Yuntao Li


2025

pdf bib
Structural Reward Model: Enhancing Interpretability, Efficiency, and Scalability in Reward Modeling
Xiaoyu Liu | Di Liang | Hongyu Shan | Peiyang Liu | Yonghao Liu | Muling Wu | Yuntao Li | Xianjie Wu | Li Miao | Jiangrong Shen | Minlong Peng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Reward Models (RMs) are key components for evaluating and guiding language model outputs. However, traditional scalar RMs often struggle with incorporating contextual and background information during inference, leading to incomplete evaluations. Generative RMs (GRMs) attempt to address these limitations by generating intermediate reasoning steps. Yet, their uncontrolled black-box nature and inefficiency due to sequential decoding hinder their industrial deployment. Industrial scenarios, such as search and recommendation systems, often involve single-domain tasks requiring evaluation along specific dimensions. In such contexts, diagnosing “bad cases” necessitates structured feedback to identify and optimize dimension-specific issues.In this paper, we propose the Structural Reward Model (SRM), a modular and interpretable framework integrating side-branch models as auxiliary feature generators. By introducing fine-grained dimensions, SRMs enable interpretable and efficient evaluation, facilitating targeted diagnostics and optimization. This structured approach ensures adaptability and scalability for industrial applications.Through comprehensive experiments, we demonstrate that SRMs outperform scalar RMs and GRMs in robustness and alignment with human preferences. The modular design further supports efficient optimization for practical scenarios, allowing SRM to provide a practical reward modeling solution for industry.

pdf bib
Assessing RAG System Capabilities on Financial Documents
Oscar Lithgow-Serrano | David Kletz | Vani Kanjirangat | David Adametz | Marzio Lunghi | Claudio Bonesana | Matilde Tristany-Farinha | Yuntao Li | Detlef Repplinger | Marco Pierbattista | Stefania Stan | Oleg Szehr
Proceedings of The 10th Workshop on Financial Technology and Natural Language Processing

2023

pdf bib
Let Me Check the Examples: Enhancing Demonstration Learning via Explicit Imitation
Sirui Wang | Kaiwen Wei | Hongzhi Zhang | Yuntao Li | Wei Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Demonstration learning aims to guide the prompt prediction by providing answered demonstrations in the few shot settings. Despite achieving promising results, existing work only concatenates the answered examples as demonstrations to the prompt template (including the raw context) without any additional operation, neglecting the prompt-demonstration dependencies. Besides, prior research found that randomly replacing the labels of demonstrations marginally hurts performance, illustrating that the model could not properly learn the knowledge brought by the demonstrations. Inspired by the human learning process, in this paper, we introduce Imitation DEMOnstration learning (Imitation-Demo) to strengthen demonstration learning via explicitly imitating human review behaviour, which includes: (1) contrastive learning mechanism to concentrate on similar demonstrations.(2) demonstration-label re-prediction method to consolidate known knowledge. Experiment results show that our proposed method achieves state-of-the-art performance on 5 out of 14 classification corpus. Further studies also prove that Imitation-Demo strengthens the associations between the prompt and demonstrations, which could provide the basis for exploring how demonstration learning works.

2022

pdf bib
DABERT: Dual Attention Enhanced BERT for Semantic Matching
Sirui Wang | Di Liang | Jian Song | Yuntao Li | Wei Wu
Proceedings of the 29th International Conference on Computational Linguistics

Transformer-based pre-trained language models such as BERT have achieved remarkable results in Semantic Sentence Matching. However, existing models still suffer from insufficient ability to capture subtle differences. Minor noise like word addition, deletion, and modification of sentences may cause flipped predictions. To alleviate this problem, we propose a novel Dual Attention Enhanced BERT (DABERT) to enhance the ability of BERT to capture fine-grained differences in sentence pairs. DABERT comprises (1) Dual Attention module, which measures soft word matches by introducing a new dual channel alignment mechanism to model affinity and difference attention. (2) Adaptive Fusion module, this module uses attention to learn the aggregation of difference and affinity features, and generates a vector describing the matching details of sentence pairs. We conduct extensive experiments on well-studied semantic matching and robustness test datasets, and the experimental results show the effectiveness of our proposed method.

pdf bib
Improving Semantic Matching through Dependency-Enhanced Pre-trained Model with Adaptive Fusion
Jian Song | Di Liang | Rumei Li | Yuntao Li | Sirui Wang | Minlong Peng | Wei Wu | Yongxin Yu
Findings of the Association for Computational Linguistics: EMNLP 2022

Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the Dependency-Enhanced Adaptive Fusion Attention (DAFA), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, (i) DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. (ii) It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.

2020

pdf bib
“What Do You Mean by That?” A Parser-Independent Interactive Approach for Enhancing Text-to-SQL
Yuntao Li | Bei Chen | Qian Liu | Yan Gao | Jian-Guang Lou | Yan Zhang | Dongmei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In Natural Language Interfaces to Databases systems, the text-to-SQL technique allows users to query databases by using natural language questions. Though significant progress in this area has been made recently, most parsers may fall short when they are deployed in real systems. One main reason stems from the difficulty of fully understanding the users’ natural language questions. In this paper, we include human in the loop and present a novel parser-independent interactive approach (PIIA) that interacts with users using multi-choice questions and can easily work with arbitrary parsers. Experiments were conducted on two cross-domain datasets, the WikiSQL and the more complex Spider, with five state-of-the-art parsers. These demonstrated that PIIA is capable of enhancing the text-to-SQL performance with limited interaction turns by using both simulation and human evaluation.