2025
pdf
bib
abs
BrailleLLM: Braille Instruction Tuning with Large Language Models for Braille Domain Tasks
Tianyuan Huang
|
Zepeng Zhu
|
Hangdi Xing
|
Zirui Shao
|
Zhi Yu
|
Chaoxiong Yang
|
Jiaxian He
|
Xiaozhong Liu
|
Jiajun Bu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Braille plays a vital role in education and information accessibility for visually impaired individuals. However, Braille information processing faces challenges such as data scarcity and ambiguities in mixed-text contexts. We construct English and Chinese Braille Mixed Datasets (EBMD/CBMD) with mathematical formulas to support diverse Braille domain research, and propose a syntax tree-based augmentation method tailored for Braille data. To address the underperformance of traditional fine-tuning methods in braille-related tasks, we investigate Braille Knowledge-Based Fine-Tuning (BKFT), which reduces the learning difficulty of Braille contextual features. BrailleLLM employs BKFT via instruction tuning to achieve unified Braille translation, formula-to-Braille conversion, and mixed-text translation. Experiments demonstrate that BKFT achieves significant performance improvements over conventional fine-tuning in Braille translation scenarios. Our open-sourced datasets and methodologies establish a foundation for low-resource multilingual Braille research.
pdf
bib
abs
Is Cognition Consistent with Perception? Assessing and Mitigating Multimodal Knowledge Conflicts in Document Understanding
Zirui Shao
|
Feiyu Gao
|
Zhaoqing Zhu
|
Chuwei Luo
|
Hangdi Xing
|
Zhi Yu
|
Qi Zheng
|
Ming Yan
|
Jiajun Bu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multimodal large language models (MLLMs) have shown impressive capabilities in document understanding, a rapidly growing research area with significant industrial demand. As a multimodal task, document understanding requires models to possess both perceptual and cognitive abilities. However, due to different types of annotation noise in training, current MLLMs often face conflicts between perception and cognition. Taking a document VQA task (cognition) as an example, an MLLM might generate answers that do not match the corresponding visual content identified by its OCR (perception). This conflict suggests that the MLLM might struggle to establish an intrinsic connection between the information it “sees” and what it “understands”. Such conflicts challenge the intuitive notion that cognition is consistent with perception, hindering the performance and explainability of MLLMs. In this paper, we define the conflicts between cognition and perception as Cognition and Perception (C&P) knowledge conflicts, a form of multimodal knowledge conflicts, and systematically assess them with a focus on document understanding. Our analysis reveals that even GPT-4o, a leading MLLM, achieves only 75.26% C&P consistency. To mitigate the C&P knowledge conflicts, we propose a novel method called Multimodal Knowledge Consistency Fine-tuning. Our method reduces C&P knowledge conflicts across all tested MLLMs and enhances their performance in both cognitive and perceptual tasks.
2024
pdf
bib
abs
DocHieNet: A Large and Diverse Dataset for Document Hierarchy Parsing
Hangdi Xing
|
Changxu Cheng
|
Feiyu Gao
|
Zirui Shao
|
Zhi Yu
|
Jiajun Bu
|
Qi Zheng
|
Cong Yao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Parsing documents from pixels, such as pictures and scanned PDFs, into hierarchical structures is extensively demanded in the daily routines of data storage, retrieval and understanding. However, previously the research on this topic has been largely hindered since most existing datasets are small-scale, or contain documents of only a single type, which are characterized by a lack of document diversity. Moreover, there is a significant discrepancy in the annotation standards across datasets. In this paper, we introduce a large and diverse document hierarchy parsing (DHP) dataset to compensate for the data scarcity and inconsistency problem. We aim to set a new standard as a more practical, long-standing benchmark. Meanwhile, we present a new DHP framework designed to grasp both fine-grained text content and coarse-grained pattern at layout element level, enhancing the capacity of pre-trained text-layout models in handling the multi-page and multi-level challenges in DHP. Through exhaustive experiments, we validate the effectiveness of our proposed dataset and method.
2023
pdf
bib
abs
GEM: Gestalt Enhanced Markup Language Model for Web Understanding via Render Tree
Zirui Shao
|
Feiyu Gao
|
Zhongda Qi
|
Hangdi Xing
|
Jiajun Bu
|
Zhi Yu
|
Qi Zheng
|
Xiaozhong Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Inexhaustible web content carries abundant perceptible information beyond text. Unfortunately, most prior efforts in pre-trained Language Models (LMs) ignore such cyber-richness, while few of them only employ plain HTMLs, and crucial information in the rendered web, such as visual, layout, and style, are excluded. Intuitively, those perceptible web information can provide essential intelligence to facilitate content understanding tasks. This study presents an innovative Gestalt Enhanced Markup (GEM) Language Model inspired by Gestalt psychological theory for hosting heterogeneous visual information from the render tree into the language model without requiring additional visual input. Comprehensive experiments on multiple downstream tasks, i.e., web question answering and web information extraction, validate GEM superiority.
pdf
bib
abs
Translate the Beauty in Songs: Jointly Learning to Align Melody and Translate Lyrics
Chengxi Li
|
Kai Fan
|
Jiajun Bu
|
Boxing Chen
|
Zhongqiang Huang
|
Zhi Yu
Findings of the Association for Computational Linguistics: EMNLP 2023
Song translation requires both translation of lyrics and alignment of music notes so that the resulting verse can be sung to the accompanying melody, which is a challenging problem that has attracted some interests in different aspects of the translation process. In this paper, we propose Lyrics-Melody Translation with Adaptive Grouping (LTAG), a holistic solution to automatic song translation by jointly modeling lyric translation and lyrics-melody alignment. It is a novel encoder-decoder framework that can simultaneously translate the source lyrics and determine the number of aligned notes at each decoding step through an adaptive note grouping module. To address data scarcity, we commissioned a small amount of training data annotated specifically for this task and used large amounts of automatic training data through back-translation. Experiments conducted on an English-Chinese song translation data set show the effectiveness of our model in both automatic and human evaluations.