Zhiwei Li


2025

pdf bib
Encouraging Good Processes Without the Need for Good Answers: Reinforcement Learning for LLM Agent Planning
Zhiwei Li | Yong Hu | Wenqing Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

The functionality of Large Language Model (LLM) agents is primarily determined by two capabilities: action planning and answer summarization. The former, action planning, is the core capability that dictates an agent’s performance. However, prevailing training paradigms employ end-to-end, multi-objective optimization that jointly trains both capabilities. This paradigm faces two critical challenges: imbalanced optimization objective allocation and scarcity of verifiable data, making it difficult to enhance the agent’s planning capability. To address these challenges, we propose Reinforcement Learning with Tool-use Rewards (RLTR), a novel framework that decouples the training process to enable a focused, single-objective optimization of the planning module. Crucially, RLTR introduces a reward signal based on tool-use completeness to directly evaluate the quality of tool invocation sequences. This method offers a more direct and reliable training signal than assessing the final response content, thereby obviating the need for verifiable data. Our experiments demonstrate that RLTR achieves an 8%–12% improvement in planning performance compared to end-to-end baselines. Moreover, this enhanced planning capability, in turn, translates to a 5%–6% increase in the final response quality of the overall agent system.

2024

pdf bib
Can Large Language Models Mine Interpretable Financial Factors More Effectively? A Neural-Symbolic Factor Mining Agent Model
Zhiwei Li | Ran Song | Caihong Sun | Wei Xu | Zhengtao Yu | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL 2024

Finding interpretable factors for stock returns is the most vital issue in the empirical asset pricing domain. As data-driven methods, existing factor mining models can be categorized into symbol-based and neural-based models. Symbol-based models are interpretable but inefficient, while neural-based approaches are efficient but lack interpretability. Hence, mining interpretable factors effectively presents a significant challenge. Inspired by the success of Large Language Models (LLMs) in various tasks, we propose a FActor Mining Agent (FAMA) model that enables LLMs to integrate the strengths of both neural and symbolic models for factor mining. In this paper, FAMA consists of two main components: Cross-Sample Selection (CSS) and Chain-of-Experience (CoE). CSS addresses the homogeneity challenges in LLMs during factor mining by assimilating diverse factors as in-context samples, whereas CoE enables LLMs to leverage past successful mining experiences, expediting the mining of effective factors. Experimental evaluations on real-world stock market data demonstrate the effectiveness of our approach by surpassing the SOTA RankIC by 0.006 and RankICIR by 0.105 in predicting S&P 500 returns. Furthermore, the investment simulation shows that our model can achieve superior performance with an annualized return of 38.4% and a Sharpe ratio of 667.2%.

2009

pdf bib
LogisticLDA: Regularizing Latent Dirichlet Allocation by Logistic Regression
Jia-Cheng Guo | Bao-Liang Lu | Zhiwei Li | Lei Zhang
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 1