Zhecheng Li


2025

pdf bib
Vulnerability of LLMs to Vertically Aligned Text Manipulations
Zhecheng Li | Yiwei Wang | Bryan Hooi | Yujun Cai | Zhen Xiong | Nanyun Peng | Kai-Wei Chang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Vertical text input is commonly encountered in various real-world applications, such as mathematical computations and word-based Sudoku puzzles. While current large language models (LLMs) have excelled in natural language tasks, they remain vulnerable to variations in text formatting.Recent research demonstrates that modifying input formats, such as vertically aligning words for encoder-based models, can substantially lower accuracy in text classification tasks. While easily understood by humans, these inputs can significantly mislead models, posing a potential risk of bypassing detection in real-world scenarios involving harmful or sensitive information. With the expanding application of LLMs, a crucial question arises: Do decoder-based LLMs exhibit similar vulnerabilities to vertically formatted text input? In this paper, we investigate the impact of vertical text input on the performance of various LLMs across multiple text classification datasets and analyze the underlying causes. Our findings are as follows: (i) Vertical text input significantly degrades the accuracy of LLMs in text classification tasks. (ii) Chain of Thought (CoT) reasoning does not help LLMs recognize vertical input or mitigate its vulnerability, but few-shot learning with careful analysis does. (iii) We explore the underlying cause of the vulnerability by analyzing the inherent issues in tokenization and attention matrices.

pdf bib
Who is in the Spotlight: The Hidden Bias Undermining Multimodal Retrieval-Augmented Generation
Jiayu Yao | Shenghua Liu | Yiwei Wang | Lingrui Mei | Baolong Bi | Yuyao Ge | Zhecheng Li | Xueqi Cheng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal Retrieval-Augmented Generation (RAG) systems have become essential in knowledge-intensive and open-domain tasks. As retrieval complexity increases, ensuring the robustness of these systems is critical. However, current RAG models are highly sensitive to the order in which evidence is presented, often resulting in unstable performance and biased reasoning, particularly as the number of retrieved items or modality diversity grows. This raises a central question: How does the position of retrieved evidence affect multimodal RAG performance? To answer this, we present the first comprehensive study of position bias in multimodal RAG systems. Through controlled experiments across text-only, image-only, and mixed-modality tasks, we observe a consistent U-shaped accuracy curve with respect to evidence position. To quantify this bias, we introduce the Position Sensitivity Index (PSIp) and develop a visualization framework to trace attention allocation patterns across decoder layers. Our results reveal that multimodal interactions intensify position bias compared to unimodal settings, and that this bias increases logarithmically with retrieval range. These findings offer both theoretical and empirical foundations for position-aware analysis in RAG, highlighting the need for evidence reordering or debiasing strategies to build more reliable and equitable generation systems. Our code and experimental resources are available at https://github.com/Theodyy/Multimodal-Rag-Position-Bias.

pdf bib
Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLMs
Zhen Xiong | Yujun Cai | Zhecheng Li | Yiwei Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advances in test-time scaling have enabled Large Language Models (LLMs) to display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation. Despite their impressive reasoning abilities, Large Reasoning Models (LRMs) frequently display unstable behaviors, e.g., hallucinating unsupported premises, overthinking simple tasks, and displaying higher sensitivity to prompt variations. This raises a deeper research question: How can we represent the reasoning process of LRMs to map their minds? To address this, we propose a unified graph-based analytical framework for fine-grained modeling and quantitative analysis of LRM reasoning dynamics. Our method first clusters long, verbose CoT outputs into semantically coherent reasoning steps, then constructs directed reasoning graphs to capture contextual and logical dependencies among these steps. Through a comprehensive analysis of derived reasoning graphs, we also reveal that key structural properties, such as exploration density, branching, and convergence ratios, strongly correlate with models’ performance. The proposed framework enables quantitative evaluation of internal reasoning structure and quality beyond conventional metrics and also provides practical insights for prompt engineering and cognitive analysis of LLMs. Code and resources will be released to facilitate future research in this direction.

pdf bib
DRS: Deep Question Reformulation With Structured Output
Zhecheng Li | Yiwei Wang | Bryan Hooi | Yujun Cai | Nanyun Peng | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2025

Question answering represents a core capability of large language models (LLMs). However, when individuals encounter unfamiliar knowledge in texts, they often formulate questions that the text itself cannot answer due to insufficient understanding of the underlying information. Recent studies reveal that while LLMs can detect unanswerable questions, they struggle to assist users in reformulating these questions. Even advanced models like GPT-3.5 demonstrate limited effectiveness in this regard. To address this limitation, we propose DRS: Deep Question Reformulation with Structured Output, a novel zero-shot method aimed at enhancing LLMs’ ability to assist users in reformulating questions to extract relevant information from new documents. DRS combines the strengths of LLMs with a DFS-based algorithm to iteratively explore potential entity combinations and constrain outputs using predefined entities. This structured approach significantly enhances the reformulation capabilities of LLMs. Comprehensive experimental evaluations demonstrate that DRS improves the reformulation accuracy of GPT-3.5 from 23.03% to 70.42%, while also enhancing the performance of open-source models, such as Gemma2-9B, from 26.35% to 56.75%.