Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets neglects their inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain adaptation. To address this, we present B2NERD, a compact dataset designed to guide LLMs’ generalization in Open NER under a universal entity taxonomy. B2NERD is refined from 54 existing English and Chinese datasets using a two-step process. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly enhances LLMs’ Open NER capabilities. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages. The data, models, and code are publicly available at https://github.com/UmeanNever/B2NER.
LoRA has become one of the most widely used parameter-efficient fine-tuning methods due to its simplicity and effectiveness. However, numerous studies have shown that LoRA often introduces substantial parameter redundancy, which not only increases the number of trainable parameters but also hinders the effectiveness of fine-tuning. Since identifying redundant parameters in LoRA is inherently difficult, how to eliminate them efficiently and accurately remains a challenging problem. In this paper, we propose TASO, a redundancy reduction method that leverages importance information from the pretrained model’s weights to mitigate LoRA redundancy. Specifically, we estimate parameter importance on downstream tasks and identify task-specific core regions based on the distribution of importance scores. The location information of these core regions is then used to determine the sparse structure of LoRA modules, enabling redundancy removal before fine-tuning. Our approach significantly reduces the number of trainable parameters required for task adaptation, while providing a novel task-aligned perspective for LoRA redundancy reduction. Experimental results demonstrate that, with a parameter budget comparable to LoRA with rank r = 1, TASO consistently outperforms standard LoRA across multiple tasks, achieving strong fine-tuning performance while effectively eliminating redundant parameters.
Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utilize complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.