essays but lacks holis-
tic and trait annotations. The Arabic Learner Cor-
pus (ALC)6 includes 1,585 essays, though its an-
notations are not publicly available. More re-
cently, QAES dataset (Bashendy et al., 2024)
was released with only 195 essays annotated with
holistic and trait scores, building on the larger
Qatari Corpus of Argumentative Writing (QCAW)
(Ahmed et al., 2024).

Other datasets with holistic or trait annotations
exist but are not public, such as Abbir (Alghamdi
et al., 2014), which contains essays from Saudi
university students with holistic scores from 1 to 6,
and AAEE (Azmi et al., 2019), which evaluates es-
says based on semantic analysis, writing style, and
spelling accuracy. Other datasets was collected for
Arabic short-answer scoring (Abdeljaber, 2021;
Ouahrani and Bennouar, 2020). Despite prior ef-
forts, Arabic AES research still lacks a publicly
available dataset that provides both essays and cor-
responding scores. Our shared task addresses this
gap by releasing TAQEEM dataset, annotated with
holistic and seven-trait scores, thereby making a
substantial contribution to Arabic AES resources.

Systems Despite limited datasets, several stud-
ies have explored Arabic AES. Early work re-
lied on traditional approaches that required ex-
tensive feature engineering (Alqahtani and Al-
saif, 2020; Alsanie et al., 2022; Sayed et al.,
2025). Other methods incorporated reference
essays for scoring (Abdeljaber, 2021; Alobed
et al., 2021a; Al Awaida et al., 2019; Alobed
et al., 2021b). More recent efforts have advanced
Arabic AES through the use of AraBERT and
large language models (LLMs). Ghazawi and
Simpson (2024) fine-tuned AraBERT with no-
table success, while Machhout and Zribi (2024)

6https://www.arabiclearnercorpus.com
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Trait Description
Relevance Relevance of the essay to the prompt
Organization The structure of the essay
Vocabulary Precision and variety of word choice
Style Linking words and transition phrases
Development The support and clarity of ideas
Mechanics Spelling and punctuation
Grammar Accuracy of grammatical structures
Holistic The overall quality score

Table 2: A brief description of the scoring traits.

improved its performance by integrating hand-
crafted features for relevance evaluation. Mah-
moud et al. (2024) further optimized AraBERT us-
ing parameter-efficient tuning strategies. In par-
allel, Ghazawi and Simpson (2025) tested LLM-
based approaches, experimenting with different
LLMs under different prompting setups.

3 TAQEEEM 2025

In this section, we formally define TAQEEM 2025
subtasks, introduce the dataset, and elaborate on
the evaluation setup.

3.1 Task Description

TAQEEM 2025 comprises two subtasks: Task A
focuses on holistic scoring, while Task B targets
trait-specific scoring.

Task A: Holistic Scoring The task is defined as
follows: Given a set of source prompts Psrc, the
aim is to train a holistic scoring model using those
prompts to score essays written for an unseen tar-
get prompt ptrg /∈ Psrc. The model should pro-
duce a single holistic score that reflects the overall
writing quality of each essay.

A writing prompt p in this task is defined as a
tuple (ap, Ep), where ap is the textual description
of the writing task of the prompt and Ep is a set
{(e, he)} of essays written for the prompt p; each
essay e is associated with a holistic score he.

Task B: Trait-specific Scoring The task is de-
fined as follows: Given a set of source prompts
Psrc, the aim is to train a trait-specific scoring
model using those prompts to score essays writ-
ten for an unseen target prompt ptrg /∈ Psrc. For
each essay written for ptrg, the model should pro-
duce a score for each trait that reflects the quality
of the essay for that trait.

Data Prompt Type Size Len.

Training 1 Explanatory 215 137

Training 2 Persuasive 210 150

Test 9 Explanatory 420 153

Test 10 Persuasive 420 166

Table 3: TAQEEM 2025 dataset statistics. Size in-
dicates number of essays, and length is indicated in
words.

A writing prompt p in this task is defined as a
tuple (ap, Tp, Ep), where ap is the textual descrip-
tion of the writing task of the prompt, Tp is a set
{(t, rt)} of traits; each trait t is associated with a
rubric rt, and Ep is a set {(e, {se,t})} of essays
written for the prompt p; each essay e is associ-
ated with a score se,t for each trait t ∈ Tp. While
each prompt has its own trait rubrics, those rubrics
are usually common across different prompts for
specific traits.

In TAQEEM 2025, all essays of all prompts
are annotated for the same seven traits: Rel-
evance (REL), Organization (ORG), Vocabulary
(VOC), Style (STY), Development (DEV), Me-
chanics (MEC), and Grammar (GRA). We note
that the holistic (HOL) score, used in Task A, rep-
resents the sum of all trait scores. Table 2 provides
a brief description of each trait.

3.2 Dataset

The absence of standardized Arabic essay corpora,
even modestly sized ones, has slowed the progress
in Arabic AES. To address this gap, we introduce
a novel dataset7 of 1,265 Arabic essays written
by native high school and first-year university stu-
dents under test-like conditions. The essays span 4
distinct writing prompts, ensuring diversity in con-
tent and structure. Table 3 provides an overview of
the prompts used in both the training and test sets,
including the number of essays per prompt and
their average length in words. Notably, the test set
is, unusually, larger than the training set. This is
because, at the time of releasing the training data,
only 425 fully annotated essays from prompts 1
and 2 were available for use. The remaining essays
(from prompts 9 and 10) were still undergoing an-
notation, which was finalized by the time of the
test set release, thereby allowing these additional
essays to be included for evaluation.

7https://gitlab.com/bigirqu/taqeem2025

968

https://gitlab.com/bigirqu/taqeem2025


�HAg. PYË@ ¨ñ 	�ñÖÏ @ ð ¨ñ 	�ñÖÏ @ �	� 	¬�QªÖÏ @

2 :¨ñ 	�ñÖÏAK. �éÊ�Ë@

4 : ÐAªË@ É¾J
êË @

3 : �H@XQ 	®ÖÏ @

3 :½�AÒ�JË @ð H. ñÊ�


B@

3 : 	àñÒ 	�ÖÏ @ ð PA¾ 	̄


B@

2 : Õæ

�̄Q��Ë @ ð ZCÓB
 @

3 :I. J
» @Q
��Ë @ ð ZA 	JJ. Ë @

20 : ú
Î¾Ë@ ¨ñÒj. ÖÏ @

YªK. A �ÓñK
 ÈZA �	��J�K
 AîE.�
�é�A	mÌ'@ �éJ
 	�AK
QË @ �HAJ. K
P

�Y��JË @ Pñ 	� �k ú

	̄ ÐA 	¢�J 	KB� @ ð



@ �èYK
Yg. �é�

	�AK
P�
�Õ
�
Îª�JË� 	á�
�®ë@QÖÏ @ �AÔgð ÐAÒ�J �ë@�

��HAK. : ¨ñ 	�ñÖÏ @ �	�
éJ
 	̄ l�

�	�ñ�K �éÒÊ¿ (300) �é
KAÖ �ßC�K 	áÓ A 	K �ñºÓ B
�
A�®Ó I. �J» @ .(Õæ�m.Ì'@)

�é�J
 	�J. Ë @ 	­� J
ª
�	� É� J
k. Xñ �k. ñK. P

	Y�	JK
 ��Ê�®Ó Q�¢
�	k ��ñ��̄ A�	K �� �YK
 �PA �� �ú ��æk ; ÐñK


. iJ
m�� É�¾
���. ¡�. QË @ �H@ðX



@ð Õæ


�̄Q��Ë @ �HAÓC« A �	® 	£ñ�Óð , �é 	ªÊË @ �éÓC�ð ,ø
 Q�
�
	®�JË @ ÈA�®ÖÏ @ �HAÖÞ� A�J
«@Q�Ó , �èQëA 	¢Ë@ è 	Yë PA ���� 	K @ H. AJ.�



@

ÐñK
ð , é�A	mÌ'@ �HAJ. K
PY�JÊË Pñ 	�mÌ'@ ú

	̄ ð@ èYK
Yg. é 	�AK
P ÕÎª�JË 	á�
�®ë@QÖÏ @ ÉJ. �̄ 	áÓ AîE. ÐAÒ�JëB@ �HAK. ú
ÍAm

Ì'@ A 	JÓñK
 ú

	̄ é 	�AK
QË @ 	à@ : ¨ñ 	�ñÖÏ @

ú

	̄ 	á�
�®ë@QÖÏ @  A ��	� É�̄ X@ 	P 	à@ AÒ»ð . éJ
Ê« ZAJ.£B@ YJ
» A�K ÉJ. �̄ 	áÓ Ñî �Dm�� úÎ« Q¢ 	k @ 	Yëð , ÑîE
YË É�ºË@ X@X 	QK
 �è  A �� 	�Ë @ É�®K
 ÐñK
 YªK.

. éJ
 	�J. Ë @ 	­J
ª 	� ÉJ
k. 	àñ	KñºK
ð ÑîD
Ê« Q��» @ @Q¢ 	k É¾ ���
 	à@ ÉJ. �̄ @ 	Yë l .Ì'Aª 	K 	à@ A 	JJ
Ê« I. m.�'
 ú
ÍAm
Ì'@ A 	J�J�̄ð

úÎ« ÈA 	®£B@ �ñÊg. �èQ��» ½Ë 	Y»ð , é 	�AK
QË @ úÎ« ÑêªJ
j. ����ð ÑêËA 	®£B PñÓB@ ZAJ
Ëð@ 	�ªK.
	̈ Q 	®�Kð ÐAÒ�Jë@ ÐY« É�ºË@ @ 	Yë H. AJ.�@ 	áÓð

�éK
 @YK. ú

	̄ é 	�AK
QË @ �é�PAÜØ ÐY« �P@YÖÏ @ 	�ªK. ú


	̄ A 	��
@ð , ��ë@QÖÏ @ É 	®¢Ë@ øYË ÈñÒ	mÌ'@ð é»QmÌ'@ ú

	̄ É�ºË@ I. �.��
 AÜØ éJ
 	KðQ��ºËB@ è 	Qêk. B@

, é 	�AK
QË @ @ñ�PAÓ AÓ @ 	X @ Õæ�m.Ì'@ úÎ« @Q¢ 	k É¾ ���� ù
 ë Õ»ð éJ
j�Ë@ éJ
kA 	JË @ 	áÓ A 	J�KAJ
k ú

	̄ é 	�AK
QË @ éJ
Òë



AK. éJ
«ñ�JË @ ÐY« ð ú
æ�@PYË@ ÐñJ
Ë @

. 	á�
�®ë@QÖÏ @ éJ. Ê¢ÊË �H@Q�� 	̄ 	á�
K. �HAJ
ËAª 	̄ð é¢ ��	�@ ÉÔ«ð YK
Yg. é 	�AK
P ÕÎª�JË é�PYÖÏ @ ÉJ. �̄ 	áÓ éªJ
j. ����ð I. ËA¢Ë@ Õæ
Êª
�K ÐY« ½Ë 	Y»ð

èYK
Ym.Ì'@ �HA 	�AK
QË @ úÎ« 	¬Qª�JË @ð �HA£A ��	� ÑêË ÉÔ« ú

	̄ é�PYÖÏ @ ½Ë 	Y»ð ÑêË 	̈ Q 	®�JË @ð ÑêËA 	®£AK. ÐAÒ�JëB@ èQå�B@ úÎ« I. m.�'
 , Èñ�®Ë@ �éÊÔg. ð

. AêÒÊª�JË

011069

2 :¨ñ 	�ñÖÏAK. �éÊ�Ë@

5 : ÐAªË@ É¾J
êË @

5 : �H@XQ 	®ÖÏ @

5 :½�AÒ�JË @ð H. ñÊ�


B@

5 : 	àñÒ 	�ÖÏ @ ð PA¾ 	̄


B@

5 : Õæ

�̄Q��Ë @ ð ZCÓB
 @

4 :I. J
» @Q
��Ë @ ð ZA 	JJ. Ë @

31 : ú
Î¾Ë@ ¨ñÒj. ÖÏ @

�HA�̄ð


B@ YK
 	QK
ð , Ñî ��D�J
ëA 	̄P © 	̄QK
ð , �ù
 Öß
XA¿



B@ Ñî
E@X



@ úÎ« �Q�K� 
ñK
 B �éJ.

�
Ê �¢Ë@ úÎ«

��é�J
Ë 	Q 	�ÖÏ @ �HAJ.k. @ñË@ ZI. « ÉJ
Ê�®�K
�	à


@ 	�ªJ. Ë @ øQK
 : ¨ñ 	�ñÖÏ @ �	�

�éêk. ñK. 
øPA�®Ë @ © 	J �®�JË �éÒÊ¿ (300) �é
KAÖ �ßC�K 	áÓ A�	KñºÓ B
�
A�®Ó I. �J» @ ?

�éJ
Ë 	Q 	�ÖÏ @ �HAJ.k. @ñË@ ÉJ
Ê�®�K �éJ
 	��̄ øQ�K 	­J
» . ÑëQå�


@ ©Ó Aî 	Eñ 	��®K
 ú


�æË @
¡�. QË @ �H@ðX



@ð Õæ


�̄Q��Ë @ �HAÓC« A�ÓY 	j�J�Óð ,¨A 	J�̄B
 @ I. J
ËA�


@ A�J
«@QÓð ,ø




@QË @ @ 	YêË �éÔ«@ �YË@ i. j. mÌ'@ð

�éËX


B@ A �	® �	£ñÓ ¨ñ 	�ñÖÏ @ @ 	Yë ú


	̄ ¼Q 	¢	�
. �éJ.�A 	JÖÏ @

�éÓñÊªÖÏ @ �I�
J. ���K ú

	̄ 	á�
�PYÖÏ @ AîD
Ê« 	Qº�KQK
 �éJ
�A�



@ �éÊJ
�ð �Ij�.�



@ �éJ
Ë 	Q 	�ÖÏ @ �HAÒJ
J
�®�JË @ð �éJ
�PYÖÏ @ �HAJ.k. @ñË@ 	à



@ éJ
 	̄ ½ �� B AÜØ é 	K @
 : ¨ñ 	�ñÖÏ @

ÕÎªÖÏ @ 	áÒ 	��
 ,½Ë 	YK. ð . éK. É
�
¿ñÖÏ @ ÉÒªË@ 	Qj. 	JK
 ÕË 	áÖÏ �éK. ñ�®« ð



@ 	Qm.�

	'
@ 	áÖÏ �è


A 	̄ A¾Ó �J
�	m��' Õ �æK
ð ú
æ�PYÖÏ @ I. k. @ñË@ I. ËA¢Ë@ ù¢ª

�K
 . �éJ. Ê¢Ë@ øYË
	à


@ 	�ªJ. Ë @ øQK
 	áºË .�PYË@ @ 	Yë ú


	̄ éK
YË 	­ª 	�Ë@  A�® 	K øQ�
Ë ÈðAg é 	K


@ð , �é�@PYÊË A��J�̄ð �� 	k Y�̄ I. ËA¢Ë@ 	à



@ ù
 ÒJ
Êª

�JË @ PXA¾Ë@ð
. Aî 	D« ú 	æ 	ªK. 	àñºK
 Y�̄ øQ 	k



@ A �£ñ 	ª 	� éÊÒm��'ð I. ËA¢Ë@ úÎ« ZI. ªË@ 	áÓ YK
 	Q�K Y�̄ �éJ
Ë 	Q 	�ÖÏ @ �HAJ.k. @ñË@

ÉJ
Ê�®�JK. ½Ë 	Xð : I. ËA¢Ë@ øYË �éJ
Ëð 
ñ�ÖÏ @ �k 	áÓ © 	̄QK
 I. �A 	JÖÏ @ Y«ñÖÏ @ ú

	̄ AêÖß
Y�®�K úÎ« �QmÌ'@ð �éJ
�PYÖÏ @ �HAJ.k. @ñË@ Z @X



AK. I. ËA¢Ë@

	­J
Ê¾�K 	à@

�HA 	®J
Ê¾�JË @ð �HAJ.k. @ñË@ 	à@
 . I. k. @ñÊË éÒJ
Ê��� �I�̄ð I. �A 	JJ
Ë é�J�̄ð Õæ


	¢ 	J�Kð é 	̄ @Yë


@ ¡J. 	�ð � 	® 	JË @ úÎ« XAÒ�J«B@ �éËðAm×ð Q�
 	ªË @ úÎ« XAÒ�J«B@

�HAJ.k. @ðð 	�ðQ 	̄ �é�Ô 	g Z@X


AK. úÍAª�K é<Ë @ A 	KQÓ



@ Y�̄ 	­J
 	JmÌ'@ A 	J 	�K
X ú


	̄ ú �æk , ��éÓA« �éJ
Ëð 
ñ�ÖÏ @ �k 	áÓ © 	̄Q�K �éJ
ÊÒªË@ ú
k@ñ 	JË @ ©J
Ôg. 	áÓ A ��A�


@

	�ðQ 	®Ë @ð �HAJ.k. @ñË@ 	à


AK. Èñ�̄



@ �èQº 	®Ë @ è 	Yë 	áÓð ��Ê¢	JÖÏ @ @ 	Yë 	áÓ . AîE. ÐA�̄ 	áÓ ø 	PAm.�'
ð AëX 
ñK
 ÕË 	áÓ I.

�̄ AªK
 , ÐñK
 É¿ ú

	̄ �é 	®Ê¾Ó

. � 	® 	JË @ è Am.�
�' �éJ
Ëð 
ñ�ÖÏ @ð �é 	¢�®J
Ë @ �k ÈAª ��@
ð ú


	k@Q��Ë @ ÐY«ð é�J�@PX úÎ« é�Qk �èXAK
 	QË AÖ 	ß @
 I. ËA¢Ë@ úÎ« 	�Q 	®�K ú

�æË @ �HA 	®J
Ê¾�JË @ð

I. ËA¢Ë@ 	à


B ½Ë 	Xð : é�KQ» @ 	X ú


	̄ �HAÓñÊªÖÏ @ �IJ. ��K
ð I. ËA¢ÊË ù
 Öß
XA¿


B@ øñ�J�ÖÏ @ 	áÓ © 	̄QK
 �éJ
�PYÖÏ @ é�KAJ.k. @ñË I. ËA¢Ë@ Z @X



@ 	à



@ , ½Ë 	X úÍ@


	­ 	�


@

�èQ�
��̄ �èQ» @ 	YË @ A�J
ÒÊª 	̄ ; Aî �DJ. ��K
ð Aêªk. @QK
 ÕË é 	K


@ ÈAg ú


	̄ AëA� 	�K
 Õç�' ¡�® 	̄ �èQ�
��̄ �èQ�� 	®Ë É� 	®Ë@ ú

	̄ ÕÎªÖÏ @ 	áÓ Aê¢�®�JË @ ú


�æË @ �éÓñÊªÖÏ @ Q» 	Y�JK
 Y�̄

�I�. �J��� Aî 	EA

	̄ �éÓñÊªÖÏ @ ½Ê�K P@Qº�K Õç�' @ 	X @
 AÓ



@ , �I�̄ñË@ ©Ó ú
æ

��C�JËAK.


@YJ. �K Õç�' 	á�
�J«A� �HC�K úÍ@
 	á�
�J«A� XðYg ú


	̄ �éJ
�mÌ'@ �éÓñÊªÖÏ @ 	à 	Q	m��' øYÖÏ @
. Aî 	DÓ �èY
KAªË @ �èY
KA 	®Ë @ AêªÓ �HX@ 	Pð @ �P@Q�®�J�@ð A��KAJ. �K �éÓñÊªÖÏ @ �HX@ 	P P@Qº�JË @ X@ 	P AÒÊ¿ð , Èñ£



@ �èYÓ

	­J
Ê¾�K �èXAK
 	P é 	K


AK. I. ËA¢Ë@ øQK
 Y�̄ ð , Zú
æ

�� É¿ ÉJ. �̄ð
�
Bð



@ �éJ
� 	j ��Ë@ é�JjÊ�Ó 	áÓ ñêË �éJ
�@PYË@ éÓAêÓ Z @X



AK. I. ËA¢Ë@

	­J
Ê¾�K 	à@
 : Èñ
�̄
@ A �ÓA�J 	k

�èY
KA 	®Ë @ 	àñº�JË ; �éJ
�PYÓ �HAJ.k. @ñK. @ñ 	®Ê¾K
 ÕË 	à@
ð ú �æk �é�@PYË@ð �éªK. A�JÖÏ @ �èPðQå	��. �éJ. Ê¢Ë@ �éJ
«ñ�K I. m.�'
 ÉK. A �®ÖÏ @ ú

	̄ 	áºË , éJ
Ê« ZI. « é 	K



@ð

.Q�.�Ë@ð ,� 	® 	JË @ �èYëAm.×ð ¡J. 	� Õæ

�̄ð , �éJ
Ëð 
ñ�ÖÏ @ �k ÑîE
YË ñÒ 	JJ
Ëð �é�ËA 	g

100099

Table 4: Annotated Essays from TAQEEM 2025 dataset.

Annotation Process The annotations were con-
ducted by two main native Arabic language spe-
cialists, with a third annotator resolving disagree-
ments. Annotators were selected for their ex-
perience in teaching and assessing Arabic writ-
ing. To ensure score reliability, all annotators
received training sessions to understand the as-
sessment rubric and maintain consistent annota-
tion procedures. The rubric itself was adapted
from the Core Academic Skills Test (CAST) de-
veloped by the Qatar University Testing Center
(QUTC).8 A full detailed English-translated ver-

8https://www.qu.edu.qa/sites/en_US/
testing-center/TestDevelopment/cast

sion of the rubric is in Appendix A. Each essay
was annotated across 7 traits: REL, ORG, VOC,
STY, DEV, MEC, and GRA, along with an overall
quality score (HOL) computed as the sum of all
trait scores. Traits are rated on a 0 to 5 scale, ex-
cept for REL, which is from 0 to 2, and the HOL,
which is from 0 to 32, all using 1-point increments.
Table 4 shows two essays from the TAQEEM 2025
dataset, a training essay (ID 011069) from an ex-
planatory prompt (Prompt 1) and a test essay (ID
100099) from a persuasive prompt (Prompt 10),
along with their prompts and scores.

Inter-Annotator Agreement We assessed an-
notation quality using the Quadratic Weighted
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Kappa (QWK) (Cohen, 1968), averaging trait-
level scores per prompt to obtain prompt-level
agreement. The resulting average agreements
were 0.692 for Prompt 1, 0.640 for Prompt 2,
0.525 for Prompt 9, and 0.676 for Prompt 10. Ac-
cording to the scale outlined by Landis and Koch
(1977), Prompts 1, 2, and 10 fall within the range
of substantial agreement, while Prompt 9 shows
moderate agreement, possibly due to less precise
wording that made it more open to interpretation
and increased variability in annotators’ judgments.
Nevertheless, the overall results indicate strong
rater consistency across prompts.

This dataset is used in both subtasks of
TAQEEM 2025, with distinct evaluation targets.
Task A (Holistic Scoring) uses the holistic score
assigned to each essay, whereas Task B (Trait-
specific Scoring) uses the seven individual trait
scores. Although this dataset is limited in scale,
it represents a carefully curated first step resource
to address data scarcity in Arabic AES.

3.3 Evaluation Setup

This section outlines the setup used to evaluate
participating systems in TAQEEM 2025. We de-
scribe the leaderboard and repository infrastruc-
ture provided to participants, as well as the evalua-
tion measures adopted to ensure consistent, and re-
producible comparisons across submitted systems.

3.3.1 Leaderboard and Repository

The leaderboard for both Task A9 and Task B10

was hosted on Codabench, providing participants
a platform to submit their runs, evaluate system
outputs, and benchmark performance. Each team
was required to submit their predictions in a sin-
gle file, referred to as a run file. Submissions were
restricted to a maximum of 30 runs on the develop-
ment set and up to 3 runs on the test set. Typically,
each run represented a distinct system or model.

To facilitate the submission process, we made
the submission checker and evaluation scripts
available through the shared task repository. These
resources enabled participants to validate their
runs before leaderboard submission. Additionally,
we released a regression-based baseline by fine-
tuning AraBERTv02 (Antoun et al.), along with
the corresponding code, in the same repository.

9https://www.codabench.org/competitions/9282/
10https://www.codabench.org/competitions/9295/

Team Run QWK MSE RMSE

Taibah 1 0.751 25.44 5.01
912 1 0.673 28.51 5.33

912 2 0.673 28.51 5.33

ANLPers3 1 0.650 31.68 5.62

ANLPers3 2 0.642 28.28 5.28

baseline 0001 0.639 29.01 5.37

ANLPers3 3 0.602 29.73 5.45

Taibah 2 0.488 33.15 5.73

MarsadLab 1 0.438 50.56 7.07

MarsadLab 2 0.438 50.56 7.07

Table 5: Task A performance results on the test set.
Bold values are the best for each measure.

3.3.2 Evaluation Measures
The primary evaluation metric for TAQEEM 2025
is the Quadratic Weighted Kappa, a standard AES
performance metric that quantifies the agreement
between human-assigned scores and system pre-
dictions. Additionally, we report the mean squared
error (MSE) and the root mean squared error
(RMSE) to provide a more comprehensive analy-
sis of model performance, as these metrics capture
the magnitude of prediction errors, penalize larger
deviations more heavily, and allow for direct com-
parison of error scales across models.

The subtasks are evaluated independently. Task
A is assessed based on the average QWK of the
holistic score across the test prompts. For Task
B, the average QWK for each trait across the test
prompts is measured separately, and teams are
ranked based on the average QWK over all traits.

4 Participating Systems and Results

This section presents the participating systems and
their performance in TAQEEM 2025, highlighting
the methods used and the corresponding evalua-
tion results for both subtasks.

4.1 Task A: Holistic Scoring

Task A attracted 4 teams in total, each adopting
distinct methodological approaches, resulting in
9 runs submitted on the test set. The top-ranked
team, Taibah) (Almarwani et al., 2025), employed
a rubric-guided few-shot prompting strategy based
on GPT-4o, utilizing exemplars to assess the holis-
tic quality of essays. The 912 team (Vu and Ðáng
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Team Run QWK MSE RMSE
REL ORG VOC STY DEV MEC GRA Avg.

Taibah 1 0.562 0.668 0.642 0.678 0.703 0.644 0.664 0.652 0.762 0.857
ARxHYOKA 1 0.553 0.709 0.633 0.654 0.640 0.515 0.580 0.612 0.760 0.848

ARxHYOKA 2 0.585 0.711 0.646 0.666 0.647 0.477 0.544 0.610 0.758 0.845

ARxHYOKA 3 0.545 0.712 0.653 0.620 0.629 0.482 0.506 0.592 0.797 0.867

Baseline - 0.155 0.591 0.574 0.572 0.458 0.445 0.513 0.472 1.005 0.990

Table 6: Task B performance results on the test set. The best score for each metric is highlighted in bold.

Văn, 2025) adopted a pre-trained Arabic encoder
(AraBERTv02) with a lightweight single-layer
MLP head, coupled with a distribution-sensitive
weighted MSE loss to address score imbalance.
The MarsadLab system (Bessghaier et al., 2025)
was also built on a fine-tuned AraBERT model,
integrating lexical features into the embeddings to
predict essay scores.

In terms of performance, which is summarized
in Table 5, teams were ranked by their high-
est average QWK score across all test prompts.
The highest performing system, submitted by the
Taibah team, achieved a QWK of 0.751, signifi-
cantly outperforming the baseline of the shared-
task (QWK of 0.639). Team 912 followed by
two identical runs reaching a QWK of 0.673.
Team ANLPers3 also delivered competitive sys-
tems, with their best run achieving a QWK of
0.650. The two runs of MarsadLab resulted in the
lowest performance across submissions (QWK of
0.438), and it was the only team that did not out-
perform the baseline. Overall, three of the four
teams submitted at least one run that outperformed
the baseline, reflecting both the effectiveness and
diversity of the applied approaches.

4.2 Task B: Trait-specific Scoring

Task B featured two participating teams, who to-
gether submitted four runs on the test set, im-
plementing different approaches for trait-specific
scoring. Notably, the Taibah team, which had
also ranked first in Task A, once again secured the
top position in Task B. They adopted a GPT-4o-
based few-shot prompting approach, leveraging
trait-specific rubrics to achieve fine-grained scor-
ing (Almarwani et al., 2025). The second-ranked
team (ARxHYOKA) (Alnajjar et al., 2025) ex-
plored a broader methodological spectrum, includ-
ing GPT-based few-shot prompting, fine-tuned

Figure 1: Performance of Task A teams across test
prompts. The best submitted run was considered.

BERT-based models, classical machine learning
approaches with embeddings and handcrafted fea-
tures, and fine-tuned text-generation LLMs. Their
best-performing configuration used GPT-4.1 with
10-shot chain-of-thought prompting.

Performance was evaluated based on the aver-
age QWK across all 7 traits. The top-performing
run, submitted by Taibah, achieved an average
QWK of 0.652, with MSE of 0.762 and RMSE of
0.857, substantially outperforming the shared-task
baseline (average QWK of 0.472, MSE of 1.005,
RMSE of 0.990). ARxHYOKA also outperformed
the baseline, reaching an average QWK of 0.612.
These results underscore the potential of prompt-
ing strategies for trait-specific scoring in Arabic
AES. Table 6 presents the test results for Task B,
reporting QWK, MSE, and RMSE measures.

4.3 Analysis and Discussion

This section provides a detailed analysis of the
results from two perspectives: trait-level perfor-
mance and prompt-level performance. Figure 1
shows Task A performance for the holistic scoring,
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Figure 2: Trait-level performance of Task B teams on prompt 9 (Explanatory) and prompt 10 (Persuasive). The
best submitted run was considered.

whereas Figure 2 illustrates Task B performance
for the trait-specific scoring. In both cases, the fig-
ures report results from each team’s best submitted
run, providing a clear view of top-performing ap-
proaches for each task across the two test prompts.

Trait-level Analysis Figure 2 reveals clear dif-
ferences in teams performance across the differ-
ent traits. Notably, the REL trait appears to
be the most challenging, as evidenced by the
highest QWK score being only 0.585, achieved
by the ARxHYOKA team across the two test
prompts. The baseline, which relies on fine-tuning
AraBERTv2, struggled the most with the REL
trait. This suggests that smaller encoders like
AraBERT have difficulty capturing the semantic
alignment between essays and prompts. In con-
trast, both Taibah and ARxHYOKA show sub-
stantial improvements in REL, demonstrating that
leveraging the advanced capabilities of GPT-4o
and GPT-4.1 through few-shot prompting signifi-
cantly enhances performance on this semantically
complex trait. The MEC trait also proved diffi-
culty, with an average QWK of 0.580 across the
two participating teams and test prompts, reflect-
ing the difficulty of capturing fine-grained linguis-
tic correctness, such as punctuation, spelling, and
syntax. Traits VOC and GRA showed moderate
performance across teams, while ORG, STY, and
DEV exhibited comparatively higher and more
consistent performance.

Prompt-level Analysis Performance also varies
depending on the prompt type. From Figures 1
and 2, it is evident that Prompt 10 (Persuasive)
generally resulted in higher performance across
most traits and teams compared to Prompt 9 (Ex-
planatory). This pattern suggests that persuasive
writing, which typically follows a predictable and
structured format (e.g., a clear thesis statement,
supporting arguments, counterarguments, and a
conclusion), is easier for models to capture. Ex-
planatory essays, on the other hand, exhibit greater
structural and stylistic diversity, making it more
difficult for models to identify consistent patterns.

Overall, these results clearly indicate that GPT-
4-based models (Taibah & ARxHYOKA) gener-
ally outperform fine-tuned BERT models (Base-
line, 912, MarsadLab) across most traits. This
shows the potential of LLMs for automated essay
scoring. Their ability to understand complex lan-
guage and capture nuanced relationships leads to
significantly higher agreement with human scores.
While fine-tuned BERT models provide a reason-
able baseline, they struggle to match the perfor-
mance of LLMs.

5 Conclusion

Automated Essay Scoring has seen notable
progress in writing evaluation, yet the develop-
ment of AES systems tailored for the Arabic lan-
guage remains very limited. This scarcity mo-
tivated the organization of TAQEEM, the first
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shared task dedicated to Arabic AES, aiming to
foster state-of-the-art research in this area, with a
novel dataset of 1,265 essays across four different
writing prompts.

TAQEEM 2025 attracted 15 researchers and
practitioners across five teams from different in-
stitutions. It comprised two cross-prompt sub-
tasks: holistic scoring (Task A), with four partici-
pating teams, and trait scoring (Task B), with two
teams. The participating teams explored diverse
solutions, including fine-tuning transformer-based
models and employing classical machine learn-
ing approaches. However, as expected, LLMs
were heavily adopted by multiple teams, achieving
state-of-the-art performance and outperforming
the baseline. For task A, the teams employed dif-
ferent solutions that mainly focused on fine-tuning
different transformer-based models and prompt-
ing LLMs using different prompting techniques.
For task B, the best results were achieved with
few-shot in-context learning and chain-of-thought
prompting using GPT-4 variants.

Overall, TAQEEM 2025 established the first
benchmark for Arabic AES, providing a founda-
tion for future research and community efforts to
develop AES systems for the Arabic language. In
the next iteration, we plan to expand the shared
task by incorporating a larger training set that en-
compasses a wider range of essay types, topics,
and student populations, thereby fostering deeper
research advancements and broader community
contributions in this area.

6 Limitations

One key limitation of TAQEEM is the size and di-
versity of the dataset. Although it provided a use-
ful benchmark for Arabic AES, the training and
test sets were relatively small and may not fully
capture the variety of essay topics, writing styles,
or proficiency levels. Moreover, the test set was
larger than the training set due to the challenges
and time required to provide high-quality anno-
tated data. This limitation could affect the gen-
eralizability of the models trained and evaluated
in this shared task. Another limitation is the small
number of participating teams, which reduces the
variety of approaches evaluated.
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(CAST) designed by the Qatar University Test-
ing Center (QUTC)11,which is provided in Ara-
bic. This rubric guided the scoring of seven traits:
relevance (REL), organization (ORG), vocabulary
(VOC), style (STY), development (DEV), me-
chanics (MEC), and grammar (GRA). An English-
translated version of the CAST grading rubric for
each trait is provided in Table 7.

11https://www.qu.edu.qa/sites/en_US/
testing-center/TestDevelopment/cast
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Trait 1 2 3 4 5
REL Partially relevant to

the topic
Completely rele-
vant to the topic

ORG The introduction
and conclusion are
absent. There is
no organization or
sequence between
paragraphs.

Either the introduc-
tion or conclusion
is absent. There is
no organization or
sequence between
paragraphs.

The text is well-
organized and
contains an in-
troduction and
conclusion, but
the body has one
paragraph (or two
paragraphs) that
lacks good coher-
ence.

The text is well-
organized, contains
an appropriate
introduction and
conclusion, and has
two to three body
paragraphs that
are sequential and
coherent.

The text is well-
organized and
contains an in-
troduction that
introduces the
topic, a conclusion
that effectively con-
cludes the text, and
two to three body
paragraphs that
are sequential and
well-connected.

VOC Use of a limited
range of vocabulary
and phrases that
do not make sense
together, with rep-
etition and lexical
errors, and gener-
ally inappropriate
vocabulary that
obscures meaning.

Use of a basic range
of vocabulary, with
repetition, lexical
errors, and many in-
appropriate choices
that may obscure
meaning.

Use a sufficient
range of vocab-
ulary, with some
repetition and lex-
ical errors, with a
small number of
inappropriate vo-
cabulary that may
obscure meaning.

Use of a good and
appropriate range
of vocabulary with
few lexical er-
rors, inappropriate
choices without
affecting meaning,
and occasional
use of idiomatic
expressions.

Use of a broad,
correct, and ap-
propriate range of
vocabulary with
few occasional er-
rors, showing good
knowledge of id-
iomatic expressions
and awareness of
implicit levels of
meaning.

STY The text employs
very basic linear
connecting words
such as "and" and
"then."

Discourse develops
as a simple list of
points using only
the most common
connections.

Discourse develops
directly as a linear
sequence of points
using common
structural cohesion
devices.

Discourse is clearly
developed with
main points sup-
ported by relevant
details, appropriate
use of different
organizational
patterns, and a
range of structural
cohesion devices.

Discourse is well
developed, with
good inclusion
of subtopics and
details and a good
conclusion, always
appropriate use of
a variety of orga-
nizational patterns,
and a wide range of
structural cohesion
devices.

DEV Content is not re-
lated to the sub-
ject; ideas are ran-
dom and lack co-
herence, sequence,
and evidence.

Content is some-
what related; ideas
are sequential but
main idea dis-
appears during
writing, limited
coverage, and poor
use of supporting
structures.

Content is com-
pletely related;
ideas mostly follow
sequence, main
idea gradually
disappears, some
evidence present
but disorganized.

Content is com-
pletely related;
ideas are clear,
organized, coher-
ent, with main
idea connected to
sub-ideas, specific
position adopted,
some arguments
and evidence pre-
sented coherently.

Content is com-
pletely related;
ideas are clear, or-
ganized, coherent,
main idea con-
nected to sub-ideas,
specific position
adopted, arguments
and evidence pre-
sented coherently,
comprehensive
coverage of opin-
ions, and use of
various persuasive
methods.

MEC Limited application
of spelling rules.

Frequent spelling
and punctuation
errors.

Effectively applies
standard format-
ting, paragraphing,
spelling, and punc-
tuation most of the
time.

Effectively applies
standard format-
ting, paragraphing,
spelling, and punc-
tuation with few
errors.

Completely ac-
curate paragraph
organization,
punctuation, and
spelling, except for
a few occasional
pen slips.

GRA Use a limited set of
simple grammatical
structures and sen-
tence patterns with
little flexibility or
precision.

Correct use of
some simple struc-
tures with frequent
systematic errors
that may obscure
meaning.

Use a variety of
grammatical struc-
tures, with notable
errors that can
sometimes obscure
meaning.

Good use of variety
of structures with
rare errors and mi-
nor imperfections
that do not affect
meaning.

Always correct
and flexible use
of a wide variety
of grammatical
constructions with
occasional minor
slips.

Note: A score of zero is given if the response is completely memorized or copied from the prompt, if the student did
not attempt the task, or if the content is irrelevant to the given topic.

Table 7: CAST Persuasive/Argumentative Writing Rubric - English Translation (Bashendy et al., 2024).
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Abstract

Arabic automated essay scoring (AES) presents
unique challenges due to the linguistic complex-
ity of Arabic and the need for rubric-specific
evaluation. In this paper, we present ARx-
HYOKA, our submission to TAQEEM2025
Task B, which targets trait-specific AES using
the Core Academic Skills Test (CAST) rubric.
We evaluate four approaches: (1) GPT-based
few-shot prompting, (2) fine-tuning BERT-
based models, (3) classical machine learning
approaches with embeddings and handcrafted
features, and (4) fine-tuning text-generation
large language models (LLMs). Our best-
performing system, GPT-4.1 with 10-shot CoT
prompting, achieved the highest official score,
outperforming all other approaches in average
Quadratic Weighted Kappa (QWK) in the test
phase. Fine-tuned BERT-based models per-
formed on par with both the shared-task base-
line and our GPT prompting setup in the devel-
opment phase, while classical machine learn-
ing methods trailed these systems, and the fine-
tuned Arabic LLM ranked last. We provide
comparative analyses across systems to inform
future research on Arabic AES.

1 Introduction

The TAQEEM2025 Task B (Bashendy et al., 2025)
targets automated scoring of Arabic essays, eval-
uating seven traits defined by the Core Academic
Skills Test (CAST) rubric.1 A central challenge
is cross-prompt generalization: systems trained on
one prompt must accurately score essays from a
different, unseen prompt. This task advances ro-
bust, rubric-aligned Arabic NLP evaluation and
enables fair, scalable, and transparent assessment
of student writing in high-stakes settings across

1https://www.qu.edu.qa/en-us/testing-center/
TestDevelopment/Pages/cast.aspx

real-world educational contexts. In our submission,
we compared three main approaches: prompting,
fine-tuning, and training traditional machine learn-
ing (ML) models. Our key findings are as follows:
• GPT-based few-shot prompting achieved the

highest average QWK, outperforming the base-
line in the test phase and closely matching it in
the development phase. Performance was sen-
sitive to the number and quality of examples as
well as the language used in the prompt.

• Fine-tuning BERT-based models produced
strong results close to the baseline in the devel-
opment phase. Both Arabic-specific and multi-
lingual models performed well.

• Fine-tuning text-generation model Saka 14B
yielded poor results, suggesting that relatively
small LLMs may not be optimal for this scoring
task without further adaptation.

• Classical ML approaches remained competitive,
with performance improving when linguistic fea-
tures were combined with embeddings.

Code and prompts are available at our repository.2

2 Background

The task involves predicting numeric scores for
seven traits: Relevance (0–2), Organization, Vo-
cabulary, Style, Development, Mechanics, and
Grammar (0–5 each). Essays are written in re-
sponse to prompts that are either explanatory or per-
suasive, mimicking real classroom writing tasks.

The official dataset for TAQEEM2025 Task B
is summarized in Table 1. It contains two prompt
types in the training phase and two in the test phase,
with essays of approximately 300 words each. All
essays have been scored by expert raters using the
official CAST rubrics for each trait.

2https://github.com/Mohamad-Alnajjar/ARxHYOKA
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Split Prompt ID Type # Essays
Development Phase 1 Explanatory 215
Development Phase 2 Persuasive 210
Testing Phase 9 Explanatory 420
Testing Phase 10 Persuasive 420

Table 1: Dataset composition for TAQEEM2025 Task B.

This setup poses challenges for both linguistic
coverage and cross-prompt adaptability, particu-
larly for traits such as Relevance, where alignment
with the prompt topic is critical.

3 System Overview

We present the systems explored for Arabic essay
trait scoring, covering GPT-based prompting, fine-
tuned BERT models, classical ML baselines, and a
fine-tuned generative LLM.

3.1 GPT-Based Few-Shot Prompting
This system leverages GPT-4.1 to score essays
based on in-context learning. The model relies
entirely on the design of the prompt and the qual-
ity of examples provided. We tested prompts in
both Arabic and English with different random sets
of examples from the dataset in the development
phase. The prompt includes:
• Detailed instructions for scoring.
• The CAST rubric.
• The essay type (explanatory or persuasive).
• The original writing prompt given to students.
• Instructions for structured output formatting.
We systematically compared model performance
across:
• Arabic vs. English rubrics and prompts (trans-

lated using GPT-4.1).
• Number of in-context examples (0, 1, 5, and 10

shots).

3.2 Fine-Tuning BERT Models
We fine-tuned three encoder-only transformers:
mDeBERTa-v3-base (He et al., 2021), XLM-R-
large (Conneau et al., 2019), and CAMeLBERT-
mix (Inoue et al., 2021), as independent systems
(no ensembling). Essays are tokenized with each
model’s native tokenizer, truncated to 512 tokens,
and passed to a 7-dimensional regression head to
jointly predict the seven trait scores; at inference,
continuous outputs are rounded and clamped to
valid per-trait ranges.

3.3 Classical ML Approaches
We generated embeddings for each essay using
CAMeL-Lab/bert-base-arabic-camelbert-mix
(Inoue et al., 2021) and fed them to regression
models to predict scores across seven traits.
Inspired by (Bashendy et al., 2024), we also
extracted 14 handcrafted linguistic features (listed
in Table 10 in the Appendix) and evaluated the
best-performing models during our experiments
with and without these features.

We tested several pooling strategies and trained
five regressors: LASSO, ElasticNet, Ridge, XG-
Boost, and Random Forest. Pooling strategies eval-
uated include:
1. [CLS] token
2. Average pooling
3. Average pooling + [CLS] token

3.4 Fine-Tuning Text-Generation LLM
We adapted Sakalti/Saka-14B (Sakalti, 2024), an
open-source Arabic LLM, for trait-specific scor-
ing using parameter-efficient fine-tuning (PEFT)
via LoRA (Hu et al., 2021). To encourage rubric-
grounded reasoning, we manually created two
datasets:
• Simple CoT: 5–6 concise reasoning steps per

trait focusing on essential rubric criteria.
• Advanced CoT: 7–8 detailed reasoning steps

with deeper justification aligned to rubric criteria.
Each training instance concatenated the writing
prompt, student essay, and trait-specific reason-
ing sequence with the gold score, encouraging the
model to emulate human evaluation.

4 Experimental Setup

All experiments, including hyperparameter tuning
and prompt engineering, used a cross-prompt set-
ting: models were trained on Explanatory essays
and tested on Persuasive essays. After selecting
the best configurations, we retrained on the union
of both essay types for the final submission.
• Classical ML Approaches: We performed 3-

fold cross-validation using scikit-learn, opti-
mizing for QWK. Initial experiments (Table 2)
showed Ridge (AVG pooling, 0.521) and Elastic-
Net (CLS+AVG pooling, 0.527) as the strongest
models, so we selected them for further evalu-
ation. Incorporating handcrafted linguistic fea-
tures (LF) improved results across both models
(Table 3), with Ridge (AVG + LF) achieving the
best QWK of 0.539. These findings highlight the
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complementary value of shallow linguistic cues
when combined with transformer embeddings.

Model CLS AVG CLS + AVG
Lasso 0.480 0.517 0.482
ElasticNet 0.474 0.518 0.527
XGBoost 0.472 0.495 0.479
Ridge 0.454 0.521 0.471
RandomForest 0.447 0.492 0.494

Table 2: Performance of different regression models
using CLS, AVG, and CLS+AVG embeddings during
experiments.

Pooling Features Ridge ElasticNet
AVG + LF 0.539 0.529
AVG – LF 0.524 0.514
AVG + CLS + LF 0.533 0.532
AVG + CLS – LF 0.511 0.539

Table 3: Performance comparison of Ridge and Elastic-
Net across pooling strategies with and without linguistic
features (LF) on the development dataset.

• GPT-Based Few-Shot Prompting: A structured
CoT prompt was employed to score the essays.
We used an English version of both the CAST
rubric and the essay prompts, achieving better
performance after translation (QWK improved
from 0.539 to 0.579 compared to Arabic). We
also tested different numbers of shots; Table 4
compares 0, 1, 5, and 10 shots, showing consis-
tent improvement as the number of provided ex-
amples increased. The prompt strictly specified
the output format, and the model outputs were
parsed to extract trait name–score pairs, which
were organized into a table with one row per es-
say. The total API cost was approximately USD
21, covering exploratory experiments, develop-
ment dataset scoring, and test dataset scoring
(around 21,346,941 tokens in total). The final
version of the prompt template used for submis-
sion is included in the Appendix.

Shots QWK Score
0-shot 0.579
1-shot 0.597
5-shot 0.603
10-shot 0.631

Table 4: Performance of few-shot prompting with vary-
ing numbers of examples during experiments.

• Fine-Tuning BERT-Based Models: Hyper-
parameter tuning explored adaptation scope
{full, last-6, last-3 layers} and learning rates
{1e−5, 2e−5, 3e−5} under AdamW; training
ran up to 100 epochs with early stopping on de-
velopment macro-QWK.

• Fine-Tuning Text-Generation LLM: We fine-
tuned Sakalti/Saka-14B with LoRA on all at-
tention projections (r=32, α=64, dropout 0.08),
using two rubric-aware supervision styles: Sim-
ple CoT (5–6 steps per trait) and Advanced CoT
(7–8 steps per trait). Training ran on 5× NVIDIA
TITAN RTX (24 GB) GPUs with learning rate
2e−5, batch size 1, gradient accumulation 8, and
fp16; we fixed the budget at 3 epochs because
training loss decreased monotonically, reaching
1.37 (Simple) and 0.31 (Advanced) by epoch 3,
indicating continued fitting of the supervision.
Inference used deterministic decoding (tempera-
ture 0.0, max_new_tokens 80), and outputs were
parsed into seven trait-level integers and evalu-
ated with QWK, MSE, and RMSE.

5 Results

This section presents system performance in both
the development and testing phases. We report
results using QWK, MSE, and RMSE across all
traits. The analysis highlights the differences in
agreement with human raters and calibration qual-
ity among all the models.

5.1 Development Phase
We first evaluated all four system families under the
cross-genre setup (training on explanatory essays
and testing on persuasive essays, and vice versa),
averaging results across both directions. Table 5 re-
ports the mean (QWK), mean squared error (MSE),
and root mean squared error (RMSE) across the
seven traits.

In Table 5, the “Fine-tuned BERT” row corre-
sponds to mDeBERTa-v3-base trained with learn-
ing rate 2e−5, last-6 layers unfrozen, with early
stopping—the best single checkpoint among our
BERT-based models—achieving the best develop-
ment QWK among our systems (0.575), slightly
below the shared-task baseline (0.582). GPT-based
prompting (10 shots) was close (0.564), classical
ML (AVG-pooling ridge with linguistic features)
trailed (0.539), and the fine-tuned LLM lagged
with lower QWK (0.480).
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System QWK MSE RMSE
Baseline 0.582 0.504 0.699
Fine-tuned BERT 0.575 0.596 0.758
GPT-based Few-Shot 0.564 0.549 0.727
Classical ML 0.539 0.624 0.777
Fine-tuned LLM 0.480 0.821 0.887

Table 5: Development set performance across system
families.

5.2 Testing Phase
The official evaluation was conducted under a
cross-prompt setting, where systems were tested
on previously unseen prompts in challenging con-
ditions. Table 6 reports macro-average results
across all seven traits. GPT-based few-shot prompt-
ing achieved the strongest performance, improv-
ing from 0-shot (0.592 QWK) to 1-shot (0.610)
and 10-shot (0.612), with GPT-1-shot also pro-
ducing the lowest error rates (MSE 0.758, RMSE
0.845). Among non-GPT systems, Classical ML
with AVG-pooling ridge and linguistic features
reached 0.582 QWK, Fine-tuned BERT 0.554,
and the Fine-tuned LLM 0.538; all exceeded the
shared-task baseline (0.472).

Calibration differed by family. While GPT vari-
ants achieved both the highest QWK and the lowest
error rates, BERT improved over the baseline on
MSE (0.949 vs. 1.005) and RMSE (0.956 vs. 0.990)
while maintaining moderate QWK. In contrast,
Classical ML and the Fine-tuned LLM raised
QWK but suffered from higher MSE (1.081 and
1.029, respectively). Taken together, these results
suggest that GPT prompting is most effective for
balancing ordinal agreement with human raters
(QWK) and absolute calibration (MSE/RMSE),
whereas other approaches achieve only partial and
less consistent gains.

System QWK MSE RMSE
Baseline 0.472 1.005 0.990
GPT-0-shot 0.592 0.797 0.867
GPT-1-shot 0.610 0.758 0.845
GPT-10-shot 0.612 0.760 0.848
Classical ML 0.582 1.081 1.038
Fine-tuned BERT 0.554 0.949 0.956
Fine-tuned LLM 0.538 1.029 0.995

Table 6: Official testing results.

5.3 Error Analysis
Across both development and testing phases, dis-
tinct error patterns emerged for each model family.
GPT few-shot yields the highest exact-match rate,
especially on Relevance and Development, with a
mild tendency to under predict extremes. BERT
systematically skews high, over predicting most
on Vocabulary, Style, and Grammar. Saka-14B
(fine-tuned) also overestimates, most visibly for
Vocabulary/Style, and sporadically under predicts
Relevance, indicating weaker calibration under un-
seen prompts. In contrast, the Ridge baseline con-
sistently under predicts across traits, most notably
for Organization and Development. Overall, GPT
is best-calibrated, BERT/Saka tend to score high,
and Ridge tends to score low, with these tendencies
persisting from development (Figure 1) and testing
(Figure 2).

Figure 1: Development-phase calibration across traits
and models. Bars show the proportion of predictions
that were exact matches (Same), overestimates (Over),
or underestimates (Under); stacks sum to 100%.
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Figure 2: Testing-phase calibration across traits and
models. Bars show the proportion of predictions that
were exact matches (Same), overestimates (Over), or
underestimates (Under); stacks sum to 100%.

6 Conclusion

In this study, we systematically compared multi-
ple approaches to automated essay scoring, with
particular emphasis on cross-genre generalization
and alignment with trait-specific rubric criteria. By
concatenating prompts, essays, and reasoning se-
quences with gold scores, our systems were explic-
itly encouraged to approximate human evaluation.
Experimental results showed that fine-tuned BERT-
based models achieved the highest QWK on the de-
velopment set, slightly outperforming GPT-based
few-shot prompting and classical ML approaches,
while text-generation LLMs struggled under cross-
genre conditions despite detailed CoT guidance.

The testing phase further demonstrated the ro-
bustness of GPT-based few-shot methods: provid-
ing in-context examples consistently improved per-
formance, and translating rubrics and prompts into
English enhanced trait calibration. Overall, this
work shows that combining rubric-grounded rea-
soning with modern NLP architectures can yield
reliable, trait-specific scoring of Arabic essays.
These findings provide insights for practical deploy-
ment in educational contexts and point to future re-
search directions focused on improving generaliza-
tion, calibration, and interpretability in automated
writing evaluation systems.
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Prompt Specification for GPT Scoring
This section includes the final structured prompt
template used in our GPT experiments, ensuring
the reproducibility of our results.
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"role": "system",
"content": "You are an expert Arabic language

teacher responsible
for evaluating Arabic essays written by

students based on specific
traits and rubrics."}

fixed_user_message = {
"role": "user",
"content": f"""Think step-by-step about the

following criteria, then start scoring the
provided essay:

- Essays are evaluated on the following traits:
{traits}.

- Each trait is described in this rubric (the
dictionary of each trait is
score-explanation pairs): {rubric}.

- The essay was written in response to the
following prompt: {essay_prompt}

- Essay type: {essay_type}
- A score of zero is given if the response is

completely memorized, copied from the
prompt,

if the student did not attempt to complete
the task, or wrote something unrelated to
the required topic.

Scoring steps:
1. Check the trait and its rubric.
2. Read the essay.
3. Provide a score.
4. Repeat from step 1 for each trait.
5. After scoring all traits, format the output

as follows:
<trait_name>: <score>
Do not provide any additional text or

explanation.

Example essays with scores:
{examples}

"""}

GPT-Based Few-Shot Prompting
This section provides detailed results for GPT-
based few-shot prompting. We report trait-level
evaluation metrics for different shot settings, com-
plementing the aggregate results in the main text.

Trait QWK MSE RMSE
Relevance 0.545 0.170 0.411
Organization 0.712 0.800 0.894
Vocabulary 0.653 0.783 0.881
Style 0.620 0.981 0.986
Development 0.629 0.761 0.872
Mechanics 0.482 1.038 1.009
Grammar 0.506 1.048 1.014

Table 7: GPT-0-shot: Trait-level evaluation results.

Trait QWK MSE RMSE
Relevance 0.585 0.158 0.395
Organization 0.711 0.802 0.894
Vocabulary 0.646 0.798 0.889
Style 0.666 0.841 0.914
Development 0.647 0.716 0.846
Mechanics 0.477 1.023 1.004
Grammar 0.544 0.969 0.972

Table 8: GPT-1-shot: Trait-level evaluation results.

Trait QWK MSE RMSE
Relevance 0.553 0.168 0.406
Organization 0.709 0.821 0.905
Vocabulary 0.633 0.837 0.911
Style 0.654 0.863 0.926
Development 0.640 0.750 0.865
Mechanics 0.515 0.972 0.979
Grammar 0.580 0.908 0.944

Table 9: GPT-10-shot: Trait-level evaluation results.

Classical ML Features
This section lists the handcrafted linguistic features
extracted from essays, which were combined with
embeddings in the classical ML experiments.

Feature
Total words in the essay
Unique words in the essay
Punctuation marks count
Total sentences in the essay
Average word length (chars)
Average words per sentence
Total characters in the essay
Stopwords count
Total bigrams
Total trigrams
Unique bigrams
Unique trigrams
Unique/total bigrams ratio
Unique/total trigrams ratio

Table 10: Linguistic features extracted from essays.

982



Proceedings of The Third Arabic Natural Language Processing Conference, pages 983–988
November 8-9, 2025 ©2025 Association for Computational Linguistics

912 at TAQEEM 2025: A Distribution-aware Approach to Arabic Essay
Scoring

Trong-Tai Dam Vu, Dang Van Thin
University of Information Technology-VNUHCM,

Vietnam National University, Ho Chi Minh City, Vietnam
{taidvt,thindv}@uit.edu.vn

Abstract

We present our system for TAQEEM 2025 Task
A on Arabic automatic essay scoring. Build-
ing on a pretrained Arabic encoder, our work
focuses on two key design axes: (i) replac-
ing the standard linear head with a lightweight
multi-layer perceptron (MLP) and (ii) optimiz-
ing with distribution-aware objectives. We
introduce a Weighted Mean-Squared Error
loss, which assigns higher weights to less fre-
quent scores to counteract the imbalanced, bell-
shaped score distribution of the training data.
On the official development folds, our sys-
tem outperforms the baseline on Quadratic
Weighted Kappa. Our findings underscore the
importance of tailoring objective functions to
specific data characteristics for achieving state-
of-the-art results in AES.

1 Introduction

Automatic essay scoring (AES) aims to predict
human-assigned holistic scores for free-form writ-
ing. The TAQEEM 2025 shared task focuses on
Arabic AES (Task A), providing standardized data
and an agreement-focused evaluation via QWK
(Bashendy et al., 2025).

In line with the shared task guidelines, our goal
is to conduct a transparent and reproducible study
of what modifications yield reliable gains. Our
work investigates two primary questions: 1) What
is the optimal architecture for the prediction head?
2) Can a distribution-aware objective function, de-
signed to address the specific characteristics of the
score data, offer an advantage over standard regres-
sion losses?

Our system builds on the pretrained ArabicBERT
v02 encoder (Antoun et al., 2020), which is based
on the Transformer architecture (Vaswani et al.,
2017; Devlin et al., 2019). We systematically ex-
plore the impact of MLP head depth and compare
several objective functions. Our key contribution
is the successful application of a Weighted MSE

loss, which addresses the inherent imbalance in
the dataset’s score distribution. This simple, well-
analyzed approach with a carefully chosen objec-
tive function can achieve state-of-the-art results.

2 Background

Task Description. TAQEEM 2025 is a shared task
on evaluating Arabic student writing. We partici-
pated only in Task A (holistic AES). The official
evaluation metric is QWK(Cohen, 1960).

The official dataset is composed of a training
set of 426 Arabic essays and a test set of 840 es-
says, each covering two distinct writing prompts:
explanatory and persuasive. The score distribution
is bell-shaped and imbalanced toward mid-range
scores, as shown in Figure 1. This observed imbal-
ance is the primary motivation for our experiments
with a weighted loss function, as standard MSE
can be biased towards predicting the more frequent,
mid-range scores.

Figure 1: Overall distribution of holistic scores in the
training set. The bell-shaped curve centered on mid-
range scores (approx. 18-25) motivated our use of a
weighted loss objective.

Related work. Automated Essay Scoring (AES)
has evolved from early feature-based systems (At-
tali and Burstein, 2006) to deep learning. Cur-
rently, fine-tuning large pretrained Transformers
like BERT (Devlin et al., 2019) is the state-of-
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the-art approach, consistently achieving top results
(Ludwig et al., 2021). Our work builds directly
on this paradigm, leveraging a powerful pretrained
Arabic model.

While much research focuses on English, Ara-
bic AES is an active area (Ghazawi and Simp-
son, 2024), with models like AraBERT (Antoun
et al., 2020) providing a strong foundation for
the task. The paradigm of pre-training on large
text corpora was popularized by both decoder-
focused generative models like the GPT series
(Radford et al., 2018, 2019; Brown et al., 2020)
and encoder-focused models like BERT. Method-
ologically, our primary contribution—the use of
a Weighted MSE loss—is inspired by established
techniques for learning from imbalanced datasets
(Cao et al., 2019; Ren et al., 2018), which we adapt
to address the specific bell-shaped score distribu-
tion inherent in AES data.

3 System Overview

Our approach is centered on fine-tuning the
AraBERTv02 model (Antoun et al., 2020). The
overall architecture is depicted in Figure 2.

3.1 Backbone and Inputs

The core of our system is the AraBERT-v0.2 (An-
toun et al., 2020) encoder, a pre-trained language
model optimized for Arabic. To effectively present
the task to the model, we explored two distinct
input representations.

The first configuration, which we term Essay-
only, provides the model with only the student’s
essay text. This approach tests the model’s ability
to infer scoring criteria directly from the text itself.

The second configuration, Essay and Prompt,
uses a concatenation of the writing prompt and the
essay text as input. This method provides the model
with explicit context about the task’s requirements.
The choice between these two representations was
determined empirically, as detailed in our ablation
study.

3.2 Prediction Head

The standard approach for regression tasks with
BERT-like models is to use a single linear layer (a
regression head) on top of the [CLS] token repre-
sentation. To explore if a more complex function
could better map the learned features to a score, we
experimented with replacing this linear head with
a lightweight Multi-Layer Perceptron (MLP).

We systematically varied the depth of this MLP
by changing the number of hidden layers, denoted
by k. We tested configurations within the set k ∈
{0, 1, 2, 3}. The case where k = 0 is equivalent to
the standard linear head, which serves as a direct
baseline for this experiment. The optimal depth of
the MLP was determined empirically, as we detail
in our ablation studies.

3.3 Objectives
Our primary contribution in this work lies in the
design and application of a distribution-aware ob-
jective function tailored to the specific character-
istics of the AES dataset. We describe our pro-
posed Weighted MSE (wMSE) loss below. To val-
idate its effectiveness, we benchmarked it against
the standard MSE loss and an agreement-aware
MSE+QWK objective in our ablation studies.

Our proposed Weighted MSE (wMSE) loss is
designed to counteract the imbalanced (Cao et al.,
2019; Ren et al., 2018), bell-shaped score distribu-
tion of the training data. The core idea is to assign a
weight, ws, to each possible integer score s, where
the weight is inversely proportional to the score’s
frequency in the training corpus Dtrain. This forces
the model to place greater importance on correctly
predicting essays with rare scores.

First, for each unique integer score s in the range
[smin, smax], we calculate its frequency Ns =
|{yi ∈ Dtrain | yi = s}|. The weight ws is then
defined as the inverse of this frequency:

ws =
1

Ns
(1)

These weights are pre-calculated once over the en-
tire training set. For a given batch of B samples,
the Weighted MSE loss, LwMSE, is computed as
the mean of the squared errors, where each error
term is multiplied by the weight corresponding to
its ground-truth label. For a prediction ŷi and a true
label yi, the loss is:

LwMSE =
1

B

B∑

i=1

wyi · (ŷi − yi)
2 (2)

Since the ground-truth labels yi are integers, the
corresponding weight wyi can be retrieved directly.

To benchmark our proposed wMSE loss, we also
evaluated two other objective functions. The stan-
dard Mean Squared Error (MSE) served as our
main regression baseline. Additionally, we experi-
mented with a combined MSE+QWK objective.
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Figure 2: Our system architecture, showing the ArabicBERT encoder followed by a one-layer MLP head for score
prediction.

The MSE+QWK loss function incorporates a dif-
ferentiable surrogate of Quadratic Weighted Kappa
(QWK) directly into the training objective. This
aims to align the model’s optimization more closely
with the final evaluation metric. Standard QWK
is non-differentiable because it is calculated from
a confusion matrix, which requires rounding the
model’s continuous regression outputs (e.g., 13.7)
into discrete integer predictions (e.g., 14). This
rounding step prevents gradients from flowing dur-
ing backpropagation.

To create a differentiable surrogate, we imple-
mented a "soft" version of the QWK calculation.
The process begins with soft assignment, where
instead of rounding, each continuous prediction is
represented as a soft probability distribution over
all possible integer scores. This is achieved by cal-
culating the distance from the prediction to each
integer class center (e.g., the distances from 13.7
to) and converting these distances into a probabil-
ity vector using a softmax function. A prediction
of 13.7 will thus have high probabilities assigned
to the nearby classes 13 and 14. This process is
also applied to the ground-truth labels, naturally
handling non-integer scores. These resulting prob-
ability vectors are then used to construct a "soft"
confusion matrix for the batch by summing the
outer product of each prediction-label vector pair.
With this fully differentiable confusion matrix, the
observed and expected agreement can be calculated
using standard matrix operations, allowing gradi-
ents to flow back through the entire QWK formula
to the model’s outputs.

The combined loss is then formally defined as:

LMSE+QWK = LMSE + (1− QWK) (3)

where QWK is the fully differentiable surrogate of
the QWK metric, calculated as described above.

4 Experimental Setup

To ensure reproducibility and isolate the impact
of our design choices, we conducted a systematic
ablation study. All models were fine-tuned using
the AdamW optimizer with a learning rate of 5e-5,
a batch size of 16, for up to 100 epochs. The best
checkpoint for each run was selected based on the
highest average QWK on the development folds.
Our study evaluated three primary design axes:
1) the objective function (our proposed Weighted
MSE vs. standard MSE and MSE+QWK), 2) the
MLP head architecture (varying the number of hid-
den layers k ∈ {0, 1, 2, 3}), and 3) the input type
(essay-only vs. prompt+essay). The results pre-
sented in Table 1 compare the best-performing con-
figuration found for each objective to ensure a fair
and comprehensive analysis.

5 Results and Analysis

Our main experimental results are summarized in
Table 1, which presents a comprehensive ablation
study. The final official scores on the private test
set are shown in Table 2.

5.1 Overall Performance
Our best single model achieved an average QWK
of 0.766 on the development set (0.784 on Fold 1
and 0.747 on Fold 2). As shown in Table 2, our
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Configuration Loss Input MLP Depth (k) Dev QWK (Fold 1) Dev QWK (Fold 2) Avg QWK

Baseline (Linear Head) MSE Essay 0 0.705 0.727 0.716
Our Best Model Weighted MSE Essay 1 0.784 0.747 0.766

Ablation on Objective Function
- use MSE Loss MSE Essay 3 0.768 0.753 0.761
- use MSE+QWK Loss MSE+QWK Essay 2 0.741 0.752 0.747

Ablation on Architecture
- use 2 hidden layers Weighted MSE Essay 2 0.768 0.752 0.760
- use 3 hidden layers Weighted MSE Essay 3 0.781 0.740 0.761

Ablation on Input Type
- use Prompt+Essay Weighted MSE Prompt+Essay 1 0.764 0.753 0.759

Table 1: Main results and a comprehensive ablation study on the development set. Performance is measured by
Quadratic Weighted Kappa (QWK), averaged over two folds. The table compares our best model (in bold) against
the official baseline. It also presents three sets of ablation studies, each starting from our best model’s configuration
and varying a single component: the objective function, architecture, or input type.

Configuration QWK (Fold 9) QWK (Fold 10) Official QWK Official RMSE

Baseline 0.608 0.670 0.639 5.372
Our Best Model 0.662 0.683 0.673 5.333

Table 2: Final performance on the private test set, comparing our best model to the official baseline. We report the
official QWK and RMSE, along with the QWK scores from the last two cross-validation folds.

best model significantly outperforms the baseline
on the private test set, confirming the effectiveness
of our approach on unseen data.

5.2 Analysis of Findings

Our ablation studies, detailed in Table 1, provide
several key insights into the factors driving perfor-
mance.

Impact of Objective Function. The choice of
objective function is the most critical factor for
success. Our Weighted MSE model (Avg QWK
0.766) significantly outperforms the best configura-
tions using standard MSE (0.761) and MSE+QWK
(0.747). This confirms our hypothesis that explic-
itly addressing the dataset’s imbalanced score dis-
tribution is crucial for achieving top performance.
By forcing the model to pay more attention to less
frequent scores, the wMSE objective mitigates the
model’s natural bias towards the populated mean
of the distribution.

Interplay between Architecture and Objective.
The architectural ablation study reveals a clear
relationship between our proposed wMSE objec-
tive and the model’s architectural complexity. As
shown in Table 1, the performance of the wMSE-
trained model peaks with a 1-layer MLP (k = 1).
Performance degrades when the architecture is too
simple (k = 0, a standard linear head) and also
when it becomes overly complex (k = 2, 3).

This suggests that the wMSE loss, by increasing
the importance of rare scores, creates a more chal-
lenging optimization landscape than standard MSE.
A simple linear head (k = 0) appears to lack suf-
ficient capacity to fully model the nuances of this
distribution-aware objective. Conversely, deeper
MLPs (k = 2, 3) seem prone to overfitting on this
specialized task. Therefore, our results indicate
that the benefits of a distribution-aware objective
are best realized when paired with an architecture
of appropriate, non-trivial complexity.

Impact of Input Type. The ablation on input
type confirms that an essay-only approach is opti-
mal for our best model. Including the prompt text
resulted in a performance drop (from 0.766 to 0.759
Avg QWK). While the prompt provides essential
context for evaluating aspects like relevance, our
empirical results suggest that its explicit inclusion
via concatenation is suboptimal in this setup. We
hypothesize two potential reasons for this counter-
intuitive finding. First, since the dataset contains
only two distinct prompts, the model may be able
to implicitly infer the necessary context from the
essay’s topic, vocabulary, and structure alone, mak-
ing the explicit prompt text redundant. Second,
concatenating the prompt might unfavorably shift
the model’s attentional focus. The model may al-
locate too much of its limited attention capacity
to the initial prompt tokens, thereby diluting its
focus on the nuanced linguistic features distributed
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throughout the essay itself.

5.3 Error Analysis

To better understand our model’s limitations, we an-
alyzed its prediction errors on the development set.
Figure 3 presents a binned confusion matrix of our
best model’s predictions, which visually confirms
our two primary failure modes:

1. Near-Boundary Confusion: The strong con-
centration of predictions along the main diag-
onal and its adjacent cells is the most promi-
nent pattern. This shows that the model’s pri-
mary error is confusing similar, adjacent score
ranges (e.g., predicting a score in the 17-21
bin for a true score in the 22-26 bin). This is
a classic challenge in regression-based AES.

2. Off-Prompt Responses: The dataset con-
tains some essays that do not fully address the
prompt. Our model, trained on holistic writing
quality, sometimes assigns a moderate score
to a well-written but off-topic essay, whereas
a human grader might penalize it more heavily
for being non-responsive to the task.

Figure 3: Binned confusion matrix of predictions on the
development set. The concentration of values around
the main diagonal highlights near-boundary confusion
as the primary error type.

6 Conclusion

We presented our system for the TAQEEM 2025
Task A on Arabic AES. Our success was primarily
driven by a custom Weighted MSE (wMSE) objec-
tive, designed to counteract the imbalanced, bell-
shaped score distribution of the training data. Our

analysis revealed a crucial finding: this distribution-
aware objective not only significantly boosted per-
formance but also achieved its best results with
a simpler 1-layer MLP architecture compared to
the deeper models required by standard MSE. Our
work underscores the value of tailoring objective
functions to data characteristics and demonstrates
that a simple, well-analyzed approach can achieve
state-of-the-art results in AES.
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Abstract

This paper presents our system submitted to
TAQEEM 2025, which designed to address two
tasks: (A) holistic scoring and (B) trait-specific
scoring. We propose a GPT-4o-based methodol-
ogy that employs few-shot prompting to serve
as a grader for both tasks. Specifically, for
task A, we utilize prompt-based scoring criteria
with exemplars to assess overall essay qual-
ity. For task B, we design trait-specific prompt-
ing schemes to capture fine-grained grading as-
pects. Our system attains substantial agreement
on Task A (QWK = 0.75) and a mean QWK of
0.65 across traits for task B, outperforming the
shared task baseline on both tasks.

1 Introduction

Evaluating student essays plays a critical role in
assessing language proficiency and writing devel-
opment, particularly in educational settings where
writing is a core skill. However, traditional essay
scoring is labor-intensive, costly, and liable to inter-
and intra-rater inconsistencies caused by human
subjectivity, bias, and rater characteristics such as
severity or leniency (Uto and Okano, 2020). To ad-
dress these challenges, Automated Essay Scoring
(AES) systems have emerged as scalable and effi-
cient alternatives. When effectively implemented,
AES systems offer timely, objective, and consis-
tent scoring, mitigating rater bias and supporting
large-scale assessment contexts such as standard-
ized examinations.

Recent advancements in natural language pro-
cessing (NLP), particularly the emergence of gen-
erative large language models (LLMs) such as Ope-
nAI’s GPT-4 and Google’s PaLM, have signifi-
cantly enhanced the capabilities of AES systems.
A notable advantage of LLMs is their ability to per-
form zero-shot and few-shot scoring with minimal
supervision. Mizumoto and Eguchi (2023) demon-
strated that generative models like ChatGPT can
reliably assess essays using standardized rubrics,

confirming their feasibility and effectiveness for
AES tasks. In terms of validity and reliability,
Pack et al. (2024) and Li and Liu (2024) showed
that GPT-4 achieved substantial agreement with hu-
man raters on AES tasks. Moreover, LLMs can be
prompted to evaluate essays either via traditional
linguistic features or rubric-based criteria aligned
with human judgment (Pack et al., 2024). Recent
work highlights that prompting strategies play a
critical role in aligning LLM-generated scores with
human evaluations (Li and Liu, 2024; Liew and
Tan, 2024).

The majority of studies that have exploited
LLMs for essay scoring have concentrated on
English-language essays (Pack et al., 2024; Liew
and Tan, 2024; Yavuz et al., 2025; Katuka et al.,
2024; Yang, 2024; Flodén, 2025), with limited
studies exploring other languages such as Chi-
nese (Feng et al., 2024), Japanese (Li and Liu,
2024), and Arabic (Ghazawi and Simpson, 2025).
The scarcity of annotated essay datasets in Arabic,
which hinders the development of effective AES
systems for this language, reflects a broader chal-
lenge. To address this gap, the TAQEEM shared
task1 (Bashendy et al., 2025) invites researchers
to develop automated scoring models for Arabic
essays, evaluating both holistic and trait-specific
performance in a cross-prompt setting. Inspired by
the promising results of prior work on generative
LLM-based essay scoring, we employ OpenAI’s
GPT-4o model to simulate expert grading of Ara-
bic essays across both tasks. Our approach lever-
ages carefully crafted rubric-guided prompts and
few-shot exemplars to achieve consistent and inter-
pretable scoring across diverse Arabic texts. We
also conduct a concise error analysis quantifying
over- and under-scoring.

1https://sites.google.com/view/taqeem-2025/
home?authuser=0
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2 Task Description

The TAQEEM benchmark aims to advance auto-
mated Arabic essay scoring under cross-prompt
evaluation via two tasks.

Task A: (Holistic Scoring) requires a single
score reflecting the overall essay quality. Task
B: (Trait-specific Scoring) requires the model to
produce a separate score for seven rubric traits:
Relevance, Organization, Vocabulary, Style, Devel-
opment, Mechanics, and Grammar. The dataset
provided with the TAQEEM 2025 Shared task com-
prises 1,265 Arabic essays, divided into 425 essays
for training and 840 for testing. Each essay was
written in response to one of several prompts and
annotated by human for both tasks. This setup as-
sesses systems’ ability to generalize across prompts
while maintaining alignment with human judg-
ments.

3 Methodology

The essay grading system developed in this
study leverages OpenAI’s GPT-4o model (Hurst
et al., 2024) to simulate expert scoring of Ara-
bic essays. A small set of human-scored exam-
ples—specifically, 20 representative training sam-
ples—is embedded directly in the prompt as exem-
plars to guide the model through the grading pro-
cess, ensuring coverage of the full range of grades.
These 20 examples are randomly selected from the
training dataset across a range of score levels to
ensure diversity and enhance the model’s ability to
generalize across varying levels of essay quality,
while remaining within token constraints. Impor-
tantly, all 20 exemplars were sourced from a single
training prompt. These examples are then used
to evaluate the model on different prompts. This
checks if the model can perform well beyond the
specific prompt on which it was trained, showing
its adaptability across various inputs.

For Task A, the prompt includes a rubric for
evaluating essays written in Arabic. This rubric as-
sesses six core dimensions: content clarity, linguis-
tic correctness, structural organization, strength of
arguments, stylistic quality, and adherence to word
count requirements. The dimensions were derived
directly from the task description to ensure rele-
vance, rather than adopting the CAST rubric, which
may not have aligned with the task’s unique require-
ments. These evaluation criteria are expressed in
natural language instructions, enabling the model
to internalize the scoring logic without relying on

a structured input format. The original Arabic
prompt, its English translation, and the rubric struc-
ture are provided in Figure 1 in the Appendix.

For Task B, we designed a structured prompt that
also guides the model in evaluating Arabic student
essays, simulating the behavior of an expert Arabic
language teacher. This prompt instructs the model
to score essays according to a detailed, criterion-
referenced rubric covering seven dimensions: Rele-
vance (max 2 points), Organization (max 5 points),
Vocabulary (max 5 points), Style (max 5 points),
Development (max 5 points), Mechanics (max 5
points), and Grammar (max 5 points)2. Each di-
mension is defined in natural language to ensure
interpretability and consistent application of the
scoring criteria. The original Arabic version of
the prompt, as well as its English translation and
associated rubric, are provided in Figure 2 in the
Appendix.

The grading process is executed using OpenAI’s
API. Each essay, along with its corresponding
prompt, is submitted to the GPT-4o model with
a low temperature setting (0.1) to produce consis-
tent and deterministic output.

4 Results

This section presents the performance compari-
son between the baseline system, which fine-tunes
AraBERTv02 (Antoun et al., 2020) for automated
essay scoring3, and the proposed Taibah system
for Task A and Task B, as detailed in Table 1
and Table 2, respectively. The evaluation was
conducted using three key metrics: Quadratic
Weighted Kappa (QWK), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE).

4.1 Task A: Holistic Scoring Results

As shown in Table 1, the Taibah system consis-
tently outperforms the baseline in terms of QWK.
For Test Prompt 9, our system achieved a QWK
of 0.717, compared to the baseline’s 0.608. This
performance advantage remains evident in Test
Prompt 10, where the QWK reached 0.784 ver-
sus the baseline’s 0.670. The average QWK across
both prompts was 0.751 for our system, demon-
strating a notable improvement over the baseline’s
average of 0.639 and indicating stronger alignment
with human judgments. This +0.112 increase in
QWK reflects a substantial gain in rater agreement,

2https://sites.google.com/view/taqeem-2025
3https://gitlab.com/bigirqu/taqeem2025
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System Prompt 9 Prompt 10 Average

QWK MSE RMSE QWK MSE RMSE QWK MSE RMSE
Baseline 0.608 33.148 5.757 0.670 24.862 4.986 0.639 29.005 5.372
Taibah 0.717 31.281 5.593 0.784 19.595 4.427 0.751 25.438 5.010

Table 1: Performance comparison between Baseline and Taibah system for Task A. Bold values indicate superior
performance.

especially considering that QWK values above 0.75
are often interpreted as indicating substantial to
near-perfect agreement (Landis and Koch, 1977).
We attribute this improvement, in part, to the rubric-
aligned prompt design and the inclusion of diverse
exemplars, which helped guide the model’s scoring
decisions.

In terms of error metrics, where lower values
indicate better performance, the Taibah system
also demonstrated superior performance. For Test
Prompt 9, it achieved an MSE of 31.281 and RMSE
of 5.593, outperforming the baseline’s MSE of
33.148 and RMSE of 5.757. The advantage was
even more pronounced for Test Prompt 10, with
our system achieving an MSE of 19.595 and RMSE
of 4.427 compared to the baseline’s 24.862 (MSE)
and 4.986 (RMSE). On average, the Taibah sys-
tem maintained lower error rates (MSE: 25.438;
RMSE: 5.010) than the baseline (MSE: 29.005;
RMSE: 5.372), further validating its enhanced per-
formance in Task A. These consistent reductions
in MSE and RMSE across both prompts suggest
that the few-shot GPT-4o-based approach general-
izes well across different essay topics, despite the
cross-prompt evaluation setting.

4.2 Task B: Trait-specific Scoring Results

As shown in Table 2, our system consistently out-
performed the baseline across all traits and both test
prompts in terms of QWK, demonstrating stronger
alignment with human judgments in trait-level scor-
ing. For Prompt 9, the most notable improvements
were observed in Relevance (Taibah: 0.586 vs.
Baseline: 0.127) and Development (Taibah: 0.727
vs. Baseline: 0.410). Similar trends were seen
for Prompt 10, with substantial gains in Relevance
(Taibah: 0.538 vs. Baseline: 0.182) and Mechanics
(Taibah: 0.686 vs. Baseline: 0.468). On average,
our system achieved higher QWK scores across all
traits, with the largest improvements in Develop-
ment (Taibah: 0.703 vs. Baseline: 0.458) and Rele-
vance (Taibah: 0.562 vs. Baseline: 0.155). These
gains are particularly important for scoring dimen-

sions that are often challenging for automated sys-
tems, such as content relevance and argument de-
velopment, suggesting that the prompt structure
effectively guided the model’s understanding of
nuanced writing features.

Our system also demonstrated superior perfor-
mance in error metrics, with lower MSE and RMSE
values indicating better predictive accuracy. For
Prompt 9, the system achieved notable reductions
in both metrics across all traits. For example, in
Relevance, MSE dropped from 0.514 (Baseline) to
0.221 (Taibah), and RMSE from 0.717 to 0.471.
Similar improvements were observed in Develop-
ment, where MSE decreased from 1.174 to 0.717
and RMSE from 1.083 to 0.847.

For Prompt 10, the system maintained its perfor-
mance advantage. In Relevance, MSE decreased
from 0.340 to 0.231 and RMSE from 0.584 to
0.481. Vocabulary also saw notable reductions,
with MSE dropping from 0.964 to 0.669 and
RMSE from 0.982 to 0.818. These results reflect
the model’s ability to generalize across writing
prompts, a key challenge in cross-prompt AES set-
tings.

Overall, our system achieved consistently lower
average MSE and RMSE values across all traits.
The most significant reductions were found in Rel-
evance (MSE: 0.427 Baseline vs. 0.226 Taibah;
RMSE: 0.651 baseline vs. 0.476 Taibah) and Vo-
cabulary (MSE: 1.031 Baseline vs. 0.795 Taibah;
RMSE: 1.015 Baseline vs. 0.889 Taibah). These
findings reinforce the system’s enhanced accuracy
and reliability in trait-specific scoring for Task B,
particularly for dimensions that require deeper se-
mantic understanding.

5 Error Analysis and Discussion

Figure 5 in the Appendix presents confusion-matrix
heatmaps for the test set that summarize prediction
errors for Task A. Across both prompts, predicted
scores concentrate around a few values such as
14, 18, 24, and 28 which leads to over-scoring
of low-quality essays and under-scoring of high-
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System Trait Prompt 9 Prompt 10 Average

QWK MSE RMSE QWK MSE RMSE QWK MSE RMSE

Relevance Baseline 0.127 0.514 0.717 0.182 0.340 0.584 0.155 0.427 0.651
Taibah 0.586 0.221 0.471 0.538 0.231 0.481 0.562 0.226 0.476

Organization Baseline 0.563 1.117 1.057 0.619 0.954 0.962 0.591 1.036 1.010
Taibah 0.680 0.945 0.972 0.656 0.948 0.973 0.668 0.947 0.973

Vocabulary Baseline 0.546 1.098 1.048 0.602 0.964 0.982 0.574 1.031 1.015
Taibah 0.609 0.921 0.960 0.675 0.669 0.818 0.642 0.795 0.889

Style Baseline 0.560 1.164 1.079 0.584 0.981 0.990 0.572 1.073 1.035
Taibah 0.662 0.960 0.980 0.693 0.748 0.865 0.678 0.854 0.923

Development Baseline 0.410 1.174 1.083 0.506 0.883 0.940 0.458 1.029 1.012
Taibah 0.727 0.717 0.847 0.679 0.795 0.892 0.703 0.756 0.870

Mechanics Baseline 0.421 1.345 1.160 0.468 1.212 1.101 0.445 1.279 1.131
Taibah 0.602 1.033 1.017 0.686 0.719 0.848 0.644 0.876 0.933

Grammar Baseline 0.494 1.243 1.115 0.532 1.079 1.039 0.513 1.161 1.077
Taibah 0.629 1.036 1.018 0.699 0.721 0.849 0.664 0.879 0.934

Table 2: Performance comparison between Baseline and Taibah system for Task B. Bold values indicate superior
performance.

quality essays. Predictions at the extreme val-
ues 0–2 and 30–32 are rare even when the true
scores lie in those ranges. In few cases, essays
with a true score of 0 receive mid-range predic-
tions which indicate leniency toward severely de-
ficient responses. Two factors may contribute to
this: the training data may contain few or no es-
says labeled 0, and the scoring instruction used
in the prompting specified a 1–32 range rather
than 0–32 which can drive predictions away from
0. Most errors lie within ±3 points (±1 to ±3
points). The Pearson correlation between human
and model scores is high (r = 0.87), indicating
overall agreement despite systematic bias. Here,
we define bias as the signed difference between
model and human scores: ∆ = model − human;
∆ < 0 indicates underestimation and ∆ > 0 in-
dicates over-scoring. Essays with human scores
≥ 26 are most often underestimated. On average,
the model underestimates relative to human rat-
ings by about 0.73 points, a statistically significant
difference (t = −2.53, p = 0.012). Figure 3 (Ap-
pendix) illustrates this pattern: the model is more
lenient at the lower end of the scale and increas-
ingly conservative at the upper end.

Furthermore, analysis of essay length indicates
that very short essays with 0–50 words yield poor
performance. Performance improves with length
and peaks around 150–200 words. Beyond ≈ 300
words, the MAE increases even as QWK increases,
suggesting that the system preserves ranking but
tends to over-score longer texts. Very long essays

that exceed 500 words show low agreement and
large errors.

For Task B, the model tends to assign lower
scores compared to human raters for Development,
Style and Organization, with the largest mean
biases in the Development (−0.254) and Style
(−0.225), both highly significant (p < 0.0001).
Vocabulary is the only trait with a small positive
bias (+0.088, p = 0.004), while Mechanics shows
no significant difference (p = 0.14). For relevance,
which is scored on a scale of 0–2, the observed
QWK score of 0.56 is reasonable given the narrow
range. Figure 4 in the Appendix shows the mean
bias (Model −Human) for each trait at each hu-
man score level. The model tends to over-scores
the lowest-performing essays and underestimate
high-scoring ones, leading to more negative bias
toward the upper end of the human score scale.

6 Conclusion

This study presented our proposed system for au-
tomated Arabic essay scoring which submitted to
TAQEEM 2025 shared task. The system leverages
GPT-4o with a few-shot prompting methodology
to evaluate the quality of Arabic essays. Our sys-
tem achieved strong overall performance in both
holistic scoring and trait-specific scoring tasks. For
future work, we aim to enhance the system scala-
bility and generalizability by expanding the dataset
to encompass a broader range of topics and writing
traits.
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A Appendix

A.1 Structured Prompt Templates for
Automated Essay Scoring

Figure 1 shows the structured prompt template used
in Task A’s automated essay scoring system. Figure
2 displays the structured prompt template applied
in Task B’s automated essay scoring system.

993



Figure 1: Structured Prompt Template Applied in Task A’s Automated Essay Scoring System.

Figure 2: Structured Prompt Template Applied in Task B’s Automated Essay Scoring System.
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A.2 Bias and Performance Visualizations for
Tasks A and B

Figure 3 presents a bias visualization comparing
human and model holistic scores for Task A. Fig-
ure 4 shows a trait-specific bias heat map for Task
B, illustrating the difference between model and
human scores. Figure 5 displays confusion matri-
ces for the testing set’s holistic score prediction for
Task A, with Figure 5a specifically for Prompt 9
and Figure 5b for Prompt 10.
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Figure 3: Bias Visualization: Human vs. Model Holistic Scores (Task A).

Figure 4: Task B Trait-Specific Bias Heat Map (Model −Human).
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(a) Confusion Matrix for Testing set Holistic Score prediction For Task A: Prompt 9

(b) Confusion Matrix for Testing set Holistic Score prediction For Task A: Prompt 10

Figure 5: Confusion Matrix for Testing set Holistic Score prediction For Task A
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Abstract

We present the MarsadLab submission to
TAQEEM 2025 Shared Task A on Automated
Essay Scoring (AES) in Arabic. Our system
extends AraBERT with a prompt-type embed-
ding and lexicon-based features. The lexicon
captures statistical associations between word
usage and essay quality under each prompt type,
providing prompt-aware, interpretable signals
that complement semantic embeddings. Our
system achieved an average QWK of 0.438,
highlighting both the promise and the chal-
lenges of incorporating prompt-sensitive lex-
ical knowledge into AES. This work represents
a first attempt at leveraging a task-aware lexi-
con for Arabic AES, showing that lexical fea-
tures provide educational value through inter-
pretability but also require more sophisticated
integration. Future improvements could com-
bine these lexical indicators with discourse-,
syntax-, and content-level features, as well as
explore richer fusion strategies to better exploit
their potential.

1 Introduction

Automated Essay Scoring (AES) aims to predict
human-assigned scores for student essays, offering
applications in large-scale assessment and educa-
tional feedback. While AES has been widely stud-
ied for English, progress in Arabic remains limited
due to scarce datasets, morphological complexity,
and diverse rhetorical styles.

The TAQEEM 2025 Shared Task introduces
the first large-scale benchmark for Arabic AES
(Bashendy et al., 2025), evaluating systems
on holistic score prediction across two writing
prompts: explanatory and persuasive. This dual re-
quirement makes the task particularly challenging,
as effective systems must capture not only seman-
tic meaning but also prompt-specific discourse and
stylistic features. Furthermore, our submission was
evaluated under the cross-prompt setting, where

systems must generalize across different prompts,
further increasing task difficulty.

Our submission explores a hybrid design that
integrates AraBERT semantic embeddings with
lexicon-based features. The lexicon captures statis-
tical correlations between words and essay scores
within each prompt type, offering interpretability
and potentially complementing contextual embed-
dings. Although our results did not surpass the
baseline, the analysis provides valuable insights
into the difficulties of feature fusion and the role of
lexical cues in Arabic AES.

2 Background

TAQEEM 2025 Shared Task A focuses on Ara-
bic AES, where the goal is to predict a continuous
holistic score for essays written in response to spe-
cific prompts. Each essay is linked to a prompt text,
a prompt type (either explanatory or persuasive),
and a human-assigned holistic score ranging from
0 to 32.

The dataset is structured around three compo-
nents: (i) prompts that define the writing task and
its type, (ii) student essays written in response to
these prompts, and (iii) holistic scores provided
by human raters. All essays are written in Mod-
ern Standard Arabic (MSA), covering academic
writing across the two genres. Each instance thus
consists of the essay text, the prompt information,
and a holistic score. As shown in table 1, the train-
ing dataset of this task includes 425 essays written
in response to two different prompts: one explana-
tory (215 essays) and one persuasive (210 essays).
Each essay is annotated with a holistic human score
ranging from 2 to 31, indicating a broad spread of
writing quality. The distribution of essays across
prompts is relatively balanced, ensuring that mod-
els are exposed to both explanatory and persuasive
writing.

Automated essay scoring has been heavily stud-
ied, with early approaches relying mainly on regres-
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sion models and hand-crafted linguistic features to
capture aspects of writing quality. More recent re-
search has increasingly focused on ensemble meth-
ods and deep learning models, which aim to better
capture lexical, syntactic, and discourse-level char-
acteristics of student writing (Ramnarain-Seetohul
et al., 2025). However, AES has not advanced as
rapidly due to linguistic complexity and the scarcity
of large-scale annotated resources. One of the few
early attempts is the work of Alqahtani (2019), who
proposed a rule-based system for evaluating Ara-
bic essays based on surface-level criteria such as
spelling, punctuation, essay structure, coherence,
and style (Alqahtani et al., 2019).

Several efforts have attempted to lay the ground-
work for advancing AES in Arabic by providing
resources that target key aspects of writing qual-
ity. For example, (Zaghouani et al., 2024) built
the Qatari Corpus of Student Argumentative Writ-
ing. The proposed corpus presents a bilingual
(Arabic/English) resource that captures discourse
structure, coherence signals, and learner-writing
phenomena. Complementary resources have fo-
cused on error annotation for learner Arabic, offer-
ing normalization and correction procedures, inter-
annotator agreement metrics, and foundations for
assessing grammar and fluency (Zaghouani et al.,
2014). Similarly, gold-standard corrections for
learner errors have been proposed in (Zaghouani
et al., 2015), covering orthographic, morphologi-
cal, syntactic, and punctuation mistakes, thereby
enabling benchmarks for automated error correc-
tion and linguistic quality assessment. In addition,
auxiliary resources such as Arabic diacritization
guidelines provide conventions for orthography
and phonology consistency, supporting disambigua-
tion tasks relevant for spelling- and diacritic-aware
quality assessment (Zaghouani et al., 2016). Re-
search on punctuation and sentence-boundary anno-
tation has also introduced resources for mechanics
and readability, contributing cues for punctuation
restoration and coherence modeling (Zaghouani
and Awad, 2016). Together, these initiatives pro-
vide the linguistic and annotation foundations nec-
essary for advancing Arabic AES, complementing
scoring models by supplying resources on grammar,
fluency, coherence, and overall writing quality.

In order to drive further progress in this domain,
the TAQEEM 2025 Shared Task (Bashendy et al.,
2025) presents the first extensive dataset for Ara-
bic AES. Unlike previous small-scale or resource-

specific efforts, it provides a balanced dataset of
persuasive and explanatory essays for comprehen-
sive scoring, allowing for systematic examination
under cross-prompt settings.

In fact, the role of lexical features has been em-
phasized in assessing text quality. Such features
describe the surface characteristics of textual re-
sponses, including single words, stemmed or lem-
matized forms, prefixes, suffixes, or n-grams. Their
extraction is relatively simple, and many algorithms
have been proposed for Automatic Short Answer
Grading (ASAG) tasks based on lexical similar-
ity, overlap measures, or lexical statistics (Haller
et al., 2022). These approaches laid an important
foundation for later AES systems, especially in
contexts where more sophisticated syntactic or se-
mantic models were not available. In this work, we
aim to further investigate the contribution of lexical
features in the context of Arabic AES.

Prompt ID Prompt Type Essays
1 Explanatory 215
2 Persuasive 210
Total – 425

Table 1: Distribution of essays and score ranges across
prompts

3 System Overview

Our system extends a transformer-based regres-
sor with a prompt-aware lexicon that captures lex-
ical signals of essay quality. The overall work-
flow involves (i) building the lexicon from training
data, (ii) extracting aggregated lexical features for
each essay, and (iii) integrating these features with
AraBERT embeddings in a hybrid architecture.

3.1 Task-Aware Lexicon Construction
We created a custom lexicon (1–3-grams) designed
to reflect how word usage relates to essay quality
under different prompt types (explanatory vs. per-
suasive). This process involved three main steps:

Merging resources. Essay texts, human-
assigned scores, and prompt metadata were
combined using shared identifiers (essay_id,
prompt_id).

Preprocessing. Essays were normalized (remov-
ing diacritics and unifying variants of alif, ya, and
taa marbuta), cleaned of non-Arabic characters, dig-
its, and punctuation, and then tokenized into words.
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Stopwords were deliberately retained, as function
words such as connectives, discourse markers, and
particles can vary systematically across explana-
tory and persuasive writing and thus provide useful
discriminative signals. To avoid lexical leakage,
any tokens appearing in the corresponding prompt
text were excluded, ensuring the lexicon reflects
only the language of student essays rather than the
instructions.

Computing lexical statistics. For each unique
(word, prompt_type) pair, we calculated:

• Frequency: how often the word occurs in
essays of that prompt type.

• Mean score: average holistic score of essays
containing the word.

• Score variability: the standard deviation of
scores associated with the word.

• Richness: the number of unique score values
linked to the word.

• Z-score: For each token, we compared the
average score of essays containing that token
with the mean score of all essays written un-
der the same prompt type. The difference
was normalized by the standard deviation of
scores across the entire prompt type, yielding
a classic z-score:

z = mean_score(token)−mean_score(prompt_type)
σprompt_type+10−5

This measures how far above or below the
prompt-type average the token’s essays tend
to score, relative to the overall variability in
that prompt type. Tokens occurring mainly in
stronger essays have positive z-scores, while
those associated with weaker essays receive
negative z-scores.

• Importance: defined as frequency × |z-
score|, highlighting words that are both fre-
quent and strongly associated with higher or
lower quality. defined as the logarithm of the
token’s document frequency, multiplied by its
positive z-score:

importance = log(1 + count)×max(0, z)

This formulation ensures that tokens are
ranked higher when they are both frequent and
associated with above-average essay scores,
while logarithmic scaling prevents extremely
common tokens from dominating the lexicon.

Only tokens with positive importance were
retained.

The result is a lexicon table where each row cor-
responds to a word conditioned on a prompt type,
enriched with its statistical profile. This lexicon
provides interpretable insight into vocabulary pat-
terns rewarded or penalized by human raters.

3.2 Lexicon Feature Integration

While our lexicon construction relies on associa-
tions between words and essay scores, we do not
assume that words directly cause higher or lower
scores. Instead, certain lexical items tend to co-
occur with patterns of stronger writing and can
therefore serve as useful signals. In explanatory
prompts, higher-scoring essays frequently include
causal and elaborative markers such as H. AJ.�



B@

(“the reasons”), É¾ ���. (“in a way”), Ñë


@ (“most

important”), which help writers clarify causes, em-
phasize significance, or indicate conditions. In per-
suasive prompts, stronger essays often use YK
YªË@
(“many”) to generalize claims,B@
 (“except/but”)

to introduce concessions or contrasts, and AÜØ
(“which/thereby”) to connect evidence with con-
clusions. These examples illustrate that while no
single word determines essay quality, their system-
atic distribution provides interpretable clues about
how students construct explanations or persuasive
arguments. The task-aware lexicon is thus em-
ployed not as a causal determinant of scores but
as a descriptive resource that highlights lexical ten-
dencies associated with stronger or weaker essays
under different prompt types. Such words can be
markers of reasoning and structure, and their use
often reflects the essay’s quality. So the created
lexicon was used to derive numerical features for
each essay: (i) Total importance: the cumulative
weight of all matched tokens in an essay. This re-
flects how much the essay overall makes use of
words that are associated with higher importance
scores. (ii) Maximum importance is the highest
importance value among the essay’s matched to-
kens, capturing the strongest single lexical signal
present. (iii) Average z-score (weighted) specifies
the central tendency of lexical associations in the
essay, computed as the importance-weighted mean
of token z-scores. These features were appended
as auxiliary variables to each essay instance.
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System Prompt QWK MSE RMSE Avg. QWK Avg. RMSE

Baseline
9 0.608 33.148 5.76

0.639 5.37
10 0.670 24.862 4.99

MarsadLab
9 0.447 40.431 6.36

0.438 7.07
10 0.428 60.679 7.79

Table 2: Comparison of Baseline and MarsadLab submissions

3.3 Model Architecture

We extended AraBERT-v2 with an additional
branch for lexicon-based features, building a hybrid
architecture that combines deep contextual embed-
dings with interpretable lexical signals. The system
is based on the following steps:

1. Essay encoding with AraBERT. The essay
text is encoded using AraBERT-v2 (encoder-
only).

2. Prompt-type signal. A learned embedding
representing the prompt type is added element-
wise to the pooled essay vector. This pro-
vides the model with an explicit indication of
whether the essay is explanatory or persuasive,
helping it adapt its representations to genre-
specific expectations.

3. Lexicon feature extraction. In parallel, each
essay is mapped to a three-dimensional vector
derived from the lexicon: (i) total importance,
(ii) maximum importance, and (iii) weighted
average z-score.

4. Feature concatenation. The pooled
AraBERT vector (dimension 768, after
prompt-type addition) is concatenated with
the lexicon feature vector (dimension 3), yield-
ing a combined representation of size 771.
This joint representation ensures that both se-
mantic and lexical signals are captured in a
shared feature space.

5. Regression head. The combined vector is
passed through a projection block consisting
of a linear transformation, layer normaliza-
tion, and dropout. A final linear layer pro-
duces a single logit, which is mapped to the
valid score range [0, 32] using a sigmoid and
affine scaling. Training is optimized with
Mean Squared Error (MSE) loss against the
human-provided holistic scores.

This design allows the model to capture both
deep semantic information (through AraBERT) and
prompt-sensitive lexical cues (through the lexicon
features). The concatenation step explicitly fuses
these two types of signals, ensuring that the model
considers not only meaning and discourse but also
interpretable markers of explanation or persuasion
that human raters often reward.

4 Experimental Setup

We trained models using AraBERTv2 with AdamW
optimizer (learning rate 2e-5), batch size 8, max
length 512, and early stopping on dev QWK. Evalu-
ation follows official test protocol with QWK as the
primary metric and RMSE as a secondary metric.

5 Results

Table 2 compares our submissions with the offi-
cial baseline. The baseline achieved an average
QWK of 0.639 (RMSE = 5.37), with consistent
performance across both prompts. In contrast, our
system obtained an average QWK of 0.438 (RMSE
= 7.07). The drop was observed across both exposi-
tory (Prompt 9) and persuasive (Prompt 10) essays.
A likely reason for underperformance is the sim-
plistic concatenation of features with AraBERT em-
beddings, which may not allow the model to weigh
contextual versus lexical information dynamically.
Another factor may be the small size of the dataset,
which restricts the coverage of the constructed lexi-
con.

Compared to the baseline, our system underper-
formed in both QWK and RMSE. While the base-
line achieved higher agreement with human raters,
our hybrid AraBERT+lexicon approach demon-
strated stable but lower performance. This suggests
that our current fusion strategy does not fully ex-
ploit the complementary strengths of contextual
and lexical features. Future work should explore
attention-based fusion or prompt-adaptive weight-
ing.
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6 Conclusion

We presented the MarsadLab system for TAQEEM
2025 Task A, extending AraBERT with a prompt-
type embedding and a task-aware lexicon for
Arabic AES. The lexicon offered interpretable
features—total importance, maximum impor-
tance, and weighted average z-score—that capture
prompt-sensitive lexical tendencies. Our system
achieved an average QWK of 0.438, showing that
lexical features can be successfully integrated into
AES, but also highlighting the need for more ad-
vanced methods to fully exploit their potential.

While the lexicon provides transparency and in-
sight into genre-sensitive vocabulary, it remains
correlational and incomplete. Future work should
expand the lexicon across more prompts, combine
it with discourse- and syntax-level features, and ex-
plore richer integration strategies such as attention-
based fusion or prompt-adaptive regression.

7 Limitations

The task-aware lexicon we created gives useful and
interpretable signals for essay scoring, but it is not
enough on its own to capture the full complexity
of writing quality. It reflects correlations between
words and scores, yet essay quality also depends
on broader aspects such as coherence, organization,
and depth of reasoning, which cannot be reduced
to lexical patterns. Another limitation is that the
lexicon was built from only two prompts, one ex-
planatory and one persuasive. This means some
of the word associations may be domain-specific
and tied to the topics of these prompts rather than
general markers of writing quality. Finally, the
way we integrated lexical features with AraBERT
relied on simple concatenation, which likely lim-
ited the model’s ability to make effective use of
both contextual and lexical information. These
points show that while the lexicon is a helpful re-
source, it should be seen as a first step. Future work
should expand it to more prompts, add discourse-
and syntax-level features, and test more advanced
fusion methods to improve both generality and per-
formance.
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