Ziyang Xu
2025
REACT: Representation Extraction And Controllable Tuning to Overcome Overfitting in LLM Knowledge Editing
Haitian Zhong
|
Yuhuan Liu
|
Ziyang Xu
|
Guofan Liu
|
Qiang Liu
|
Shu Wu
|
Zhe Zhao
|
Liang Wang
|
Tieniu Tan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large language model editing methods frequently suffer from overfitting, wherein factual updates can propagate beyond their intended scope, overemphasizing the edited target even when it’s contextually inappropriate. To address this challenge, we introduce REACT (Representation Extraction And Controllable Tuning), a unified two-phase framework designed for precise and controllable knowledge editing. In the initial phase, we utilize tailored stimuli to extract latent factual representations and apply Principal Component Analysis with a simple learnbale linear transformation to compute a directional “belief shift” vector for each instance. In the second phase, we apply controllable perturbations to hidden states using the obtained vector with a magnitude scalar, gated by a pre-trained classifier that permits edits only when contextually necessary. Relevant experiments on EVOKE benchmarks demonstrate that REACT significantly reduces overfitting across nearly all evaluation metrics, and experiments on COUNTERFACT and MQuAKE shows that our method preserves balanced basic editing performance (reliability, locality, and generality) under diverse editing scenarios.
2024
Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction
Ziyang Xu
|
Keqin Peng
|
Liang Ding
|
Dacheng Tao
|
Xiliang Lu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Recent research shows that pre-trained language models (PLMs) suffer from “prompt bias” in factual knowledge extraction, i.e., prompts tend to introduce biases toward specific labels. Prompt bias presents a significant challenge in assessing the factual knowledge within PLMs. Therefore, this paper aims to improve the reliability of existing benchmarks by thoroughly investigating and mitigating prompt bias. We show that: 1) all prompts in the experiments exhibit non-negligible bias, with gradient-based prompts like AutoPrompt and OptiPrompt displaying significantly higher levels of bias; 2) prompt bias can amplify benchmark accuracy unreasonably by overfitting the test datasets, especially on imbalanced datasets like LAMA. Based on these findings, we propose a representation-based approach to mitigate the prompt bias during inference time. Specifically, we first estimate the biased representation using prompt-only querying, and then remove it from the model’s internal representations to generate the debiased representations, which are used to produce the final debiased outputs. Experiments across various prompts, PLMs, and benchmarks show that our approach can not only correct the overfitted performance caused by prompt bias, but also significantly improve the prompt retrieval capability (up to 10% absolute performance gain). These results indicate that our approach effectively alleviates prompt bias in knowledge evaluation, thereby enhancing the reliability of benchmark assessments. Hopefully, our plug-and-play approach can be a golden standard to strengthen PLMs toward reliable knowledge bases. Code and data are released in https://github.com/FelliYang/PromptBias.