Zhendong Chu
2025
UniEDU: Toward Unified and Efficient Large Multimodal Models for Educational Tasks
Zhendong Chu
|
Jian Xie
|
Shen Wang
|
Zichao Wang
|
Qingsong Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Education materials for K-12 students often consist of multiple modalities, such as text and images, posing challenges for models to fully understand nuanced information in these materials. In this paper, we propose a unified language and vision assistant UniEDU designed for various educational applications, including knowledge recommendation, knowledge tracing, time cost prediction, and user answer prediction, all within a single model. Unlike conventional task-specific models, UniEDU offers a unified solution that excels across multiple educational tasks while maintaining strong generalization capabilities. Its adaptability makes it well-suited for real-world deployment in diverse learning environments. Furthermore, UniEDU is optimized for industry-scale deployment by significantly reducing computational overhead—achieving approximately a 300% increase in efficiency—while maintaining competitive performance with minimal degradation compared to fully fine-tuned models. This work represents a significant step toward creating versatile AI systems tailored to the evolving demands of education.
2024
Self-Cleaning: Improving a Named Entity Recognizer Trained on Noisy Data with a Few Clean Instances
Zhendong Chu
|
Ruiyi Zhang
|
Tong Yu
|
Rajiv Jain
|
Vlad Morariu
|
Jiuxiang Gu
|
Ani Nenkova
Findings of the Association for Computational Linguistics: NAACL 2024
To achieve state-of-the-art performance, one still needs to train NER models on large-scale, high-quality annotated data, an asset that is both costly and time-intensive to accumulate. In contrast, real-world applications often resort to massive low-quality labeled data through non-expert annotators via crowdsourcing and external knowledge bases via distant supervision as a cost-effective alternative. However, these annotation methods result in noisy labels, which in turn lead to a notable decline in performance. Hence, we propose to denoise the noisy NER data with guidance from a small set of clean instances. Along with the main NER model we train a discriminator model and use its outputs to recalibrate the sample weights. The discriminator is capable of detecting both span and category errors with different discriminative prompts. Results on public crowdsourcing and distant supervision datasets show that the proposed method can consistently improve performance with a small guidance set.
Search
Fix author
Co-authors
- Jiuxiang Gu 1
- Rajiv Jain 1
- Vlad Morariu 1
- Ani Nenkova 1
- Shen Wang 1
- show all...