2025
pdf
bib
abs
A Systematic Survey of Automatic Prompt Optimization Techniques
Kiran Ramnath
|
Kang Zhou
|
Sheng Guan
|
Soumya Smruti Mishra
|
Xuan Qi
|
Zhengyuan Shen
|
Shuai Wang
|
Sangmin Woo
|
Sullam Jeoung
|
Yawei Wang
|
Haozhu Wang
|
Han Ding
|
Yuzhe Lu
|
Zhichao Xu
|
Yun Zhou
|
Balasubramaniam Srinivasan
|
Qiaojing Yan
|
Yueyan Chen
|
Haibo Ding
|
Panpan Xu
|
Lin Lee Cheong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Since the advent of large language models (LLMs), prompt engineering has been a crucial step for eliciting desired responses for various Natural Language Processing (NLP) tasks. However, prompt engineering remains an impediment for end users due to rapid advances in models, tasks, and associated best practices. To mitigate this, Automatic Prompt Optimization (APO) techniques have recently emerged that use various automated techniques to help improve the performance of LLMs on various tasks. In this paper, we present a comprehensive survey summarizing the current progress and remaining challenges in this field. We provide a formal definition of APO, a 5-part unifying framework, and then proceed to rigorously categorize all relevant works based on their salient features therein. We hope to spur further research guided by our framework.
pdf
bib
abs
SLOT: Structuring the Output of Large Language Models
Zhengyuan Shen
|
Darren Yow-Bang Wang
|
Soumya Smruti Mishra
|
Zhichao Xu
|
Yifei Teng
|
Haibo Ding
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Structured outputs are essential for large language models (LLMs) in critical applications like agents and information extraction. Despite their capabilities, LLMs often generate outputs that deviate from predefined schemas, significantly hampering reliable application development. We present SLOT (Structured LLM Output Transformer), a model-agnostic approach that transforms unstructured LLM outputs into precise structured formats. While existing solutions predominantly rely on constrained decoding techniques or are tightly coupled with specific models, SLOT employs a fine-tuned lightweight language model as a post-processing layer, achieving flexibility across various LLMs and schema specifications. We introduce SLOTBench, curated by a data synthesis pipeline alongside a formal evaluation methodology that quantifies both schema accuracy and content fidelity. Our results demonstrate that fine-tuned Mistral-7B model with constrained decoding achieves near-perfect schema accuracy (99.5%) and content similarity (94.0%), outperforming Claude-3.5-Sonnet by substantial margins (+25 and +20 percentage points, respectively). Notably, even compact models like Llama-3.2-1B can match or exceed the structured output capabilities of much larger proprietary models when equipped with SLOT, enabling reliable structured generation in resource-constrained environments. SLOTBench will be released upon legal approval.
pdf
bib
abs
IPR: Intelligent Prompt Routing with User-Controlled Quality-Cost Trade-offs
Aosong Feng
|
Balasubramaniam Srinivasan
|
Yun Zhou
|
Zhichao Xu
|
Kang Zhou
|
Sheng Guan
|
Yueyan Chen
|
Xian Wu
|
Ninad Kulkarni
|
Yi Zhang
|
Zhengyuan Shen
|
Dmitriy Bespalov
|
Soumya Smruti Mishra
|
Yifei Teng
|
Darren Yow-Bang Wang
|
Haibo Ding
|
Lin Lee Cheong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Routing incoming queries to the most cost-effective LLM while maintaining response quality poses a fundamental challenge in optimizing performance-cost trade-offs for large-scale commercial systems.We present IPR—a quality-constrained Intelligent Prompt Routing framework that dynamically selects optimal models based on predicted response quality and user-specified tolerance levels.IPR introduces three key innovations: (1) a modular architecture with lightweight quality estimators trained on 1.5M prompts annotated with calibrated quality scores, enabling fine-grained quality prediction across model families; (2) a user-controlled routing mechanism with tolerance parameter 𝜏 ∈ [0,1] that provides explicit control over quality-cost trade-offs; and (3) an extensible design using frozen encoders with model-specific adapters, reducing new model integration from days to hours. To rigorously train and evaluate IPR, we curate an industrial-level IPR dataset, a comprehensive benchmark containing 1.5 million examples with response quality annotations across 11 LLM candidates.Deployed on a major cloud platform, IPR achieves 43.9% cost reduction while maintaining quality parity with the strongest model in the Claude family and processes requests with sub-150ms latency.
pdf
bib
abs
DiscoverGPT: Multi-task Fine-tuning Large Language Model for Related Table Discovery
Xuming Hu
|
Xiao Qin
|
Chuan Lei
|
Asterios Katsifodimos
|
Zhengyuan Shen
|
Balasubramaniam Srinivasan
|
Huzefa Rangwala
Findings of the Association for Computational Linguistics: NAACL 2025
Natural language understanding over tabular data has played a significant role in data discovery tasks such as joinable and unionable table search. State-of-the-art approaches adopt large language models (LLMs) pre-trained over massive text corpora to learn and evaluate the table semantic relatedness. Existing methods typically follow a pretrain-and-finetune paradigm, namely fine-tuning an LLM using tabular data with table relatedness labels. To enhance model’s understanding of tabular data, recent studies include auxiliary tasks such as entity resolution and column type classification in the fine-tuning phase. In spite of achieving performance gain from these supervisions, there is a lack of study on how these supervisions complement or even contrast each other, leading to a subpar performance on the final data discovery tasks. In this paper, we propose a simple yet effective multi-task fine-tuning framework named DiscoverGPT that holistically discovers and leverages the intricate relationships among the supervisions to optimize the performance on the data discovery task. Moreover, DiscoverGPT is plug-and-play that allows a broad range of open-domain auxiliary tasks to be incorporated, by utilizing the generative power of LLMs. We demonstrate the usability and effectiveness of DiscoverGPT with baseline comparisons and ablation studies. DiscoverGPT outperforms the best performing baseline by up to 7% in F1 score.
2024
pdf
bib
abs
CoverICL: Selective Annotation for In-Context Learning via Active Graph Coverage
Costas Mavromatis
|
Balasubramaniam Srinivasan
|
Zhengyuan Shen
|
Jiani Zhang
|
Huzefa Rangwala
|
Christos Faloutsos
|
George Karypis
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In-context learning (ICL) adapts Large Language Models (LLMs) to new tasks, without requiring any parameter updates, but few annotated examples as input. In this work, we investigate selective annotation for ICL, where there is a limited budget for annotating examples, similar to low-budget active learning (AL). Although uncertainty-based selection is unreliable with few annotated data, we present CoverICL, an adaptive graph-based selection algorithm, that effectively incorporates uncertainty sampling into selective annotation for ICL. First, CoverICL builds a nearest-neighbor graph based on the semantic similarity between candidate ICL examples. Then, CoverICL employs uncertainty estimation by the LLM to identify hard examples for the task. Selective annotation is performed over the active graph of the hard examples, adapting the process to the particular LLM used and the task tackled. CoverICL selects the most representative examples by solving a Maximum Coverage problem, approximating diversity-based sampling. Extensive experiments on ten datasets and seven LLMs show that, by incorporating uncertainty via coverage on the active graph, CoverICL (1) outperforms existing AL methods for ICL by 2–4.6% accuracy points, (2) is up to 2x more budget-efficient than SOTA methods for low-budget AL, and (3) generalizes better across tasks compared to non-graph alternatives.
2023
pdf
bib
abs
NameGuess: Column Name Expansion for Tabular Data
Jiani Zhang
|
Zhengyuan Shen
|
Balasubramaniam Srinivasan
|
Shen Wang
|
Huzefa Rangwala
|
George Karypis
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Recent advances in large language models have revolutionized many sectors, including the database industry. One common challenge when dealing with large volumes of tabular data is the pervasive use of abbreviated column names, which can negatively impact performance on various data search, access, and understanding tasks. To address this issue, we introduce a new task, called NameGuess, to expand column names (used in database schema) as a natural language generation problem. We create a training dataset of 384K abbreviated-expanded column pairs using a new data fabrication method and a human-annotated evaluation benchmark that includes 9.2K examples from real-world tables. To tackle the complexities associated with polysemy and ambiguity in NameGuess, we enhance auto-regressive language models by conditioning on table content and column header names – yielding a fine-tuned model (with 2.7B parameters) that matches human performance. Furthermore, we conduct a comprehensive analysis (on multiple LLMs) to validate the effectiveness of table content in NameGuess and identify promising future opportunities. Code has been made available at https://github.com/amazon-science/nameguess.
pdf
bib
abs
Automatic Table Union Search with Tabular Representation Learning
Xuming Hu
|
Shen Wang
|
Xiao Qin
|
Chuan Lei
|
Zhengyuan Shen
|
Christos Faloutsos
|
Asterios Katsifodimos
|
George Karypis
|
Lijie Wen
|
Philip S. Yu
Findings of the Association for Computational Linguistics: ACL 2023
Given a data lake of tabular data as well as a query table, how can we retrieve all the tables in the data lake that can be unioned with the query table? Table union search constitutes an essential task in data discovery and preparation as it enables data scientists to navigate massive open data repositories. Existing methods identify uniability based on column representations (word surface forms or token embeddings) and column relation represented by column representation similarity. However, the semantic similarity obtained between column representations is often insufficient to reveal latent relational features to describe the column relation between pair of columns and not robust to the table noise. To address these issues, in this paper, we propose a multi-stage self-supervised table union search framework called AutoTUS, which represents column relation as a vector– column relational representation and learn column relational representation in a multi-stage manner that can better describe column relation for unionability prediction. In particular, the large language model powered contextualized column relation encoder is updated by adaptive clustering and pseudo label classification iteratively so that the better column relational representation can be learned. Moreover, to improve the robustness of the model against table noises, we propose table noise generator to add table noise to the training table data. Experiments on real-world datasets as well as synthetic test set augmented with table noise show that AutoTUS achieves 5.2% performance gain over the SOTA baseline.