Zhentao Xu
2025
ProCut: LLM Prompt Compression via Attribution Estimation
Zhentao Xu
|
Fengyi Li
|
Albert C. Chen
|
Xiaofeng Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
In large-scale industrial LLM systems, prompt templates often expand to thousands of tokens as teams iteratively incorporate sections such as task instructions, few-shot examples, and heuristic rules to enhance robustness and coverage. This expansion leads to bloated prompts that are difficult to maintain and incur significant inference latency and serving costs. To address this, we introduce Prompt Compression via Attribution Estimation (ProCut), a flexible, LLM-agnostic, training-free framework that compresses prompts through attribution analysis. ProCut segments prompt templates into semantically meaningful units, quantifies their impact on task performance, and prunes low-utility components. Through extensive experiments on five public benchmark datasets and real-world industrial prompts, we show that ProCut achieves substantial prompt size reductions (78% fewer tokens in production) while maintaining or even slightly improving task performance (up to 62% better than alternative methods). We further introduce an LLM-driven attribution estimator that reduces compression latency by over 50%, and demonstrate that ProCut integrates seamlessly with existing prompt-optimization frameworks to produce concise, high-performing prompts.
2020
Inferring Social Media Users’ Mental Health Status from Multimodal Information
Zhentao Xu
|
Verónica Pérez-Rosas
|
Rada Mihalcea
Proceedings of the Twelfth Language Resources and Evaluation Conference
Worldwide, an increasing number of people are suffering from mental health disorders such as depression and anxiety. In the United States alone, one in every four adults suffers from a mental health condition, which makes mental health a pressing concern. In this paper, we explore the use of multimodal cues present in social media posts to predict users’ mental health status. Specifically, we focus on identifying social media activity that either indicates a mental health condition or its onset. We collect posts from Flickr and apply a multimodal approach that consists of jointly analyzing language, visual, and metadata cues and their relation to mental health. We conduct several classification experiments aiming to discriminate between (1) healthy users and users affected by a mental health illness; and (2) healthy users and users prone to mental illness. Our experimental results indicate that using multiple modalities can improve the performance of this classification task as compared to the use of one modality at a time, and can provide important cues into a user’s mental status.