Ziwen Chen


2025

pdf bib
TS-CLIP: Time Series Understanding by CLIP
Ziwen Chen | Xiaoyuan Zhang | Ming Zhu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Contrastive Language–Image Pre-training (CLIP) has recently demonstrated remarkable success in aligning vision and language. Aligning time series with text leverages the rich semantic cues of language to enhance interpretability and generalization, addressing a largely underexplored area of research. Although applying the CLIP training paradigm to time-series and language pairs is promising, it may result in label collapse due to the sparse semantic annotations and the absence of visual cues in time-series data. To address this, we introduce Time Series CLIP (TS-CLIP), a novel approach that tackles label collapse using a synonym bank mechanism. Synonym bank exploits word analogy phenomena to generate potential synonym embeddings as alignment targets. Specifically, the synonym bank facilitates aligning time series with a word distribution instead of a precise textual description. We conducted extensive zero-shot and few-shot experiments on 128 sub-datasets from the UCR archive. The results show that TS-CLIP achieves state-of-the-art (SOTA) performance in zero-shot settings on 51 datasets. Comprehensive ablation studies and visualization analyzes reveal that TS-CLIP effectively aligns time series with natural language. To the best of our knowledge, this is the first foundational model to achieve general time series and natural language alignment. TS-CLIP introduces a new paradigm for the semantic understanding of time series and opens the possibility of integrating the time series modality into multimodal large models.