Zhijian Hou


2025

pdf bib
KG-RAG: Enhancing GUI Agent Decision-Making via Knowledge Graph-Driven Retrieval-Augmented Generation
Ziyi Guan | Jason Chun Lok Li | Zhijian Hou | Pingping Zhang | Donglai Xu | Yuzhi Zhao | Mengyang Wu | Jinpeng Chen | Thanh-Toan Nguyen | Pengfei Xian | Wenao Ma | Shengchao Qin | Graziano Chesi | Ngai Wong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Despite recent progress, Graphic User Interface (GUI) agents powered by Large Language Models (LLMs) struggle with complex mobile tasks due to limited app-specific knowledge. While UI Transition Graphs (UTGs) offer structured navigation representations, they are underutilized due to poor extraction and inefficient integration. We introduce KG-RAG, a Knowledge Graph-driven Retrieval-Augmented Generation framework that transforms fragmented UTGs into structured vector databases for efficient real-time retrieval. By leveraging an intent-guided LLM search method, KG-RAG generates actionable navigation paths, enhancing agent decision-making. Experiments across diverse mobile apps show that KG-RAG outperforms existing methods, achieving a 75.8% success rate (8.9% improvement over AutoDroid), 84.6% decision accuracy (8.1% improvement), and reducing average task steps from 4.5 to 4.1. Additionally, we present KG-Android-Bench and KG-Harmony-Bench, two benchmarks tailored to the Chinese mobile ecosystem for future research. Finally, KG-RAG transfers to web/desktop (+40% SR on Weibo-web; +20% on QQ Music-desktop), and a UTG cost ablation shows accuracy saturates at ~4h per complex app, enabling practical deployment trade-offs.

2023

pdf bib
CONE: An Efficient COarse-to-fiNE Alignment Framework for Long Video Temporal Grounding
Zhijian Hou | Wanjun Zhong | Lei Ji | Difei Gao | Kun Yan | W.k. Chan | Chong-Wah Ngo | Mike Zheng Shou | Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper tackles an emerging and challenging problem of long video temporal grounding (VTG) that localizes video moments related to a natural language (NL) query. Compared with short videos, long videos are also highly demanded but less explored, which brings new challenges in higher inference computation cost and weaker multi-modal alignment. To address these challenges, we propose CONE, an efficient COarse-to-fiNE alignment framework. CONE is a plug-and-play framework on top of existing VTG models to handle long videos through a sliding window mechanism. Specifically, CONE (1) introduces a query-guided window selection strategy to speed up inference, and (2) proposes a coarse-to-fine mechanism via a novel incorporation of contrastive learning to enhance multi-modal alignment for long videos. Extensive experiments on two large-scale long VTG benchmarks consistently show both substantial performance gains (e.g., from 3.13 to 6.87% on MAD) and state-of-the-art results. Analyses also reveal higher efficiency as the query-guided window selection mechanism accelerates inference time by 2x on Ego4D-NLQ and 15x on MAD while keeping SOTA results. Codes have been released at https://github.com/houzhijian/CONE.