Parameter-efficient methods like LoRA have revolutionised large language model (LLM) fine-tuning. ReLoRA extends this idea to pretraining by repeatedly merging and reinitialising low-rank adapters, increasing cumulative rank while keeping updates cheap. This aligns well with observations that high-capacity models learn through locally low-rank trajectories that expand over time. By contrast, recent work suggests that small language models (SLMs) exhibit rank deficiencies and under-utilise their available dimensionality. This raises a natural question: can ReLoRA’s rank-expanding update rule steer SLMs toward healthier learning dynamics, mitigating rank bottlenecks in a capacity-constrained regime? We argue SLMs are an ideal testbed: they train quickly, enable controlled ablations, and make rank phenomena more measurable. We present the first systematic study of ReLoRA in SLMs (11M-66M parameters), evaluating both performance and learning dynamics. Across loss, Paloma perplexity, and BLiMP, we find that ReLoRA underperforms full-rank training, with gaps widening at larger scales. Analysis of proportional effective rank and condition numbers shows that ReLoRA amplifies existing rank deficiencies and induces ill-conditioned updates early in training. Our results suggest that while ReLoRA’s merge-and-restart strategy can expand ranks in larger models, it does not straightforwardly translate to capacity-limited SLMs, motivating adaptive-rank or hybrid-rank approaches for low-compute pretraining.
Building language models (LMs), especially small and medium ones, remains more art than science. While large LMs often improve by sheer scale, it is still unclear why many design choices work. For small LMs, this uncertainty is more limiting: tight parameter budgets make each decision critical, yet researchers still lack systematic, scientific ways to test and refine new ideas. We introduce Pico, a lightweight, modular framework that enables systematic, hypothesis-driven research for small and medium-scale language model development. Pico consists of two libraries that together provide a practical sandbox where researchers can make targeted changes to a model’s architecture or training procedures and directly observe their effects on the model’s behavior. To support reproducible experimentation, we also release a suite of baseline models, pico-decoder, trained under standardized conditions and open-sourced for the community. Case studies highlight how Pico can support iterative small LM design and analysis.
Named-entity recognition (NER) in low-resource languages is usually tackled by finetuning very large multilingual LMs, an option that is often infeasible in memory- or latency-constrained settings. We ask whether small decoder LMs can be pretrained so that they adapt quickly and transfer zero-shot to languages unseen during pretraining. To this end we replace part of the autoregressive objective with first-order model-agnostic meta-learning (MAML). Tagalog and Cebuano are typologically similar yet structurally different in their actor/non-actor voice systems, and hence serve as a challenging test-bed. Across four model sizes (11 M – 570 M) MAML lifts zero-shot micro-F1 by 2–6 pp under head-only tuning and 1–3 pp after full tuning, while cutting convergence time by up to 8%. Gains are largest for single-token person entities that co-occur with Tagalog case particles si/ni, highlighting the importance of surface anchors.