Zhi-Yuan Chen


2025

pdf bib
Beyond the Surface: Measuring Self-Preference in LLM Judgments
Zhi-Yuan Chen | Hao Wang | Xinyu Zhang | Enrui Hu | Yankai Lin
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent studies show that large language models (LLMs) exhibit self-preference bias when serving as judges, meaning they tend to favor their own responses over those generated by other models. Existing methods typically measure this bias by calculating the difference between the scores a judge model assigns to its own responses and those it assigns to responses from other models. However, this approach conflates self-preference bias with response quality, as higher-quality responses from the judge model may also lead to positive score differences, even in the absence of bias. To address this issue, we introduce gold judgments as proxies for the actual quality of responses and propose the DBG score, which measures self-preference bias as the difference between the scores assigned by the judge model to its own responses and the corresponding gold judgments. Since gold judgments reflect true response quality, the DBG score mitigates the confounding effect of response quality on bias measurement. Using the DBG score, we conduct comprehensive experiments to assess self-preference bias across LLMs of varying versions, sizes, and reasoning abilities. Additionally, we investigate two factors that influence and help alleviate self-preference bias: response text style and the post-training data of judge models. Finally, we explore potential underlying mechanisms of self-preference bias from an attention-based perspective. Our code and data are available at https://github.com/zhiyuanc2001/self-preference.

2024

pdf bib
Towards Tool Use Alignment of Large Language Models
Zhi-Yuan Chen | Shiqi Shen | Guangyao Shen | Gong Zhi | Xu Chen | Yankai Lin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recently, tool use with LLMs has become one of the primary research topics as it can help LLM generate truthful and helpful responses. Existing studies on tool use with LLMs primarily focus on enhancing the tool-calling ability of LLMs. In practice, like chat assistants, LLMs are also required to align with human values in the context of tool use. Specifically, LLMs should refuse to answer unsafe tool use relevant instructions and insecure tool responses to ensure their reliability and harmlessness. At the same time, LLMs should demonstrate autonomy in tool use to reduce the costs associated with tool calling. To tackle this issue, we first introduce the principle that LLMs should follow in tool use scenarios: H2A. The goal of H2A is to align LLMs with **helpfulness**, **harmlessness**, and **autonomy**. In addition, we propose ToolAlign, a dataset comprising instruction-tuning data and preference data to align LLMs with the H2A principle for tool use. Based on ToolAlign, we develop LLMs by supervised fine-tuning and preference learning, and experimental results demonstrate that the LLMs exhibit remarkable tool-calling capabilities, while also refusing to engage with harmful content, and displaying a high degree of autonomy in tool utilization. The code and datasets are available at: https://github.com/zhiyuanc2001/ToolAlign.

pdf bib
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
Xueyang Feng | Zhi-Yuan Chen | Yujia Qin | Yankai Lin | Xu Chen | Zhiyuan Liu | Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2024

In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. To tackle the problem, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC, which trains a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We conduct experiments under real and simulated human-agent collaboration scenarios. Experimental results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: https://github.com/XueyangFeng/ReHAC/.