Zhaomin Wu
2025
Model-based Large Language Model Customization as Service
Zhaomin Wu
|
Jizhou Guo
|
Junyi Hou
|
Bingsheng He
|
Lixin Fan
|
Qiang Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Prominent Large Language Model (LLM) services from providers like OpenAI and Google excel at general tasks but often underperform on domain-specific applications. Current customization services for these LLMs typically require users to upload data for fine-tuning, posing significant privacy risks. While differentially private (DP) data synthesis presents a potential alternative, its application commonly results in low effectiveness due to the introduction of excessive noise on data for DP. To overcome this, we introduce *Llamdex*, a novel framework that facilitates LLM customization as a service, where the client uploads pre-trained domain-specific *models* rather than data. This client-uploaded model, optionally protected by DP with much lower noise, is inserted into the base LLM via connection modules. Significantly, these connecting modules are trained without requiring sensitive domain data, enabling clients to customize LLM services while preserving data privacy. Experiments demonstrate that Llamdex improves domain-specific accuracy by up to 26% over state-of-the-art private data synthesis methods under identical privacy constraints and, by obviating the need for users to provide domain context within queries, maintains inference efficiency comparable to the original LLM service.
Federated Data-Efficient Instruction Tuning for Large Language Models
Zhen Qin
|
Zhaomin Wu
|
Bingsheng He
|
Shuiguang Deng
Findings of the Association for Computational Linguistics: ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
Search
Fix author
Co-authors
- Bingsheng He 2
- Shuiguang Deng 1
- Lixin Fan 1
- Jizhou Guo 1
- Junyi Hou 1
- show all...