Zongxi Li
2025
CondAmbigQA: A Benchmark and Dataset for Conditional Ambiguous Question Answering
Zongxi Li
|
Yang Li
|
Haoran Xie
|
S. Joe Qin
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Users often assume that large language models (LLMs) share their cognitive alignment of context and intent, leading them to omit critical information in question-answering (QA) and produce ambiguous queries. Responses based on misaligned assumptions may be perceived as hallucinations. Therefore, identifying possible implicit assumptions is crucial in QA. To address this fundamental challenge, we propose Conditional Ambiguous Question-Answering (CondAmbigQA), a benchmark comprising 2,000 ambiguous queries and condition-aware evaluation metrics. Our study pioneers “conditions” as explicit contextual constraints that resolve ambiguities in QA tasks through retrieval-based annotation, where retrieved Wikipedia fragments help identify possible interpretations for a given query and annotate answers accordingly. Experiments demonstrate that models considering conditions before answering improve answer accuracy by 11.75%, with an additional 7.15% gain when conditions are explicitly provided. These results highlight that apparent hallucinations may stem from inherent query ambiguity rather than model failure, and demonstrate the effectiveness of condition reasoning in QA, providing researchers with tools for rigorous evaluation.
2023
Recurrent Attention Networks for Long-text Modeling
Xianming Li
|
Zongxi Li
|
Xiaotian Luo
|
Haoran Xie
|
Xing Lee
|
Yingbin Zhao
|
Fu Lee Wang
|
Qing Li
Findings of the Association for Computational Linguistics: ACL 2023
Self-attention-based models have achieved remarkable progress in short-text mining. However, the quadratic computational complexities restrict their application in long text processing. Prior works have adopted the chunking strategy to divide long documents into chunks and stack a self-attention backbone with the recurrent structure to extract semantic representation. Such an approach disables parallelization of the attention mechanism, significantly increasing the training cost and raising hardware requirements. Revisiting the self-attention mechanism and the recurrent structure, this paper proposes a novel long-document encoding model, Recurrent Attention Network (RAN), to enable the recurrent operation of self-attention. Combining the advantages from both sides, the well-designed RAN is capable of extracting global semantics in both token-level and document-level representations, making it inherently compatible with both sequential and classification tasks, respectively. Furthermore, RAN is computationally scalable as it supports parallelization on long document processing. Extensive experiments demonstrate the long-text encoding ability of the proposed RAN model on both classification and sequential tasks, showing its potential for a wide range of applications.