Yuxuan Dong


2025

pdf bib
PhysReason: A Comprehensive Benchmark towards Physics-Based Reasoning
Xinyu Zhang | Yuxuan Dong | Yanrui Wu | Jiaxing Huang | Chengyou Jia | Basura Fernando | Mike Zheng Shou | Lingling Zhang | Jun Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models demonstrate remarkable capabilities across various domains, especially mathematics and logic reasoning. However, current evaluations overlook physics-based reasoning - a complex task requiring physics theorems and constraints. We present PhysReason, a 1,200-problem benchmark comprising knowledge-based (25%) and reasoning-based (75%) problems, where the latter are divided into three difficulty levels (easy, medium, hard). Notably, problems require an average of 8.1 solution steps, with hard requiring 15.6, reflecting the complexity of physics-based reasoning. We propose the Physics Solution Auto Scoring Framework, incorporating efficient answer-level and comprehensive step-level evaluations. Top-performing models like Deepseek-R1, Gemini-2.0-Flash-Thinking, and o3-mini-high achieve less than 60% on answer-level evaluation, with performance dropping from knowledge questions (75.11%) to hard problems (31.95%). Through step-level evaluation, we identified four key bottlenecks: Physics Theorem Application, Physics Process Understanding, Calculation, and Physics Condition Analysis. These findings position PhysReason as a novel and comprehensive benchmark for evaluating physics-based reasoning capabilities in large language models.

pdf bib
SNaRe: Domain-aware Data Generation for Low-Resource Event Detection
Tanmay Parekh | Yuxuan Dong | Lucas Bandarkar | Artin Kim | I-Hung Hsu | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Event Detection (ED) – the task of identifying event mentions from natural language text – is critical for enabling reasoning in highly specialized domains such as biomedicine, law, and epidemiology. Data generation has proven to be effective in broadening its utility to wider applications without requiring expensive expert annotations. However, when existing generation approaches are applied to specialized domains, they struggle with label noise, where annotations are incorrect, and domain drift, characterized by a distributional mismatch between generated sentences and the target domain. To address these issues, we introduce SNaRe, a domain-aware synthetic data generation framework composed of three components: Scout, Narrator, and Refiner. Scout extracts triggers from unlabeled target domain data and curates a high-quality domain-specific trigger list using corpus-level statistics to mitigate domain drift. Narrator, conditioned on these triggers, generates high-quality domain-aligned sentences, and Refiner identifies additional event mentions, ensuring high annotation quality. Experimentation on three diverse domain ED datasets reveals how SNaRe outperforms the best baseline, achieving average F1 gains of 3-7% in the zero-shot/few-shot settings and 4-20% F1 improvement for multilingual generation. Analyzing the generated trigger hit rate and human evaluation substantiates SNaRe’s stronger annotation quality and reduced domain drift.

2024

pdf bib
Event Detection from Social Media for Epidemic Prediction
Tanmay Parekh | Anh Mac | Jiarui Yu | Yuxuan Dong | Syed Shahriar | Bonnie Liu | Eric Yang | Kuan-Hao Huang | Wei Wang | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Social media is an easy-to-access platform providing timely updates about societal trends and events. Discussions regarding epidemic-related events such as infections, symptoms, and social interactions can be crucial for informing policymaking during epidemic outbreaks. In our work, we pioneer exploiting Event Detection (ED) for better preparedness and early warnings of any upcoming epidemic by developing a framework to extract and analyze epidemic-related events from social media posts. To this end, we curate an epidemic event ontology comprising seven disease-agnostic event types and construct a Twitter dataset SPEED with human-annotated events focused on the COVID-19 pandemic. Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics of Monkeypox, Zika, and Dengue; while models trained on existing ED datasets fail miserably. Furthermore, we show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox. This utility of our framework lays the foundations for better preparedness against emerging epidemics.