Zefeng Zhang


2025

pdf bib
Revealing and Mitigating the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
Wenyuan Zhang | Shuaiyi Nie | Jiawei Sheng | Zefeng Zhang | Xinghua Zhang | Yongquan He | Tingwen Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language model (LLM) role-playing has gained widespread attention. Authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs’ ability to detect characters’ known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose RoleKE-Bench to evaluate LLMs’ ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to detect these two types of errors effectively, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S2RD), to explore further the potential for improving error detection capabilities.

2024

pdf bib
Optimal Transport Guided Correlation Assignment for Multimodal Entity Linking
Zefeng Zhang | Jiawei Sheng | Zhang Chuang | Liangyunzhi Liangyunzhi | Wenyuan Zhang | Siqi Wang | Tingwen Liu
Findings of the Association for Computational Linguistics: ACL 2024

Multimodal entity linking (MEL) aims to link ambiguous mentions in multimodal contexts to entities in a multimodal knowledge graph. A pivotal challenge is to fully leverage multi-element correlations between mentions and entities to bridge modality gap and enable fine-grained semantic matching. Existing methods attempt several local correlative mechanisms, relying heavily on the automatically learned attention weights, which may over-concentrate on partial correlations. To mitigate this issue, we formulate the correlation assignment problem as an optimal transport (OT) problem, and propose a novel MEL framework, namely OT-MEL, with OT-guided correlation assignment. Thereby, we exploit the correlation between multimodal features to enhance multimodal fusion, and the correlation between mentions and entities to enhance fine-grained matching. To accelerate model prediction, we further leverage knowledge distillation to transfer OT assignment knowledge to attention mechanism. Experimental results show that our model significantly outperforms previous state-of-the-art baselines and confirm the effectiveness of the OT-guided correlation assignment.