We present PricingLogic, the first benchmarkthat probes whether Large Language Mod-els (LLMs) can reliably automate tourism-booking prices when multiple, overlapping farerules apply. Travel agencies are eager to of-fload this error-prone task to AI systems; how-ever, deploying LLMs without verified reliabil-ity could result in significant financial lossesand erode customer trust. PricingLogic com-prises 300 natural-language questions based onbooking requests derived from 42 real-worldpricing policies, spanning two levels of diffi-culty: (i) basic customer-type pricing and (ii)bundled-tour calculations involving interactingdiscounts. Evaluations of a line of LLMs re-veal a steep performance drop on the harder tier,exposing systematic failures in rule interpreta-tion and arithmetic reasoning. These resultshighlight that, despite their general capabilities,today’s LLMs remain unreliable for revenue-critical applications without further safeguardsor domain adaptation. Our code and dataset areavaliable in https://github.com/EIT-NLP/PricingLogic.
Assisting LLMs with code generation improved their performanceon mathematical reasoning tasks.However, the evaluation of code-assisted LLMs is generally restricted to execution correctness, lacking a rigorous evaluation of their generated programs.In this work, we bridge this gap by conducting an in-depth analysis of code-assisted LLMs generated programs in response to math reasoning tasks, with a focus on evaluating the soundness of the underlying reasoning processes. For this purpose, we assess the generations of five LLMs, on several math datasets, both manually and automatically, and propose a taxonomy of generated programs based on their logical soundness.Our findings show that the capabilities of models significantly impact the logic implemented to solve the problem. Closed-source LLMs ground their programs in mathematical concepts, whereas open-source models often resort to unsound reasoning, relying on memorized information and exhaustive searches. Furthermore, increasing the difficulty of problems decreases sound generations for all models, revealing a critical shortcoming of LLMs on complex mathematics, contrary to what accuracy metrics suggest.Our work highlights the need for more holistic evaluations of code-assisted LLMs beyond execution accuracy metrics, toward a better understanding of LLMs’ limits in the math domain.