2025
pdf
bib
abs
InfoGain-RAG: Boosting Retrieval-Augmented Generation through Document Information Gain-based Reranking and Filtering
Zihan Wang
|
Zihan Liang
|
Zhou Shao
|
Yufei Ma
|
Huangyu Dai
|
Ben Chen
|
Lingtao Mao
|
Chenyi Lei
|
Yuqing Ding
|
Han Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Retrieval-Augmented Generation (RAG) has emerged as a promising approach to address key limitations of Large Language Models (LLMs), such as hallucination, outdated knowledge, and lacking reliable reference. However, current RAG frameworks often struggle with identifying whether retrieved documents meaningfully contribute to answer generation. This shortcoming makes it difficult to filter out irrelevant or even misleading content, which notably impacts the final performance. In this paper, we propose Document Information Gain (DIG), a novel metric designed to quantify the contribution of retrieved documents to correct answer generation. DIG measures a document’s value by computing the difference of LLM’s generation confidence with and without the document augmented. Further, we introduce InfoGain-RAG, a framework that leverages DIG scores to train a specialized reranker, which prioritizes each retrieved document from exact distinguishing and accurate sorting perspectives. This approach can effectively filter out irrelevant documents and select the most valuable ones for better answer generation. Extensive experiments across various models and benchmarks demonstrate that InfoGain-RAG can significantly outperform existing approaches, on both single and multiple retrieval paradigm. Specifically on NaturalQA, it achieves the improvements of 17.9%, 4.5%, 12.5% in exact match accuracy against naive RAG, self-reflective RAG and modern ranking-based RAG respectively, and even an average of 15.3% increment on advanced proprietary models GPT-4o across all datasets. These results demonstrate the feasibility of InfoGain-RAG as it can offer a reliable solution for RAG in multiple applications.
pdf
bib
abs
Causal Representation Learning from Multimodal Clinical Records under Non-Random Modality Missingness
Zihan Liang
|
Ziwen Pan
|
Ruoxuan Xiong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Clinical notes contain rich patient information, such as diagnoses or medications, making them valuable for patient representation learning. Recent advances in large language models have further improved the ability to extract meaningful representations from clinical texts. However, clinical notes are often missing. For example, in our analysis of the MIMIC-IV dataset, 24.5% of patients have no available discharge summaries. In such cases, representations can be learned from other modalities such as structured data, chest X-rays, or radiology reports. Yet the availability of these modalities is influenced by clinical decision-making and varies across patients, resulting in modality missing-not-at-random (MMNAR) patterns. We propose a causal representation learning framework that leverages observed data and informative missingness in multimodal clinical records. It consists of: (1) an MMNAR-aware modality fusion component that integrates structured data, imaging, and text while conditioning on missingness patterns to capture patient health and clinician-driven assignment; (2) a modality reconstruction component with contrastive learning to ensure semantic sufficiency in representation learning; and (3) a multitask outcome prediction model with a rectifier that corrects for residual bias from specific modality observation patterns. Comprehensive evaluations across MIMIC-IV and eICU show consistent gains over the strongest baselines, achieving up to 13.8% improvement for hospital readmission and 13.1% for ICU admission (AUC, relative to best baseline).
2024
pdf
bib
abs
MoDULA: Mixture of Domain-Specific and Universal LoRA for Multi-Task Learning
Yufei Ma
|
Zihan Liang
|
Huangyu Dai
|
Ben Chen
|
Dehong Gao
|
Zhuoran Ran
|
Wang Zihan
|
Linbo Jin
|
Wen Jiang
|
Guannan Zhang
|
Xiaoyan Cai
|
Libin Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The growing demand for larger-scale models in the development of Large Language Models (LLMs) poses challenges for efficient training within limited computational resources. Traditional fine-tuning methods often exhibit instability in multi-task learning and rely heavily on extensive training resources. Here, we propose MoDULA (Mixture of Domain-Specific and Universal LoRA), a novel Parameter Efficient Fine-Tuning (PEFT) Mixture-of-Expert (MoE) paradigm for improved fine-tuning and parameter efficiency in multi-task learning. The paradigm effectively improves the multi-task capability of the model by training universal experts, domain-specific experts, and routers separately. MoDULA-Res is a new method within the MoDULA paradigm, which maintains the model’s general capability by connecting universal and task-specific experts through residual connections. The experimental results demonstrate that the overall performance of the MoDULA-Flan and MoDULA-Res methods surpasses that of existing fine-tuning methods on various LLMs. Notably, MoDULA-Res achieves more significant performance improvements in multiple tasks while reducing training costs by over 80% without losing general capability. Moreover, MoDULA displays flexible pluggability, allowing for the efficient addition of new tasks without retraining existing experts from scratch. This progressive training paradigm circumvents data balancing issues, enhancing training efficiency and model stability. Overall, MoDULA provides a scalable, cost-effective solution for fine-tuning LLMs with enhanced parameter efficiency and generalization capability.
pdf
bib
abs
Self-Renewal Prompt Optimizing with Implicit Reasoning
Zihan Liang
|
Ben Chen
|
Zhuoran Ran
|
Zihan Wang
|
Huangyu Dai
|
Yufei Ma
|
Dehong Gao
|
Xiaoyan Cai
|
Libin Yang
Findings of the Association for Computational Linguistics: EMNLP 2024
The effectiveness of Large Language Models (LLMs) relies on their capacity to understand instructions and generate human-like responses. However, aligning LLMs with complex human preferences remains a significant challenge due to the potential misinterpretation of user prompts. Current methods for aligning LLM behaviors fall into two categories: output optimization (such as RLHF, RLAIF, and DPO) and input optimization (like OPRO and BPO). While both approaches aim to guide LLMs towards generating responses that align with desired objectives, the labor-intensive and intentions-inconsistent data annotation, as well as the strict and tedious training supervision, make them struggle to yield optimal results across all models. To address these shortcomings, we introduce a novel self-renewal approach called Prompt Optimization with Implicit Reasoning (POIR). It consists of two key components: 1) a model-specific and self-recirculating data collection method that leverages self-evaluation to enhance prompts in accordance with the model’s intrinsic logits, and 2) a prompt rewrite schema that injects implicit reasoning for direct preference learning. Through self-renewal optimization, POIR refines LLM outputs to better align with human preferences across various LLMs and tasks, without relying on supervised fine-tuning. Extensive experiments on a range of LLMs and tasks demonstrate POIR’s superior performance. We believe this advancement offers a novel paradigm for developing LLMs that are more attuned to user intentions.
pdf
bib
abs
Contrastive Token Learning with Similarity Decay for Repetition Suppression in Machine Translation
Huangyu Dai
|
Ben Chen
|
Kaidi Chen
|
Ying Han
|
Zihan Liang
|
Wen Jiang
Findings of the Association for Computational Linguistics: EMNLP 2024
For crosslingual conversation and trade, Neural Machine Translation (NMT) is pivotal yet faces persistent challenges with monotony and repetition in generated content. Traditional solutions that rely on penalizing text redundancy or token reoccurrence have shown limited efficacy, particularly for lengthy article and e-commerce descriptions with inherent redundancy, even with the advent of Large Language Models (LLMs). This paper investigates the underlying causes of textual repetition through the lens of information entropy, attributing the phenomenon to the elevated uncertainty within the input text. To address this, a novel algorithm named Contrastive Token Learning with Similarity Decay (CTSD) is introduced, which modulates the suppression of tokens dynamically, informed by varying attention weights and inter-token distances. Furthermore, an e-commerce dataset comprised of title texts of online real items is compiled and released susceptible to hallucination translations to benchmark the algorithm. Extensive evaluations demonstrate that CTSD significantly outperforms existing approaches in precision and generalizability. Additional online A/B testing underscores its practical value, showing marked improvements in user engagement and conversion. Notably, this method has been implemented with full traffic on eight multilingual sites of alibaba.com, the largest B2B e-commerce platform in the world.
2022
pdf
bib
abs
AssistSR: Task-oriented Video Segment Retrieval for Personal AI Assistant
Weixian Lei
|
Difei Gao
|
Yuxuan Wang
|
Dongxing Mao
|
Zihan Liang
|
Lingmin Ran
|
Mike Zheng Shou
Findings of the Association for Computational Linguistics: EMNLP 2022
It is still a pipe dream that personal AI assistants on the phone and AR glasses can assist our daily life in addressing our questions like “how to adjust the date for this watch?” and “how to set its heating duration? (while pointing at an oven)”. The queries used in conventional tasks (i.e. Video Question Answering, Video Retrieval, Moment Localization) are often factoid and based on pure text. In contrast, we present a new task called Task-oriented Question-driven Video Segment Retrieval (TQVSR). Each of our questions is an image-box-text query that focuses on affordance of items in our daily life and expects relevant answer segments to be retrieved from a corpus of instructional video-transcript segments. To support the study of this TQVSR task, we construct a new dataset called AssistSR. We design novel guidelines to create high-quality samples. This dataset contains 3.2k multimodal questions on 1.6k video segments from instructional videos on diverse daily-used items. To address TQVSR, we develop a simple yet effective model called Dual Multimodal Encoders (DME) that significantly outperforms several baseline methods while still having large room for improvement in the future. Moreover, we present detailed ablation analyses. Code and data are available at https://github.com/StanLei52/TQVSR.