Zhanke Zhou


2025

pdf bib
Physics Reasoner: Knowledge-Augmented Reasoning for Solving Physics Problems with Large Language Models
Xinyu Pang | Ruixin Hong | Zhanke Zhou | Fangrui Lv | Xinwei Yang | Zhilong Liang | Bo Han | Changshui Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Physics problems constitute a significant aspect of reasoning, necessitating complicated reasoning ability and abundant physics knowledge. However, existing large language models (LLMs) frequently fail due to a lack of knowledge or incorrect knowledge application. To mitigate these issues, we propose Physics Reasoner, a knowledge-augmented framework to solve physics problems with LLMs. Specifically, the proposed framework constructs a comprehensive formula set to provide explicit physics knowledge and utilizes checklists containing detailed instructions to guide effective knowledge application. Namely, given a physics problem, Physics Reasoner solves it through three stages: problem analysis, formula retrieval, and guided reasoning. During the process, checklists are employed to enhance LLMs’ self-improvement in the analysis and reasoning stages. Empirically, Physics Reasoner mitigates the issues of insufficient knowledge and incorrect application, achieving state-of-the-art performance on SciBench with an average accuracy improvement of 5.8%.

pdf bib
SATBench: Benchmarking LLMs’ Logical Reasoning via Automated Puzzle Generation from SAT Formulas
Anjiang Wei | Yuheng Wu | Yingjia Wan | Tarun Suresh | Huanmi Tan | Zhanke Zhou | Sanmi Koyejo | Ke Wang | Alex Aiken
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems.Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a puzzle using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-based and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. Our error analysis reveals systematic failures such as satisfiability bias, context inconsistency, and condition omission, highlighting limitations of current LLMs in search-based logical reasoning. Our code and data are publicly available at https://github.com/Anjiang-Wei/SATBench

2022

pdf bib
Efficient Hyper-parameter Search for Knowledge Graph Embedding
Yongqi Zhang | Zhanke Zhou | Quanming Yao | Yong Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While hyper-parameters (HPs) are important for knowledge graph (KG) learning, existing methods fail to search them efficiently. To solve this problem, we first analyze the properties of different HPs and measure the transfer ability from small subgraph to the full graph. Based on the analysis, we propose an efficient two-stage search algorithm KGTuner, which efficiently explores HP configurations on small subgraph at the first stage and transfers the top-performed configurations for fine-tuning on the large full graph at the second stage. Experiments show that our method can consistently find better HPs than the baseline algorithms within the same time budget, which achieves 9.1% average relative improvement for four embedding models on the large-scale KGs in open graph benchmark. Our code is released in https://github.com/AutoML-Research/KGTuner.