Geocoding is a fundamental technique that links location mentions to their geographic positions, which is important for understanding texts in terms of where the described events occurred. Unlike most geocoding studies that targeted coarse-grained locations, we focus on geocoding at a fine-grained point-of-interest (POI) level. To address the challenge of finding appropriate geo-database entries from among many candidates with similar POI names, we develop a text embedding-based geocoding model and investigate (1) entry encoding representations and (2) hard negative mining approaches suitable for enhancing the model’s disambiguation ability. Our experiments show that the second factor significantly impact the geocoding accuracy of the model.
Corporate history in corporate annual reports includes events related to organizational changes, which can provide useful cues for a comprehensive understanding of corporate actions.However, extracting organizational changes requires identifying differences in companies before and after an event, raising concerns about whether existing information extraction systems can accurately capture the relations.This work introduces JaCorpTrack, a novel event extraction task designed to identify events related to organizational changes.JaCorpTrack defines five event types related to organizational changes and is designed to identify the company names before and after each event, as well as the corresponding date.Experimental results indicate that large language models (LLMs) exhibit notable disparities in performance across event types.Our analysis reveals that these systems face challenges in identifying company names before and after events, and in interpreting event types expressed under ambiguous terminology.We will publicly release our dataset and experimental code at https://github.com/naist-nlp/JaCorpTrack
We propose a simple method for nominal coordination boundary identification. As the main strength of our method, it can identify the coordination boundaries without training on labeled data, and can be applied even if coordination structure annotations are not available. Our system employs pre-trained word embeddings to measure the similarities of words and detects the span of coordination, assuming that conjuncts share syntactic and semantic similarities. We demonstrate that our method yields good results in identifying coordinated noun phrases in the GENIA corpus and is comparable to a recent supervised method for the case when the coordinator conjoins simple noun phrases.