Zhenpeng Su


2025

pdf bib
DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs
Minxuan Lv | Zhenpeng Su | Leiyu Pan | Yizhe Xiong | Zijia Lin | Hui Chen | Wei Zhou | Jungong Han | Guiguang Ding | Wenwu Ou | Di Zhang | Kun Gai | Songlin Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

As large language models continue to scale, computational costs and resource consumption have emerged as significant challenges. While existing sparsification methods like pruning reduce computational overhead, they risk losing model knowledge through parameter removal. This paper proposes DSMoE (Dynamic Sparse Mixture-of-Experts), a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks. We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge based on input complexity. Additionally, we introduce a sparsity loss term to balance performance and computational efficiency. Extensive experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches across language modeling and downstream tasks, particularly excelling in generation tasks. Analysis reveals that DSMoE learns distinctive layerwise activation patterns, providing new insights for future MoE architecture design.

pdf bib
Temporal Scaling Law for Large Language Models
Yizhe Xiong | Xiansheng Chen | Xin Ye | Hui Chen | Zijia Lin | Haoran Lian | Zhenpeng Su | Wei Huang | Jianwei Niu | Jungong Han | Guiguang Ding
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recently, Large Language Models (LLMs) have been widely adopted in a wide range of tasks, leading to increasing attention towards the research on how scaling LLMs affects their performance. Existing works, termed Scaling Laws, have discovered that the final test loss of LLMs scales as power-laws with model size, computational budget, and dataset size. However, the temporal change of the test loss of an LLM throughout its pretraining process remains unexplored, though it is valuable in many aspects, such as selecting better hyperparameters *directly* on the target LLM. In this paper, we propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up. In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position, and further develop a dynamic hyperbolic-law. Afterwards, we derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law. Results on both in-distribution (ID) and out-of-distribution (OOD) validation datasets demonstrate that our temporal scaling law accurately predicts the test loss of LLMs across training steps. Our temporal scaling law has broad practical applications. First, it enables direct and efficient hyperparameter selection on the target LLM, such as data mixture proportions. Secondly, viewing the LLM pretraining dynamics from the token position granularity provides some insights to enhance the understanding of LLM pretraining.

pdf bib
CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts
Zhenpeng Su | Xing W | Zijia Lin | Yizhe Xiong | Minxuan Lv | Guangyuan Ma | Hui Chen | Songlin Hu | Guiguang Ding
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLM) have been attracting much attention from the community recently, due to their remarkable performance in all kinds of downstream tasks. According to the well-known scaling law, scaling up a dense LLM enhances its capabilities, but also significantly increases the computational complexity. Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs. Yet MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy. To tackle that, previous works introduced shared experts and combined their outputs with those of the top K routed experts in an addition manner. In this paper, inspired by collective matrix factorization to learn shared knowledge among data, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a multiplication manner. Extensive experimental results indicate that CartesianMoE outperforms previous MoE models for building LLMs, in terms of both perplexity and downstream task performance. And we also find that CartesianMoE achieves better expert routing robustness.

2024

pdf bib
MiLe Loss: a New Loss for Mitigating the Bias of Learning Difficulties in Generative Language Models
Zhenpeng Su | Zijia Lin | Baixue Baixue | Hui Chen | Songlin Hu | Wei Zhou | Guiguang Ding | Xing W
Findings of the Association for Computational Linguistics: NAACL 2024

Generative language models are usually pre-trained on large text corpus via predicting the next token (i.e., sub-word/word/phrase) given the previous ones. Recent works have demonstrated the impressive performance of large generative language models on downstream tasks. However, existing generative language models generally neglect an inherent challenge in text corpus during training, i.e., the imbalance between frequent tokens and infrequent ones. It can lead a language model to be dominated by common and easy-to-learn tokens, thereby overlooking the infrequent and difficult-to-learn ones. To alleviate that, we propose a **MiLe Loss** function for **mi**tigating the bias of **le**arning difficulties with tokens. During training, it can dynamically assess the learning difficulty of a to-be-learned token, according to the information entropy of the corresponding predicted probability distribution over the vocabulary. Then it scales the training loss adaptively, trying to lead the model to focus more on the difficult-to-learn tokens. On the Pile dataset, we train generative language models at different scales of 468M, 1.2B, and 6.7B parameters. Experiments reveal that models incorporating the proposed MiLe Loss can gain consistent performance improvement on downstream benchmarks.

pdf bib
Dial-MAE: ConTextual Masked Auto-Encoder for Retrieval-based Dialogue Systems
Zhenpeng Su | Xing W | Wei Zhou | Guangyuan Ma | Songlin Hu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Dialogue response selection aims to select an appropriate response from several candidates based on a given user and system utterance history. Most existing works primarily focus on post-training and fine-tuning tailored for cross-encoders. However, there are no post-training methods tailored for dense encoders in dialogue response selection. We argue that when the current language model, based on dense dialogue systems (such as BERT), is employed as a dense encoder, it separately encodes dialogue context and response, leading to a struggle to achieve the alignment of both representations. Thus, we propose Dial-MAE (Dialogue Contextual Masking Auto-Encoder), a straightforward yet effective post-training technique tailored for dense encoders in dialogue response selection. Dial-MAE uses an asymmetric encoder-decoder architecture to compress the dialogue semantics into dense vectors, which achieves better alignment between the features of the dialogue context and response. Our experiments have demonstrated that Dial-MAE is highly effective, achieving state-of-the-art performance on two commonly evaluated benchmarks.