Ziyu Zhao


2025

pdf bib
OS Agents: A Survey on MLLM-based Agents for Computer, Phone and Browser Use
Xueyu Hu | Tao Xiong | Biao Yi | Zishu Wei | Ruixuan Xiao | Yurun Chen | Jiasheng Ye | Meiling Tao | Xiangxin Zhou | Ziyu Zhao | Yuhuai Li | Shengze Xu | Shenzhi Wang | Xinchen Xu | Shuofei Qiao | Zhaokai Wang | Kun Kuang | Tieyong Zeng | Liang Wang | Jiwei Li | Yuchen Eleanor Jiang | Wangchunshu Zhou | Guoyin Wang | Keting Yin | Zhou Zhao | Hongxia Yang | Fan Wu | Shengyu Zhang | Fei Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of multi-modal large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computers, mobile phones and web browsers by operating within the environments and interfaces (e.g., Graphical User Interface (GUI) and Command Line Interface (CLI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey on these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components and capabilities. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation metrics and benchmarks highlights how OS Agents are assessed across diverse platforms and tasks. Finally, we discuss current challenges and identify promising directions for future research. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field.

pdf bib
CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models
Kairong Han | Wenshuo Zhao | Ziyu Zhao | Ye Jun Jian | Lujia Pan | Kun Kuang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen’s OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.

pdf bib
SocioBench: Modeling Human Behavior in Sociological Surveys with Large Language Models
Jia Wang | Ziyu Zhao | Tingjuntao Ni | Zhongyu Wei
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) show strong potential for simulating human social behaviors and interactions, yet lack large-scale, systematically constructed benchmarks for evaluating their alignment with real-world social attitudes. To bridge this gap, we introduce SocioBench—a comprehensive benchmark derived from the annually collected, standardized survey data of the International Social Survey Programme (ISSP). The benchmark aggregates over 480,000 real respondent records from more than 30 countries, spanning 10 sociological domains and over 40 demographic attributes. Our experiments indicate that LLMs achieve only 30–40% accuracy when simulating individuals in complex survey scenarios, with statistically significant differences across domains and demographic subgroups. These findings highlight several limitations of current LLMs in survey scenarios, including insufficient individual-level data coverage, inadequate scenario diversity, and missing group-level modeling. We have open-sourced SocioBench at https://github.com/JiaWANG-TJ/SocioBench.

2024

pdf bib
LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed Tasks in the Wild
Ziyu Zhao | Leilei Gan | Guoyin Wang | Wangchunshu Zhou | Hongxia Yang | Kun Kuang | Fei Wu
Findings of the Association for Computational Linguistics: ACL 2024

Low-Rank Adaptation (LoRA) provides an effective yet efficient solution for fine-tuning large language models (LLMs). The modular and plug-and-play nature of LoRA enables the integration of diverse domain-specific LoRAs to enhance the capabilities of LLMs. Previous research on exploiting multiple LoRAs either focuses on specific isolated downstream tasks or fixes the selection of LoRAs during training. However, in real-world scenarios, LLMs receive diverse prompts covering different tasks, and the pool of candidate LoRAs is often dynamically updated. To bridge this gap, we propose LoraRetriever, a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts. LoraRetriever contains three main components: firstly, identifying and retrieving LoRAs relevant to the given input; secondly, formulating strategies for effectively integrating the retrieved LoRAs; and thirdly, developing efficient batch inference to accommodate heterogeneous requests. Experimental results indicate that LoraRetriever consistently outperforms the baselines, highlighting its practical effectiveness and versatility. Our code is available at https://github.com/StyxXuan/LoraRetriever.